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Non-Hermitian quasicrystal constitutes a unique class of disordered open system with PT -symmetry break-
ing, localization, and topological triple phase transitions. In this paper, we uncover the effect of quantum
correlation on phase transitions and entanglement dynamics in non-Hermitian quasicrystals. Focusing on two
interacting bosons in a Bose-Hubbard lattice with quasiperiodically modulated gain and loss, we find that the
on-site interaction between bosons could drag the PT and localization transition thresholds towards weaker
disorder regions compared with the noninteracting case. Moreover, the interaction facilitates the expansion of
the critical point of a triple phase transition in the noninteracting system into a critical phase with mobility
edges, whose domain could be flexibly controlled by tuning the interaction strength. Systematic analyses of
the spectrum, inverse participation ratio, topological winding number, wavepacket dynamics, and entanglement
entropy lead to consistent predictions about the correlation-driven phases and transitions in our system. Our
findings pave the way for further studies of the interplay between disorder and interaction in non-Hermitian
quantum matter.
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I. INTRODUCTION

Over the past decade, non-Hermitian systems have gar-
nered increasing attention due to their rich dynamics, topo-
logical features, and transport properties [1–6]. Theoretical
studies have revealed distinctive phenomena in non-Hermitian
physics, such as PT -symmetry breaking [7], exceptional
points [8–10], non-Hermitian skin effects [11–14], anomalous
localization transitions [15–18], and enlarged symmetry clas-
sifications of topological matter [19–22]. Experiments have
enabled us to observe novel non-Hermitian dynamics and
topological phases on various platforms, including cold atoms
[23–27], photonics [28–34], acoustics [35–37], electrical cir-
cuits [38–40], and nitrogen-vacancy center in diamonds [41].

The non-Hermitian quasicrystal (NHQC) forms an intrigu-
ing class of matter with rich physical properties. The interplay
between non-Hermitian effects (such as gain and loss or
nonreciprocity) and correlated disorder within an NHQC
could induce parity and time-reversal (PT) symmetry break-
ing, localization, and topological phase transitions [42–73].
The addition of long-range hopping [48], lattice dimerization
[60], non-Abelian potential [74], and time-periodic driving
[75] could further create reentrant and alternating localiza-
tion transitions between different phases in non-Hermitian
quasicrystals (NHQCs). Despite great theoretical progress,
NHQCs have also been simulated experimentally by nonuni-
tary photonic quantum walks [33,34], motivating further
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considerations of their usage in phase-change and nonrecip-
rocal quantum devices.

Up to now, a great deal of knowledge about NHQCs has
been accumulated on the single-particle level. However, much
less is known regarding the effect of interparticle interactions
(see a schematic illustration in Fig. 1). Specially, could the
quantum correlation between interacting particles be able to
modify the critical points of single-particle phase transitions
or even generate new phases that are absent in the noninteract-
ing limit of an NHQC? Moreover, which set of unique features
originated from the interplay among non-Hermiticity, disor-
der, and many-body interactions could be established for the
spectral, localization, and topological transitions in NHQCs?
Resolving these issues is essential for our further understand-
ing and realization of NHQC phases in quantum many-body
systems. In this paper, we make progress along this line of
thought. Focusing on two interacting bosons in a typical non-
Hermitian variant of the Aubry-André-Harper (AAH) [76–78]
quasicrystal, we reveal that the on-site interaction between
bosons could generate a lower threshold for localization phase
transitions to happen compared with the single-particle case.
Moreover, the interaction expands an original PT, localization
and topological triple phase transition point of the noninter-
acting system into a whole critical phase, in which extended
and localized two-particle states are energetically separated
by mobility edges. In Sec. II, we introduce our non-Hermitian
AAH model with quasiperiodically modulated gain/loss and
on-site interactions. In Sec. III, we uncover disorder and
correlation induced phases and transitions in our system by
systematically investigating the two-body spectrum, inverse
participation ratio (IPR), and topological winding number of
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FIG. 1. A schematic illustration of the (a) noninteracting and
(b) interacting NHQCs. Correlations induced by interparticle in-
teractions are expected to yield phases and transitions beyond the
single-particle case, such as two-body non-Hermitian critical phases
with mobility edges.

the interacting bosons. In Sec. IV, we further investigate the
wavepacket and entanglement dynamics and establish their
connections with the found phases and transitions. In Sec. V,
we summarize our results, discuss their physical implications
and point out potential future directions.

II. MODEL

In this paper, we focus on interaction-induced phenomena
in NHQCs. We start with a one-dimensional (1D) model of
noninteracting bosons, which can be viewed as a minimal non-
Hermitian extension of the AAH model. The Hamiltonian of
the model reads [47]

Ĥ0 = −J
∑

l

(b̂†
l b̂l+1 + H.c.) − μ

∑
l

ei2παl n̂l . (1)

Here b̂†
l (b̂l ) creates (annihilates) a boson on the lattice

site l , and the particle number operator n̂l = b̂†
l b̂l . The lattice

constant has been set to one. J is the nearest-neighbor-hopping
amplitude. μ is the amplitude of chemical potential. The
potential μl = μei2παl is quasiperiodic for any irrational α,
and it is further non-Hermitian for any μ �= 0. The imaginary
part of the potential yields a quasiperiodically modulated gain
and loss in space. We will assume α = (

√
5 − 1)/2 in all our

discussions without loss of generality.
The system described by Ĥ0 possesses the PT symmetry,

where the parity P : l → −l and time-reversal T = K, with
K performing the complex conjugation. The spectrum of Ĥ0

could thus be real in certain parameter regions even though
Ĥ0 �= Ĥ†

0 . In the meantime, we notice that all the eigenstates
of the system are extended when μ = 0. With the increase of
μ from zero, the correlated disorder in the system becomes
stronger, and we expect localized eigenstates to appear at
large μ. Indeed, it was found that under the periodic boundary
condition (PBC), the single-particle spectrum of Ĥ0 has the
form E = 2J cos k for |μ| < |J| and E = 2J cos(k − ih) with
h = ln(μ/J ) for |μ| > |J| (k ∈ [−π, π ]), corresponding to a
line segment along the real axis and an ellipse on the complex
energy plane, respectively. There is thus a PT transition at
|μ| = |J|, where the spectrum of the system changes from
real (|μ| < |J|) to complex (|μ| > |J|) [47]. Moreover, it was
identified that all the eigenstates of Ĥ0 are extended (local-
ized) for |μ| < |J| (|μ| > |J|). The PT transition at |μ| = |J|
thus also accompanies a metal-to-insulator transition with the

increasing of |μ| from below to above |J|. These PT and
localization transitions could be further characterized by the
quantized jump of a winding number of E around the origin
of the complex plane, which goes from zero to one following
the PT symmetry breaking of the system [66]. Therefore,
for |μ| < |J| (|μ| > |J|), Ĥ0 has a real (complex) spectrum
with only extended (localized) eigenstates and a vanishing
(unit-quantized) winding number. We will thus encounter a
spectral, localization, and topological triple phase transition
at |μ| = |J| in the single-particle system Ĥ0.

We now add on-site interactions between bosons to Ĥ0. The
resulting system is described by the Hamiltonian

Ĥ = − J
∑

l

(b̂†
l b̂l+1 + H.c.) − μ

∑
l

ei2παl n̂l

+ U

2

∑
l

n̂l (n̂l − 1), (2)

where U measures the interaction strength. In the limit μ →
0, Ĥ reduces to the Bose-Hubbard model, which is a paradigm
in the study of quantum phase transitions between superfluids
and Mott insulators [79,80]. The system described by Ĥ can
thus be viewed also as a Bose-Hubbard model subject to
a quasiperiodic non-Hermitian superlattice potential. Since
both disorders and interactions could induce localization, their
collaboration may allow localization transitions to happen at
lower thresholds of the non-Hermitian quasiperiodic potential.
Nevertheless, with U �= 0, it is unclear whether all the eigen-
states of Ĥ will become localized following the localization
transition, just as what happens in Ĥ0. Moreover, since the
interaction term in Ĥ preserves the original PT symmetry of
the single-particle model, it is curious to know whether the
interaction itself could induce PT symmetry breaking and how
would such PT breaking transitions accompany localization
transitions in the system. The robustness of the triple phase
transition point of Ĥ0 to interactions also deserves to be
tested. In the following sections, we address these issues by
investigating the spectrum, eigenstates, topology, dynamics,
and entanglement of our Bose-Hubbard non-Hermitian AAH
(NHAAH) model Ĥ . We will focus on the case of two interact-
ing bosons, which serves as a minimal situation of revealing
nontrivial physics due to quantum correlations in NHQCs.

III. INTERACTION-INDUCED PHASES
AND PHASE TRANSITIONS

In this section, we uncover phases and transitions in our
Bose-Hubbard NHAAH model from an integrated perspec-
tive. In Sec. III A, we obtain the spectrum of our system by
exact diagonalization and analyze the real-to-complex spec-
tral transitions due to the collaborated efforts of disorder
and interactions. With the established PT phase diagram, we
further identify localization transitions and characterize the
critical mobility edge phases in our system in Sec. III B. In
Sec. III C, we show that the PT and localization transitions
can be associated with a spectral winding number, whose
values get quantized jumps at the transition borders between
extended/critical and critical/localized phases, yielding a
topological phase diagram that is consistent with the spectral
and localization patterns of our system.

