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Dynamics of nonequilibrium magnons in gapped Heisenberg antiferromagnets

Chengyun Hua ,1,* Lucas Lindsay ,1 Yuya Shinohara ,1 and David Alan Tennant 2,3,4

1Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

3Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
4Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 31 October 2023; revised 4 January 2024; accepted 23 January 2024; published 20 February 2024)

Nonequilibrium dynamics in spin systems is a topic currently under intense investigation as it provides
fundamental insights into thermalization, universality, and exotic transport phenomena. While most of the
studies have been focused on ideal closed quantum many-body systems such as ultracold atomic quantum
gases and one-dimensional spin chains, driven-dissipative Bose gases in steady states away from equilibrium
in classical systems also lead to intriguing nonequilibrium physics. In this work, we theoretically investigate
out-of-equilibrium dynamics of magnons in a gapped Heisenberg quantum antiferromagnet based on Boltzmann
transport theory. We show that, by treating scattering terms beyond the relaxation-time approximation in the
Boltzmann transport equation, energy and particle number conservation mandate that nonequilibrium magnons
cannot relax to equilibrium, but decay to other nonequilibrium stationary states. The only decay channel for these
stationary states back to equilibrium is through the nonconserving interactions (i.e., changing particle number
and/or energy within the magnon system) such as boundary or magnon-phonon scattering. At low temperatures,
these nonconserving interactions are much slower processes than intrinsic magnon-magnon interaction in a
gapped spin system. Using magnon-phonon interaction as a quintessential type of nonconserving interaction, we
then propose that nonequilibrium steady states of magnons can be maintained and tailored using periodic driving
at frequencies faster than relaxation due to phonon interactions. These findings reveal a class of classical material
systems that are suitable platforms to study nonequilibrium statistical physics and macroscopic phenomena
such as classical Bose-Einstein condensation of quasiparticles and magnon supercurrents that are relevant for
spintronic applications.
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I. INTRODUCTION

Nonequilibrium dynamics in spin systems is important as
it opens the door to exciting new fundamental scientific ques-
tions about thermalization, universality, and dynamical phase
transitions beyond traditional condensed matter paradigms
[1]. Technologically, it might hold the key to achieving co-
herent spin transport as it directly relates to dissipationless
information transport for low-power and low-loss spintronic
devices [2]. Strongly motivated by the rapid progress in
achieving closed quantum system such as ultracold atomic,
molecular, and trapped ion systems, recent theoretical stud-
ies of nonequilibrium spin dynamics have been focused on
closed many-body quantum systems [3–8], such as one-
dimensional (1D) spin chains [9–12]. In 1D quantum systems,
the ubiquitous presence of integrability—a property of dy-
namical systems with an infinite set of conserved commuting
quantities—leads to intriguing physics such as nonequilib-
rium flows [10,13–15], finite Drude weight [16–20], and
relaxation to nonequilibrium steady states (NESS) [21,22], all
constrained by the conservation laws afforded by integrability.

*Corresponding author: huac@ornl.gov

Spin dynamics in higher-dimensional quantum magnets,
e.g., two-dimensional (2D) or three-dimensional (3D) Heisen-
berg antiferromagnets have also been extensively investigated,
both theoretically and experimentally [23–28]. These systems
are well described by a classical spin model where the spin
components have a range of possible values depending on
their particular angular orientation. In such systems, the col-
lective excitations of spins called magnons act as a dilute
Bose gas. Nonequilibrium dynamics of such a Bose gas may
also lead to interesting physics. Specifically, in the quantum
degenerate regime, an ideal Bose gas driven to a steady state
away from equilibrium could form Bose-Einstein condensa-
tion [29–31]. This coherent quantum state of magnons holds
the key to achieving dissipationless and possibly entangled in-
formation transport, realizing the true potential of spintronics
for low-power and low-loss electronic devices. In this con-
text one might ask simple questions: what are the dynamical
properties of nonequilibrium magnons in higher-dimensional
quantum magnets? In particular, under what conditions could
they reach a NESS?

