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Multifractality and prethermalization in the quasiperiodically kicked Aubry-André-Harper model
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In a class of periodically driven systems, multifractal states in nonequilibrium conditions and robustness of
dynamical localization when the driving is made aperiodic have received considerable attention. In this paper,
we explore a family of one-dimensional Aubry-André-Harper models that are quasiperiodically kicked with pro-
tocols following different binary quasiperiodic sequences, which can be realized in ultracold atom systems. The
relationship between the systems’ localization properties and the sequences’ mathematical features is established
utilizing the Floquet theorem and the Baker-Campbell-Hausdorff formula. We investigate the multifractality
and prethermalization of the eigenstates of the unitary evolution operator combined with an analysis of the
transport properties of initially localized wave packets. We further contend that the quasiperiodically kicked
Aubry-André-Harper model provides a rich phase diagram as the periodic case but also brings the range of
parameters to observe multifractal states and prethermalization to a regime more amenable to experiments.
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I. INTRODUCTION

The Aubry-André-Harper (AAH) model [1,2], whose peri-
odicity in real space is interrupted by superimposing a lattice
with incommensurate wavelengths on the primary lattice, has
become an ideal platform to understand Anderson localiza-
tion [3]. This is because, in the one-dimensional case, it is
possible to observe a transition between extended-to-localized
states with increased incommensurate potential strength. The
system at the critical point of the transition exhibits multi-
fractal characteristics such as neither localized nor extended
self-similar wave functions, singular continuous spectra, and
fractional dimension [1,2,4,5]. Additionally, the AAH model
and its extensions spark an increasing amount of interest in
the theoretical investigation of exotic phenomena such as the
existence and classification of mobility edges [6–9], topologi-
cal band structure [10,11], and non-Hermitian effects [12], but
also experimental realizations using photonic crystals [10,13–
15], ultracold atomic systems [16–18], cavity-polariton de-
vices [19], coupled optical waveguides [20], and programable
quantum superconducting processors [21].

Departing from equilibrium, the periodically kicked AAH
(kAAH) model, which depicts a tight-binding lattice pe-
riodically subjected to an instantaneous incommensurate
pulse [22,23], offers a richer phase diagram, including a vast
multifractal region in the space of parameters. Furthermore,
it allows for the exploration of dynamical localization and
multifractality in nonequilibrium conditions compared to the
time-independent (static) AAH model, in which the critical
point must be fine-tuned. In this case, the time-independent
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effective Hamiltonian derived by the Floquet theorem [24,25]
can be used to illustrate the extended-to-localized transition in
the high-frequency and small kick strength limits.

Nonetheless, if a subtle time aperiodicity in the kicks is
present [26,27], dynamical localization disappears [23]. If
white noise is added to the kick time, kick strength, or some
kicks are randomly missed [28], the area where dynamical
localization resides is compressed and initially localized states
ultimately spread in position space. The rest of the phase
diagram is a mixture of multifractal and extended states. Such
instability of dynamical localization is especially relevant to
experiments, where imperfections naturally abound that re-
quire fine-tuning the time perturbation for its observation at
longer times [29,30].

Recently, a class of quasiperiodic sequences [31], of
which the Fibonacci and Thue-Morse are the primary rep-
resentatives, has been introduced to time-dependent driven
models [32–42], such as quantum random walks [43] and
quantum kicked rotor [44], including experimental platforms
of driven trapped ions [45]. A common trend in those results
is the presence of a phenomenon known as prethermalization,
which describes a state that evades heating for exponen-
tially long times [46], unlike randomly driven systems, which
quickly result in thermalization to featureless, infinite tem-
perature states, and has been shown to occur in various
cases [33,38,39,44,47].

Following this, we examine a family of one-dimensional
quasiperiodically kAAH models with kick protocols from
various binary quasiperiodic sequences. We show that a link
between the localization properties of the quasiperiodically
kAAH model and the mathematical aspects of the sequences,
including its complexity, can be established through the Flo-
quet theorem and the Baker-Campbell-Hausdorff (BCH) for-
mula. Additionally, the global phase diagram can be extracted
via the properties of the eigenstates of the corresponding
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unitary evolution operator, which can take advantage of recur-
sion relations of quasiperiodic sequences, and also from the
transport properties associated with the evolution of initially
localized wave packets.

