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Understanding the dynamics of open quantum systems is intrinsically important to control and utilize
quantum hardware in various applications. The generic behavior of purely dissipative open quantum many-body
systems with k-local, normal dissipation processes can be investigated using random matrix theory, revealing
different decay timescales of observables determined by their complexity, as shown by Wang et al. [K. Wang
et al., Phys. Rev. Lett. 124, 100604 (2020)]. The time evolution of an open quantum system is entirely described
by the eigenvalue spectrum of the Lindbladian, in which the hierarchy of decay timescales is reflected in the
formation of well-separated eigenvalue clusters. Here, we extend the analysis of this spectrum to the presence
of unitary dynamics using a random matrix model. In the case of strong dissipation, the unitary dynamics
can be treated perturbatively and the k locality of the Hamiltonian determines how susceptible the spectrum
is to such a perturbation. For the physically most relevant case of (dissipative) two-body interactions, the
correction in the first order of the perturbation vanishes, leading to the relative robustness of the spectral features,
which in turn implies the same robustness of the corresponding separation of decay timescales. We find the
perturbative approach for the spectrum to yield an excellent agreement with exact-diagonalization results. For
weak dissipation, the spectrum flows into clusters except for outlier eigenmodes, which we identify to be the
local symmetries of the Hamiltonian. We support our analytic findings by numerical simulations and show that
our generic model applies to a nonrandom Heisenberg chain.
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I. INTRODUCTION

The eigenvalues of unitary quantum many-body systems
typically exhibit level repulsion. It was realized early on that
while the precise location of all eigenvalues can only be ana-
lytically described in rare, integrable systems, their statistical
properties in the vast majority of systems are well captured
by random matrix theory [1–8]. This random matrix descrip-
tion provides a powerful framework, correctly predicting the
distribution of gaps between neighboring eigenvalues, and
further provides insight into the corresponding structure of
eigenvectors and their link to thermalization [9–14].

It is exceedingly difficult to fully isolate a real quantum
system from its environment, which is a source of dissipation
and incoherent dynamics. Systems in contact with their en-
vironment are therefore described in the framework of open
quantum systems. In the simplest class of Markovian open
quantum systems, the dynamics of the density matrix is deter-
mined by the Lindblad master equation [15] and the generator
of the dynamics is a Lindbladian superoperator, rather than
just the Hamiltonian. The spectrum of the Lindbladian is
generally complex with nonpositive real parts, such that at
long times, a state from the manifold corresponding to the zero
eigenvalue is reached.

Analogously to the approach for unitary quantum systems,
random matrix descriptions were developed to identify uni-
versal features of Markovian open systems. These theories
are based on an ensemble of random matrices which are at
the same time valid Lindbladians and hence generate com-
pletely positive trace-preserving maps. The idea is that this
ensemble should exhibit generic behavior of Lindbladians.

It was found that nonlocal, purely dissipative Liouvillians
exhibit a lemon-shaped support on the complex plane [16–20],
which is similar to the spindle-shaped spectral support found
in classical random master equations [21].

With a nonvanishing Hamiltonian part, the spectral support
is deformed to an elliptic shape [16] and various spectral tran-
sitions in the weak and strong dissipation limits [22,23] and
transitions of the steady-state properties [17,24] are identified.

To bridge the gap between these purely random matrix
theories and physical systems, the k locality of (dissipative)
interactions in a complexity theoretic sense was included.
The central idea of this ensemble of Lindbladians is to
investigate the generic properties of Markovian open quan-
tum systems with few-body interactions. In particular, the
most physically relevant case of two-body interactions leads
to a random matrix ensemble with an additional striking
structure: Instead of one lemon-shaped eigenvalue cluster,
well-separated clusters of eigenvalues were identified, which
correspond to observables of specific k locality. Hence, in
the presence of dissipative few-body interactions, k-local ob-
servables generically relax to the stationary state at different
rates which are determined only by k [25]. This phenomeno-
logical prediction was recently verified in experiments on
a noisy qubit platform [26] and extended to include the
case of strongly varying dissipation strengths, which intro-
duce an additional metastable structure [27]. Such setup is
commonly encountered in physical problems, especially in
active questions over the past years, such as transport prop-
erties of open quantum spin chains [28–30], slow quantum
dynamics [31,32], and classical models through Lindbladian
mappings [33,34].
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Moreover, in a recent series of works, the related problem
of generic, open systems of Majorana fermions with interac-
tions of the Sachdev-Ye-Kitaev (SYK) type were considered
[35–38]. Interestingly, depending on the choice of dissipation
processes described by either (linear combinations) of single
Majorana operators or quadratic terms, different shapes of
the Lindbladian spectrum were observed. For linear jump
operators, the spectrum decomposes into eigenvalue clusters
[36,38], while for quadratic jump operators, a spectrum con-
sistent with the “lemon” shape of nonlocal Lindbladians is
found [35,36]. These results are consistent with our findings
because quadratic fermionic operators are nonlocal due to
Jordan-Wigner strings connecting the sites where the fermion
operators act.

