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Avalanche instability as nonequilibrium quantum criticality
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A fundamental instability in the nonequilibrium conduction band under an electric field bias is proposed via
the spontaneous emission of coherent phonons. Analytic theory, supported by numerical calculations, establishes
that the quantum avalanche, an abrupt nonequilibrium occupation of excited bands, results from the competition
between the collapse of the band minimum via the phonon emission and the dephasing of the electron with the
environment. The continuous avalanche transition is a quantum phase transition with the nonequilibrium phase
diagram determined by the avalanche parameter β, with peculiar reentrant avalanche domes close to the phase
boundary. We further confirm the nature of the quantum avalanche with the temperature dependence.
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I. INTRODUCTION

Materials under strong electromagnetic fields have been
extensively studied in the past half-century. In particular, the
resistive phase transition driven by a high electric field has
generated strong research efforts [1–5]. However, despite the
scientific and technological importance of the phenomena,
conceptual advancement has been limited since it requires an
understanding of many-body dynamics far from equilibrium
[6].

The challenge partly comes from the lack of theoretical
milestones. Despite mounting experimental reports [5,7–10],
theories have not provided decisive new insights into out-
standing issues. One such problem is resistive switching, in
which the mechanism of the insulator-to-metal transition by a
dc electric field has been debated, as to the electronic or ther-
mal origin, for many decades without much consensus. Part
of the problem is that theoretical efforts have often been too
complex to relate to well-established equilibrium counterparts
systematically. The goal of our analytic theory is to identify
a mechanism of nonequilibrium quantum transition akin to
critical phenomena and provide a conceptual and transparent
framework that could initiate future discussion.

In the past decades, we have asked how electrons overcome
the energy gap to induce dielectric breakdown, mainly within
the framework of Landau-Zener tunneling [1,7,11]. Despite
strong efforts, theories failed to address the energy-scale dis-
crepancy where the experimental switching fields are orders
of magnitude smaller than theoretical predictions [12–15]. In
a recent work [16], an alternative answer was proposed. In ma-
terials, electrical resistivity is not infinite and, with bias, there
exist many charge carriers present in the bulk limit, despite
with very dilute concentration. Once electrons are coupled
to an inelastic medium, instability develops with a uniform
electric field, in principle at infinitesimally small strength,
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leading to an eventual resistive breakdown of the system at
experimental scales [16].

In this work, we demonstrate that the correlated resistive
switching is an immediate consequence of a fundamental
nonequilibrium instability of electron bands in dc nonequi-
librium. Through a minimal electronic dissipation model we
show that any bands are in principle subject to avalanching
instability and the occurrence of the quantum-avalanche phase
transition is determined by the competition with dephasing.

II. MODEL AND CRITERION OF QUANTUM AVALANCHE

We introduce a model of a one-dimensional electron gas
coupled to optical phonons with electrons subject to a static
and uniform electric field E with the Hamiltonian

H (t ) =
∫ [

ψ†(x)

(
1

2m
(−ih̄∂x + eEt )2 + �

)
ψ (x)

+ 1

2

[
pϕ (x)2 + ω2

0ϕ(x)2
] + gepϕ(x)ψ†(x)ψ (x)

]
dx,

(1)

with the (spinless) electron creation/annihilation operator
ψ†(x)/ψ (x), the Einstein phonon field ϕ(x) of frequency ω0

with its conjugate momentum pϕ (x), and the electron-phonon
coupling constant gep. The conduction band is placed � above
the Fermi energy of the particle reservoir. A uniform dc
electric field is included as a vector potential −eEt x̂ in the
temporal gauge [17,18]. We use the unit system that h̄ = e =
kB = 1, with the Boltzmann constant kB.