A conventional understanding of magnon dynamics is that
the dynamics is dominated by collisions among magnons,
where the transition rate is given by Fermi’s golden rule
[32,33]. Therefore, nonequilibrium magnons, whose statis-
tics are not described by the Bose-Einstein distribution, are
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believed to relax back to equilibrium states due to these
collision processes. Theoretical investigations using the
Boltzmann description of transport under the relaxation-time
approximation (RTA) supports such a claim [34–38]. How-
ever, the validity of the RTA should be questioned when
multiple macroscopic conservation laws are imposed, thus
limiting interaction pathways.

For higher-dimensional Heisenberg antiferromagnets at
low temperatures, the symmetry of spin operators restricts
intrinsic magnon-magnon interactions to elastic pairwise
collisions of magnons, meaning microscopic interactions con-
serve crystal momentum, energy, and particle number [39]
and macroscopically total energy and particle number are
conserved. Nonconserving interactions (i.e., changing particle
number and/or energy within the magnon system) such as
magnon-phonon scatterings are very weak in a gapped system
at low temperatures, as the overlap of scattering phase space
between phonon and magnon states is significantly reduced
compared to gapless systems. Boundary scatterings are also
very weak in a gapped system since the occupied states at
low temperatures are primarily near the zone center and their
group velocities are close to zero. Therefore, these noncon-
serving interactions occur at a time scale much slower than
intrinsic magnon-magnon interactions. This prediction has
been confirmed by high-precision neutron spin-echo measure-
ments of magnon linewidths of Rb2MnF4 and MnF2, 2D and
3D Heisenberg antiferromagnets, respectively [40,41].

In this work, we first show that by treating scattering terms
beyond the RTA in the Boltzmann transport equation, the
conservation of total energy and particle number mandate that
nonequilibrium magnons cannot relax to equilibrium but de-
cay to nonequilibrium stationary states whose conditions are
solely determined by the initial particle number and energy.
The only intrinsic decay channel for these stationary states
back to equilibrium is through the interaction with phonons,
which is a much slower process. We then propose that the
NESS of magnons can be observed experimentally if such a
system is driven by pumping nonequilibrium magnons peri-
odically at a rate faster than the phonon-magnon decay times.

II. MAGNON BOLTZMANN TRANSPORT EQUATION

Out-of-equilibrium magnon transport in Heisenberg quan-
tum magnets without an external magnetic field can be
generally described by the Boltzmann transport equation [38]

∂ fk

∂t
+ vk · ∇x fk = −∂ fk

∂t

∣∣∣∣
scattering

, (1)

which describes the dynamics of the out-of-equilibrium oc-
cupation function fk at position x and time t , for all possible
magnon states k [k ≡ (q, s), where q is the magnon wavevec-
tor and s is the magnon polarization]. The second term on
the left-hand side of Eq. (1) describes advection processes
of magnons, where vk is the group velocity derived from
the slope of the magnon dispersion. The right-hand side term
describes variations due to magnon scatterings.

The spin-wave dispersion and damping in quantum mag-
nets are derived from the second-order and higher-order
expansions of a spin-operator Hamiltonian, respectively. At
low temperatures, the spin order in a Heisenberg model is

collinear and magnon scatterings in a Heisenberg antiferro-
magnet are restricted to two-in/two-out processes (k + p →
s + r) due to symmetry of the spin operators. Three-magnon
scatterings only become important when the noncollinear
terms are non-negligible at elevated temperatures, i.e., close to
the Néel temperature [39,40], or for frustration. Derived from
quantum perturbation theory, the scattering term in Eq. (1) for
two-in/two-out processes is given in Eq. (A1).

To solve Eq. (1), we first define the out-of-equilibrium
occupation function as

fk (t, x) = f BE
k (T0) + � fk (t, x), (2)

where � fk (t, x) is the deviational distribution from the
global equilibrium Bose-Einstein distribution f BE

k (T0) =
(exp(h̄ωk/(kBT0)) − 1)−1. ωk is the magnon frequency, kB is
the Boltzmann constant, and T0 is the equilibrium tempera-
ture. When fk = f BE

k (T0), both the right- and left-hand sides
of Eq. (1) vanish.