In past studies, unstructured and k-local purely dissipa-
tive Lindbladians have been the central object. However,
almost all physical processes include a component of unitary
time evolution, usually represented by a Hamiltonian. Thus,
it is crucial to understand the features of random k-local
Lindbladians and the relaxation of k-local observables for
modeling a generic open quantum system. In general, the pres-
ence of a Hamiltonian tends to merge the eigenvalue clusters
observed in the purely dissipative case, as shown concretely in
a dissipative Bose-Hubbard model [39]. While the separation
of eigenvalues in their imaginary part is directly related to
the observation of a separation of decay timescales in the
system, the loss of eigenvalue cluster formation smears out
this separation of timescales. In this paper, we investigate to
which extent the separation of timescales can persist in the
presence of unitary dynamics by focusing on the eigenvalue
spectrum of the Lindbladian. We study the interplay of the
competing components: unitary and dissipative parts of ran-
dom Lindbladians with two-body (i.e., k = 2 local) dissipative
interactions.

By treating the Hamiltonian as a perturbation, we show
how the purely dissipative eigenvalue clusters deform into
a single stripe, corresponding to a loss of separation of
timescales, if the Hamiltonian contribution is significant. The
predicted averaged eigenvalue shows a good agreement with
the exact-diagonalization results. In addition, we discover
outlier eigenmodes which survive away from the strip when
the dissipation is weak; this means that some dissipative
timescales remain well separated from the rest. Lastly, we fix
the Hamiltonian to be the nonrandom Heisenberg model and
demonstrate that our results for the generic case are valid in
this specific model.

II. MODEL

For Markovian open quantum systems, the Liouvillian su-
peroperator L generates the dynamics of density matrices and
the Lindblad master equation reads

dρ

dt
= L(ρ) = αLU (ρ) + LD(ρ) (1)

= −iα[H, ρ] +
NL∑

n,m=1

Knm

[
LnρL†

m − 1

2
{L†

mLn, ρ}
]
, (2)

where H is the Hamiltonian yielding unitary evolution by LU

and {Ln}n=1,...,NL is the set of NL Lindblad (jump) operators

that represents the dissipation channels coupled by the pos-
itive semidefinite Kossakowski matrix K [40]. By choosing
K as a random matrix, we aim to model a generic system.
1/α � 0 parametrizes the relative strength of dissipation.

For a generic modeling of dissipative quantum many-body
spin systems, we consider � spins S = 1/2 with a Hilbert
space dimension N = 2� and a Liouville operator space di-
mension N2 = 4�. The k locality of dissipative interactions is
introduced by choosing the Lindblad operators to be normal-
ized Pauli strings,

L�μ = 1√
N

σμ1 ⊗ σμ2 ⊗ · · · ⊗ σμ�
, μi ∈ {0, x, y, z}, (3)

of maximal weight k�μ = ∑�
i=1(1 − δμi0) � kmax, i.e., there

are, at most, kmax nonidentity operators in the string. We
note that Pauli strings with weight k can be interpreted as
k-body interactions and we refer to weight k strings as k-local
operators. It is important to emphasize that k locality is not
connected to a specific geometry of the system and more
general than spatial locality. These used jump operators are
traceless Tr(Ln) = 0 and satisfy orthonormality Tr(L†

nLm) =
δn,m [41].

We consider one- and two-body dissipation channels
(kmax = 2), so the total number of traceless Lindblad operators
is NL = 3� + 9�(� − 1)/2 and, as explained, we choose the
Kossakowski matrix K to be a random matrix. To ensure that
K is positive semidefinite, we first sample a diagonal matrix
D with i.i.d. non-negative entries from a uniform distribution.
The matrix D is normalized by TrD = N and then rotated
into a random unitary basis by a unitary transformation U
sampled from the Haar measure to yield K = U †DU . The
mean of the off-diagonal elements vanishes, mean(Ki j ) = 0
with a standard deviation std(Ki j ) = d/

√
6NL, where d is

the mean of the diagonal elements, mean(Kii ) = N/NL = d .
Consequently, K is diagonally dominant and can therefore be
separated into a large diagonal term and a small off-diagonal
term, which is the basis for the perturbation theory proposed
in Ref. [25].