054204-2



CORRELATION-INDUCED PHASE TRANSITIONS AND … PHYSICAL REVIEW B 109, 054204 (2024)

0

1

-1

Im
(E
)

0

1

-1

Im
(E
)

0 2 4-4 -2

(a) (i)

(ii)
U=0

U=0

μ=0.8

μ=1.5

Re(E)

0

1

-1

Im
(E
)

0

1

-1

Im
(E
)

(b)

0 2 4-4 -2
Re(E)

(i) μ=0.8

(ii) μ=1.5
U=0.8

U=0.8

0.4

0.6

0.8

0.2

μ

(d)

0

1.0

0 0.4
0

1.0

1.0

U

(c)

μ

0.4

1.4

0.6

0.2

0.8

0.6 0.8 1.20.2 0 0.4 1.0 1.40.6 0.8 1.20.2
0

1.0

U

0.4

0.6

0.2

0.8

0.5

0.2

0.3

0.4

0.1

0

FIG. 2. Spectrum properties of the Bose-Hubbard NHAAH model under PBC, computed with J = 1 and the lattice size L = 144. (a) and
(b) show the energy spectra E of Ĥ for U = 0 and 0.8 with two typical values of μ. (c) Maximal imaginary parts of E , |Im(E )|max [Eq. (4)],
vs μ and U . The dark and light regions have |Im(E )|max � 0 and |Im(E )|max > 0. Each |Im(E )|max is rescaled by its maximum over the
considered parameter space. (d) DOSs ρIm [Eq. (5)] with nonzero imaginary parts of E . Red-dashed lines in (c) and (d) represent the boundary
of PT transition, numerically extracted from (c).

A. Spectrum and PT transitions

We first analyze the energy spectrum and reveal the
PT transitions in our Bose-Hubbard NHAAH model. We
obtain the spectrum of our system under PBC by diagonal-
izing Ĥ [Eq. (2)] exactly in the Fock space of two bosons
{|1l , 1l ′ 〉, |2l〉}. The Fock basis |1l , 1l ′ 〉 represents the state
with one boson on the lattice site l and the other one on the
site l ′. The Fock basis |2l〉 denotes the state with two bosons
on the same lattice site l . Here l �= l ′ and l, l ′ = 1, ..., L, with
L being the length of lattice.

In the absence of interactions (U = 0), two typical exam-
ples of the spectrum are shown in Figs. 2(a)(i) and 2(a)(ii).
Since the two bosons are decoupled when U = 0, we expect
that in the limit L → ∞, the spectrum in the noninteracting
case takes the form

E =
{

2J (cos k + cos k′) |μ| � |J|
2J[cos(k − ih) + cos(k′ − ih)] |μ| > |J| , (3)

where k, k′ ∈ [−π, π ] and h = ln(μ/J ). Our numerical re-
sults in Figs. 2(a)(i) and 2(a)(ii) are coincident with this
theoretical prediction. Therefore, our system with two free
bosons resides in a PT-unbroken phase when |μ| < |J|, moves
into a PT-broken phase when |μ| > |J|, and undergoes a PT
transition at |μ| = |J|, which are all similar to the single-
particle case. Nevertheless, when |μ| > |J|, the two-body

spectrum forms multiple nested loops around the origin
(E = 0) of the complex energy plane, which is rather different
from the one-loop spectrum of the single-particle case [47].
This observation also implies the presence of a much larger
spectral winding number in the PT-broken phase of the two-
body system compared with the single-particle case, as will
be confirmed explicitly in Sec. III C.

After the switching on of interactions, we observe notable
changes in the energy spectrum, as showcased in Figs. 2(b)(i)
and 2(b)(ii). First, complex eigenenergies emerge even when
|μ| < |J| [Fig. 2(b)(i)]. It indicates that compared with single-
particle and noninteracting cases, a PT-broken transition has
happened at a lower threshold of correlated disorder strength
|μ| when U �= 0. Interactions could thus control and facili-
tate PT transitions in NHQCs. Second, when |μ| > |J|, the
energy spectrum separates into two distinguishable portions
[Fig. 2(b)(ii)]. One of them looks rather similar to the non-
interacting two-body spectrum of the system [Fig. 2(a)(ii)]
at the same parameters in both its range and shape. Another
portion constitutes a loop centered around some E �= 0, which
can be completely separated from the first portion by a line
gap at larger U . As will be confirmed in Appendix A, two-
body states with energies lying along this loop are doublons
formed by interaction-induced bounded boson pairs. Their
emergence provides a key reason for the PT transition to
happen in advance in our interacting NHQCs.
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To generate an all-round view of spectral transitions in the
Bose-Hubbard NHAAH model, we introduce the quantities

|Im(E )|max ≡ max
j∈{1,...,D}

|ImEj |, (4)

ρIm ≡ DIm/D. (5)

Here Ej is the jth eigenvalue of Ĥ [Eq. (2)]. D represents
the Fock-space dimension of our two bosons. DIm counts
the number of eigenvalues of Ĥ whose imaginary parts are
nonzero. |Im(E )|max and ρIm thus give the maximal imaginary
part of E and the density of states (DOSs) with complex
energies over the spectrum at a given set of system param-
eters. In the PT-invariant phase, we expect |Im(E )|max = 0
and ρIm = 0. In the PT-broken phase, we would instead have
|Im(E )|max > 0 and 0 < ρIm � 1. If all the energies of Ĥ have
nonzero imaginary parts, we will have ρIm = 1. In Figs. 2(c)
and 2(d), we present the |Im(E )|max and ρIm of Ĥ vs the dis-
order strength μ and interaction strength U for a sufficiently
large system size, yielding the PT phase diagram of our Bose-
Hubbard NHAAH model. We observe that the PT-transition
threshold of disorder |μ| indeed decreases with the raise of
U [Fig. 2(c)]. In the Appendix A, we further show that the
PT phase boundary can be approximately described by J2 =
|Uμ| for large U . Meanwhile, the increasing of interaction
strength U could also induce PT transitions even if |μ| <

|J| [Figs. 2(c) and 2(d)]. Besides, not all the eigenenergies
possess nonzero imaginary parts after the PT-breaking tran-
sition happens, as reflected by the region with 0 < ρIm < 1
in Fig. 2(d). Nevertheless, almost all the eigenenergies finally
become complex when |μ| > |J| as in the noninteracting case.
Hence, one pivotal role played by interaction here is to widen
the PT-transition point of the free-boson system into a crit-
ical region with coexisting real and complex eigenenergies.
Further roles of interactions in our Bose-Hubbard NHAAH
model will be uncovered in the following subsections.

B. Localization transitions

We next investigate the spatial distributions of eigenstates
and unveil the phases with different localization nature in our
system. Let |ψ j〉 be the jth two-body eigenstate of Ĥ [Eq. (2)]
with energy Ej . The symmetrized position eigenbasis takes
the form

{|l, l〉|l = 1, ..., L} ∪ {(|l, l ′〉 + |l ′, l〉)/
√

2}. (6)

Here l and l ′ denote lattice site indices of the two bosons
with l, l ′ = 1, ..., L and l �= l ′. L is the length of the lattice.
Projecting |ψ j〉 onto each position basis and summing over the
fourth power of the resulting absolute amplitudes, we arrive at
the IPR of |ψ j〉 in space, i.e.,

IPR j =
D∑

n=1

∣∣ψ ( j)
n

∣∣4
, (7)

where ψ
( j)
n denotes the overlap between |ψ j〉 and the nth

basis in Eq. (6). A localized (an extended) eigenstate |ψ j〉
is expected to have a finite (a vanishing) IPR j in the limit
L → ∞. Similarly, we can define the normalized participation
ratio (NPR) of |ψ j〉 in real space as

NPR j = IPR−1
j /D. (8)

The behavior of NPR j is opposite to IPR j , i.e., it takes a
finite value if |ψ j〉 is spatially extended and vanishes in the
limit L → ∞ if |ψ j〉 is localized.

Collecting the information of IPR and NPR, we could
introduce the following quantities to characterize the localiza-
tion features of each possible phase in our two-body system,
i.e.,

IPRmax = max
j∈{1,...,D}

(IPR j ), (9)

IPRmin = min
j∈{1,...,D}

(IPR j ), (10)

ζ = log10(IPRave · NPRave). (11)

Here

IPRave ≡ 1

D

D∑
j=1

IPR j (12)

and

NPRave ≡ 1

D

D∑
j=1

NPR j (13)

are the averages of IPR and NPR over all the eigenstates, re-
spectively, at a given set of system parameters. By definition,
it is clear that in a metallic phase where all the eigenstates are
extended, we would have both IPRmax → 0 and IPRmin → 0
in the limit L → ∞. On the contrary, both IPRmax and IPRmin

would take finite values in an insulator phase with only local-
ized eigenstates. In a critical phase with coexisting localized
and extended eigenstates, we will have a finite IPRmax and a
vanishing IPRmin. The presence of such a critical phase can be
further characterized by the smoking-gun function ζ , which
in the limit L → ∞ takes finite values in the critical phase but
goes to −∞ in both the extended and localized phases [81,82].
The IPRmax, IPRmin, and ζ defined here thus provide us with a
complete set of quantities to distinguish phases with different
transport properties in our system.

In Fig. 3, we present the IPRmax [3(a)], IPRmin [3(b)],
and ζ [3(c)] versus the quasiperiodic potential μ and inter-
action strength U . Their combination forms the localization
phase diagram of our Bose-Hubbard NHAAH model with two
bosons under the PBC. In Appendix B, we further demon-
strate the characterization of extended, critical, and localized
phases using IPRave and NPRave, yielding consistent results. In
Fig. 3(a), we observe a clear boundary separating an extended
phase (IPRmax � 0) from a region with localized eigenstates
(IPRmax > 0), which is the borderline of localization tran-
sitions in our system. These transitions happen at weaker
disorder strengths μ with the increase of U . Moreover, even
with |μ| < 1, a localization transition could still be induced
by raising the strength of interaction U . The interparticle
interaction thus plays an active role in controlling localiza-
tion transitions. Notably, the localization phase boundary in
Fig. 3(a) is found to be coincident with the PT phase boundary
observed in Figs. 2(c) and 2(d), as illustrated by the red dashed
line. Therefore, the PT breaking transitions of the spectra go
hand-in-hand with localization transitions of the states in the
regime |μ| � 1 of our system.
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FIG. 3. State properties of the Bose-Hubbard NHAAH model under PBC, computed with J = 1 and the lattice size L = 144. (a) and
(b) show the IPRmax [Eq. (9)] and IPRmin [Eq. (10)]. (c) shows the smoking-gun function of mobility edge ζ [Eq. (11)]. The red dashed line in
(a) represents the boundary of PT transition, numerically extracted from Fig. 2(c).