The system is coupled to the environment with elect-
rons and phonons connected to the fermionic and bosonic
baths [16,19,20], respectively. The importance of phonon
baths has been highlighted [16,21] recently. The fermion
reservoirs account for the exchange of electrons from bands
outside the model (such as substrate) and provide dissipation.
More importantly, this mechanism sets the electron lifetime
via dephasing from external sources other than phonons. The
hybridization to the fermion bath is given as �, which we
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FIG. 1. (a) Energy scheme of a conduction band above the Fermi
level by � at equilibrium. Spontaneous emission of phonons into
an electronic level below the band edge is not allowed. (b) With
the electric field E > 0, the potential slope provides energy levels
tunneling below the band edge, enabling the spontaneous transition
into the forbidden region by emitting local phonons. As the electronic
replica state, with its energy lowered by ω0, is reinforced by the
multiple-phonon processes, an abrupt quantum transition occurs in
an avalanche. (c) Numerical results showing occupation number nex

of the conduction band as a function of E . The avalanche field Eav

is an increasing function of the dephasing rate �, suggesting that the
dephasing competes with the avalanching mechanism. Counterintu-
itively, smaller preavalanche occupations led to earlier avalanches, as
shown in the inset.

assume to be independent of energy and to be structureless
with infinite bandwidth, for simplicity. The electrons can de-
posit their excess energy into phonons with the scattering
rate controlled by the coupling constant gep, with the excited
phonons eventually decaying into an Ohmic bath [22,23].

This minimal model has been shown to induce a quantum
avalanche [16] where a phase transition to a strong nonequi-
librium occupation of the band occurs at a small electric
field scale. The mechanism for the quantum avalanche is
as follows. As depicted in Fig. 1(a), spontaneous phonon
emission does not occur in the E = 0 limit due to the ab-
sence of states below the band minimum. Even with the
faint line broadening into the gap due to �, these states are
quite insignificant. However, with a nonzero electric field [see
Fig. 1(b)], the potential slope provides electronic levels at
any energy. [Here, we temporarily switch to the static gauge
with potential V (x) = −eEx for the sake of argument.] While
the off-edge states are due to the evanescent tail centered
at a different position as depicted as the orange envelope
function in (b), it allows much enhanced spontaneous phonon
emission compared to (a). This smear of band edge due to a
uniform electric field is the Franz-Keldysh effect [24]. With
the replica state generated by a phonon emission reinforces
the evanescent off-edge state so that it can act as the reference
state that generates the second replica state. The formation
of the multiple replicas requires the phase coherence between
the electron and the phonon throughout, which is limited by
the electron dephasing time. This sets the threshold for the
quantum avalanche. We note that the nature of the transition
is spontaneous electronic transition below the band, instead
of the sequential dissipation of excess electronic energy into
phonon quanta.

We emphasize that fully numerical calculations con-
firm the following theoretical analysis. As published in
several nonequilibrium dynamical mean-field theory works
[16,19,25,26], the dissipation mechanisms are rigorously im-

FIG. 2. (a) Lowest-order self-energy to electron by electron-
phonon coupling. Electron (solid line) emits/absorbs a phonon
(wiggly line) in the scattering. (b) The next-order self-energy show-
ing two-phonon process. The integral is performed over the internal
(red) Keldysh times s1 and s2. (c) Out of the 12 possible arrangements
of (s1, s2) on the Keldysh contour, the dominant contribution comes
with s1,2 < t1,2 on each contour, as shown.

plemented in self-consistent calculations. It is essential to
include the dissipation on an equal footing as the system
Hamiltonian to ensure numerical convergence. In the lattice
model, the static gauge is used to exploit the time-translation
invariance of the steady state with the tight-binding parameter
t set to ta2 = h̄2/(2m) = 1 with lattice constant a set to 1. The
details about the numerical method can be found in previous
publications mentioned above.

Before we present the analytic theory, we discuss numer-
ical evidence for the quantum avalanche, in Fig. 1(c). The
occupation number of the band nex shows a continuous phase
transition at the finite electric field at Eav. There are two key
observations: (1) the avalanche field Eav is almost linearly
proportional to the coupling to the environment � and (2) the
occupation number before the avalanche has no direct conse-
quence on the strength of Eav. The fact that Eav ∝ � indicates
that the avalanche arises from the formation of off-edge states
established during the timescale set by the dephasing time
�−1. That is, with a long-dephasing time (� → 0), the mul-
tiphonon replica becomes more robust with a smaller electric
field. The second observation directly points to the quantum
nature of the transition. It is highly counterintuitive that the
initial occupation, which reflects the thermal occupation of
the conduction band via the line broadening �, goes against
the avalanche transition. As will be argued shortly about the
gap dependence of the avalanche, the avalanche only requires
the existence of the particle source, but not the proximity
of the particle reservoirs. We confirmed numerically that the
avalanche occurs in square and cubic lattices.