The effect of U is to rotate the (Hermitian) Pauli string
operators Ln into non-Hermitian Lindblad operators, since
the coefficients of U are generally complex. The transformed
Lindblad operators Lν = ∑

n UνnLn in the diagonal basis of
the Kossakowski matrix are, however, normal since they com-
mute with their adjoint operators, [L†

ν , Lν] = 0. The ensemble
hence consists of k-local, normal Lindblad operators.

For the unitary dynamics, we focus on two-body inter-
actions, in the form of all possible Pauli strings of weight
k = 2 [42] and start from a generic Hamiltonian with all-to-all
interactions,

H =
∑

s,s′={x,y,z}

�∑
i< j

Js,s′
i, j σ s

i σ
s′
j , (4)

where the random real coupling constants Js,s′
i, j follow inde-

pendent Gaussian distributions centered at 0. The notation
σ s

i = I ⊗ σ s ⊗ I is the weight one Pauli string acting on site
i. We normalize the Hamiltonian by Tr(H2) = N and with the
following standard deviation:

σ = std
(
Js,s′

i, j

) =
√

2/[9�(� − 1)]. (5)
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FIG. 1. Eigenvalue spectrum of one realization of the random Liouvillian for a system size � = 6, with weight-2 LU and up-to-weight-2
(k � 2) LD at eight different relative strengths α of the unitary component. Note that in the bottom panels, we rescale the imaginary part of
the eigenvalues by a factor of 1/α to put these panels on the same scale. The color indicates the overlap Tr(ρiÔ(2) ) of the eigenmodes ρi

with a random weight-2 operator Ô(2), indicating the two-body operator content of the eigenmodes. The gray lines below the spectrum give
the analytic predictions for the cluster centers using L0

D [25]. (a) Purely dissipative case (α = 0), where the spectrum consists of separated
eigenvalue clusters that are supported by weight k Pauli strings. (b)–(g) Increasing the contribution of unitary dynamics, the clusters merge into
each other and show an expansion in the imaginary direction. The red lines above the spectrum indicate the prediction of the shifted cluster
centers λ0(k) + 〈λ2i(k)〉α2 by perturbation theory, and the red dots indicate the mean of the still separated clusters. (h) For strong unitary
dynamics, the eigenvalues are concentrated around Re(λ) = −1, with a separated eigenvalue near the eigenvalue λ0(k = 2) of L0

D (gray line
marked with 2).

Before we provide our analytic results in full detail, it
is worth outlining the strategy of our analysis. Our starting
point is the purely dissipative case α = 0, for which the spec-
trum of the Liouvillian L splits into well-separated eigenvalue
clusters. We consider a three-term decomposition of L into
L0

D + L1
D + αLU and the key insight is that L0

D is diagonal in
the basis of Pauli strings. For small α, we can treat the unitary
part αLU as a perturbation and analyze the deformation of
the spectrum. In the last step, we include the off-diagonal
part of the dissipator L1

D, which leads to further corrections
in the spectrum but does not significantly change the physical
structure of the eigenmodes.

III. SPECTRUM

For each random realization, we numerically found that
the Liouvillian does not consist of any nontrivial Jordan
blocks. Thus, the time evolution ρ(t ) = eLtρ0 of an initial
state ρ0 can be decomposed in terms of a set of biorthogonal
right/left eigenmodes ρ

R/L
i (with eigenvalue λi) of L, which

contribute with coefficients Tr(ρL
i ρ0)eλit . Hence, the spectrum

of L is closely related to the real-time dynamics of an arbitrary

initial state; Re(λi ) represents the relaxation timescale of the
corresponding eigenmode ρi and Im(λi) gives the coherent
oscillation timescales.

Figure 1 shows the eigenvalues of the Liouvillian αLU +
LD from one random realization of J and K for different
relative strengths α of the unitary dynamics. The spectrum is
complex with a nonpositive real part such that the continuous
dynamical map is completely positive and trace preserving
(CPTP) [43].