From an experimental point of view, we notice that a recent
cold-atom realization of the periodic kAAH model has been
reported, wherein the development of apodized Floquet en-
gineering techniques allowed the extension of the accessible
parameter range to explore multifractal states [48]. As a result,
a further extension to the regime of quasiperiodic drivings,
which we theoretically describe, can enlarge the regime where
multifractality can be potentially observed.

The rest of this paper is organized as follows. In Sec. II,
we introduce the quasiperiodic kAAH model and its driving
protocol. Section III classifies the mathematical properties of
the quasiperiodic sequences, including their complexities. In
Sec. IV, multifractality and prethermalization in the quasiperi-
odic kAAH model are explored and, lastly, Sec. V summarizes
our findings.

II. HAMILTONIAN AND DRIVE PROTOCOL

A one-dimensional periodically kAAH model [22,23,48] is
described as

Ĥ = Ĥ0 + λ
∑

m

δ(τ − mT )Ĥ1, (1)

where Ĥ1 is added instantaneously with a pulsed period T . m
is an integer, τ is the time, and λ is the kick amplitude; Ĥ0, the
kinetic energy operator, is given by

Ĥ0 = −J
L∑

n=1

(ĉ†
nĉn+1 + ĉ†

n+1ĉn ), (2)

where ĉn(ĉ†
n ) is the annihilation (creation) operator at site n, J

is the nearest-neighbor hopping amplitude, and L is the system
size. The potential Ĥ1 is defined as

Ĥ1 =
L∑

n=1

cos(2πϕ̃n)ĉ†
nĉn, (3)

where ϕ̃ is an irrational number. For simplicity, we set ϕ̃ as
the inverse golden ratio (

√
5 − 1)/2 and define J = 1 as the

energy scale. Thus the period T and the kick amplitude λ

are dimensionless and can be directly mapped to the practical
experimental parameters for comparison [48].

According to the Floquet theorem [24,25], the time-
evolution operator over one period can be derived as

Û (T ) = Û0Û1 = exp(−iĤ0T ) exp(−iλĤ1). (4)

Utilizing the BCH formula, exp X̂ exp Ŷ = exp{X̂ + Ŷ +
1
2 [X̂ , Ŷ ] + 1

12 [[X̂ , Ŷ ], Ŷ ] + · · · }, one can write down the Flo-
quet operator as

Û (T ) = exp

[
−i

(
Ĥ0 + λ

T
Ĥ1

)
T + Ĥc

]
, (5)

where Ĥ0 + λ
T Ĥ1 is an effective AAH model with renor-

malized potential λAA = λ/T in the limit of 1/T � 1 (high
frequencies) and λ � 1 (small kick amplitudes); Ĥc is a

higher-order contribution, i.e., which depends in larger pow-
ers of λ and T . Now, suppose one has a more complicated
periodic sequence, with n0 (n1) number of Û0 (Û1)’s at each
period; then the corresponding Floquet operator reads

Û (n0T ) = exp

[
−i

(
n0Ĥ0 + n1

λ

T
Ĥ1

)
T + Ĥ ′

c

]
, (6)

where again Ĥ ′
c is a higher-order contribution that depends on

the commutation between all elements in the sequence. In our
work, we consider the drive protocol following quasiperiodic
sequences SN = {b1b2b3 . . . bN }, where N is the length of the
sequence and bn can only be 0 or 1, corresponding to

ÛN = Ûb1Ûb2Ûb3 . . . ÛbN . (7)

For a sufficiently long sequence, the “Floquet” operator can
always be simplified as

ÛN = Û (n0T )Û (n0T )Û (n0T ) . . . Û (n0T )︸ ︷︷ ︸
N/(n0+n1 )

+Û ′, (8)

where we shall see is valid when the ratio N0/N1 of the number
of Û0’s to the number of Û1’s converge, and Û ′ is created
by adjusting the quasiperiodic sequence to the periodic form.
Now, using Eq. (6), we can simplify it to

