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Inelastic neutron scattering of hydrogen in palladium studied by semiclassical dynamics
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Inelastic neutron scattering (INS) spectra of hydrogen in face-centered cubic palladium have been calculated
considering nuclear quantum effects (NQEs) at finite temperatures. The calculations were performed using
semiclassical Brownian chain molecular dynamics (MD) [Shiga, J. Comput. Chem. 43, 1864 (2022)] and
artificial neural network potentials with an accuracy of generalized gradient approximation of density functional
theory. The calculated spectra are in good agreement with experimental spectra with respect to the peak positions
and intensities corresponding to the fundamental tone and the first overtone of the vibrational excitation of
hydrogen atoms. These results differ significantly from those of classical MD, indicating that NQE plays an
essential role in the correct estimation of the INS spectrum. Importantly, the NQE acts as a blueshift of the
INS spectrum for hydrogen in the octahedral site due to strong anharmonic vibrations of hydrogen on the
potential surface with even symmetry. The calculated peak shifts associated with Pd lattice distortion were also
in agreement with experimental results.
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I. INTRODUCTION

The physical behavior of hydrogen in metals has long
been a topic of basic and applied science, providing a wealth
of fundamental knowledge about hydrogen storage and hy-
drogenation catalyst materials for clean energy technologies
[1,2]. Metal palladium (Pd) is considered a unique mate-
rial with a strong affinity to hydrogen because of both its
catalytic and hydrogen absorbing properties [3]. Inelastic neu-
tron scattering (INS) is a powerful experimental approach
that can detect hydrogen in condensed phases, providing
valuable information about the stable sites and vibrational
motion of hydrogen atoms in Pd crystals and nanoparticles
[4–24].

Much effort has been devoted to the theoretical interpre-
tation of the experimental INS spectra of hydrogen in Pd
[25–32]. Anharmonic effects of hydrogen vibration are be-
lieved to play an important role [28,31,32]. Thus, molecular
dynamics (MD) simulation is a promising approach fully
considering the anharmonicity of the potential energy surface
(PES) [25,27,29]. On the other hand, the accuracy of the PES
of hydrogen in Pd from ab initio density functional theory
(DFT) has been improved over the years [33,34]. Conven-
tional MD methods should be reliable for high temperatures
if they are performed with an accurate potential model that
reproduces the ab initio calculations. For low temperatures,
however, advanced MD techniques are required to reflect
the quantum behavior of lightweight hydrogen atoms, such
as zero-point vibrations and tunneling [26]. In fact, in this
paper, we show that the spectrum from conventional MD
simulation differ significantly from the experimental spec-
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trum at room temperature. This is because the anharmonic
nature of hydrogen vibrations is underestimated in the ab-
sence of nuclear quantum effects (NQEs). Alternatively, the
quantum states of anharmonic hydrogen vibrations can be
solved by the Schrödinger equation under the approximation
of coupling to Pd phonons [15,31,32,35,36]. While this ap-
proach is useful, the change in INS spectral shape and its
temperature dependence observed in the experiment cannot be
reproduced.

Path integral MD (PIMD) [37] and path integral hybrid
Monte Carlo (PIHMC) [38] methods are useful for computing
quantum statistical ensembles of complex many-body systems
at finite temperatures. Based on the imaginary time path inte-
gral formulation of quantum statistical mechanics [39–41], the
fact that the quantum fluctuations of a given particle are equiv-
alent to the fluctuations of an interconnected classical replica
via harmonic chain allows rigorous computation of time-
independent quantum statistics [42]. PIMD simulations are
an established technique for exploring NQEs of a wide range
of hydrogen-based materials [43–47]. On the other hand,
rigorous computation of time-dependent dynamical quantum
properties is difficult except for simple or few-body systems.
This is because the inclusion of quantum phase according to
real-time path integral theory makes numerical calculations
unstable due to the oscillatory behavior of complex functions.
To ensure numerical stability while maintaining a balance be-
tween computational accuracy and efficiency, a semiclassical
approximation must be introduced.

From various semiclassical approximations [48–58], we
choose to employ the Brownian chain MD (BCMD) method
that has recently been proposed [58]. The BCMD method
is akin to centroid MD (CMD) [48] and ring polymer MD
(RPMD) [49] methods, which proved their success in de-
scribing NQEs on hydrogen diffusion in metals [59–62]. The
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BCMD method is an extension of the PIMD and PIHMC
methods and has in common with CMD and RPMD its
rigorous treatment of quantum statistics at thermal equilib-
rium. The BCMD method has been designed to improve the
accuracy of the calculations of vibrational spectra, which
is known as a crucial problem for the CMD and RPMD
methods [63,64]. The quantum canonical correlation func-
tion (Kubo-transformed correlation function) of the BCMD
method meets the basic physical requirements, such as being
accurate in short time propagation, preserving time symmetry,
satisfying fundamental conservation laws, having the correct
high-temperature/classical limit, and giving accurate results
for the position and velocity autocorrelations of harmonic
oscillators. Furthermore, the time evolution of the BCMD is
guaranteed to maintain thermal equilibrium and not suffer
from zero-point energy leakage problems. So far, however, the
BCMD method has proved successful only in the calculation
of infrared vibrational spectra of molecular systems such as
liquid water.