For simplicity, we now normalize energy by kBT0 and then
define

nk (t, x) ≡ � fk (t, x)sinh(êk/2), (3)

where êk = h̄ωk/(kBT0) is the dimensionless magnon energy.
This definition of the deviational distribution allows us to
transform the magnon scattering term into a diagonalizable
Hermitian matrix. Assuming nk (t, x)csch(êk/2) � f BE

k (T0),
we can keep the terms only involving zeroth and first orders
in nk (t, x) and, therefore, linearize the scattering operator
around f BE

k (T0). The linearized BTE in terms of nk (t, x) can
be written into the following form:

∂nk

∂t
+ vk · ∇nk = −1

ν

∑
k′

�kk′nk′ , (4)

where ν is a normalized volume and �kk′ is the linear scatter-
ing operator acting on nk′ . This linearization of the scattering
operator has been used in many studies of phonon trans-
port and holds for small deviations from thermal equilibrium
[42–47]. The scattering matrix appearing in Eq. (4) is in its
most general form and describes all possible mechanisms by
which a magnon excitation can be transferred from a state k
to a state k′ regardless of interaction mechanism. The matrix
operator representing two-in/two-out magnon interactions is
given in Appendix A.

From the explicit formula in Eq. (A2), four key features of
the matrix � can be identified [48–52]: (i) it is real and sym-
metric, i.e., �kk′ = �k′k; (ii) it is an even function of k, i.e.,
�−k−k′ = �kk′ ; (iii) it is positive semidefinite, i.e., |�kk′ | � 0;
and (iv) due to the restriction from two-in/two-out scattering
processes, it is summational invariant in both u0

k = csch(êk/2)
and u1

k = êkcsch(êk/2), i.e.,∑
k′

�kk′u0
k′ =

∑
k

u0
k�kk′ = 0, (5)

∑
k′

�kk′u1
k′ =

∑
k

u1
k�kk′ = 0. (6)

The two summational invariants are direct consequences of
conservation of total particle number and energy. The ele-
ments of the collision matrix are filled according to each
possible collision process (k + p → r + s) and follow that
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u0
k�kk + u0

p�kp − u0
r �kr − u0

s �ks = 0 and u1
k�kk + u1

p�kp −
u1

r �kr − u1
s �ks = 0 for each process. The deviational particle

number and nondimensional deviational energy are given by
�N = ν−1 ∑

k nk (t, x)u0
k and �E = ν−1 ∑

k nk (t, x)u1
k , re-

spectively. If fk is at a new thermodynamic equilibrium state
described by a temperature T , the equilibrium deviational
distribution is given as neq

k (T ) = u1
k�T̂ /4, where �T̂ = |T −

T0|/T0 � 1.
The diagonal terms of � give the relaxation time τk of

each mode under the RTA, i.e., ∂nk/∂t |scattering = (nk (t, x) −
neq

k (T (t, x)))/τk . Under such an assumption, nonequilibrium
magnon states decay back to equilibrium, independent of
other magnons. However, it can be shown that the summa-
tional invariances of u0

k and u1
k cannot be simultaneously

satisfied, meaning either the particle number or energy conser-
vation has to be broken. This leads to an unphysical prediction
of the nonequilibrium dynamics of magnons in Heisenberg
antiferromagnets.

The goal of the following mathematical treatment is to
treat the scattering matrix such that both energy and particle
number are conserved and demonstrate that starting from a
nonequilibrium distribution, for a closed system (no exchange
with phonon bath or the environment through the boundaries),
nk (t, x) will not return to an equilibrium distribution when
conservation of both energy and particle number are present
and the initial information of the distribution is preserved
partially as t → ∞. To show this, we start by solving Eq. (4)
using a spectral decomposition method [48]. Due to the above
mentioned properties of �, we can deduce that there exists a
complete set of eigenvectors such that