A possible reason behind the lowering of PT and localiza-
tion transition thresholds of μ in the presence of interactions
may be understood as follows. When U �= 0, the two bosons
may form a doublon, i.e., a spatially bounded pair of particles.
The effective cohopping rate of such a doublon state could be
much smaller than a state in which the two bosons are well
separated in space and can thus undergo almost uncorrelated
single-particle hopping processes. The hopping rate of dou-
blons may further decrease with the increase of U (see also
Appendix A). Therefore, before reaching the single-particle
localization transition point (|μ| = 1), the doublon states first
become localized with the increase of |μ| up to some |μc| < 1
when U �= 0, and the value of |μc| further decreases with
the raise of interaction strength. Furthermore, when the dou-
blon states become localized, their eigenenergies also acquire
nonzero imaginary parts, triggering the PT-symmetry break-
ing transition at |μc| before reaching the single-particle PT
transition point (|μ| = 1).

In Fig. 3(b), we observe a second localization transition
around |μ| = 1, after which all the eigenstates of Ĥ become
localized (IPRmin > 0) for every U . This transition bound-
ary is consistent with the border in Fig. 2(d) that separates
the region with coexisting real and complex eigenenergies
[ρIm ∈ (0, 1) ] from the region where almost all eigenenergies
have nonzero imaginary parts (ρIm � 1). This phase boundary
tends out to be independent of the interaction strength, imply-
ing that it is mainly associated with the localization of weakly
correlated two-body states, in which the center of two bosons
are spatially well separated.

Between the two phase boundaries in Figs. 3(a) and 3(b),
we observe a third phase in which extended and localized
eigenstates are coexistent (IPRmax > 0, IPRmin � 0), as high-
lighted by the region with a finite ζ in Fig. 3(c). This region
thus corresponds to a critical mobility edge phase. Details of
the mobility edge are illustrated in Appendix B. Notably, its
domain expands with the increase of U and yet shrinks to a
point at |μ| = 1 in the limit U → 0. Therefore, the critical
mobility edge phase in our Bose-Hubbard NHAAH model
could not appear in the free-particle case. It is made possi-
ble by interactions and hence unique to strongly correlated
NHQCs.

The interplay between correlated disorder and interaction
now allows us to have three distinct phases in our two-body

system, i.e., a PT-invariant extended phase, a PT-broken local-
ized phase, and a PT-broken mixed phase in which extended
states (with real energies) and localized states (with complex
energies) coexist. The domain of the extended phase decreases
with the increase of U . The domain of the mixed phase
increases with the increase of U . While the domain of the
localized phase is almost not affected by U . We will further
discriminate these different phases by topological invariants
in the following subsection.

C. Topological transitions

In previous studies, a topological winding number has been
introduced to characterize spectral and localization transitions
in single-particle NHQCs [45,46]. For our noninteracting
model Ĥ0, such a winding number can be defined under the
PBC as

w =
∫ 2π

0

dθ

2π i
∂θ ln{det[Ĥ0(θ/L) − E0]}. (14)

Here E0 is a base energy that can be chosen rather freely on
the complex energy plane, so long as it does not belong to the
spectrum of Ĥ0. Ĥ0(θ/L) is obtained from Ĥ0 by replacing the
on-site potential μl ≡ μei2παl with μei(2παl+θ/L) for all l =
1, ..., L, with L being the length of lattice. Thus defined, the
winding number w in Eq. (14) counts the number of times
that the spectrum of Ĥ0 encircles E0 when the phase shift θ is
varied over a cycle.

In the single-particle case, it was found that for Ĥ0, we have
w = 0 in the PT-invariant extended phase (|μ| < |J|) and w =
1 in the PT-broken localized phase (|μ| > |J|) [66]. The value
of w thus experiences a quantized jump following the PT and
localization transitions of Ĥ0, yielding a topological signature
for these transitions. In cases with two free bosons, we still
have w = 0 in the PT-invariant extended phase (|μ| < |J|) of
Ĥ0, which can be directly inspected from the expression of
spectrum in Eq. (3). Meanwhile, in the PT-broken localized
phase (|μ| > |J|) of Ĥ0, w is found to be quantized as a
nonzero integer, whose precise value depends on the size of
the lattice. This may also be deduced from Eq. (3), where the
spectrum forms many loops on the complex energy plane for
|μ| > |J|, with each loop contributing a winding +1 (coun-
terclockwise) or −1 (clockwise) to w. The number of such
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TABLE I. Summary of the results for the Bose-Hubbard NHAAH model, including the spectra, DOSs, IPRs, and topological winding
numbers of the extended, critical and localized phases.

Phase Extended Critical Localized

Spectrum Real Complex
ρIm ρIm ∼ 0 0<ρIm � 1
IPR ∼0 for all states >0& ∼ 0 coexist >0 for all states
Winding number (w1, w2) = (0, 0) (w1, w2) = (1, 0) (w1, w2) �= (0, 0)

spectral loops increases with the growth of L. We have verified
these conclusions for two noninteracting bosons in our Ĥ0 by
numerical calculations.

In the presence of interactions, we have observed two sets
of spectrum and localization transitions plus a critical mo-
bility edge phase in between in our Bose-Hubbard NHAAH
model Ĥ [Eq. (2) with U �= 0 ], as discussed in the last
two subsections. A single winding number w as defined in
Eq. (14), however, may not be able to fully capture all these
transitions and thus distinguish the three different phases of
two interacting bosons.

To address this issue, we introduce a pair of winding num-
bers (w1,w2) for Ĥ , which are defined under the PBC as [60]

w	 =
∫ 2π

0

dθ

2π i
∂θ ln{det[Ĥ (θ/L) − EB	]}, 	 = 1, 2. (15)

Here Ĥ (θ/L) is obtained by setting the on-site potential
μei2παl → μei(2παl+θ/L) for Ĥ . At a given U , we choose
EB1 = ReEj if |ψ j〉 is the first eigenstate of Ĥ whose IPR j

starts to deviate from zero (IPRmax � 0 →> 0) and then be-
coming localized with a complex energy Ej . The winding
number w1 is hence expected to be a marker of the PT-
breaking transition and the localization transition between
extended and critical phases in our two-body system with the
increase of μ. Comparatively, we let EB2 = ReEj′ if |ψ j′ 〉 is
the last eigenstate of Ĥ whose IPR j′ becomes finite (IPRmin �
0 →> 0) and thus being localized with a complex energy Ej′ .
The winding number w2 is then expected to mark the transi-
tion between the critical phase with a mixed spectrum and the
localized phase with a purely complex spectrum following the
increase of μ in our two-boson system. We would now have a
vanishing w1 in the extended phase and an integer quantized
w1 in both the critical and localized phases of Ĥ . Instead,
w2 will become a nonzero integer only in the localized phase
of Ĥ . Combining the information offered by (w1,w2) then
allows us to establish a complete topological characterization
of the spectral and localization transitions in our system.

In Fig. 4, we present the topological phase diagram of
Ĥ [Eq. (2)] under the PBC with two bosons by evaluating
the winding numbers (w1,w2) at different values of system
parameters (μ,U ). Three distinct regions separated by two
phase boundaries are clearly observed. In the left region (in
blue) of Fig. 4, we have w1 = w2 = 0. The domain of this re-
gion is coincident with the PT-invariant phase in Figs. 2(c) and
2(d) and the extended phase in Fig. 3. In the right region (in
yellow) of Fig. 4, we have w1 > 0 and w2 > 0. The domain of
this region is consistent with the PT-broken phase with purely
complex spectra in Figs. 2(c) and 2(d) and the localized phase

in Fig. 3. In the middle region (in green) of Fig. 4, we have
(w1,w2) = (1, 0). The domain of this region is identical to
the PT-broken phase with mixed (real vs complex) spectra
in Fig. 2(d) and the critical phase in Fig. 3. All the phases
and transitions induced by the interplay between correlated
disorder and interaction in our Bose-Hubbard NHAAH model
could thus be topologically characterized by the winding num-
bers introduced in Eq. (15).