In this paper, the BCMD method was used to calculate
the INS spectra of hydrogen in face-centered cubic (fcc) Pd.
The NQE of the INS spectra was considered by a semi-
classical approximation of the quantum canonical correlation
function at finite temperature. This is the first application
of the BCMD method to the vibrational properties of solid
systems. An artificial neural network (ANN) potential was
used to ensure the accuracy of the Born-Oppenheimer PES
of DFT. The semiclassical BCMD results were shown to
be a significant improvement over the classical MD results
when comparing the spectral shapes from calculation and the
INS experiments, for both the fundamental tone and over-
tone signals. Interestingly, the NQE of hydrogen vibrations
at the most stable octahedral (O) site of Pd acts as a spectral
blueshift, unlike the redshifts that are observed in molecular
systems.

II. THEORY

A. BCMD

We consider a system of N distinguishable atoms whose
motion is described by the Hamiltonian:

Ĥ =
N∑

I=1

P̂
2
I

2MI

+ V (R̂1, . . . , R̂N ), (1)

where R̂I , P̂I , and MI are the position operator, the momentum
operator, and the mass of atom I , respectively. The path inte-
gral expression of partition function of the quantum canonical
ensemble of this system is given by

Z = Tr[exp(−βĤ )]

= lim
P→∞

N∏
I=1

[(
MI P

2πβ h̄2

)3P/2 P∏
s=1

∫
dR(s)

I

]

× exp(−βVeff [R]), (2)

where β = 1
kBT , with the Boltzmann constant kB and the tem-

perature T , {R(1)
I , . . . , R(P)

I } is the position of atom I along
the imaginary time from 0 to β h̄, and P is the number of

imaginary time slices or beads. Equation (2) is proportional
to the classical partition function of a P replicated system, in
which the effective potential is of the form:

Veff [R] =
N∑

I=1

P∑
s=1

MI P

2β2h̄2

[
R(s+1)

I − R(s)
I

]2

+ 1

P

P∑
s=1

V
[
R(s)

1 , . . . , R(s)
N

]
. (3)

Now we introduce a linear transformation (so-called normal
mode coordinates of beads) of the atomic coordinate R(s)

I as

Q(α)
I = 1√

P

P∑
s=1

UsαR(s)
I , (4)

such that the first term of on the right-hand side of Eq. (3)
is diagonalized, where (U1α, . . . ,UPα ) is the corresponding
eigenvector of the αth mode. Then Eq. (3) can be rewritten
as

Veff =
N∑

I=1

P∑
α=2

MI Pλ(α)

2β2 h̄2 Q(α)
I

2 + 1

P

P∑
s=1

V [R(s)({Q})], (5)

where the eigenvalues associated with the eigenvector Usα for
1 � s � P are

λ(2k) = λ(2k+1) = 4P sin2

(
πk

P

)
,

(
1 � k � P

2

)
. (6)

Now BCMD is the combination between a Newton-like
equation for the centroid coordinates [Q(1)

I = 1
P

∑P
s=1 R(s)

I ],

MI Q̈
(1)
I = − ∂Veff

∂Q(1)
, (7)

and an overdamped Langevin equation for the noncentroid
coordinates [Q(α)

I for α �= 1],

MIγ
(α)Q̇(α)

I = − ∂Veff

∂Q(α)
I

+
√

2MIγ
(α)

β
ζ(t ), (8)

where ζ(t ) is the white noise. The friction parameter is set as

γ (α) = Pλ(α)

τ (α)
= Pλ(α)

β h̄
, (9)

which looses memory in the decoherence time scale of a quan-
tum free particle. Unlike in CMD and RPMD, the noncentroid
motion in BCMD follows a first-order stochastic differential
equation, i.e., Eq. (8). This corrects the unphysical shifts and
resonances in the vibration spectra that are problematic in
CMD and RPMD [58].

Finally, the time correlation function:

C̃bcmd
AB (t ) = 〈A(0)B(t )〉bcmd, (10)

is computed with respect to the bead averages of the BCMD
trajectory as

X (t ) = 1

P

P∑
s=1

X [R(s)(t ), P(s)(t )]. (11)
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Equation (10) is regarded as an approximation of quantum canonical correlation function:

C̃AB(t ) =
1
β h̄

∫ β h̄
0 dτTr{exp(−βĤ )Â exp[iĤ (t + iτ )]B̂ exp[−iĤ (t + iτ )]}

Tr[exp(−βĤ )]
. (12)

B. Dynamic structure factor

We consider an atomic scattering process with momentum
transfer h̄k and energy transfer h̄ω from a neutron. Let ki be
the initial wave vector and kf the final wave vector of the

neutron, k = ki − kf and h̄ω = |h̄ki|2−|h̄kf |2
2m , where m is the

mass of the neutron. In the case of hydrogen atoms, the INS
cross-section is mainly due to incoherent contributions, and
its dynamical structure factor is given by