1

ν

∑
k′

�kk′θα
k′ = 1

τα

θα
k , (7)

where τ−1
α is the eigenvalue (the lifetime of relaxons intro-

duced by Cepellotti and Marzari [44]) and α (α = 0, 1, 2,
3...N-1, where N is the dimension of the collision matrix) is
the eigenvalue index of �. The orthonormal condition and the
scalar product are then defined as ν−1 ∑

k θα
k θα′

k = 〈α|α′〉 =
δαα′ and 〈 f |g〉 = ν−1 ∑

k fkgk = 〈g| f 〉. Then nk is expanded
as

nk (t, x) =
∑

α

gα (t, x)θα
k , (8)

where gα (t, x) = 〈n(t, x)|θα〉 are unknown coefficients to be
solved for.

Since � is real and symmetric, all of its eigenvectors must
be real. Since � is an even function of k, its eigenvectors can
be chosen to be either even or odd, i.e., θα

k = ±θα
−k . Because

of its positive semidefiniteness, one can show that its eigen-
values are non-negative, i.e., τα � 0 ∀α, and there is a pair
of degenerate eigenvectors with zero eigenvalue, which are
labeled as α = 0, 1. The associated eigenvectors are a linear
superposition of u0

k and u1
k , and therefore are even functions

of k.

It follows from Eq. (4) and from the orthogonality and
completeness of the eigenvectors that the coefficients gα (t, x)
are determined by the coupled set of equations

∂g0

∂t
+

∑
β,odd

〈0|v|β〉 · ∇gβ = 0, (9)

∂g1

∂t
+

∑
β,odd

〈1|v|β〉 · ∇gβ = 0, (10)

∂gα

∂t
+

∑
β

〈α|v|β〉 · ∇gβ = − gα

τα
, α > 1, (11)

where the matrix elements of the group velocity are 〈α|v|β〉 =
ν−1 ∑

k θα
k vkθ

β

k . Since vk is an odd function of k (vk =
−v−k), matrix elements connecting two eigenvectors with the
same parity must be zero.

In general, solving the above system requires numerical
discretization in time and space and matrix inversion. How-
ever, under the assumption of a closed boundary condition
(no magnon flux in or out of the system), one is able to ob-
tain an analytical solution for a volume-integrated distribution
function. Integrating Eqs. (9)–(11) over crystal volume V ,
one obtains

∫
V 〈α|v|β〉 · ∇gβdV = ∮

S gβ〈α|v|β〉 · n̂dS = 0 for
a closed boundary condition, where n̂ is the outward pointing
unit normal at each point on the boundary S. Equations (9)–
(11) then are simplified into a set of decoupled first-order
ordinary differential equations with solutions given as

g̃0(t ) = g̃0(t = 0), g̃1 = g̃1(t = 0),

g̃α (t ) = g̃α (t = 0)e−t/τα (α > 1), (12)

where the tilde means volume integrated. The time-dependent
distribution function can be written as ñk (t ) = g̃0(0)θ0

k +
g̃1(0)θ1

k + ∑
α>1 g̃α (0)e−t/τα θα

k . Therefore, the stationary-
state solution is given by

ñss
k = ñk (t → ∞) = g̃0(0)θ0

k + g̃1(0)θ1
k . (13)

To gain more physical insights into the stationary-state solu-
tion, we write θ0

k as

θ0
k = au0

k + bu1
k . (14)

Due to orthonormality between the eigenvectors, θ1
k can be

constructed as θ1
k = χ−1/2[u0

k − 〈u0|θ0〉θ0
k ] with the normal-

ization factor χ . For simplicity, θ1
k can be written as

θ1
k = cu0

k − du1
k, (15)

where

c = a〈u0|u1〉 + b〈u1|u1〉√
〈u0|u0〉〈u0|u0〉 − 〈u0|u1〉2

, (16)

and

d = b〈u0|u1〉 + a〈u0|u0〉√
〈u0|u0〉〈u0|u0〉 − 〈u0|u1〉2

. (17)