A summary of the main results obtained in this section is
presented in Table I. In Appendix C, we further elaborate
on the case with U = 0.8 and provide some more details
about the transitions characterized by different quantities in
our system. We conclude that the presence of interactions
indeed induces a critical phase sandwiched by two transitions
in our two-body system. Moreover, by varying the strength
of interaction, one can control the transition points and ma-
nipulate the range of mobility edges. Through a detailed
characterization of the energy spectrum and states of the
system’s Hamiltonian Ĥ [Eq. (2)], we unveiled the bound-
aries between the extended, critical, and localized phases, as
well as the phase transition processes. The winding num-
bers (w1,w2) further serve as topological order parameters,
providing a clear depiction of the topological phases and
the transitions among them with consistent phase bound-
aries. The eigenstates and topological properties of our
Bose-Hubbard NHAAH model collectively provide a compre-
hensive understanding of the PT-invariant extended phase, the
PT-broken critical phase, and the PT-broken localized phase in

20

30

40

10

0

U

μ

PT-invariant

PT-broken

0 0.4
0

1.0

1.0

0.4

1.4

0.6

0.2

0.8

0.6 0.8 1.20.2

FIG. 4. Topological phase diagram of the Bose-Hubbard
NHAAH model under PBC, with the lattice size L = 89. Regions in
blue, green, and yellow correspond to extended, critical, and local-
ized phases with different winding numbers w1 + w2, whose values
can be read out from the color bar. The red-dashed line represents the
boundary of PT transition, numerically extracted from Fig. 2(c).
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FIG. 5. Dynamics of two free particles (U = 0) in the Bose-Hubbard NHAAH model. The lattice size is L = 89. The label l along the
vertical axis is the lattice site index. (a) and (b) show the spatial probability distributions of the same initial state |
0〉 evolved over time t , with
system parameters set in the extended (μ = 0.5) and localized (μ = 1.5) phases, respectively.

two-body NHQCs. To make our observations more feasible
in experiments, we will study and showcase the dynamical
characteristics of our system in the next section.

IV. WAVEPACKET AND ENTANGLEMENT DYNAMICS

In this section, we explore the dynamics of two-body
wavepackets and entanglement entropy (EE) in our system
described by Ĥ in Eq. (2). This is partially motivated by
the experimental accessibility to dynamical measurements
[32,33]. We will trace the evolution of initial wavepackets
and EE in the system over time and check whether our Bose-
Hubbard NHAAH model could exhibit distinct behaviors in
different phases and whether these behaviors could serve as
indicators of these phases.

A. Wavepacket dynamics

We first consider the wavepacket dynamics in our two-
body system. Without loss of generality, we let the two bosons
to locate initially at the center of the lattice. At time t = 0, the
initial state of the system is thus |
0〉 = |2L/2〉. At a later time
t > 0, the initial wavepacket is evolved by Ĥ [Eq. (2)] to the
state (let h̄ = 1)

|
 ′(t )〉 = e−iĤt |
0〉 =
∑

j

c je
−iE jt |ψ j〉, (16)

where |ψ j〉 is the jth eigenstate of Ĥ with energy Ej , and
c j = 〈ψ j |
0〉 denotes the overlap between the initial state and
|ψ j〉. Since the Ĥ in Eq. (2) is not Hermitian, some of the
eigenenergies Ej may take complex values, yielding a nonuni-
tary evolution and an unnormalized state |
 ′(t )〉 in Eq. (16).
Nevertheless, for dynamics of open quantum systems under
postselection, we could arrive at a normalized state |
(t )〉
given by

|
(t )〉 = |
 ′(t )〉/
√

〈
 ′(t )|
 ′(t )〉. (17)

That is, at each time step, the state of the system is first
evolved according to the Schrödinger equation with the Ĥ in
Eq. (2). A normalization of the state then follows without
going through any quantum jumps to generate |
(t )〉. The

spatial distribution of the two bosons at any time t is finally
obtained by projecting |
(t )〉 onto the position eigenbasis
[Eq. (6)] [83].

In Fig. 5, we illustrate representative dynamics of two-
body wavepackets under the PBC in our Bose-Hubbard
NHAAH model without interactions (U = 0). We observe
that when |μ| < |J|, the localized initial state |
0〉 spreads
ballistically and populates the whole lattice almost uniformly
after a relatively short time window in Fig. 5(a). This is
an expected behavior within a PT-invariant extended phase.
Meanwhile, in Fig. 5(b), the initial wavepacket maintains its
spatial localization over time up to certain non-Hermitian
jumps when |μ| > |J|, which is also expected in a PT-broken
localized phase. The two distinct phases of free bosons in our
system may thus be probed and distinguished via wavepacket
dynamics.

Typical time evolutions of two-body wavepackets under
the PBC in our Bose-Hubbard NHAAH model with in-
teractions (U �= 0) are shown in Fig. 6. When the system
parameters are chosen inside the PT-invariant extended phase
of Ĥ [(μ,U ) = (0.5, 0.8) in Fig. 6(a)], we again observe the
fast expansion of initially localized wavepacket |
0〉 across
the whole lattice within a relatively short time window. The
interactions do not generate apparent effects on the spreading
speed of wavepacket in this case. When the system parameters
are set in the PT-broken localized phase of Ĥ [(μ,U ) =
(1.5, 0.8) in Fig. 6(c)], the initial wavepacket |
0〉 is well
localized over its entire time evolution around one particular
lattice site. Meanwhile, two dynamically distinct regions can
be observed in the wavepacket evolution when the system
parameters are chosen in the PT-broken critical phase of
Ĥ [(μ,U ) = (1, 0.8) in Fig. 6(b)]. That is, the wavepacket
|
0〉 is found to diffuse initially over a short time window
(t ∼ 10), and then pinned strongly around a certain lattice
site in its later dynamics. It is the non-Hermitian nature
of the system that leads to prolonged lifetimes of particles
in the critical and localized phases. The noticeable non-
Hermitian jumps (cotunneling) of two bosons in Figs. 5(b),
6(b), and 6(c) are further analyzed in the Appendix D. Note
in passing that these jumps are not unique to interacting
systems.
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FIG. 6. Dynamics of two-particle wavepacket for the Bose-Hubbard NHAAH model with the interaction strength U = 0.8 and lattice size
L = 89. The initial state is evolved under the same condition as in Fig. 5. (a)–(c) give the probability distributions of the same initial state over
time t for the extended, critical and localized phases with μ = 0.5, 1 and 1.5, respectively.

We have checked the wavepacket dynamics for other
parameter choices within each phase of our system and ob-
served consistent results. In conclusion, notable changes in
wavepacket dynamics across different phases (extended, criti-
cal, and localized) are found in our Bose-Hubbard NHAAH
model with two bosons, allowing us to distinguish these
phases efficiently in cases without and with interactions.

B. Entanglement dynamics

In this section, we focus on analyzing the dynamics of
EE. Propagations of quasiparticles in a system and behaviors
of entangled quantum states can be measured using the EE
[32,84–87]. The EE has also been identified as a valuable
metric for characterizing many-body localizations [88,89].
Here, we investigate the properties of extended, critical, and
localized phases in our Bose-Hubbard NHAAH model with
two bosons by calculating their related entanglement features
in the time domain.

We first make a distinction between two types of EE that
may exist between two subsystems A and B of a composite
system, which are referred to as number EE and configuration
EE. The number EE describes the correlation between particle
numbers in one subsystem and those in another. It arises
through tunneling effects between subsystems. The configura-
tion EE depicts the correlation between particle configurations
in one subsystem and those in another. It requires at least
two particles to exist in the whole system. Tunneling effects
alone cannot generate configuration EE, as they only affect
individual particles. Yet, interactions can entangle pairs of
particles. Therefore, the combination of tunneling effects and
interactions can lead to the formation of configuration en-
tanglement over longer distances [32]. The number EE Snum

and the configuration EE Sconf together constitute the total EE
S = Snum + Sconf [32,87].

The dynamics of total EE S(t ) can be decomposed as

S(t ) = Snum(t ) + Sconf (t ), (18)

Snum(t ) = −
∑
NA

pNA log pNA , (19)

Sconf (t ) = −
∑
NA

∑
i

pNA λ̃
(NA )
i log λ̃

(NA )
i . (20)

Here, NA is the number of particles in subsystem A, pNA rep-
resents the sum of eigenvalues of all block diagonal matrices
in subsystem A, and λ̃

(NA )
i denotes the normalized eigenvalue

of the ith block diagonal matrix in the reduced density matrix
of subsystem A. Detailed calculation strategies for Snum(t ) and
Sconf (t ) are given in Appendix E.

In Fig. 7(a), we show the dynamical evolution of the (i)
number EE Snum(t ), (ii) configuration EE Sconf (t ), and (iii)
total EE S(t ) for our Bose-Hubbard NHAAH model with two
bosons in the noninteracting limit [U = 0 in Eq. (2)]. The
solid and dotted curves represent the cases when the initial
state |
0〉 is prepared in the extended phase (μ = 0.5) and
localized phase (μ = 1.5) of Ĥ0. Without interactions, we
can focus on the dynamics of Snum(t ). In the extended phase,
Snum(t ) initially increases rapidly, and then reaches a steady
value at one. In the localized phase, Snum(t ) also increases
rapidly at first before reaching a metastable plateau. After that,
it increases again up to one and finally decreases continuously
until reaching zero. As Sconf (t ) is always zero, the number EE
Snum(t ) serves as the total EE S(t ) in the noninteracting case.
The observed behaviors of Snum(t ) are typical for our system
with two free bosons in its two distinct phases.

The changes in Snum(t ) are related to the wavepacket dy-
namics (Fig. 5). In the extended phase, the initial rapid growth
of Snum(t ) is caused by particle diffusion as observed in
Fig. 5(a). As time goes by, particles diffuse throughout the
system, leading to the equilibration and saturation of Snum(t ).
In the insulating phase, the diffusion is almost negligible
and the wavepacket is localized at specific lattice sites. Since
the initial particle distribution is centered at L/2, the bound-
ary between subsystems A and B, stable particle transport
occurs between these subsystems, maintaining a metastable
Snum(t ) in the intermediate time domain. As discussed in
Appendix D, with the increase of time, non-Hermiticity in-
duced wavepacket jumps lead to the eventual collapse of the
wavepacket onto the eigenstate of Ĥ0 with the largest ImE ,
yielding a further increase of Snum(t ) in the localized phase.
Once the wavepacket jumps are complete and all particles are
localized on one side of the system, there is no longer particle
transport between subsystems A and B, causing Snum(t ) → 0
in the end. Without interactions, nonlocal coherent dynamics
between subsystems do not exist [32]. Therefore, Sconf (t ) re-
mains to be zero regardless of whether the system is in the
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FIG. 7. EE dynamics of two particles in the Bose-Hubbard NHAAH model. The lattice size is L = 89 and the initial state is prepared to be
the same as that used in the wavepacket dynamics. In (a) and (b), (i), (ii), and (iii) represent the time dependence of Snum(t ), Sconf (t ), and the
total S(t ) for the cases with U = 0 and 0.8, respectively. The solid, dashed and dotted lines in (b) denote the EE with μ = 0.5, 1, and 1.5.

extended or the localized phase. In Fig. 7(a)(iii), the overall
EE S(t ) is thus derived from the contribution of number EE
only, leading to dynamical behaviors determined by Snum(t ).