Now, we identify the condition for the abrupt increase of
electron occupation in the band. The electron occupation is
directly obtained from the lesser Green’s function (GF), nex =
−i

∫
G<

p (t, t ) d p
2π

, with the lesser GF defined as G<
p (t2, t1) =

i〈c†
p(t1)cp(t2)〉, with the Fourier transformed fermion vari-

able cp = ∫
e−ipxψ (x)dx. The enhancement of occupation

results from the lesser self-energy 
<, symbolically through
G< = GR
<GA. Figures 2(a) and 2(b) represent the two
lowest-order self-energies due to one-phonon and two-phonon
emission, respectively, and we look for the condition that
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these processes lead to comparable magnitude so that we
expect an infinite summation of these “rainbow” diagrams to
lead to an occupation avalanche.

The lowest-order self-energy 
(2),<
p (t2, t1), Fig. 2(a), can

be written [17] as


(2),<
p (t2, t1) = ig2

ep

∫
dq

2π
D<

0 (t2, t1)G<
0q(t2, t1), (2)

where D<
0 (t2, t1) is the standard Keldysh GF for phonon and

G<
0q(t2, t1) for noninteracting electron with momentum q. The

integral in the continuum model is for q ∈ (−∞,∞). The
electronic lesser GF is given as

G<
0p(t2, t1) = in<(p)e−�|t2−t1|Up(t2, t1), (3)

with an unspecified initial occupation n<(p) and the time-
evolution factor of a free electron

Up(t2, t1) = exp

[
−i

∫ t2

t1

(
(p + Es)2

2m
+ �

)
ds

]

= exp

[
−i

(
(p + ET )2

2m
+ �

)
t − iE2t3

24m

]
, (4)

with the average time T = 1
2 (t2 + t1) and the relative time

t = t2 − t1. We note that physical observables are gauge inde-
pendent [27–29] and the mechanical momentum p̄ = p + ET
appears in the manner as above. The bare phonon Green’s
function D0 is defined as

D≷
0 (t ) = −i〈ϕ(±t )ϕ(0)〉

= − i

2ω0
{nb(ω0)e±iω0t + [1 + nb(ω0)]e∓iω0t }, (5)

with the Bose-Einstein function nb(ω0) = (eω0/T − 1)−1.
Assuming that the occupation of the conduction band is

only at p̄ ≈ 0 up to the onset of the avalanche and that the
bath temperature T is much smaller than the phonon energy
ω0, we may write n<(p) ≈ 2πnexδ(p + ET ) such that nex =∫

n<(p)(d p/2π ) with the total excitation nex and obtain


(2),<
p (t2, t1) ≈ inexg2

ep

2ω0
e−�|t |−i[(�−ω0 )t+E2t3/24m]. (6)

Note that the band edge � is shifted down by ω0 due to the
phonon emission.

The next-order self-energy, while we only look at the
nested diagram, can be quite formidable when integrated over
the Keldysh times. The fourth-order self-energy 
(4)(t2, t1),
as depicted in Fig. 2(b), can be written as


(4)(t2, t1) = g4
ep

∫
K

ds1

∫
K

ds2G(t2, s2)D0(t2, t1)

× G(s2, s1)D0(s2, s1)G(s1, t1), (7)

with the internal times s1 and s2 on the Keldysh contour
marked as red. Six of the twelve permutations for s1,2 are
shown in Fig. 2(b). By using the fact that |G<| 
 |G>| in
the dilute limit before the avalanche, the only dominant time
ordering is as shown in (e), which is −∞ < s1,2 < t1,2 in
the backward/forward Keldysh time contour, respectively. For
instance, with the time ordering shown in (c), not only is the
Green’s function product G>(t2, s2)G<(s2, s1)G<(s1, t1) in the

second order of G<, but also it is reducible into the self-energy
of the one-particle Green’s function. Therefore, in the low-
density limit, the fourth-order self-energy is approximated
as

− i
g4

ep

(2ω0)2

∫
dq

2π

∫
dq′

2π

∫ −∞

t1

ds1

∫ t2

−∞
ds2n<(q′)