ÛN = exp

{
−i

N

n0 + n1

[(
n0Ĥ0 + n1

λ

T
Ĥ1

)
T + Ĥ ′′

c

]}
, (9)

where we notice that n0/n1 = N0/N1 is the co-prime ratio.
As a result, setting aside higher order terms, the quasiperi-

odic kAAH model can be mapped to an effective AAH
model as

Ĥ = Ĥ0 + n1λ

n0T
Ĥ1, (10)

with critical point

n1λ

n0T
= N1λ

N0T
= 2, (11)

again, in the limit of 1/T � 1 and λ � 1. As a result, the
dynamical localization characteristics of the quasiperiodic
kAAH model and the mathematical properties of quasiperi-
odic sequences are closely connected. Initially, increasing
the randomness of the sequence will result in a larger Û ′
in Eq. (8), which will further reduce the range of parame-
ters for which the effective Hamiltonian is well established.
Second, longer sequences and imbalances between N0 and
N1 in the sequence will lead to an increase of Ĥ ′

c in
Eq. (6), having a similar impact as the above-mentioned
more random sequence. In addition, the critical point of the
localized-extended transition is determined by N1/N0. Con-
sequently, it is essential to analyze the mathematical aspects
of quasiperiodic sequences, particularly their elemental ratios
and randomness, to comprehend the dynamical localization
and multifractality of quasiperiodic kAAH models.

III. MATHEMATICAL PROPERTIES OF SEQUENCES

We start by describing the generation processes for three
representative one-dimensional quasiperiodic sequences: Fi-
bonacci, Thue-Morse, and Rudin-Shapiro. Although in this
work we focus on the one-dimensional case, there is a natural
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FIG. 1. (a) Dependence of the Lempel-Ziv complexity with
the sequence length N of representative quasiperiodic sequences
(Fibonacci, Thue-Morse, and Rudin-Shapiro) compared with the
periodic and random cases. (b) The same for the fraction N1/N0 of
the number of elements of each type. Apart from the Fibonacci, all
sequences exhibit N1/N0 → 1 in the large N limit. The Fibonacci se-
quence reaches N1/N0 → ϕ̃ =

√
5−1
2 instead—the horizontal dashed

lines mark these asymptotic values.

extension for higher dimensions [49]. By substituting ele-
ments in the initial sequence S0 = {b0}, b0 = 0, with new ones
and iterating the process while following the specific rules as
follows, binary quasiperiodic sequences can be produced [31].
(i) Fibonacci: 0 → 01 and 1 → 0; (ii) Thue-Morse: 0 → 01
and 1 → 10; (iii) Rudin-Shapiro: first, we set A → AB, B →
AC, C → DB, and D → DC, and then we set A = B → 0 and
C = D → 1, where N is the sequence length. For instance,
the Thue-Morse sequence is obtained from the process: 0 →
01 → 0110 → 01101001 → 0110100110010110 → . . ..

To characterize the degree of complexity of the differ-
ent quasiperiodic sequences of length N , we compute their
Lempel-Ziv complexity [50] and the fraction of its element
types, N1/N0, as shown in Fig. 1. The latter is intimately
tied to the dynamical localization properties, as advanced
in Eqs. (10) and (11), and aids in further investigating the
relation between the mathematical features of quasiperiodic
sequences and the localization phenomenon.

The Lempel-Ziv complexity quantifies the number of dif-
ferent patterns in a given sequence. That is, it gives the amount
of randomness of a given sequence by counting its number of
nonidentical subgroups when it is scanned from b0 to bN ; it
can be easily computed using Kaspar-Schuster’s method [51],
for example. In particular, it is equal to the smallest number
of bits to regenerate the given binary string; for the case of
a periodic sequence, the string “01” is sufficient to regen-
erate the total string, so this quantity quickly saturates with
N in the sequence period. For a random sequence, on the
other hand, the complexity rapidly grows with its length [see
Fig. 1(a)]. In turn, quasiperiodic sequences fall between these
limits, but their complexity depends on the sequence type: Fi-
bonacci, Thue-Morse, and Rudin-Shapiro describe sequences
with growing complexities.

The fraction N1/N0 is also a quick and valuable metric to
classify different sequences. When N � 1, N1/N0 → 1 for
both periodic (with period 2) and random sequences, as shown
in Fig. 1(b), i.e., the number of zeros and ones in a long

periodic or random sequence is equal. The latter requires a
larger length to have the same amount of zeros and ones com-
pared to a periodic sequence due to the randomness. Similarly,
N1/N0 of Rudin-Shapiro and Thue-Morse sequences approach
1 for a sufficiently large N , with the latter being closer to
the periodic case even at shorter sequences. Due to its lower
complexity, Fibonacci quasiperiodic sequences quickly stabi-
lize the ratio compared to the Rudin-Shapiro and Thue-Morse
cases and the value of N1/N0 converges towards the inverse
golden ratio ϕ̃ [52].