Sinc(k, ω) = 1

2π

∫ ∞

−∞
exp(−iωt )Fs(k, t )dt, (13)

which is the Fourier transform of the self part (s) of the
intermediate scattering function:

Fs(k, t ) = 〈exp[−ik · R̂H(0)] exp[ik · R̂H(t )]〉, (14)

where R̂H is the position operator of the hydrogen atom. On
the other hand, the Kubo-transformed type for the intermedi-
ate scattering function is [65,66]

F̃s(k, t ) = 1

β h̄

∫ β h̄

0
dτ

×〈exp[−ik · R̂H(−iτ )] exp[ik · R̂H(t )]〉, (15)

and the associated dynamic structure factor is

S̃inc(k, ω) = 1

2π

∫ ∞

−∞
exp(−iωt )F̃s(k, t )dt . (16)

Equations (13) and (16) are connected by the relationship

Sinc(k, ω) = β h̄ω

1 − exp(−β h̄ω)
S̃inc(k, ω). (17)

Following Eq. (10), we assume

F̃ bcmd
s (k, t ) = 〈A(k, 0)A

∗
(k, t )〉bcmd (18)

as an approximation of Eq. (15), introducing the bead average:

A(k, t ) = 1

P

P∑
s=1

exp
[−ik · R(s)

H (t )
]
. (19)

Using Eqs. (16)–(18), we obtain

Sbcmd
inc (k, ω)

= β h̄ω

1 − exp(−β h̄ω)

1

2π

×
∫ ∞

−∞
〈A(k, 0)A

∗
(k, t )〉bcmd exp(−iωt )dt . (20)

Applying the Wiener-Khinchin theorem to Eq. (20), we ar-
rive at the final expression for the BCMD dynamic structure

factor:

Sbcmd
inc (k, ω) = β h̄ω

1 − exp(−β h̄ω)

1

2π

×
〈

1

τ

∣∣∣∣∣
∫ τ/2

−τ/2
A(k, t ) exp(−iωt )dt

∣∣∣∣∣
2〉

bcmd

,

(21)

which holds for a long trajectory length τ . Hereafter, we call
Eq. (21) the calculated INS spectrum.

In BCMD, the beadwise average is employed, so the
canonical correlation function is calculated exactly at time
at zero as in RPMD. This is in contrast with (adiabatic or
partially adiabatic) CMD where the centroid average is em-
ployed. Thus, Eqs. (19)–(21) apply to RPMD as well and to
MD with P = 1. In CMD, Eq. (19) is changed to

A(k, t ) = exp[−ik · RH(t )] (22)

to be a function of the centroid coordinates RH(t ) =
1
P

∑P
s=1 R(s)

H (t ).

C. Vibrational density of states

The vibrational density of states is defined by

D(ω) = 4πβ

N∑
I

MI f̃I (ω), (23)

where the function

f̃I (ω) = 1

2π

∫ ∞

−∞
dt exp(−iωt )c̃I (t ) (24)

is the Fourier transform of the canonical correlation function
with respect to the velocity of atom I ,

c̃I (t ) = 1

β h̄

∫ β h̄

0
dτ 〈V̂I (t )V̂I (−iτ )〉. (25)

In Eq. (23), the factor 4πβ normalizes D(ω) to the vibrational
degrees of freedom, as

∫ ∞
0 D(ω)dω = 3N in the limit of

harmonic oscillator systems and high-temperature/classical
systems [67]. Following Eq. (10), we assume

c̃bcmd
I (t ) = 〈VI (t )VI (0)〉bcmd, (26)

where

VI (t ) = 1

P

P∑
s=1

Ṙ(s)
I (t ). (27)

Applying the Wiener-Khinchin theorem, the final expression
for the BCMD vibrational density of states is

Dbcmd(ω) = 2β

N∑
I=1

MI

1

τ

∣∣∣∣
∫ τ

0
VI (t ) exp(−iωt )dt

∣∣∣∣
2

. (28)
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TABLE I. Peak positions (with no lattice strain).

Method Site T [K] k (Å−1) Peaks (eV)

Exptl. [8] 295 69.0 ± 0.5, 137 ± 2
BCMD O 300 0–4 67, –
BCMD O 300 4–8 68a, 133a

BCMD O 300 8–12 68, 139
BCMD O 200 4–8 68, 131
BCMD O 100 4–8 68, 133
BCMD O 75 0–4 69, 131
BCMD O 75 4–8 68, 133
BCMD O 75 8–12 68, 133
BCMD O 50 4–8 70, 140
CMD O 300 4–8 65, 125
CMD O 75 4–8 66, 132
RPMD O 300 4–8 68a, 135a

RPMD O 75 4–8 67, 153
MD O 300 4–8 53, –
MD O 200 4–8 53, –
MD O 100 4–8 47, –
MD O 75 4–8 45, 92
MD O 50 4–8 42, 86
HAR O 0 34.8
DVR O 0 70.3, 133.8
BCMD T 75 0–4 127a, 136a

BCMD T 75 4–8 127a, 136a

BCMD T 75 8–12 127a, 136a

HAR T 0 125.8

aBy fitting the peaks to two Lorentzian functions.