Figure 7(b) illustrates the dynamics of the (i) number EE
Snum(t ), (ii) configuration EE Sconf (t ), and (iii) total EE S(t )
for our Bose-Hubbard NHAAH model with two bosons and
the interaction strength U = 0.8. The initial state |
0〉 is
the same as that used in the noninteracting case. The solid,
dashed, and dotted lines in each panel describe the EE for
μ = 0.5, 1, and 1.5, corresponding to the extended, critical,
and localized phases, respectively. We focus on the growth of
Snum(t ) and Sconf (t ) as well as their behaviors across different
phases.

In all the phases, Snum(t ) increases rapidly in the initial
stage. In the extended phase, Snum(t ) saturates gradually and
reaches a steady value after its initial growth. In the critical
and localized phases, the Snum(t ) grow first until reaching
peak values around t = 10 and then decrease. In the critical
phase, Snum(t ) drops to a finite value and reaches a metastable
plateau. After a sufficiently long time, it decreases again
towards zero. In the localized phase, Snum(t ) drops to zero
directly, then increases slightly twice in time before going
back to zero.

With interactions, the behavior of Snum(t ) can be further
understood by comparing the EE and wavepacket dynamics
[see Figs. 7(b) and 6(c)]. In the extended phase, the ini-
tial increase of Snum(t ) originates from the rapid spread of
wavepacket over time, with the eventual saturation reflecting
the uniform distribution of wavepacket across the entire sys-
tem and the equilibration in the end. In the critical phase, the
initial growth of Snum(t ) results from imperfect localization of
the system, leading to wavepacket diffusion in short term. As
time passes, wavepackets become localized around L/2 within
the subsystem B, leading to a metastable and relatively small
Snum(t ) due to slight particle transport between subsystems A
and B. Non-Hermitian effects further allow the wavepacket to
jump from one site of subsystem B to another, suppressing the
particle tunneling between two subsystems and finally leading
to Snum(t ) goes to zero.

In the localized phase, the initial increase of Snum(t ) stems
from the location of particles at the center of two subsys-
tems [see Fig. 6(c)]. As time passes, we have Snum(t ) → 0
when wavepackets are fully localized within subsystem A.
Over a longer evolution time, non-Hermitian effects cause
wavepackets to undergo two jumps between subsystems A
and B, generating two increases in the number EE from t ∼
103 − 104. Finally, the particles become pinned to the local-
ized state with the largest ImE , yielding Snum(t ) = 0. Note
that the appearance of two jumps in the late-time regime are
not unique to interacting systems. The increases of Snum(t ) in
the localized phase are mainly caused by the non-Hermiticity
of on-site potential. The presence of these jumps reflects that
the state has not been evolved to its final location, i.e., the
location of certain localized eigenstate of the system with
the largest imaginary part of energy. The interaction further
allows the bosons to form doublons that could jump together
as a whole in space, which is a possible reason for the appear-
ance of sharper peaks in the late-time regime of Fig. 7(b)(i)
compared with the peak at t � 100 in Fig. 7(a)(i). Notably, in-
teractions make the initially negligible Sconf (t ) nontrivial. This
is because configuration EE implies a correlation between
particle configurations in subsystems A and B, necessitating
the presence of particles in each subsystem. Tunneling alone
cannot produce configuration EE, as it acts individually on
each particle. Interactions thus allow particles to be configu-
rationally entangled. The combined effects of tunneling and
interactions produce configuration entanglement over longer
distances [32].

In Fig. 7(b)(ii), Sconf (t ) experiences an initial growth,
whose duration is nevertheless delayed significantly compared
to the initial rapid increase of Snum(t ). After Snum(t ) saturates,
Sconf (t ) continues to grow, albeit at a slower rate, and grad-
ually being stabilized. In the critical and localized phases,
Sconf (t ) grow initially and reach respective peaks before de-
caying. In the critical phase, Sconf (t ) decreases to a finite
value, while in the localized phase it tends to zero.

In Fig. 8, the wavepacket and EE dynamics are shown in
order to further demonstrate their correlations. One can see
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FIG. 8. Wavepacket and EE dynamics of two particles in the
Bose-Hubbard NHAAH model. The system parameters are L = 89,
μ = 1.5 and the initial state is prepared to be the same as that used
in the wavepacket dynamics. In (a) and (b), solid and dash lines
represent the time dependence of Snum(t ) and Sconf (t ) for the cases
with U = 0 and 0.8. (a) and (b) also give probability distributions of
the same initial state over time with U = 0 and 0.8, respectively.

that the Snum(t ) increases in conjunction with the spreading
of wavepacket at the beginning of the dynamics, regardless of
the presence or absence of interactions. When the wavepacket
is localized, the Snum(t ) changes only when the position of
the wavepacket is changed. The Sconf (t ) exists only in systems
with interactions. Its growth depends on the particle configu-
ration of the subsystems. The Sconf (t ) no longer changes and
remains constant at zero once the particles in the system are
localized at their final locations.

We can draw the following conclusions in this section.
First, the number EE Snum(t ) signifies the correlation between
particle numbers in different subsystems. The magnitude of
Snum(t ) reflects the strength of particle tunneling between sub-
systems, providing insights into the behaviors of wavepacket
dynamic. Second, the configuration EE Sconf (t ) accounts for
the correlation between particle configurations in different
subsystems. Interaction is essential for its existence, as it
facilitates entanglement between particle pairs. The combined
efforts of tunneling and interaction can thus lead to the forma-
tion of configuration entanglement, which persists over longer
spatial distances [32]. Third, in the extended, critical and
localized phases, Snum(t ) and Sconf (t ) exhibit distinct proper-
ties. They reflect the degree of localization and allow us to
distinguish between different phases based on the dynamics
of EE. These insights deepened our understanding of EE in
non-Hermitian systems, revealing diverse aspects of entangle-
ment between particle numbers and configurations due to the
interplay between disorder and interactions.

In Appendix G, we present further results for time-
averaged EE of our Bose-Hubbard NHAAH model with
two bosons. The variations of EE suggest the presence of
a possible entanglement phase transition across the PT and
localization transition boundaries in our system.

V. CONCLUSIONS

In this paper, we unveiled PT transitions, localization tran-
sitions, topological transitions, and mobility edges induced by

the cooperation between correlated disorder and many-body
interaction. Focusing on two bosons in a prototypical NHQC
with on-site two-body interactions and quasiperiodically mod-
ulated gain and loss, we found that the interaction could
trigger the PT and localization transition thresholds towards
the regime of weaker disorder strengths. Moreover, the spec-
tral, localization, and topological triple phase transition point
of the free bosonic system becomes unstable and expands into
a whole critical phase with mobility edges in the presence of
interactions. Phase diagrams of our system were established
via systematic analyses of the spectrum, IPRs, and topological
winding numbers. Distinctive features of the extended, criti-
cal, and localized two-body phases in our system were further
revealed by investigating the dynamics of wavepackets and
EE. Our findings thus laid the foundation for future studies
of correlation-induced phenomena in NHQCs and in other
non-Hermitian disordered systems. The PT symmetry break-
ing, localization transitions, and mobility edges triggered by
interactions are also expected to appear in NHQCs beyond the
minimal model considered in this paper.

In experiments, the single-particle physics of NHQCs has
been explored by implementing nonunitary photonic quan-
tum walks, in which signatures of spectral, localization,
topological triple phase transitions, and mobility edges have
been observed [33,34]. Meanwhile, quantum walks of cor-
related photons have also been realized in various optical
setups [90–93]. The combination of these relevant techniques
may allow us to realize our Bose-Hubbard NHAAH model
and probe the associated phases and transitions in photonic
systems. Ultracold atoms in optical lattices form another
promising setup, in which the Bose-Hubbard model [94]
and quasiperiodic potentials [95–97] have both been realized.
Non-Hermitian effects can further be introduced by laser-
induced atom losses [24–27]. Therefore, our Bose-Hubbard
NHAAH model may also be engineered in cold atoms and the
interaction-induced phases and transitions might be detected
in near-term experiments.

In future work, it is interesting to explore correlation-
induced phases and transitions in NHQCs with more than
two particles and further in many-body regime. Other types
of non-Hermitian terms, such as asymmetric hopping may
induce delocalization transitions [98] and non-Hermitian skin
effects [11], whose interplay with disorder and interaction also
deserves to be explored. Our tentative calculations suggest
that nonreciprocal hoppings could indeed transform bound
states to scattering states and yield critical phases in interact-
ing NHQCs. In non-Hermitian systems with quasiperiodic or
quenched disorders, various types of entanglement phase tran-
sitions have been recently identified [99–101]. The impact of
interactions [102] on these intriguing entanglement transitions
forms another interesting direction of future research.