× e−�(t2−s2+t1−s1+|s2−s1|)eiω0(s2−s1+t2−t1 )

× Uq(t2, s2)Uq′ (s2, s1)Uq(s1, t1). (8)

As detailed in Appendix A, 
(4),<
p (t ) is well

approximated as


(4),<
p (t ) ≈ −nexmg4

ep

(2ω0)2
e−i[(�−2ω0 )t+E2t3/24m]

×
∫

dq

2π

∫
ds

ei(q2/2m+ω0 )s

qE (t + s) + 2im�
. (9)

In the above approximation, it is crucial that the dephasing
rate � and the resulting electric field E are much smaller than
other energy scales such as the phonon frequency ω0 and the
kinetic energy. We define the figure of merit value λ for the
enhancement of multiphonon effect as 
(4),<

p (0)/
(2),<
p (0)

and

λ ≈ img2
ep

2ω0

∫
dq

2π

∫
ds

ei(q2/2m+ω0 )s

qEs + 2im�
. (10)

This integral is readily expressed in terms of the modified
Bessel function K0(x) and we arrive at the avalanche condition
λ = 1 as

1 = mg2
ep

ω0E
K0

(
2�

√
2mω0

E

)
, (11)

which is one of our main results.
We turn our attention to the integral, Eq. (10), which

is quite revealing. In the E = 0 limit, the s integral gives
δ(q2/2m + ω0) = 0 due to the absence of target electronic
states below the band edge, as depicted in Fig. 1(a). There-
fore, in the equilibrium limit, there is no enhancement for an
avalanche. At a finite E , the pole at qs = −2im�/E results
in a dominant contribution while smearing the energy conser-
vation due to the time-dependent Hamiltonian and leads to a
strong enhancement for an avalanche.

Using the asymptotic relation of K0(x) for large x, we can
express the solution in the small avalanche field Eav limit as
(see Appendix B for details)

Eav ≈ 2�
√

2mω0

ln
(√

π
32β

) , (12)

with the avalanche parameter defined as

β = g2
ep

�

(
2m

ω3
0

)1/2

. (13)

III. DISCUSSIONS

In the following, we will compare the avalanche condition
(11) against numerical results. Two of the most fundamental
aspects of the quantum avalanche are displayed in Fig. 3. In
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FIG. 3. (a) Avalanche field Eav versus dephasing rate �, numerical (data points), and analytic (solid line) results. Eav → 0 as � → 0 almost
linearly. (b) Saturation of Eav with large �. The saturation shows that the avalanche is due to the fundamental instability of the conduction band
itself, not due to the proximity to the particle reservoir. The initial absence of Eav at small � is due to the shift of gap by the electron-phonon
coupling. The dashed lines are a guide to the eye.

(a), almost linear dependence between Eav and � illustrates
the fact that the � = 0 limit is fundamentally singular in the
nonequilibrium limit [16] and that the dephasing is crucial
in understanding nonequilibrium steady state. Throughout the
comparison to numerical results, there is an overall factor 5
discrepancy in Eav. While it might have been due to overes-
timating the renormalization factor λ in Eq. (11), the match
between the analytical and numerical results is quite good
apart from the overall factor. In Appendix A we discuss pos-
sible sources for the discrepancy.

The saturation of Eav for large � in Fig. 3(b) is quite
surprising. The weak dependence of Eav on large � suggests
that the avalanche is not a function of the proximity of the
band to the particle source, but rather a fundamental instability
of the conduction band itself once the particle source is acces-
sible. This observation is consistent with Fig. 1(c), in which
the avalanche occurred earlier with lower initial occupations
in the band. In the analytic argument, it is a quite natural
conclusion since Eq. (11) is a result of integration between
fermion GFs where the energy difference enters and the gap
� dependence drops out. The following discussions resulting
from Eq. (11) correspond to the large � limit. We caution
here that Eav saturates only with the model parameter � and,
in physical systems, the gap dependence could come back
indirectly since the band gap is roughly proportional to the
phonon energy [30].

The dependence on the phonon parameters ω0 and gep are
shown in Figs. 4(a) and 4(b). The monotonic dependence is
expected since a larger phonon energy requires a stronger E
field. It is still remarkable that the curvature change agrees
between the analytic and numerical results. The coupling con-
stant dependence in (b) is impressive. The inverse dependence
is expected since a weak coupling requires a higher field to
generate an avalanche. What is interesting is that the sharp
increase occurs at a finite value of gep.