Assuming a volumetric generation of magnons at t = 0
with an initial distribution ñi

k , the total number of generated
particles is given as �N = 〈ñi|u0〉 and the total dimen-
sionless energy generated as �E = 〈ñi|u1〉. Then, we have
g̃0(0) = a�N + b�E and g̃1(0) = c�N − d�E . Then the
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stationary-state solution can be rewritten as

ñss
k = (a2�N + ab�E + c2�N − cd�E )u0

k

+(ab�N + b2�E − cd�N + d2�E )u1
k . (18)

Using the identities given in Appendix B, we have
〈ñss|u0〉 = �N and 〈ñss|u1〉 = �E , indicating that both parti-
cle number and energy are conserved. The only way for ñss

k to
reach an equilibrium distribution is to set a2�N + ab�E +
c2�N − cd�E = 0, leading to �N/�E = 〈u0|u1〉/〈u1|u1〉
and ñi

k ∝ u1
k . This shows that for a closed magnon system with

magnon-magnon interactions restricted with conservation of
both energy and particle number, unless the system starts with
an equilibrium initial distribution, the magnon population will
always remain out-of-equilibrium.

If the particle number is not conserved, u0
k is no longer a

summational invariant of the collision matrix �, and the time-
dependent distribution function becomes ñk (t ) = g̃1(0)u1

k +∑
α>1 g̃α (0)e−t/τα θα

k . Then, ñss
k will always be proportional to

the equilibrium distribution u1
k , meaning the system will reach

equilibrium as t → ∞, similar to that for a typical phonon
system mediated by three-phonon interactions.

III. DYNAMICS OF NONEQUILIBRIUM MAGNONS

We now apply the above calculation to Rb2MnF4, a
quasi-2D square lattice S = 5/2 Heisenberg antiferromag-
net. The Hamiltonian of this material is well understood
[53]. Its magnon dispersion and damping mechanism have
been extensively studied both theoretically and experimen-
tally [39–41,54]. Magnon transport is confined to the ab plane
and ion anisotropy leads to a magnon energy gap around
0.6 meV at 3 K. At T � TN = 38 K, the linewidth broadening
of one-magnon scattering intensity by neutrons has been con-
firmed to be dominated by two-in/two-out magnon-magnon
interactions and phonon-magnon interactions are negligible
[40,41]. The following calculations are performed at T0 = 3 K
and all the parameters necessary to evaluate the dispersion and
scattering matrix are given in Refs. [41,53].

We calculate the matrix elements of � and numerically de-
termine the values of a and b in θ0

k by finding the eigenvalues
and eigenvectors of �. We used the same integration scheme
as described in Ref. [41]. Briefly, the computations of the
matrix involve sums over qk and qp states, where qk + qp =
qr + qs, qr = qp − q, and qs = qk + q. For qp, a grid with
density of [81/(2π )]2 over the first Brillouin zone (BZ), with
64× higher density in the central 1/8th of the BZ, is used in
the summation, weighted by the reciprocal-space volume per
point. The grid in q has a uniform density of [81/(2π )]2 over
the BZ. For a given initial distribution ñi, we are now able
to evaluate its corresponding stationary-state solution using
Eq. (18). Figure 1 gives the stationary state distribution func-
tions ñss

k for four initial conditions (solid curves). For all four
initial distributions, the total �E is kept constant. Depending
on how many states are initially excited, �N varies for the
four cases. The dashed curve in Fig. 1 gives the equilibrium
deviational distribution ñeq

k (T ) at the given �E , which corre-
sponds to a temperature rise of 0.1 K. The crossing of all the
distributions in Fig. 1 occurs at êk = 〈u1|u1〉/〈u0|u1〉 where all
the terms involving �N in Eq. (18) cancel out. From Eq. (18)

0 4 8 12 16

-0.02

0

0.02

0.04

0.06

0.08
Equilibrium
Nonequilibrium

0.14N
0

0.1N
0

0.07N
0

N = 0.22N
0

N
0
 at T

0
 = 3 K

Const E  T = 0.1 K
if at equilibrium

FIG. 1. The stationary-state distributions ñss
k as a function of

dimensionless magnon energy êk , for four initial conditions (solid
curves). For all four initial distributions, the total �E is kept
as a constant, around 15% of the total energy at 3 K, E0 =
ν−1