Note added. Recently, we noticed a paper that focused
on the formation of doublons in a non-Hermitian Fermi-
Hubbard model with two fermions [83]. It also demonstrated
the emergence of mobility edges due to interactions, which
is consistent with our findings in Bose-Hubbard NHQCs.
Our paper further generated a complete phase diagram in
the parameter space of on-site Bose-Hubbard interaction and
correlated disorder from a unified perspective of spectral, lo-
calization, topology, dynamics, and entanglement.
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FIG. 9. Energy spectrum and particle density distribution of the Bose-Hubbard NHAAH model under PBC and strong interactions, with
U = 10, J = 1 and system size of L = 89. (a) Energy spectrum E of Ĥ for two typical values of μ. (b) Density distribution of bosons in
the lattice for the isolated energy ring in (a)(ii). The vertical axis, labeled by l represents the lattice index. The horizontal axis, labeled by n
represents the eigenstate index.
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APPENDIX A: DOUBLON STATES AND EFFECTIVE
HAMILTONIAN

1. Doublon states

In this Appendix, we check whether the separated energy
loop observed in Fig. 2(b) of the main text is due to the
formation of bounded two-boson states (doublons) induced by
interactions. We will focus on the case of strong interactions.

In Fig. 9(a), we illustrate the energy spectrum of our system
with the lattice size L = 89 and interaction strength U = 10
in both the critical (μ = 0.8) and localized (μ = 1.5) phases.
The horizontal (vertical) axis represents the real (imaginary)
part of energy. It is clear that in both the critical and localized
phases, a separated energy loop is present on the right side of
the spectrum. This isolated loop consists of 89 eigenenergies,
which are related to 89 eigenstates of the system.

To determine whether these energy loops describe dou-
blons, we calculate spatial distributions of two-particle states
associated with these loops. If both bosons are located in the
same lattice site, it signifies a doublon state. In Fig. 9(b), we
present the probability distributions of the 89 eigenstates in
space, with the same system parameters as of Fig. 9(a)(ii).
These 89 states correspond to the top 89 eigenstates sorted in
descending order by their real parts of energy. We find that all
two-particle eigenstates are located in individual lattice sites,
forming doublons. This confirms that the two-particle states
within the separated energy loop in Figs. 2(b)(ii) and Fig. 9(a)
are formed by bounded boson pairs.

An effective Hamiltonian for doublon states can be ob-
tained by treating interactions as the dominant part and the
remaining terms as perturbations. Applying degenerate per-
turbation theory up to second order [103,104], the form of
effective Hamiltonian is found to be (see Appendix A 2 for
derivation details)

Ĥeff = 2J2

U

∑
l

(b̂†
l b̂l+1 + H.c.)−2μ

∑
l

ei2παl n̂l + U + 2J2

U
.

(A1)

We present the PT phase diagram of our model up to strong
interactions in Fig. 10. The red curve in this figure is given
by J2 = |Uμ|, as obtained from Eq. (A1), which captures the
PT phase boundary (and also the transition boundary between
extended and critical phases) nicely for large U . Comparing
the Hamiltonians in Eqs. (1) and (A1), we could see that they

μ

0.12

U

0 0.4
0

1.0

10

4

1.4

6

2

8

0.6 0.8 1.20.2

0.10

0.08

0.06

0.04

0.00

0

FIG. 10. The PT phase diagram, given by the maximal imaginary
parts of E , |Im(E )|max vs U and μ, computed with J = 1 and the
lattice size L = 89. Each |Im(E )|max is rescaled by its maximum
over the considered parameter space. The dark and light regions
have |Im(E )|max � 0 and |Im(E )|max > 0. The red curve represents
J2 = |Uμ|. For large U , this curve coincides well with the PT phase
boundary.
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share the same form up to some additional constants. There-
fore, if the PT and localization transition points of Ĥ0 are at
|J| = |μ| [47], the PT and localization transition points of Ĥeff

must be at |2J2/U | = |2μ|. Note in passing that neither Ĥ0 nor
Ĥeff possesses the self-duality property of the Hermitian AAH
model.Since we have set J = 1, we also observe deflections
of numerical results from the doublon phase boundary J2 =
|Uμ| when U < 2J2 = 2 for the domain of μ considered in
our calculations. This is expected, as the perturbation theory
should not work well in this parameter regime.

2. Derivation of Ĥeff

To derive Eq. (A1), we treat the noninteracting part of
Hamiltonian Ĥ0 [Eq. (1)] as a perturbation to the interaction
term Ĥint in Eq. (2), where

Ĥint = U

2

∑
l

n̂l (n̂l − 1). (A2)

Ĥint has two eigenvalues Ej = U with degenerate eigen-
states |2 j〉 forming a subspace U , and Ej,k = 0 with degen-
erate eigenstates |1 j, 1k〉 forming the orthogonal complement
subspace V . We define projection operators upon U and V as

P̂ =
∑

j

|2 j〉〈2 j |,

Ŝ =
∑

j,k
j �=k

1

Ej − Ej,k
|1 j, 1k〉〈1 j, 1k|

= 1

U

∑
j,k

j �=k

|1 j, 1k〉〈1 j, 1k|. (A3)

Applying the degenerate perturbation theory up to the sec-
ond order, the effective Hamiltonian for the subspace U is
given by

Ĥeff = EjP̂ + P̂Ĥ0P̂ + P̂Ĥ0ŜĤ0P̂

=UP̂ +
∑

j,k

|2 j〉〈2 j |Ĥ0|2k〉〈2k|

+ 1

U

∑
j,k

∑
l,m
l �=m

|2 j〉〈2 j |Ĥ0|1l , 1m〉〈1l , 1m|Ĥ0|2k〉〈2k|.

(A4)

The matrix elements 〈2 j |Ĥ0|2k〉 do not vanish only for the
onsite potential term, so

P̂Ĥ0P̂ =
∑

j,k

|2 j〉〈2 j |Ĥ0|2k〉〈2k|

= − μ
∑

l

ei2παl
∑

j,k

|2 j〉〈2 j |n̂l |2k〉〈2k|

= − μ
∑

l

ei2παl
∑

k

|2k〉〈2k|n̂l |2k〉〈2k|

= − 2μ
∑

l

ei2παl |2l〉〈2l |. (A5)

Further calculations yield that

P̂Ĥ0ŜĤ0P̂

= 1

U

∑
k,l

∑
m,n

|2k〉〈2k|Ĥ0|1l , 1m〉〈1l , 1m|Ĥ0|2n〉〈2n|

= 1

U

∑
k,l

∑
m,n

|2k〉〈2k|
D∑

j=1

−J (b̂†
j b̂ j+1 + H.c.)|1k, 1m〉

× 〈1l , 1m|
D∑

r=1

−J (b̂†
r b̂r+1 + H.c.)|2n〉〈2n|

= J2

U

∑
j,k

∑
l,m
l �=m

D∑
j=1

|2k〉〈2k|(b̂†
j b̂ j+1 + H.c.)|1l , 1m〉

×
D∑

r=1

〈1l , 1m|(b̂†
r+1b̂r + H.c.)|2n〉〈2n|. (A6)

These summations will produce four terms

∑
k,l

∑
m,n
m �=n

D∑
j=1

D∑
r=1

|2k〉〈2k|b̂†
j b̂ j+1|1l , 1m〉

× 〈1l , 1m|b̂†
r b̂r+1|2n〉〈2n| = 2

∑
m

|2m〉〈2m−1|, (A7)

∑
k,l

∑
m,n
m �=n

D∑
j=1

D∑
r=1

|2k〉〈2k|b̂†
j+1b̂ j |1l , 1m〉

× 〈1l1m|b̂†
r b̂r+1|2n〉〈2n| = 2

∑
m

|2m−1〉〈2m|, (A8)

∑
k,l

∑
m,n
m �=n

D∑
j=1

D∑
r=1

|2k〉〈2k|b̂†
j b̂ j+1|1l , 1m〉

× 〈1l , 1m|b̂†
r+1b̂r |2n〉〈2n| = 2

∑
m

|2m〉〈2m|, (A9)

∑
k,l

∑
m,n
m �=n

D∑
j=1

D∑
r=1

|2k〉〈2k|b̂†
j+1b̂ j |1l , 1m〉

× 〈1l , 1m|b̂†
r b̂r+1|2n〉〈2n| = 2

∑
m

|2m〉〈2m|. (A10)

Putting Eqs. (A7)–(A10) together, we find

Ĥeff = (E0 + 2J2/U )P̂ − 2μ
∑

l

ei2παl |2l〉〈2l |

+ 2
J2

U

∑
m

(|2m〉〈2m+1| + H.c.). (A11)

Defining |2l〉 = b̂†
l |0〉, we finally obtain the expected ex-

pression of Ĥeff .
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FIG. 11. State properties of the Bose-Hubbard NHAAH model under PBC, computed with J = 1 and the lattice size L = 144. (a) and
(b) show the IPRave [Eq. (12)] and NPRave [Eq. (13)].

APPENDIX B: CRITICAL PHASE AND MOBILITY EDGE

1. Critical phase characterized by IPRave and NPRave

In Sec. III B, we defined the regions of extended and
localized phases using IPR and NPR, while simultaneously
utilizing ζ to define the region of critical phase. We refer to the
domain in which both IPRave and NPRave are finite as the crit-
ical phase [82]. Figure 11 presents separate results of IPRave

and NPRave over the μ − U parameter space, showcasing the
presence of a critical phase.

In Fig. 11(a), we can also observe a boundary separating
an extended phase (IPRave � 0) from a region with localized
eigenstates (IPRave > 0), which is the borderline of local-
ization transitions in our system. These transitions happen
at weaker disorder strengths μ with the increase of U . The
Fig. 11(a) is similar to the Fig. 3(a), which demonstrates the
extended phase with IPRmax. The latter is more sensitive to the
onset of the first localized eigenstate in the system for a large
system size L. Figure 11(b) displays the region characterized
by NPRave, which aligns with the results shown in Fig. 3(b)
with IPRmin.