For α = 0, the dynamics is purely dissipative and eigen-
values are organized in well-separated clusters representing
separated relaxation timescales, which result from the locality
of dissipation [25]. The spectral structure can be unraveled by
the following arguments: the diagonally dominant nature of K
allows us to split the dissipator into two terms,

LD = L0
D + L1

D, (6)

where L0
D contains the diagonal part with Kossakowski ma-

trix K0 = d1 and L1
D the off-diagonal perturbation K ′ = K −

d1 correspondingly. The first term is diagonal in the Pauli
string basis and the eigenvalues are determined only by the
weight k of the eigenvectors, which leads to highly degenerate
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FIG. 2. Probability density of the complex spacing ratio r =
|λ0 − λnn|/|λ0 − λnnn| for spectra as shown in Fig. 1 for � = 6 from
100 realizations. Due to the symmetry with respect to the real axis,
we only consider eigenvalues λ with Re(λ) > 0. The complex spac-
ing ratio for all four unitary strengths shows clear level repulsion
and agrees with the Ginibre ensemble. The purely unitary case is
also considered for comparison. In contrast to the level repulsion in
chaotic open systems, here p(r) ≈ 1 matches the prediction p(r) = 1
for unitary Poisson statistics [45].

eigenvalues λ0(k) of L0
D. Degenerate perturbation theory with

L1
D in each degenerate subspace lifts this degeneracy and

eigenvalue clusters emerge, centered around λ0(k). Combi-
natorics of commuting operators in Eq. (2) give an analytic
expression for the cluster centers, λ0(k) = −2(6k� − 4k2)/NL

[25].
Once the unitary component is added (α > 0), we observe

an attraction of the eigenvalue clusters along the real axes
and the expansion of cluster height in the imaginary direction
[44]. A similar declustering effect is also found in a non-
random dissipative Bose-Hubbard model [39]. We observe
a linear scaling of the imaginary cluster extent with α upon
adding a local Hamiltonian, which also holds for a nonlocal
Hamiltonian [16]. Gradually increasing the unitary strength α

leads to clusters merging when their boundaries touch. Those
observations are stable against the random realization of the
Kossakowski matrix. Appendix A shows the spectral density,
also known as the density of states, for 100 realizations to
demonstrate the self-averaging property. Figure 2 shows the
complex spacing ratio of the merged cluster. For all α, the
spectral statistics show level repulsion, which behaves like
the Ginibre ensemble, even for a large unitary component
α = 1.5.

The spectral influence of the unitary term also appears
in the support of the eigenmodes. For α = 0, the support of
eigenmodes is well approximated by the degenerate subspaces
of L0

D, which are spanned by all Pauli strings with fixed weight
k. The degeneracy of these eigenvalues is lifted by L1

D, leading
to eigenvalue clusters with eigenmodes composed of fixed
weight Pauli strings.

For α > 0, these clusters tend to merge and the eigenmodes
become smeared out over Pauli strings of different weights.
We demonstrate this change of the support of eigenmodes
by considering the overlap between every left eigenmode ρi

of the Liouvillian with an operator Ô(2) given by a random
superposition of Pauli strings of fixed weight k = 2. This is

shown in the colorbar of Fig. 1. For α = 0, the eigenvalue
cluster labeled 2 has a strong weight-2 operator support. Upon
increasing α, the weight-2 nature gets diluted as Pauli strings
from different degenerate subspaces start contributing.

In the large α limit, all clusters merge with the real part
concentrating around eigenvalue −1, except for a persistent
decay mode constructed by Pauli strings of weight 2. This
outlier, labeled by the gray bar in Fig. 1(h), is a unique feature
of unitary locality and is absent in random ensembles [17].

A. Strong dissipation: Perturbation theory

In this section, we provide a quantitative understanding of
the observed cluster attraction by treating the unitary term
αLU as a perturbation for small α to an otherwise purely dis-
sipative Liouvillian LD (α = 0). We observe a block structure
of a relevant matrix, explain how this emerges from the chosen
locality of H by a case differentiation, and use the comprehen-
sion of this structure to apply degenerate perturbation theory.

For α = 0, we start from L0
D in Eq. (6), which is diagonal

in the Pauli string basis due to the CPTP condition of the
Liouvillian superoperator. Furthermore, the diagonal elements
of L0

D in the Pauli string basis are identical for strings of the
same weight; see Fig. 3(a). In Ref. [25], it was worked out
that the diagonal dominant structure of LD in the Pauli string
basis leads to the separation of eigenvalue clusters for the low-
weights Pauli strings, which is robust in the thermodynamical
limit. This suggests that discarding L1

D well approximates
L = LD + αLU qualitatively. In the rest of this section, we
derive analytic results of L0

D + αLU to understand the spectral
transition.

Then, we treat the unitary generator LU for a 2-local
Hamiltonian as a perturbation and represent it as a matrix LU

in the orthonormal Pauli string basis, which is the eigenbasis
of L0

D. The matrix elements are given by

LU
x,y = Tr

(
Sk

xLU
[
Sk′

y

]) = iTr
([

Sk
x , Sk′

y

]
H

)
, (7)

where Sk
x (Sk′

y ) represents a weight k (k′) Pauli string indexed
by a subscript x (y) which denotes the position of this Pauli
string in the basis that we use. Equation (7) encodes how the
unitary term nontrivially couples different weight sectors of
the Liouvillian LD, and hence potentially mixes previously
well-separated eigenvalue clusters.