Equations (26)–(28) apply to CMD and RPMD as well and to
MD with P = 1.

III. COMPUTATIONAL DETAILS

For atomic interactions in the Pd-H system, we employed
the Behler-Parrinello type ANN potential [68–70], which has
been modeled in our previous study [71]. Hydrogen is ex-
pected to exist as a neutral atom in Pd, and the ANN potential
can mimic the DFT potential well. An ANN with Chebyshev
descriptors for the radial and angular distribution functions
was trained using the ÆNET package [72,73]. The training
set consisted of DFT calculations based on the Perdew-
Burke-Ernzerhof (PBE) exchange correlation functional [74]
in the generalized gradient approximation (GGA), using VASP

[75]. The root-mean-square errors of energy of the training
and test datasets were 1.0 and 1.2 meV/atom, respectively.
For more details on the ANN modeling methodologies, see
Refs. [71,76,77].

It is known that vibrational frequency of hydrogen in Pd
tends to be overestimated in the local density approxima-
tion of DFT when anharmonic contributions are considered
[28,59]. The present ANN potential was trained by the GGA
with the PBE functional which corrects this overestimation.

A periodic system consisting of a cubic box containing 108
Pd atoms and 1 hydrogen atom was set up, where the Pd atoms
were arranged in the fcc lattice. The lattice constant was set to
3.942 Å in the case of zero strain [59]. The BCMD simulations
were performed for this system in canonical ensemble at tem-
peratures from 50 to 300 K with the number of beads chosen

FIG. 1. Calculated inelastic neutron scattering (INS) spectra by
the semiclassical Brownian chain molecular dynamics (BCMD) sim-
ulations (P = 64) at temperature 300 K with no strain in the ranges
0 � k � 4 Å−1 (blue), 4 � k � 8 Å−1 (black), and 8 � k � 12 Å−1

(orange) for the O site and experimental INS spectrum at 295 K (red)
[8]. The data are displayed with the y axis shifted by 1500 units each,
and they are scaled by factors in parenthesis. The BCMD results are
shown along with the range of statistical error in light color. The
vertical dots indicate the two peak positions of the INS experiment.

to be 64. At each temperature, 15–30 BCMD trajectories of
length 5 ps with a step size of 0.5 fs were created. They were
restarted from different structures of thermal equilibrium ob-
tained from preliminary PIMD simulations. The INS spectrum
S(k, ω) was computed from the ensemble of BCMD trajecto-
ries according to Eq. (21), and the k vectors were randomly
sampled from all directions in three ranges of k = |k| = 0–4
Å−1, 4–8 Å−1, and 8–12 Å−1. A hydrogen atom was placed
either at the most stable O site or the metastable tetrahedral
(T) site, and the trajectories were sampled for those where the
hydrogen atom stayed at the initial site.

For comparison, classical MD, CMD, and RPMD simu-
lations were performed in a similar manner to the BCMD
simulations. For the CMD simulations, the adiabatic param-
eter was set to γ −1

cmd = 4, and the step size was set to 0.1 and
0.005 fs for the centroid and noncentroid modes, respectively.
All calculations were performed using PIMD software [78,79],
with the implementation of hierarchical parallel computation
with respect to beads and atomic interactions [80].

IV. RESULTS

The results of the calculated INS spectra are displayed in
Figs. 1–7, and the peak positions are listed in Table I. When
the peak positions are not clear, they are obtained by fitting
the spectra to the sum of two Lorenzian functions.

Figure 1 compares the INS spectra calculated from the
semiclassical BCMD simulation at 300 K for the O site with
that obtained from the INS experiment of PdH0.014 at 295 K
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FIG. 2. Calculated inelastic neutron scattering (INS) spectra by
the semiclassical Brownian chain molecular dynamics (BCMD) sim-
ulations (P = 64) at temperatures 50 K (blue), 75 K (green), 100 K
(orange), 200 K (red), and 300 K (black) for the O site in the range
4 � k � 8 Å−1 with no strain. The data are displayed with the y
axis shifted by 1500 units each, and they are scaled by factors in
parenthesis. The results are shown along with the range of statistical
error in light color. The vertical dots indicate the two peak positions
of the INS experiment at 295 K [8].

[8]. Since the k value was not reported in the experimen-
tal paper, the calculated results were displayed for different
ranges of k = |k|. The BCMD spectrum consists of a sharp
and tall first peak ∼68 meV and a broad and short second
peak ∼139 meV, which captures the characteristics of the
experimental spectrum with the peak positions of 69.0 ± 0.5
and 137 ± 2 meV. These peaks represent the fundamental
tones and overtones, respectively, of the vibrational excitation
of the hydrogen atom. The intensity of the shoulder of the first
peak at ∼80 meV increases with the temperature as in Fig. 2,
so it is presumed to be a sideband due to coupling with the Pd
phonon. This should correspond to the asymmetry of the first
peak in the experimental spectrum.