2. Mobility edge

To further illustrate the presence of interaction-induced
mobility edge in our critical phase, we present the real and
imaginary parts of the energy spectrum of our system (L =
144) vs the disorder strength μ for U = 0 and U = 0.8, as
shown in Fig. 12. The color map of each data point is further
given by the IPR of the associated eigenstate. Clear signatures
of mobility edge are observed in the critical phase when U =
0.8. Therefore, the existence of mobility edges in the complex
spectra of our system within the critical phase is justified.

APPENDIX C: SPECTRAL AND TOPOLOGICAL
PROPERTIES OF DIFFERENT PHASES

In the Sec. III of the main text, we find that the inter-
play among interactions, non-Hermiticity, and quasiperiodic
potential gives rise to various phases and transitions. They
are elucidated with both spectral characteristics [Fig. 3(c)]
and topological properties (Fig. 4). It is worth noting that the

phases described by spectrum and topological numbers are
consistent. To further validate this point, we discuss in this
Appendix the changes of various quantities in the presence
(or absence) of interactions.

Figure 13 illustrates two phase boundaries collectively de-
termined by |Im(E )|max, ρIm, IPRmax, IPRmin, w1, and w2.
Without interactions (U = 0), the PT-symmetric extended
phase has (w1,w2) = (0, 0) and also |Im(E )|max � ρIm �
IPRmax � IPRmin � 0. This persists until μ = 1, where a
PT/localization transition occurs as both (w1,w2) become
finite and |Im(E )|max, ρIm, IPRmax, IPRmin all deviate from
zero. The system then enters a localized phase.

With interactions [Fig. 13(b)], we find (w1,w2) = (0, 0) in
the PT-invariant extended phase, where |Im(E )|max � ρIm �
IPRmax � IPRmin � 0. Upon crossing the first transition point
at μc1 ≈ 0.55, w1 → 1 and |Im(E )|max, ρIm, IPRmax all de-
viate from zero, leading to a critical phase with winding
numbers (w1,w2) = (1, 0). Such a phase does not exist when
U = 0, revealing the role of interactions in creating new
phases and transitions in NHQCs. As μ surpasses the second
critical point μc2 ≈ 1.1, the winding number w1 jumps again,
while w2 goes from zero to a finite integer. The IPRmin also
deviates from zero and ρIm � 1. The system thus enters a
phase where all the eigenstates are localized, characterized by
the winding numbers (w1,w2) �= (0, 0). (w1,w2) could thus
distinguish the three possible phases with distinct spectrum
and localization properties and describe the transitions among
them.

APPENDIX D: JUMP ANALYSIS IN WAVEPACKET
DYNAMICS

In Figs. 5 and 6 of the main text, we observe certain anoma-
lous jumps of wavepackets in the lattice. In this Appendix, we
analyze the reason behind these jumps and determine when
they will reach their finales.

In the critical phase, the wavepacket first diffuses from the
initial position [l0 = 45 in Fig. 6(b)], and then localizes near
l = 48. However, at t = 3577, the wavepacket jumps from
l = 48 to the vicinity of l = 82, where it remains localized
thereafter. In the localized phase [Fig. 6(c)], the wavepacket
center first starts from the site l0 = 45 and localizes near
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FIG. 12. IPRs of all the eigenstates of Bose-Hubbard NHAAH model under PBC with J = 1 and the lattice size L = 144 against μ and
their eigenenergies. (a) and (b) show the real and imaginary parts of energy spectrum vs the disorder strength μ with U = 0. (c) and (d) show
the real and imaginary parts of energy spectrum vs μ with U = 0.8. The red-dashed boxes guide the view of mobility edges at μ ∈ (0.65, 1.0)
for U = 0.8. (a)–(d) share the same color bar.

l = 40. However, at t = 1138, it jumps to l = 61. With the
passage of time till around t = 5941, the wavepacket once
again jumps to the vicinity of l = 6, and then localized there-
after.

Our analysis indicates that this behavior stems from the
longer lifetimes of excitations in non-Hermitian systems. The
eigenenergies, denoted as Ej , consist of real part ReEj and
imaginary part ImEj . Eq. (16) can then be represented as

|
 ′(t )〉 =
∑

j

c je
−iE jt |ψ j〉 (D1)

=
∑

j

〈ψ j |
0〉e−itReEj etImEj |ψ j〉. (D2)

|Im(E)|max
ρ Im
IPRmax

w /151

w /152

IPRmin

μ
0 0.5 1.5

0

1.5

3.0

0

1.5

3.0

(a)

(b)

U=0

U=0.8

1.0

FIG. 13. Collection of different quantities vs μ for the Bose-
Hubbard NHAAH model with J = 1 and L = 89. (a) and (b) show
the |Im(E )|max, ρIm, IPRmax, IPRmin, w1, and w2 with U = 0 and
U = 0.8, respectively. The values of w1,2 are rescaled by a factor
1/15 to show them together with other quantities more compactly in
the same figures.

|
 ′(t )〉 comprises three components e−itReEj , etImEj , and
〈ψ j |
0〉. Due to the PT symmetry breaking, we have
Im(Ej ) �= 0 in the localized phase for most eigenstates.
Consequently, |
 ′(t )〉 is predominantly determined by the
competition between etImEj and 〈ψ j |
0〉. As time progresses,
etImEj exhibits exponential growth if Ej > 0. Therefore, in the
long-time domain, the ultimate location of the wavepacket
will be controlled by etIm(Ej ), especially the eigenstate with
the largest imaginary part (ImEj )max. However, before the
wavepacket reaches its final position, due to the interplay
between etImEj and 〈ψ j |
0〉, jump phenomena of wavepackets
could occur in the critical and localized phases as depicted in
Fig. 6.

We found that within the system, the jumps in wavepacket
dynamics occur only in the critical and localized phases. The
difference between these phases compared with the extended
phase is the PT symmetry, namely whether or not there are
complex eigenenergies. The existence of complex eigenener-
gies due to non-Hermitian effects is thus the key reason behind
the observed jumping of wavepacket locations.

In Table II, we present four eigenstates |ψ j〉 with j =
1, 2, 3, 4 of the system under the conditions L = 89, N = 2,
U = 0.8, and μ = 1.5. These states are the top four eigen-
states obtained by sorting the imaginary parts of the system’s
eigenenergy ImEj in descending order. l j denotes the site
index with the maximum probability in the distribution of
|ψ j〉 and the absolute overlap of |ψ j〉 with the initial state
|
0〉.

Based on the parameters in Table II, calculations reveal that
each jump in Fig. 6(c) arises from the competition between c j

and ImEj as a function of time t . For example, according to
the parameters in the table, at t ≈ 1138, the term c2etImE2 cor-
responding to |ψ2〉 surpasses the term c3etImE3 corresponding
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TABLE II. Parameters for the jump analysis in the Bose-
Hubbard NHAAH model at L = 89,U = 0.8, μ = 1.5 [same as in
Fig. 6(c)]. |ψ j〉 with j = 1, 2, 3, 4 represent the top four eigenstates
corresponding to the descending order of the imaginary parts of
the eigenenergy ImEj . l j denotes the site index corresponding to the
maximum probability in the probability distribution of |ψ j〉. ImEj is
the value of the imaginary part of the eigenenergy after sorting in
descending order. |c j | is the absolute overlap between |ψ j〉 and the
initial state |
0〉.

|ψ j〉 l j ImEj |c j |
|ψ1〉 6 1.81162 5.2534 × 10−17

|ψ2〉 61 1.80848 6.6423 × 10−9

|ψ3〉 40 1.79762 1.54865 × 10−3

|ψ4〉 27 1.78668 4.163 × 10−10

to |ψ3〉. This precisely corresponds to the wave packet jump
occurring at t ≈ 1100 in Fig. 6(c).

APPENDIX E: NUMERICAL METHODS
OF CALCULATING EE

In this Appendix, we provide a detailed exposition of the
method we used to compute the components Snum(t ) and
Sconf (t ) of EE S(t ) following Refs. [32,87]. The bipartite EE
can be calculated by taking the partial trace over half of the
system. This involves dividing the system of length L into
two subsystems of length L/2, denoted as A and B. The posi-
tions j within subsystem A satisfy j ∈ jA = {1, 2, . . . , L/2},
while positions j within subsystem B satisfy j ∈ jB = {L/2 +
1, L/2 + 2, . . . , L}. By tracing out degrees of freedom be-
longing to subsystem B, we find the reduced density matrix
�A(t ) of subsystem A.