LU shows up in a block-subdiagonal structure with respect
to the k-local blocks (cf. Fig. 3). In the following section, we
explain this structure; for this, it is crucial to understand the
conditions for nonzero matrix elements between sectors of
different weights k.

First, we note that the commutator [Sk
x , Sk′

y ] is also a Pauli
string and evidently must yield a term of the Hamiltonian (any
weight-2 Pauli string in this work) to give a nonzero trace
and hence a nonvanishing matrix element LU

x,y. We find that

Tr([Sk
x , Sk′

y ]H ) 
= 0 is only possible if |k − k′| = 1, i.e., the
weight of two strings differs by one. To see this, we consider
two Pauli strings with all possible ranges of |k − k′|.

For any two Pauli strings Sk
x and Sk′

y with |k − k′| � 2, there
are at least two sites of Sk

x containing nonidentity Pauli strings
where Sk′

y is the identity. The commutator of the remaining
sites cannot yield an identity Pauli string since this would
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FIG. 3. Single realization of the supermatrix elements of L = L0
D + L1

D + LU in the Pauli string basis, where the shading indicates the
absolute value of the matrix elements. (a),(b) The diagonal dominant nature of LD with eigenvalues that only depend in first order (L0

D) only
on the Pauli weight. (c) A block-subdiagonal structure defined by Eq. (7). By combinatorics [cf. Eq. (9)], it is possible to count the number
of nonvanishing elements in the rows (one row indicated by arrows). The lower-right blue frame is an example of how the matrix LU (2)

k−,k+
[cf. Eq. (10)] can look for adjacent weights k−, k+ (here, 2,3).

contradict Tr([A, B]) = Tr(AB) − Tr(BA) = 0. Consequently,
the commutator [Sk

x , Sk′
y ] either vanishes or has a weight

higher than the 2-local Hamiltonian, hence yielding a zero
element LU

x,y.
For k = k′, we partition two strings into the following three

parts: (i) n1 different nonidentity Pauli matrices on the same
sites, (ii) a staggered arrangement of nonidentity Pauli matri-
ces and identities on n2 sites, and (iii) the same Pauli matrices
on the remaining sites with n3 nonidentity Pauli matrices:

Sk
x = A ⊗ σi ⊗ · · · ⊗ σ j ⊗ I ⊗ · · · ⊗ I ⊗ σα ⊗ · · · ⊗ σγ ,

Sk′
y = A ⊗ I ⊗ · · · ⊗ I ⊗ σk ⊗ · · · ⊗ σl︸ ︷︷ ︸

n2 sites

⊗ σβ ⊗ · · · ⊗ σδ︸ ︷︷ ︸
n1 sites

,

A = I ⊗ · · · ⊗ I ⊗ σn ⊗ · · · ⊗ σm︸ ︷︷ ︸
n3 sites

. (8)

Counting all nonidentity Pauli matrices 2n1 + n2 + 2n3 =
2k in both strings shows that n2 is even. Evaluating the
commutator of string pairs with nonzero n2 gives either 0
or a weight higher than two, requiring a higher locality
Hamiltonian to produce nonzero matrix elements. For n2 = 0,
the commutator yields either 0 or a string with odd weight,
which is orthogonal to the Hamiltonian that contains only
terms of weight two.

Therefore, a 2-local Hamiltonian couples a weight k sector
only to the k ± 1 sectors of the Pauli string basis, i.e., LU

x,y is
block subdiagonal, as shown in Fig. 3(c). The nonzero matrix
elements are given by LU

x,y = 2Js,s′
i, j , where (s, s′, i < j) encode

the Pauli string of weight 2 obtained by [Sk
x , Sk′

y ] = 2σ s
i σ

s′
j /N .

Using combinatorics, we observe that the numbers of nonzero
matrix elements are equal for different rows within the same
weight block; for a fixed Sk

x and weight k′ = k ± 1, it is

h(k, k′ = k + 1) = 6k(� − k),

h(k, k′ = k − 1) = 2k(k − 1). (9)

Focusing on L0
D + LU , we obtain analytic predictions for

the centers of eigenvalue clusters, and the role of LU is to
couple Pauli strings with different weights k and k ± 1. In the
last step, we include L1

D, introducing further renormalization
of the resulting eigenvalues. This results in the scattering
of the full spectrum around the analytic predictions for the
centers of eigenvalue clusters.