The calculated spectral width at 300 K cannot be directly
compared with the experimental one at 295 K because it
changes significantly with the k range. However, even if
choosing 4 � k � 8 Å−1 that has a resemblance, the BCMD
spectral width looks broader than the experimental one. The
same trend is seen not only in the results of other semiclassical
methods, CMD and RPMD, but also in the results of classical
MD where the broadening is expected to have been more
limited in the absence of NQEs, see Figs. 3 and 4. Thus, it is
likely that the discrepancy with the experiment on the spectral
width is not due to the semiclassical approximation but rather
the PBE functional that the ANN PES is based on. This point
is further discussed in the next section.

FIG. 3. Calculated inelastic neutron scattering (INS) spectra by
the classical molecular dynamics (MD) simulations (P = 1) at tem-
peratures 50 K (blue), 75 K (green), 100 K (orange), 200 K (red),
and 300 K (black) for the O site in the range 8 � k � 12 Å−1 with
no strain. The data are displayed with the y axis shifted by 1000 units
each. The results are shown along with the range of statistical error
in light color. The vertical dots indicate the two peak positions of the
INS experiment at 295 K [8].

Figure 2 shows that the peak position of the BCMD
spectrum changes little with temperature. The peaks become
visibly less intense and more broad as the temperature is
increased from 100 to 300 K, while they change little <100 K.
The intensity of the second peak relative to that of the first
peak increases with temperature because higher-energy vibra-
tional states contribute to the correlation function in Eq. (18).
These trends in the temperature dependence of the peak in-
tensity are like those measured in a recent INS experiment of
metal hydride ZrV2Hx [81], although the peak positions are
different from those of PdHx.

The semiclassical BCMD spectrum in Fig. 2 is signifi-
cantly blueshifted compared with the classical MD spectrum
shown in Fig. 3. This indicates that NQE is present in the
hydrogen vibrations and essential to reproduce the experimen-
tal spectrum. The blueshift is attributed to the combination
of the NQE of hydrogen atoms and the anharmonic potential
with even symmetry. The NQE of hydrogen atoms appears
as large amplitude zero-point vibration on the anharmonic
PES. Since the PES has an even symmetry reflecting repulsive
interactions with Pd atoms on both sides, the leading order
of anharmonicity is quartic. For this reason, the NQE acts as
a blueshift in the vibrational spectra in this system. This is
in contrast with the fact that the NQE of the hydrogen atom
in molecular systems (OH, CH bonds, etc.) usually acts as a
redshift where the leading order of anharmonicity is cubic.
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FIG. 4. Calculated inelastic neutron scattering (INS) spectra by
the semiclassical Brownian chain molecular dynamics (BCMD) sim-
ulations (P = 64) at temperatures 75 K (blue) and 300 K (black),
the semiclassical centroid molecular dynamics (CMD) simulations
(P = 64) at temperatures 75 K (green) and 300 K (brown), and the
semiclassical ring polymer molecular dynamics (RPMD) simulations
(P = 64) at temperatures 75 K (orange) and 300 K (purple) for the
O site in the range 4 � k � 8 Å−1 with no strain and experimental
INS spectrum at 295 K (red) [8]. The data are displayed with the
y axis shifted by 2000 units each, and they are scaled by factors in
parenthesis. The results are shown along with the range of statistical
error in light color. The vertical dots indicate the two peak positions
of the INS experiment.

For classical MD at zero temperature, the frequency of
the first peak is expected to approach the harmonic frequency
(HAR), which is significantly underestimated to be 34.8 meV
by DFT calculations based on the PBE functional. As NQEs
are weakened with increasing temperature T , the classical
MD and BCMD spectra should approach each other. For this
reason, the first peak of classical MD is blueshifted with
increasing temperature. Even at T = 300 K, the spectral dif-
ference between classical MD and BCMD is still very large,
which means that NQEs are important at room temperature.
In addition, the intensity of the second peak of classical MD
is much weaker than that of BCMD. As discussed in the next
section, this could be understood from the weaker vibrational
coupling to the Pd phonon in the absence of hydrogen zero-
point vibrations.

FIG. 5. Calculated inelastic neutron scattering (INS) spectra by
the semiclassical Brownian chain molecular dynamics (BCMD) sim-
ulations (P = 64) at temperature 75 K with no strain in the ranges
0 � k � 4 Å−1 (blue), 4 � k � 8 Å−1 (black), and 8 � k � 12 Å−1

(orange) for the O site. The data are displayed with the y axis shifted
by 1500 units each, and they are scaled by factors in parenthesis.
The results are shown along with the range of statistical error in light
color. The vertical dots indicate the two peak positions of the INS
experiment at 295 K [8].