∑
k h̄ωk f BE

k (T0 = 3K ). Depending on how many states are ini-
tially excited, �N varies for the four cases: �N = 0.22N0 (red),
0.14N0 (yellow), 0.09N0 (green), and 0.07N0 (blue), where N0 =
ν−1

∑
k f BE

k (T0 = 3K ) is the total number of particles at 3 K. The
dashed curve gives the equilibrium deviational distribution at a given
�E , which corresponds to a temperature rise of �T = 0.1 K.

and Fig. 1, we have shown that the final stationary-state so-
lutions depend on the initial conditions through the values of
�N and �E but it cannot distinguish two initial distributions
that give the same �N and �E . Therefore, the stationary-state
solution contains partial information about the initial states.

To analyze the driven-dissipative behavior of the dynamics,
we now add a phenomenological magnon-phonon coupling as
a prototypical nonconserving interaction and external driving
terms to Eq. (4) and the volume-integrated BTE then becomes

∂ ñk

∂t
= −1

ν

∑
k′

�kk′ ñk′ − ñk − ñeq
k (T )

τph−m
+ Fk (t ), (19)

where τph−m is the relaxation time of magnons due to phonon-
magnon interaction and Fk (t ) is an external driving source.
To ease the derivation but still maintain the physical picture,
τph−m is assumed a constant for all magnon modes. After
application of the eigendecomposition method as described
above, the governing equations for g̃α (α � 2) become

∂ g̃α

∂t
= − g̃α

τα

− g̃α

τph−m
+ Fα (t ), (20)

where Fα (t ) = 〈F (t )|θα〉. The solution to this first-order
differential equation is then given by g̃α (t ) = ∫ t

0 Fα (t −
t ′)e−t ′/τα−t ′/τph−m dt ′. From the numerical evaluation, the largest
value of τα for Rb2MnF4 is around ∼1 µs. At T � TN ,
due to strong exchange interaction between spins and mis-
match on the occupied states of phonons and magnons,
magnon-magnon scattering is much more effective than
magnon-phonon processes [55]. Therefore, the relaxation
time due to phonon-magnon interaction in Rb2MnF4 is as-
sumed much longer than 1 µs. Then the decay dynamics of
g̃α (t ) is determined by τα . The dynamics of �N and �E , on
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FIG. 2. (a) �N (t ) (solid curves) under a square-wave driving source �NDrive(t ) (dashed curve). Time is nondimensionalized by a fixed
pulse width (PW) and the period P of the source is fixed at P = 5 PW. The dynamical behavior of �N (t ) changes with phonon-magnon coupling
time (τph−m): τph−m = 0.1 PW (yellow), PW (red), 10 PW (green), 100 PW (blue). When τph−m 
 PW (blue line), the magnon system reaches a
nonequilibrium steady state and nonequilibrium magnon population will be maintained as long as the driving source lasts. (b) Nonequilibrium
steady-state value �NNESS is inversely proportional to the period P. Inset: �N (t ) under a square-wave driving source at three different periods.

the other hand, is determined by τph−m, given by the following
equations:

a

(
∂�N

∂t
+ �N

τph−m

)
+ b

(
∂�E

∂t
+ �E

τph−m

)

= q�T̂

τph−m
+ F 0(t ), (21)

c

(
∂�N

∂t
+ �N

τph−m

)
+ d

(
∂�E

∂t
+ �E

τph−m

)

= p�T̂

τph−m
+ F 1(t ), (22)

where F 0,1(t ) = 〈F (t )|θ0,1〉, q = a/[4(ad − bc)], and p =
c/[4(bc − ad )]. If Fα (t ) is a driving source that only affects
magnons and �T̂ is a time-independent quantity determined
by phonons, then Eqs. (21) and (22) can be decoupled into
two first-order differential equations and their solutions have
a general form of

∫ t
0 �NDrive(t − t ′)e−t ′/τph−m dt ′ + constant,

where �NDrive(t ) is an external driving function in a general
form.