To obtain a quantitative understanding, we expand the
eigenvalues up to the second order in the strength α of the
perturbation λi = λ0i + λ1iα + λ2iα

2 + O(α3). For a degen-
erate λ0i, the first-order correction is given by diagonalizing
LU in the respective degenerate sub-block. Using the fact that
LU† = −LU , the first-order perturbation is purely imaginary.

We note that while the eigenvalues of L0
D are determined

by the weight of the Pauli string eigenmodes, two subspaces
of different weights can have the same eigenvalue, which
results in a cluster supported by two weights. However, for
clusters supported by only a single weight, the degenerate
sub-block is given by a single diagonal block in the block
structure of LU and we do not expect a first-order correction,
i.e., a linear scaling of the cluster height, as a consequence
of vanishing diagonal blocks, as observed in Fig. 3(c). This
also holds for clusters supported by a degenerate subspace that
contains weights differing by more than one. The exception
are weights k± which are consecutive and share the same
eigenvalue λ0(k±), in our specific model k± = 3�/4 ± 1/2 for
� ≡ 2 mod 4. In this case, we expect a strong response of the
spectrum to the perturbation LU .

In the following paragraph, we sketch a procedure to quan-
tify this first-order response of the spectrum. In perturbation
theory, we have to diagonalize LU in the (degenerate) union of
the k+- and k−-local operator subspaces,

LU (2)
k−,k+ =

(
0 V

−VT 0

)
, (10)
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FIG. 4. Numerical calculation of the influence of unitary dynam-
ics for different relative dissipation strength 1/α for one realization
of LU and LD. (a) Numerical calculation of the shift of the clus-
ter centers λ(k, α) − λ(k, 0) (dots); analytic predictions given in
Eq. (13) (lines). The deviation of the numerical results from the
analytic results is expected due to L1

D. The shift of the cluster centers
is clearly second order in α. (b) The standard deviation std[Im(λ)] of
the eigenvalues from the real axis for different relative strengths of
the dissipation α. A constant offset is expected for α = 0 due to L1

D.
We observe no significant scaling for clusters supported by eigen-
modes of a single weight (see data points for k ∈ {1, 2}), whereas the
cluster k = 3 to 6 that particularly contains adjacent weights with the
same analytic center (k = 4, 5) scales approximately linear with α.
This supports the analytic results for the first-order perturbation.

where V is a real matrix of matrix dimension nk− × nk+ , and
nk := (

�

k

)
3k is the number of Pauli strings with weight k.

The first-order perturbation is then given by the imaginary
eigenvalues λ of LU (2)

k−,k+ . We average over the cluster and cal-
culate the mean of the squared modulus of the eigenvalues,
|λ|2. For a square matrix MN×N , this is related to the matrix
elements via |λ|2 = 1

N Tr(M†M) = 1
N

∑
i, j |Mi j |2. One obtains

an analytic prediction by further Gaussian averaging this for-
mula and using the knowledge of the structure of M = LU (2)

k−,k+
[cf. Eq. (9)]. However, with our model, it is not possible to ob-
serve the weight-k± cluster independently since its separation
to the other clusters is already broken by L1

D.
Still, as shown in Fig. 1, only the eigenvalue cluster with

the largest negative real part (k = 3 to 6) shows a clear lin-
ear perturbation along the imaginary axis, since the weight-4
and weight-5 Pauli strings belong to the same degenerate
subspace. So far, we have shown how the imaginary parts
of the purely dissipative spectrum respond to the unitary
term in first-order perturbation. The 2-local structure of the
Hamiltonian only couples clusters corresponding to adjacent
weights, which is indeed observed in Fig. 1.

Next, we move to the second-order perturbation and cal-
culate the mean of the perturbed cluster to see the attraction
phenomenon. Overall, we find the mean of the second-order
perturbation in one k-local subspace is given by

λ2i(k) = 1

nk

∑
i

∑
m 
=k, j

〈
x(k)

0i

∣∣LU

∣∣x(m)
0 j

〉〈
x(m)

0 j

∣∣LU

∣∣x(k)
0i

〉
λ0(m) − λ0(k)

, (11)
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FIG. 5. Spectrum of the Lindbladian for the one-dimensional
(1D) XXX Heisenberg chain with up-to-2-local random dissipation
from a single realization. The upper panels demonstrate the attrac-
tions of eigenvalue clusters. The lower panel indicates the persistent
clusters in the opposite limit. The left horizontal lines in the weak dis-
sipation limit (bottom right) show the spectrum of the purely unitary
Liouvillian LU . The vertical lines with numbers show the expected
positions of persistent eigenmodes of the respective weights.
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FIG. 6. Single realization of the supermatrix elements of a
2-local Heisenberg LU (� = 3) in the Pauli String basis. The XXX
chain only consists of Pauli strings of weight 2, and hence it only
couples the adjacent weight sectors of L0