Figure 4 compares the calculated spectra of CMD and
RPMD at 75 and 300 K with the experimental ones at 295 K.
The first peaks of CMD and RPMD spectra do not differ sig-
nificantly from the experimental one, while the second peaks
of the CMD and RPMD spectra are slightly redshifted and
slightly split, respectively, from the experimental one. These
shortcomings of CMD and RPMD are known as curvature
and chain resonance problems, respectively, which become
pronounced at low temperature. The former arises from a
spurious coupling between rotations and vibrations due to the
adiabatic separation of the centroid and noncentroid variables,
while the latter is due to spurious resonance between the
vibrations of the physical mode and the cyclic chain [63,64].

FIG. 6. Same as Fig. 5, but for the T site.
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FIG. 7. Calculated inelastic neutron scattering (INS) spectra by
the semiclassical Brownian chain molecular dynamics (BCMD) sim-
ulations (P = 64) at temperature 75 K for the O site in the range
4 � k � 8 Å−1 with hydrostatic (axial) strains of −2.4% (blue),
−1.2% (green), 0% (black), 1.2% (orange), and 2.4% (red). The data
are displayed with the y axis shifted by 2500 units each, and they are
scaled by factors in parenthesis. The results are shown along with the
range of statistical error in light color. The vertical dots indicate the
two peak positions of the INS experiment at 275 K [8].

Because BCMD reduces these problems, the BCMD spectra
are in better agreement with the experimental one than the
CMD and RPMD spectra with respect to the peak positions.

Figure 5 shows the k dependence of the calculated INS
spectra at 75 K. The trend is like those shown in Fig. 1,
except that the calculated INS spectra at 75 K are consistently
sharper in their shape than the ones at 300 K. As k increases,
the spectra become slightly broader, but the peak positions
remain almost the same. The k dependence arises from the
state-to-state scattering intensity factor Imn(k), as can be seen
from the wave function representation for Eq. (13) as

Sinc(k, ω)

=
∑

m,n δ(ω − ωm + ωn) exp(−β h̄ωn)Imn(k)∑
n exp(−β h̄ωn)

, (29)

where ψm and ωm denote the normalized eigenfunction and
eigenfrequency, respectively, of the mth state of the coupled
hydrogen-Pd system, and

Imn(k) = |〈ψm| exp(ik · R̂H)|ψn〉|2. (30)

Note that the subscripts m and n refer to the eigenstates
of the entire system, not the hydrogen vibration alone. Con-
tributions from the Pd phonon side band at the frequency
ω = ωm − ωn are dependent on k by its weight Imn(k).

FIG. 8. The plots of the peak positions of Fig. 7 with respect to
hydrostatic (axial) strain. The fit to linear function is shown as a guide
to the eye.

The calculated INS spectra of hydrogen atoms in the T site
have not been measured, but it is believed that the T site could
be occupied in Pd nanocrystals with lattice distortion or Pd
surface in a nonequilibrium environment [82]. Thus, it may
be of future interest to predict the INS spectra for the T site.
Figure 6 shows the calculated spectra for the T site under the
same conditions as in Fig. 5. Two peaks of the INS spectra
appear at 127 and 136 meV. The latter is close to the HAR
frequency of 135 meV. The peak splitting is presumably due
to the coupling of hydrogen vibration with the Pd phonon.

Lattice distortions on the order of a few percent are often
observed in local regions of Pd nanostructures containing
concentrated hydrogen solid solutions, hydrides, defects, im-
purities, heterophase boundaries, etc. Since change in the
INS spectra is detected associated with lattice distortion, it
is important to provide its theoretical foundation. Here, we
studied a model case of hydrogen in Pd under hydrostatic
(axial) strains −2.4% � ε � 2.4% (where positive ε means
expansive in this definition). Figure 7 shows that the first
peak of the INS spectrum is monotonically redshifted with
increasing strain from negative to positive. As the Pd lattice
expands, the repulsive force with the Pd atoms decreases and
the curvature of the hydrogen potential decreases, resulting in
a decrease in the vibrational frequency of the hydrogen atoms.
As shown in Fig. 8, the first and second peak positions can be
fitted to a linear function:

h̄ω1 ≈ 68.1 − 536ε (meV), and

h̄ω2 ≈ 137.0 − 881ε (meV), (31)

respectively. The redshift upon positive lattice strain is con-
sistent with recent INS measurements of nanocrystalline
PdH0.42, where the first peak is found at 59.3 eV in expanded
Pd lattice of a few percent [20–22,82].