The threshold behavior of gep can be understood analyt-
ically. As shown in Fig. 4(c), the right-hand side (RHS) of
Eq. (11) is a nonmonotonic function. As gep decreases the
maximum of the RHS hits 1, after which there does not
exist an avalanche solution anymore. By parametrizing x =
2�

√
2mω0/E , this condition amounts to [xK0(x)]′x=x0

= 0 at
x0 = 0.595047. Equation (11) can be rewritten as xK0(x) =
4/β with Eq. (13). Therefore, the critical condition for the

existence of an avalanche becomes

g2
ep

�

(
2m

ω3
0

)1/2
∣∣∣∣∣
c

= 4

x0K0(x0)
= 8.574 = βc, (14)

demonstrating the competition between the dephasing and the
avalanching mechanism.

Numerical solutions predict peculiar reentrant behaviors
near the threshold. As shown in Fig. 4(d), Eav values increase
as gep is reduced. The nex curves after the avalanche do not
simply collapse to zero as gep is reduced, but they develop
reentrant avalanche domes before they reach β = βc. We
speculate that the electrons get excited after an avalanche and
the additional dephasing due to charge fluctuations mitigates
the avalanche, leading to the dome behavior. We emphasize
that this most elementary nonequilibrium interacting model
presents us with rich physics. The inclusion of the phonon
self-energy did not change the reentrant behavior.

The competition between the avalanching mechanism and
the dephasing is best summarized in the gep-� phase diagram
for the existence of an avalanche [see Fig. 5(a)]. According to
Eq. (14), the line β = βc (or gep ∝ √

�) divides the phase with
avalanche (β > βc) and that without avalanche (β < βc). The
numerical results deviate from the analytic theory at large �(�
0.005) due to the additional dephasing from the excitation of
phonons. A related mechanism is discussed below.

Finally, we discuss the temperature dependence of the
avalanche in Fig. 5(b). In the resistive switching literature,
the conventional understanding based on the thermal scenario
is that the switching field of the insulator-to-metal transi-
tion, mostly in Mott insulators, decreases with increasing
temperature since the order in solids softens with tempera-
ture [31]. The quantum avalanche [16] mechanism, however,
predicts the opposite trend which agrees with the soft and
low-field resistive transitions observed in prototype charge-
density-wave systems [1]. This is due to the thermal dephasing
counteracting the avalanching mechanism. Therefore, under-
standing the numerical temperature dependence of Eav is
crucial. As shown in (b), the temperature T ∗ at which the Eav

changes significantly is at T ∗ ≈ 0.17ω0. At this temperature,
the Bose-Einstein function nb(ω0) = (eω0/T ∗ − 1)−1 is less
than 0.005, which suggests that the mechanism may not be
straightforward.

054307-4



AVALANCHE INSTABILITY AS NONEQUILIBRIUM … PHYSICAL REVIEW B 109, 054307 (2024)

FIG. 4. (a) Avalanche field Eav versus phonon frequency ω0. The electron replica generation is inversely proportional to ω0, thus needing
a larger E field to generate high phonon energy. (b) Eav versus electron-phonon coupling gep. Not only the inverse dependence on gep but also
the sharp increase at a threshold gep is well agreed between the numerical and analytic results. (c) Graphs for criterion Eq. (11), as gep is varied.
Solutions (dots) cease to exist for β < βc. (d) Numerical results of nex vs E field as gep is varied. As gep approaches the threshold value, the
avalanche becomes reentrant with the size of domes eventually diminishing to zero at the threshold gep.

The numerical temperature dependence is resolved by in-
troducing the additional dephasing due to the electron-phonon
coupling. The dephasing is evaluated from the retarded self-
energy 
R(ω) at the band edge ω = �. Since the 
>

contribution dominates 
R, we have in the small E -field limit
(see Appendix C for details)

−Im
R(�) ≈ mg2
ep

2ω0
√

2mω0
nb(ω0) = 1

4
�βnb(ω0). (15)

By replacing � in Eq. (11) by the effective dephasing
� + |Im
R(�)|, we define the activation temperature T ∗ at

|Im
R(�)| ≈ 1
4� and obtain

T ∗ = ω0

ln(1 + β )
. (16)

The position for T ∗, marked by arrows in Fig. 5(b), agrees
well with the numerical results.