D, as predicted by Eq. (7).
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FIG. 7. (a)–(d) Eigenvalue spectrum of one realization of the random Liouvillian for a system size � = 6, with weight-2 LU and up-to-
weight-2 (k � 2) LD at four different relative strengths α of the unitary component. (e)–(h) Spectral density of the same spectra averaged over
100 realizations. Note that the imaginary axis was rescaled by the factor 1/α for (b)–(d), (f)–(h), and for (a),(e) by the factor 100. The spectral
density applies for the rescaled axes.

where the sum does not depend on the particular basis {|x(k)
0i 〉}

of a degenerate subspace containing weight k Pauli strings
and λ0(k) = −2(6k� − 4k2)/[3� + 9�(� − 1)/2]. In the Pauli
string basis, this sum reads

λ2i(k) = 1

nk

∑
i

∑
m 
=k, j

(
L(km)

i j

)2

λ0(m) − λ0(k)
, (12)

where L(km)
i j are the matrix elements in the block of the ma-

trix representation given by a k-local and an m-local Pauli
string. Recall that LU

x,y are Gaussian distributed with stan-
dard deviation 2σ and that there are h(k, k − 1) + h(k, k + 1)
nonvanishing entries in each row in the weight-k block. This
indicates that the mean of the perturbed cluster is given by
Gaussian averaging of Eq. (12),

〈λ2i(k)〉 = 8

9�(� − 1)

∑
m∈{k±1}

h(k, m)

λ0(m) − λ0(k)
, (13)

and reduces to 〈λ2i(k)〉 → 1/�2 in the thermodynamic limit.
As indicated in Fig. 4, the analytic prediction of the mean
agrees well with the exact-diagonalization results.

B. Weak dissipation

The limit of a strong unitary contribution α → ∞
can be considered as a weak dissipation limit, when the

Liouvillian and thus the spectrum are simultaneously rescaled
with the factor 1/α, i.e., L̃ = LU + LD/α. We refer to the
limit α → ∞ also as a weak dissipation limit. In Appendix B,
we show the spectral transition for the actual limit β → 0 for
LU + βLD.

In the limit of weak dissipation, the spread of the eigen-
values is only determined by the Hamiltonian. Since the
eigenvalues of LU are given by λU = i(En − Em), where
Ei are the eigenvalues of H , we can calculate the standard
deviation std[Im(λU )] = √

2 using the normalization of the
Hamiltonian, Tr(H2) = N . The numerical results shown in
Fig. 4 agree with the linear scaling (α

√
2) of the imaginary

extent of the spectrum of LD + αLU .
Furthermore, for a dominant unitary part, we observe

the spectrum converging to a concentrated eigenvalue clus-
ter around −1 [16], but also a single persistent decay
mode supported by weight-2 Pauli strings, as in Fig. 1(h).
Since the Pauli strings span the full 4�-dimensional Liou-
ville operator space, one can have a decay mode equal
to the Hamiltonian, which yields a trivial commutator
LU (H ) = −i[H, H] = 0. The weight-2-only nature of the
Hamiltonian makes this persistent decay mode share the same
locality and lives in the 2-local subspace of L0

D. Consequently,
it is an eigenvector of L0

D and L0
D + αLU with eigenvalue

λ0(2). Taking L1
D as a small perturbation approximates the

persistent decay mode ρ ≈ H of the full Liouvillian L with
eigenvalue λ ≈ λ0(2).
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FIG. 8. Eigenvalue spectrum of one realization of the random Liouvillian for a system size � = 6, with weight-2 LU and up-to-weight-2
(k � 2) LD at eight different relative dissipation strengths β (L = LU + βLD). Note that we rescale the real part of the eigenvalues by a factor of
1/β to put these panels on the same scale. The gray lines below the spectrum give the analytic predictions for the cluster centers corresponding
to weight-1 and -2 eigenstates using L0

D [25]. (a) Purely unitary case (β = 0); the eigenvalues are purely imaginary λ = ±i(En − Em ), where
En are eigenvalues of H . (b)–(e) A nonvanishing dissipation leads to a shift of the spectrum in the real direction by −β. The shape of the
spectrum does not depend on the dissipation strength for small dissipation. (f),(g) With increasing dissipation strength, the eigenvalues start to
arrange in clusters. (h) Strong dissipative system with expected eigenvalue clusters.