V. DISCUSSION

The following analysis was performed to comprehend the
results of the calculated INS spectra. Figure 9 shows the DFT
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FIG. 9. Top three panels show the plots of potential energy func-
tion as a function of hydrogen atom displacement from the minimum
of the O site along the directions [100], [110], and [111] for the
artificial neural network (ANN) potential used in the study (green
line), the density functional theory (DFT) potential based on the
PBE functional (red crosses), and the local density approximation
(LDA) functional (orange crosses). Here, we also display the hy-
drogen distributions at temperatures 75 K (solid dark blue line) and
300 K (broken blue line) obtained from the quantum path integral
molecular dynamics (PIMD) simulations, and at temperatures 75 K
obtained from the classical molecular dynamics (MD) simulations
(solid gray line), in the respective directions using the ANN potential.
The bottom panel shows the harmonic potential function with a cur-
vature at the minimum of the O site in a given direction for the DFT
potential based on the PBE functional (red), with an eigenfrequency
ωh = 34.8 meV (triply degenerate). We also display the hydrogen
distributions at temperatures 75 K (solid dark blue line) and 300 K
(broken blue line) that would be obtained in this harmonic potential,
i.e., ρ(x) = √

α

π
exp(−αx2), with α = mω

h̄ tanh( β h̄ω

2 ).

FIG. 10. Adiabatic vibrational energy levels of hydrogen atom at
the O site using the artificial neural network (ANN) potential energy
surface. Here, the coupling to Pd phonons is neglected. The energies
relative to the ground state are shown in millielectronvolts, and the
corresponding hydrogen wave functions are depicted. The zero point
energy (ZPE) of the ground state is estimated as 87.3 meV.

and ANN potential energy curves calculated along the [100],
[110], and [111] directions. It is important to note that these
potential curves are strongly anharmonic for all directions of
hydrogen vibrations. The quantum distribution of hydrogen
on the anharmonic potential is considerably narrower than
the quantum distribution on the harmonic potential. This is
consistent with our result that the anharmonicity acts as a
blueshift in the vibrational spectra.

As a different approach, adiabatic vibrational energy lev-
els of the hydrogen atom in the O site were calculated by
solving the three-dimensional time-independent Schrödinger
equation. The PES was calculated by the ANN potential as a
function of the hydrogen atom displacement while fixing the
Pd atom in an optimized geometry. This is a kind of adiabatic
approximation in which the anharmonicity of hydrogen vibra-
tion is considered, while the coupling to the Pd phonons is
neglected. The discrete variable representation (DVR) tech-
nique [83] was used for the PES described by 17 × 17 × 17
regular grids placed at ±1 Å around the O-site minimum. As
shown in Fig. 10, the fundamental tone, 70.3 meV, and the first
overtone, 133.8 meV, agree well with the INS peak positions
obtained from the BCMD simulations, as displayed in Table I.
This result ensures the role of anharmonicity in controlling
the peak position of the vibrational spectra and the reliability
of the PBE functional reflected in the ANN PES to correctly
estimate the peak position.

As Fig. 10 shows, both the excited states responsible for
the fundamental tone and first overtone are triply degenerate
because of the spatial symmetry of the O site in the absence
of Pd phonon coupling. This means that this approach can-
not account for the side bands in the INS spectra. Phonon
coupling, which is missing in this approach, is responsible
for the side bands in the INS spectra. For this reason, the
origin of the shoulder observed ∼80 meV is expected to be
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FIG. 11. Hydrogen contribution to vibrational density of states
calculated by the semiclassical Brownian chain molecular dynam-
ics (BCMD) simulations (P = 64) at temperatures 75 K (blue) and
300 K (black), the classical molecular dynamics (MD) simulations
(P = 1) at temperatures 75 K (cyan) and 300 K (gray), the semiclas-
sical centroid molecular dynamics (CMD) simulations (P = 64) at
temperatures 75 K (green) and 300 K (brown), and the semiclassical
ring polymer molecular dynamics (RPMD) simulations (P = 64) at
temperatures 75 K (orange) and 300 K (purple) for the O site in
the range 4 � k � 8 Å−1 with no strain and experimental inelastic
neutron scattering (INS) spectrum at 295 K (red) [8]. The data are
displayed with the y axis shifted by 0.01 units each, and they are
scaled by factors in parenthesis. The results are shown along with
the range of statistical error in light color. The vertical dots indicate
the two peak positions of the INS experiment. Inset panel shows
the Pd contribution to vibrational density of states calculated by
the semiclassical BCMD simulations (P = 64) at temperatures 75 K
(blue) and 300 K (black).

the hydrogen-Pd coupling. We note that Fig. 10 is basically
consistent with a recent experimental and computational study
by Ozawa et al. [36].

The vibrational density of states, which represents the set
of single-phonon vibrational frequencies, is shown in Fig. 11.
The vibrational density of states covers the region of the
first peak in the INS spectra representing the fundamental
tone. As expected, it does not cover the second peak in the
INS spectra representing the overtones containing multiple

phonons. Interestingly, the vibrational density of states covers
most of the side bands of the INS spectra for the fundamental
tone, suggesting that the side bands consists of a mixture of
hydrogen and Pd vibrations.

The reason the intensity of the second peak in the INS
spectra is weaker than the first peak is that overtone excitation
is generally more difficult than fundamental excitation. Over-
tone excitation of hydrogen requires a large transition matrix
via strong coupling to the Pd phonon which is expected to
be amplified by the magnitude of the hydrogen vibration. In
the presence of zero-point vibrations, the NQE increases the
magnitude of hydrogen vibration, as can be seen in Fig. 9.
This causes the intensity of the second peak is weaker in the
classical MD simulations than in the semiclassical BCMD,
CMD, and RPMD simulations.