We begin by utilizing the density matrix

�(t ) = |ψ (t )〉〈ψ (t )|, (E1)

and taking the partial trace as

�A(t ) = TrB�(t ), (E2)

In Eq. (E1), |ψ (t )〉 represents the state evolved from the initial
state |ψ0〉 over a time t . Subsequently, the EE is found as

SA(t ) = −Tr �A(t ) log �A(t ), (E3)

which is related to the eigenvalues λi(t ) of �A(t ) by

SA(t ) = −
∑

i

λi(t ) log λi(t ). (E4)

If the particle number within subsystem A, denoted as

NA =
∑
j∈ jA

n j, (E5)

constitutes a conserved quantity, i.e.,

[�A, NA] = 0, (E6)

then the EE S(t ) = SA(t ) can be divided into two components,
the number EE and configuration EE, i.e.,

S(t ) = Snum(t ) + Sconf (t ), (E7)

Snum = −
∑
NA

pNA log pNA , (E8)

Sconf = −
∑
NA

∑
i

pNA λ̃
(NA )
i log λ̃

(NA )
i . (E9)

To obtain Eqs. (E8) and (E9), we first note that the �A is
block diagonal owing to the simultaneous diagonalizability of
NA and �A [see Eq. (E6)], i.e.,

�A = �N1 ⊕ �N2 ⊕ �N3 ⊕ · · · , (E10)
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FIG. 14. EE dynamics of the Bose-Hubbard NHAAH model, with U = 0.8 and the lattice size L = 89. The values of μ for different solid
lines are given on the right side. (a)(i)–(a)(iii), (b)(i)–(b)(iii), and (c)(i)–(c)(iii) show results in the extended, critical, and localized phases,
respectively. (i) − (iii) in each row represent Snum(t ), Sconf (t ) and S(t ).
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FIG. 15. Averaged EE Snum (red solid lines) and Sconf (blue dashed lines) vs μ for the Bose-Hubbard NHAAH model. The lattice size is
L = 89. (a) and (b) depict the cases with U = 0 and U = 0.8. The three colored regions denote extended, critical, and localized phases. Shaded
regions in (b) highlight oscillations around phase boundaries.

where �NA is a block-diagonal matrix of �A restricted to the
particle number NA within subsystem A. Consequently, the
eigenvalues λi of �A are divided among the eigenvalues of
�NA . Let us denote one such eigenvalue as λ

(NA )
i . Utilizing

λ
(NA )
i , we define pNA and rescale the eigenvalues within this

subspace to obtain normalized eigenvalues λ̃
(NA )
i as

pNA =
∑

i

λ
(NA )
i , (E11)

λ̃
(NA )
i = λ

(NA )
i /pNA . (E12)

In contrast to Eq. (E4), in Eqs. (E9), (E11), and (E12), the
summation over i is not extended across all eigenstates of
the total reduced density matrix �A, but only within the
subspace of fixed NA. With these steps, we arrive at the ex-
pressions for both Snum(t ) and Sconf (t ).

APPENDIX F: FURTHER DETAILS OF EE DYNAMICS

In Sec. IV B of the main text, we showed distinct dynami-
cal behaviors of EE across the extended, critical, and localized
phases. There, we present the results of EE dynamics for μ =
0.5, 1, 1.5 at L = 89, J = 1, and U = 0.8. In this Appendix,
we showcase all results of EE for μ = 0 ∼ 0.6, 0.85 ∼ 1.1

and 1.2 ∼ 1.5 in Fig. 14. This comprehensive illustration cap-
tures the full details of EE dynamics in the aforementioned
parameter regions.

APPENDIX G: AVERAGED EE AND POSSIBLE
ENTANGLEMENT TRANSITIONS

In order to provide a clear characterization of the behav-
iors of Snum and Sconf in the extended, critical, and localized
phases, we present the changes of mean number EE Snum (red
solid lines) and configuration-averaged EE Sconf (blue-dashed
lines) for our system after reaching a steady state. They are il-
lustrated for different μ in Fig. 15. In the extended phase (deep
grey), Snum remains saturated, while Sconf exhibits pronounced
oscillations. As μ reaches the boundary between extended and
critical phases, both Snum and Sconf display similar declined
oscillatory behaviors. After entering the critical phase (light
grey), Snum and Sconf both take finite values, showing a de-
creasing trend with respect to μ. As the μ increases further
so that the system enters into the localized phase (orange),
we find Snum = Sconf = 0. Snum and Sconf thus exhibit different
behaviors in the three phases, showing distinct entanglement
properties within each phase. This observation is valuable
for quantifying phase transitions in interacting non-Hermitian
systems.

[1] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics,
Adv. Phys. 69, 249 (2020).

[2] R. El-Ganainy, K. Makris, M. Khajavikhan, Z. Musslimani,
S. Rotter, and D. Christodoulides, Non-Hermitian physics and
PT symmetry, Nat. Phys. 14, 11 (2018).

[3] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.
Higashikawa, and M. Ueda, Topological phases of non-
Hermitian systems, Phys. Rev. X 8, 031079 (2018).

[4] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[5] V. M. Martinez Alvarez, J. E. Barrios Vargas, M. Berdakin, and
L. E. F. F. Torres, Topological states of non-Hermitian systems,
Eur. Phys. J.: Spec. Top. 227, 1295 (2018).

[6] A. Ghatak and T. Das, New topological invariants in non-
Hermitian systems, J. Phys.: Condens. Matter 31, 263001
(2019).

[7] C. M. Bender and S. Boettcher, Real spectra in non-Hermitian
Hamiltonians having PT symmetry, Phys. Rev. Lett. 80,
5243 (1998).

[8] M. V. Berry, Physics of Nonhermitian degeneracies, Czech. J.
Phys. 54, 1039 (2004).

[9] W. D. Heiss, The physics of exceptional points, J. Phys. A:
Math. Theor. 45, 444016 (2012).

[10] M.-A. Miri and A. Alù, Exceptional points in optics and pho-
tonics, Science 363, eaar7709 (2019).

[11] S. Yao and Z. Wang, Edge states and topological invari-
ants of non-Hermitian systems, Phys. Rev. Lett. 121, 086803
(2018).

[12] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal bulk-boundary correspondence in
non-Hermitian systems, Phys. Rev. Lett. 121, 026808 (2018).

[13] V. M. Martinez Alvarez, J. E. B. Vargas, and L. E. F. F.
Torres, Non-Hermitian robust edge states in one dimension:

054204-16

https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.026808


CORRELATION-INDUCED PHASE TRANSITIONS AND … PHYSICAL REVIEW B 109, 054204 (2024)

Anomalous localization and eigenspace condensation at ex-
ceptional points, Phys. Rev. B 97, 121401(R) (2018).

[14] C. H. Lee and R. Thomale, Anatomy of skin modes and topol-
ogy in non-Hermitian systems, Phys. Rev. B 99, 201103(R)
(2019).

[15] N. Hatano and D. R. Nelson, Localization transitions in
non-Hermitian quantum mechanics, Phys. Rev. Lett. 77, 570
(1996).

[16] J. Feinberg and A. Zee, Non-Hermitian localization and delo-
calization, Phys. Rev. E 59, 6433 (1999).

[17] J. Feinberg and A. Zee, Spectral curves of non-Hermitian
Hamiltonians, Nucl. Phys. B 552, 599 (1999).

[18] N. Hatano and J. Feinberg, Chebyshev-polynomial expansion
of the localization length of Hermitian and non-Hermitian
random chains, Phys. Rev. E 94, 063305 (2016).

[19] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symme-
try and topology in non-Hermitian physics, Phys. Rev. X 9,
041015 (2019).

[20] H. Zhou and J. Y. Lee, Periodic table for topological bands
with non-Hermitian symmetries, Phys. Rev. B 99, 235112
(2019).

[21] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Homotopy
characterization of non-Hermitian Hamiltonians, Phys. Rev. B
101, 205417 (2020).

[22] K. Shiozaki and S. Ono, Symmetry indicator in non-Hermitian
systems, Phys. Rev. B 104, 035424 (2021).

[23] W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway,
W. Yi, and B. Yan, Tunable nonreciprocal quantum transport
through a dissipative Aharonov-Bohm ring in ultracold atoms,
Phys. Rev. Lett. 124, 070402 (2020).

[24] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and
L. Luo, Observation of parity-time symmetry breaking transi-
tions in a dissipative Floquet system of ultracold atoms, Nat.
Commun. 10, 855 (2019).

[25] Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl exceptional rings
in a three-dimensional dissipative cold atomic gas, Phys. Rev.
Lett. 118, 045701 (2017).

[26] S. Lapp, J. Ang’ong’a, F. A. An, and B. Gadway, Engineering
tunable local loss in a synthetic lattice of momentum states,
New J. Phys. 21, 045006 (2019).

[27] Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G.-B.
Jo, Chiral control of quantum states in non-Hermitian spin–
orbit-coupled fermions, Nat. Phys. 18, 385 (2022).

[28] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,
M. S. Rudner, M. Segev, and A. Szameit, Observation of a
topological transition in the bulk of a non-Hermitian system,
Phys. Rev. Lett. 115, 040402 (2015).

[29] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte,
K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit,
Topologically protected bound states in photonic parity–time-
symmetric crystals, Nat. Mater. 16, 433 (2017).

[30] K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders,
W. Yi, and P. Xue, Observation of emergent momentum–time
skyrmions in parity–time-symmetric non-unitary quench dy-
namics, Nat. Commun. 10, 2293 (2019).

[31] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P.
Xue, Non-Hermitian bulk–boundary correspondence in quan-
tum dynamics, Nat. Phys. 16, 761 (2020).

[32] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,
S. Choi, V. Khemani, J. Léonard, and M. Greiner, Probing

entanglement in a many-body–localized system, Science 364,
256 (2019).

[33] Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, and P. Xue, Topo-
logical phase transitions and mobility edges in non-Hermitian
quasicrystals, Phys. Rev. Lett. 129, 113601 (2022).

[34] S. Weidemann, M. Kremer, S. Longhi, and A. Szameit,
Topological triple phase transition in non-Hermitian Floquet
quasicrystals, Nature (London) 601, 354 (2022).

[35] W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen,
Simultaneous observation of a topological edge state and ex-
ceptional point in an open and non-Hermitian acoustic system,
Phys. Rev. Lett. 121, 124501 (2018).

[36] H. Shen, B. Zhen, and L. Fu, Topological band theory for
non-Hermitian Hamiltonians, Phys. Rev. Lett. 120, 146402
(2018).

[37] H. Gao, H. Xue, Q. Wang, Z. Gu, T. Liu, J. Zhu, and B.
Zhang, Observation of topological edge states induced solely
by non-Hermiticity in an acoustic crystal, Phys. Rev. B 101,
180303(R) (2020).

[38] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska,
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