IV. APPLICATION: HEISENBERG CHAIN

As a concrete example, we consider the XXX antiferromag-
netic Heisenberg Hamiltonian,

H = J
�∑

i=1

(
σ i

x ⊗ σ i+1
x + σ i

y ⊗ σ i+1
y + σ i

z ⊗ σ i+1
z

)
, (14)

where J = 1/
√

3� > 0 describes the coupling of two neigh-
boring spins and implies the normalization Tr(H2) = N . We
further use periodic boundary conditions (PBCs) with random
1- and 2-local dissipation. Figure 5 shows the Lindbladian
spectrum of such a 1D random Heisenberg chain for different
strengths of the unitary component. When the unitary strength
α is weak, the clusters show a similar attraction and merging
behavior to the totally random 2-local Hamiltonian.

In the weakly dissipative case (large α), we observe the
eigenvalues ordered into lines with the same imaginary part
due to the discrete spectrum nature of the Heisenberg Hamil-
tonian and remaining well-separated clusters. The emergence
of the extra persistent eigenmodes is a manifestation of the
symmetry properties of the Hamiltonian. The XXX spin chain
has a SU(2) symmetry algebra, which means the total spin

operators,

ρ (1)
α =

�∑
i=1

σ i
α, α ∈ {x, y, z},

satisfy [H, ρ (1)
α ] = 0. We note that ρ (1)

α are sums of Pauli
strings of weight 1. This local symmetry of the XXX chain
implies the existence of three persistent eigenmodes of weight
1 with an eigenvalue that is independent of the unitary com-
ponent of L.

Furthermore, we also find the following seven eigenmodes
of weight 2 that commute with the Hamiltonian:

ρ
(2)
1 = H ; ρ

(2)
αβ =

∑
i 
= j

σ i
α ⊗ σ

j
β , α, β ∈ {x, y, z},

to make up 10 persistent eigenmodes in total. Other conserved
operators of higher weight may be observed as separated
eigenvalues at the respective positions, but flow to the cluster
with a real part −1 in the presented case.

The terms of the XXX chain are a subset of the totally ran-
dom 2-local LU . Thus, the same perturbative treatment holds
and leads to a sparse unitary matrix given by Eq. (7). Figure 6
shows the realization of the supermatrix elements of a 2-local
Heisenberg LU in the Pauli string basis. The weight-2 nature
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of the XXX chain only couples the Pauli string of adjacent
weights.

V. DISCUSSION AND CONCLUSION

In this work, we present a perturbative study on how local
Hamiltonians modify the hierarchy of relaxation timescales
in k-local strongly dissipative Liouvillians. The modified
timescales are determined by the weight of the Hamiltonian
terms in the Pauli string basis via coupling different weight
sectors of the Liouvillian.

For a k-local unitary with k even, the separation of
the eigenvalue clusters, which physically correspond to the
hierarchy of relaxation timescales, is stable up to second order
in the strength α of the unitary contribution. The imaginary
parts of the eigenvalues depend linearly on α as a first-order
perturbation effect, but the real parts (responsible for the sep-
aration of eigenvalue clusters) change only in second order in
α. These results lend a certain robustness to the hierarchy of
timescales stemming from the purely dissipative limit [25] and
explain why this hierarchy can be observed experimentally
even though a weak unitary contribution cannot be ruled out
in experiments [26].

For a random 2-local Hamiltonian, we find the second-
order perturbation changes of the average eigenvalues in each
eigenvalue cluster to behave like (α/�)2 in the thermody-
namic limit. Our perturbation analysis is applicable to the
nonrandom XXX antiferromagnetic Heisenberg chain, where
we find one persistent eigenmode in the weak dissipation
limit, which we identify as the Hamiltonian. In addition to this
Hamiltonian mode, we find further persistent modes in the
XXX chain given by its SU(2) operators.

Overall, our result for random Lindbladians captures the
relaxation dynamics of k-local observables in generic open
quantum systems and directly extends to nonrandom models
as considered here.
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APPENDIX A: SPECTRAL DENSITY

The emergence of sharply bounded spectra which show
generic structures independent from the individual (random)
realization from the ensemble was already observed for var-
ious random matrices, including Ginibre matrices [7] or
a nonlocal random Liouvillian [16]. The k-local random
model considered in this work shows a similar self-averaging
phenomenon—the spectral density of a single realization is
generic for the whole random ensemble. Figure 7 shows the
spectral density of single and 100 random realizations of L
for different unitary contributions.

APPENDIX B: WEAK DISSIPATION LIMIT

In the main text, we have considered the spectral support
for various unitary contributions from the purely dissipative
case. We also consider the spectrum starting from the purely
unitary case to analyze the weak dissipation limit, and Fig. 8
shows the clusterization of complex eigenvalues starting from
the imaginary axis.
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