Figure 2 shows the dynamics of �N (t ) under a square-
wave driving source �NDrive(t ) = �NDrive(t + P), where P is
the source period. In this study, we fix the pulse width (PW)
of the square-wave source. The ratio of τph−m and PW deter-
mines the time-dependent behavior of �N (t ). When τph−m �
PW [yellow curve in Fig. 2(a)], due to a fast magnon-phonon
coupling time relative to the active pumping time, the magnon
system quickly relaxes back to equilibrium once the driving
source disappears. When τph−m ∼ PW [red and green curves
Fig. 2(a)], decay of the nonequilibrium magnon population is
observed between two driving events and the decay time is
determined by τph−m. Observation of this dynamical behavior
can be used to determine the coupling time of magnon-phonon
interactions experimentally. When τph−m 
 PW [blue curve
in Fig. 2(a)], the magnon system reaches a nonequilibrium
steady state and a nonequilibrium magnon population will

be maintained as long as the driving source lasts. Once a
nonequilibrium steady-state condition is reached (τph−m 

PW), changing the source period P only affects the nonequi-
librium steady-state value as shown in the inset of Fig. 2(b).
Figure 2(b) shows the nonequilibrium steady-state value is
inversely proportional to P. As P → ∞, �NNESS approaches
zero and the system is at equilibrium.

Candidate experimental methods that may be suitable for
observing the magnon NESS include but are not limited to
Raman [56], Brillouin light [29–31], and inelastic neutron
scatterings [57]. All three methods mentioned here have been
routinely used to measure magnon properties at thermody-
namic equilibrium and are feasible to integrate a periodic
pumping source, i.e., a laser pump. While optical spectro-
scopies probe nonequilibrium modes at zero momentum,
inelastic neutron scattering allows access to the momentum-
energy space of nonequilibrium magnons in a quantum
magnet. According to the theory developed in this work, by
varying the pumping duration of the laser pulses, different
decay behaviors of nonequilibrium magnons, similar to that
shown in Fig. 2, should be observed in these pump-probe
experiments.

IV. CONCLUSION

We studied the dynamics of nonequilibrium magnons
in a gapped Heisenberg antiferromagnet in the framework
of Boltzmann transport theory. When solving the Boltz-
mann transport equation, the macroscopic conservation laws
mandated by the elastic pairwise collisions of magnons in
a Heisenberg model were strictly obeyed. We found that
intrinsic magnon-magnon interactions are not sufficient to re-
equilibrate nonequilibrium states unless the magnon system
undergoes some nonconserving interactions, i.e., coupled to a
thermal bath of phonons. Therefore, the necessary condition
to achieve the NESS of magnons is that any nonconserv-
ing interaction has a much slower relaxation time than the
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intrinsic magnon-magnon interaction time. The sufficient con-
dition to observe the magnon NESS in such a magnet is to
pump nonequilibrium magnons to the system periodically,
i.e., via laser pumping, at a rate faster than the relaxation
times of nonconserving interactions. This sufficient condition
provides a route to experimentally determine the coupling
time of magnon-phonon interactions, a quantity that remains
unknown in most magnets.

As a final remark, there is a class of quantum magnets
like gapped Heisenberg antiferromagnets [39] that satisfy
the two-in/two-out magnon-magnon scattering rule. In these
material systems, nonequilibrium magnon populations, once
excited, will not relax back to thermodynamic equilibrium
unless there are other energy leakage channels, i.e., coupling
with a phonon bath. These material systems provide a natural
platform to study thermalization processes, nonequilibrium
statistical physics, and transport mediated by the nonequilib-
rium states, all of which are important to both fundamental
science and technological applications.
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APPENDIX A: LINEARIZED SCATTERING MATRIX

For two-in/two-out magnon-magnon scattering, following the expression given by Harris et al. [39], the collision operator of
the Boltzmann transport equation is written as

∂ fk

∂t

∣∣∣∣
scattering

=
∑
p,s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

×[( fk + 1)( fp + 1) fr fs − fk fp( fr + 1)( fs + 1)], (A1)

where M22(k, p, r, s) in Eq. (A1) is referred to as the “matrix element” by Harris et al. and its derivation can be found in
Ref. [41]. HE = 2JzS, where J is the spin exchange strength, S is the spin moment, and z is a quantum renormalization factor.
The Kronecker delta � is zero unless its argument is zero or a reciprocal lattice vector, in which case it takes the value 1.