IV. CONCLUSION

In conclusion, we proposed avalanche instability as a
fundamental mechanism for a nonequilibrium quantum criti-
cality. Analytical theory, with comprehensive agreement with
numerical calculations, demonstrates the quantum origin of

FIG. 5. (a) �-gep phase diagram for avalanche. The competition between the electron-phonon coupling and the dephasing results in the
phase boundary line β = βc (gep ∝ √

�). β > βc supports the avalanche phase. � = 1 and ω0 = 0.3. (b) Finite temperature behavior of Eav.
The increasing Eav(T ) behavior is a direct evidence of a nonthermal mechanism. The analytic prediction of the temperature T ∗ at the onset
(arrows) agrees well with the numerical Eav(T ).
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the avalanche as a building block for understanding dc
nonequilibrium phases of electrons. Further studies are nec-
essary to test the ubiquity of the mechanism under dephasing
mechanisms in various interacting models. The dissipation
medium of the model can be easily extended to different types
such as photons with the light-matter coupling enhanced in
quantum cavities.
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APPENDIX A: CALCULATION DETAILS FOR THE
FOURTH-ORDER SELF-ENERGY �(4)(t )

The fourth-order self-energy 
(4)(t2, t1), in the low-density
limit, is approximated as

− i
g4

ep

(2ω0)2

∫ ∞

−∞

dq

2π

∫ ∞

−∞

dq′

2π

∫ −∞

t1

ds1

∫ t2

−∞
ds2n<(q′)

× e−�(t2−s2+t1−s1+|s2−s1|)eiω0(s2−s1+t2−t1 )

× Uq(t2, s2)Uq′ (s2, s1)Uq(s1, t1). (A1)

After substitution s1 → t1 + s1 and s2 → s2 + t2, and then by
changing the variables to the average variable S = 1

2 (s1 + s2)
and the relative variable s = s2 − s1, we have the integral as

i
g4

ep

(2ω0)2
e−i[(�−2ω0 )t+E2t3/24m]

×
∫

dq

2π

∫
dq′

2π

∫ ∞

−∞
ds

∫ −|s|/2

−∞
dSn<(q′)e�(2S−|s+t |)+iω0s

× e
i

2m (q+ET )2s− i
2m (q′+ET )2(t+s)− i

m (q−q′ )E (t+s)S, (A2)

where we used the transformation of integral∫ 0

−∞
ds1

∫ 0

−∞
ds2 =

∫ ∞

−∞
ds

∫ −|s|/2

−∞
dS. (A3)

As discussed in the main text, we replace q + ET and q′ +
ET by the gauge-independent q and q′, respectively, and set
q′ ≈ 0 due to the factor n<(q′). Then after performing the
integral over S, we have

−mnexg4
ep

(2ω0)2
e−i[(�−2ω0 )t+E2t3/24m]

×
∫

dq

2π

∫
ds

e−�(|s|+|s+t |)+iω0s

qE (t + s) + 2im�
ei q2s

2m +i q
2m E (t+s)|s|. (A4)

To further simplify the expression, we make a crucial ap-
proximation based on the parameter regime that q2

2m + ω0 �
� ∼ E . Due to this condition, the convergence of the integral

is controlled by the fast oscillation in ei( q2

2m +iω0 )s. Therefore,
the exponential factors e−�(|s|+|s+t |) and ei q

2m E (t+s)|s| are slowly

FIG. 6. Comparison of the numerical integral of Eq. (A7) (cir-
cles) as a function of E field against the analytic approximation
Eq. (A6) (solid line) for typical parameters of m = 1/2, � = 0.002,
ω0 = 0.3, and gep = 0.10.

varying and the approximation s ≈ 0 can be used. The fourth-
order self-energy then becomes a function of only the relative
time t as


(4),<
p (t ) ≈ −mnexg4

ep

(2ω0)2
e−i[(�−2ω0 )t+E2t3/24m]