Figure 9 confirms that the ANN potential reproduces well
the DFT potential based on the PBE functional. However, as
can be inferred from the difference between the LDA and
PBE functions shown in Fig. 9, the functional dependence
on the DFT potentials may have a nonnegligible impact on
the spectral line shape. There might be room for improvement
using a DFT functional that is more accurate than GGA, but
we leave this as an issue for future research.

VI. CONCLUSIONS

The semiclassical BCMD is a general computational ap-
proach that consistently incorporates NQE and anharmonic
effects of vibration properties at finite temperatures. Com-
bined with ANN potentials of DFT-level accuracy, it provides
a reliable prediction of vibrational spectra for condensed mat-
ter systems. In this paper, the method was found to be effective
in calculating INS spectra of hydrogen in metal Pd. With
NQEs considered, it accurately calculates the peak positions
of the spectra and qualitatively reproduces the spectra in terms
of shape. Along this line, computational prediction of INS
spectra of hydrogen atoms trapped at metastable sites and in
heterogeneous environments, etc., is expected to be useful in
understanding the spectra measured at various experimental
conditions.
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APPENDIX A: BEAD CONVERGENCE

As Fig. 12 shows, the INS spectra from the semiclassical
BCMD simulations were not significantly different from each
other when the number of beads was set as P � 64. Therefore,
the main results of this paper are presented for the P = 64
case.
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FIG. 12. Calculated inelastic neutron scattering (INS) spectra
by the Brownian chain molecular dynamics (BCMD) simulations
at temperature 75 K using P = 16 (blue), P = 32 (green), P = 64
(black), and P = 96 (orange) for the O site in the range 4 � k �
8 Å−1 with no strain. The data are displayed with the y axis shifted
by 1000 units each, and they are scaled by factors in parenthesis. The
BCMD results are shown along with the range of statistical error in
light color. The vertical dots indicate the two peak positions of the
INS experiment at 295 K [8].

APPENDIX B: IMAGINARY TIME INTERMEDIATE
SCATTERING FUNCTION

Following Eq. (14), the evolution in imaginary time τ = it
of the intermediate scattering function is expressed as

Fs(k,−iτ ) = 〈exp[−ik · R̂H(0)] exp[ik · R̂H(−iτ )]〉. (B1)

Equation (B1) can be calculated rigorously by quantum PIMD
simulations as

F pimd
s (k, τ ) = 〈

exp
[−ik · R(s)

H

]
exp

[
ik · R(u)

H

]〉
pimd, (B2)

for a pair of beads s and u, with s − u = Pτ
β h̄ . On the other

hand, the imaginary time intermediate scattering function can
also be calculated from the real time information of Sinc(ω)
using the Wick rotation [84]:

Fs(k,−iτ ) =
∫ ∞

−∞
dωSinc(ω) exp

(
−β h̄ω

2

)

× cosh

(
β h̄ω

2
− ωτ

)
. (B3)

The proof of Eq. (B3) can be done by expanding the aver-
ages on both sides in terms of the eigenstates of the system
Hamiltonian. Equation (B3) can be calculated approximately
by Sinc(ω) obtained from classical MD simulations and semi-
classical BCMD, CMD, and RPMD simulations as F md

s (k, τ ),
F bcmd

s (k, τ ), F cmd
s (k, τ ), and F rpmd

s (k, τ ), respectively. The

FIG. 13. Imaginary time intermediate scattering function
Fs(k, τ ), with 0 � τ � β h̄ normalized by Fs(k, 0) obtained
from the classical molecular dynamics (MD; green), the
semiclassical Brownian chain molecular dynamics (BCMD;
blue), the semiclassical centroid molecular dynamics (CMD;
orange), and the semiclassical ring polymer molecular dynamics
(RPMD; purple) simulations at temperature 300 K (top panel) and
75 K (bottom panel) using Eq. (B3) for the O site in the range
4 � k � 8 Å−1 with no strain. The results are shown along with the
range of statistical error in light color. The functions obtained from
the quantum path integral molecular dynamics (PIMD) simulations
(black) using Eq. (B2) are also shown.

quality of the approximations of Sinc(ω) in the respective
methods can thus be tested.

The results in Fig. 13 show that F bcmd
s (k, τ ), F cmd

s (k, τ ),
and F rpmd

s (k, τ ) agree with F pimd
s (k, τ ) much better than

F md
s (k, τ ), especially near both ends τ ≈ 0 and β h̄. This

indicates that these semiclassical approximations properly
account for the NQEs. However, as the imaginary time τ

approaches the center of the thermal interval (τ = β h̄/2), the
agreement with F pimd

s (k, τ ) deteriorates for all F bcmd
s (k, τ ),

F cmd
s (k, τ ), and F rpmd

s (k, τ ).
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