By defining fk ≡ f BE
k (T0) + nkcsch(êk/2) and assuming nkcsch(êk/2) � f BE

k (T0), Eq. (A1) is linearized into

∂nk

∂t

∣∣∣∣
s

=
∑
p,s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

×
[

nksinh
( êk

2

)
4sinh

( êp

2

)
sinh

( êr
2

)
sinh

( ês
2

) + np

4sinh
( êr

2

)
sinh

( ês
2

) − nr

4sinh
( êp

2

)
sinh

( ês
2

) − ns

4sinh
( êp

2

)
sinh

( êr
2

)
]
. (A2)

Using the fact that for each collision process (k + p → r + s), we can find three other decay processes (p + k → r + s, r + s →
k + p, and s + r → k + p), the matrix form of this linearized scattering operator is therefore symmetric, written as

∂nk

∂t

∣∣∣∣
s

= 1

ν

∑
k′

�kk′nk′ , (A3)

where

�kk =
∑
p,s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

sinh
( êk

2

)
4sinh

( êp

2

)
sinh

( êr
2

)
sinh

( ês
2

) , (A4)

�pp =
∑
r,s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

sinh
( êp

2

)
4sinh

( êk
2

)
sinh

( êr
2

)
sinh

( ês
2

) , (A5)

�rr =
∑
p,s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

sinh
( êr

2

)
4sinh

( êk
2

)
sinh

( êp

2

)
sinh

( ês
2

) , (A6)

�ss =
∑
p,r

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

sinh
( ês

2

)
4sinh

( êk
2

)
sinh

( êp

2

)
sinh

( êr
2

) , (A7)
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�kp = �pk =
∑

r

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êr

2

)
sinh

( ês
2

) , (A8)

�ks = �sk = −
∑

p

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êp

2

)
sinh

( êr
2

) , (A9)

�kr = �rk = −
∑

p

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êp

2

)
sinh

( ês
2

) , (A10)

�pr = �r p = −
∑

s

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êk

2

)
sinh

( ês
2

) , (A11)

�ps = �sp = −
∑

r

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êk

2

)
sinh

( êr
2

) , (A12)

�rs = �sr =
∑

p

πH2
E

16S2N2
M22(k, p, r, s)δ(ωk + ωp − ωr − ωs)�(qk + qp − qr − qs)

1

4sinh
( êk

2

)
sinh

( êp

2

) . (A13)

APPENDIX B: EIGENVECTOR IDENTITIES

Due to the orthonormal relation of θ0
k and θ1

k [Eqs. (14) and (15)], we can derive the following identities of the coefficients
(a,b,c,d) in θ0

k and θ1
k :

cd − ab = 〈u0|u1〉
〈u0|u0〉〈u1|u1〉 − 〈u0|u1〉2

� 0, (B1)

a2 + c2 = 〈u1|u1〉
〈u0|u0〉〈u1|u1〉 − 〈u0|u1〉2

� 0, (B2)

b2 + d2 = 〈u0|u0〉
〈u0|u0〉〈u1|u1〉 − 〈u0|u1〉2

� 0. (B3)

Using the above identities and Eq. (18), the total deviational particle number and energy at the stationary state are then given as

〈ñss|u0〉 = [(a2 + c2)〈u0|u0〉 + (ab − cd )〈u0|u1〉]�N + [(ab − cd )〈u0|u0〉 + (b2 + d2)〈u0|u1〉]�E = �N, (B4)

〈ñss|u1〉 = [(a2 + c2)〈u0|u1〉 + (ab − cd )〈u1|u1〉]�N + [(ab − cd )〈u0|u1〉 + (b2 + d2)〈u1|u1〉]�E = �E . (B5)
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