×
∫

dq

2π

∫
ds

ei(q2/2m+ω0 )s

qE (t + s) + 2im�
. (A5)

See the discussion in the following paragraph for further
justification. The enhancement factor λ evaluated at t = 0
is then

λ = 
(4),<
p (0)



(2),<
p (0)

≈ img2
ep

2ω0

∫
dq

2π

∫
ds

ei(q2/2m+ω0 )s

qEs + 2im�

= mg2
ep

4ω0E

∫ ∞

−∞

dq

|q| exp

(
−2m�

E

q2/2m + ω0

|q|
)

= mg2
ep

ωoE
K0

(
2�

√
2mω0

E

)
, (A6)

with the modified Bessel function K0(x). Note that the unspec-
ified parameter nex cancels out. We identify the avalanche at
λ = 1 and thus Eq. (8) in the main text. It is noted that, since
the occupation spectra G<(ω) is localized near ω = � [16],
its integral over ω [i.e., 
<(t = 0)] is a good indicator for the
avalanche.

We test the approximation leading to Eq. (A5) by compar-
ing it to the numerical evaluation of the integral that retains the
phase eiqEs|s|/2m and the exponential damping factor by e−2�|s|
at t = 0

λ′ = img2
ep

2ω0

∫
dq

2π

∫
ds

e−2�|s|+i(q2/2m+ω0 )s+iqEs|s|/2m

qEs + 2im�
. (A7)

Although the integral converges very slowly due to the ex-
treme oscillation in the integrand, especially in the low E
limit, the agreement in Fig. 6 shows that the analytic approxi-
mation is reliable in the regime of interest.
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The result, Eq. (A6), is in excellent agreement with the
numerical lattice calculations except for the overall magnitude
difference of about factor 5 throughout. Since the two methods
use different gauges, it is difficult to pinpoint the source of
the discrepancy. However, the dispersion relation of the lattice
model within the Brillouin zone (−π, π ) should be contrasted
with the parabolic band of the continuum with the momentum
in (−∞,∞). If we limit the integral range of the second
line of Eq. (A6) to (−π, π ), the integral should yield smaller
results, which then should result in larger avalanche field
values Eav.

APPENDIX B: DERIVATION OF THE QUANTUM
AVALANCHE FIELD, EQ. (12)

By using the parameter x = 2�
√

2mω0/E in Eq. (A6), we
can express the avalanche condition as

xK0(x) = 4

β
with β = g2

ep

�

(
2m

ω3
0

)1/2

, (B1)

with the avalanche parameter β. In the large β limit, the solu-
tion to the criterion can be simplified by using the asymptotic
relation of the Bessel function as

(π

2
x
)1/2

e−x ≈ 4

β
, x ≈ ln

(√
π

32
β

)
+ 1

2
ln x, (B2)

which can be recursively solved as

x ≈ ln

(√
π

32
β

)
+ 1

2
ln

[
ln

(√
π

32
β

)]
+ · · · . (B3)

With the first term, the approximate solution for Eav is

Eav ≈ 2�
√

2mω0

ln
(√

π
32β

) . (B4)

APPENDIX C: DERIVATION OF THE KICKOFF
TEMPERATURE T ∗ IN Eav, EQ. (16)

Since the retarded self-energy has the main contribution
from the greater GF, we compute the greater self-energy in
the low-field limit as


>(t ) = − ig2
ep

2ω0

∫
d p

2π
e−i(�+p2/2m)t [(1 + nb)e−iω0t + nbeiω0t ],

(C1)

with the expression inside the bracket due to the phonon prop-
agator, Eq. (5). At the band edge ω = �, the term proportional
to (1 + nb) vanishes due to the energy conservation and we
have the Fourier transformation


>(ω = �) ≈ − ig2
epnb

2ω0

∫
d p δ(ω0 − p2/2m)

= − img2
ep

ω0
√

2mω0
nb = −i(β/2)�nb (C2)

and Im
R(ω) ≈ 1
2 Im
>(ω). Therefore, the effective dephas-

ing rate becomes

�eff = �

(
1 + β

4
nb

)
. (C3)

We define the activation temperature T ∗ at the initial rise of
Eav and conveniently set for the condition βnb = 1, which
leads to

T ∗ = ω0

ln(1 + β )
. (C4)
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