Many other quasiperiodic sequences can be defined, as
shown in Appendix A, exhibiting different degrees of com-
plexity. In what follows, we will focus on the three examples
previously listed since they are more often used in the litera-
ture and are good representatives with differing mathematical
properties.

IV. RESULTS

Having established the mathematical properties of the dif-
ferent sequences, we now focus on their influence on the
kAAH model. In particular, we investigate the emergence of
multifractality, dynamical localization in the 1/T � 1, λ � 1
regime, and the ensuing prethermalization.

A. Properties of the time-evolution operator and multifractality

We start by classifying the complexity of the eigenstates
|α〉 of the unitary evolution operator ÛN using the inverse par-
ticipation ratio IPR(α) = ∑L

n=1 |ψ (α)
n |4, where ψ (α)

n = 〈n|α〉
is the contribution of |α〉 in the site-basis component |n〉 =
ĉ†

n|∅〉. One can define it as IPR(α) ∼ L−ξ (α)
, which takes its

minimum IPR = 1
L ∼ 0 (ξ ∼ 1) or maximum IPR ∼ 1 (ξ ∼

0), corresponding to either extended or localized wave func-
tions in position space, respectively. The average ξ (α), ξ =
(1/L)

∑L
α=1 ξ (α), can be used to characterize the global local-

ization properties of the system.
Focusing on the Fibonacci quasiperiodic sequence, we

report in Figs. 2(a) and 2(b) the phase diagram of the
time-evolution operators in the λ − T parameter space for
two sequence lengths N = 10 and 100. We observe marked
regimes with ξ � 1 (or0), denoting delocalization (or local-
ization), but an extensive region exhibits ξ evading these
limiting values. Such regions, which grow with N [see
Fig. 2(e) for representative points], thus suppressing dynam-
ical localization, can be identified with the emergence of
multifractality and have been the focus of recent experimental
investigation in the case of periodic kicks for the current
model [48]. Preliminary quantification of the degree of multi-
fractality can be given by the fraction f = N (ξmultifractal )/L,
where N (ξmultifractal ) gives the number of states with 0.2 <

ξ < 0.8. Figures 2(c) and 2(d) more clearly display when mul-
tifractal eigenstates are likely: when both T and λ are large,
but also along a line where T � 0.309λ in the high-frequency
limit.

This latter result can be quickly understood in terms of the
critical point calculation developed in Sec. II for the case of
quasiperiodic drives:

T

λ
= 1

2

N1

N0
. (12)
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FIG. 2. Phase diagram of the quasiperiodically kAAH model
with Fibonacci protocol in the λ–T space displaying the average IPR
exponent ξ with sequence length (a) N = 10 and (b) N = 100. The
corresponding fraction of multifractal states f (see text) is shown in
(c) and (d), respectively. (e) The evolution of ξ with the length of the
sequence N for representative parameters as annotated in (a), using
similar color code. Here, the system size is L = 1000.

Since, at longer sequences, N1/N0 quickly converges to ϕ̃ for
a Fibonacci driving protocol, one expects thus along the line
T = (ϕ̃/2)λ � 0.309λ to see critical behavior and multifrac-
tal eigenstates, precisely because in equilibrium the spectrum
displays multifractality at this transition point. A similar anal-
ysis holds for other quasiperiodic sequences, noting that the
different ratio N1/N0 will result in different slopes related to
the criticality at small λ and T (see Appendix B for details).

Further characterization is given in Fig. 2(e), where we
show the dependence of the average IPR exponent ξ on the
length of the sequence N for representative points in the phase
diagram, as annotated in Fig. 2(a), contrasting both small
(λ/J = 0.1) and large (λ = 3) kick amplitudes. In the for-
mer case, T = 0.01, 0.03, and 0.10 are examples of localized
(ξ � 0.0), critical (ξ � 0.3), and extended (ξ � 1) states,
respectively, with ξ hardly changing throughout substantially
long sequences. The latter case with large kick strengths, on
the other hand, shows that the behavior can be significantly
altered once N is large: T = 0.6 and 1.2, which seemingly
result in multifractal eigenstates at small sequence lengths,
give way to extended states (ξ � 1) with increasing N . Yet, if
taking short propagation times T of the Û0 operator (T = 0.01
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FIG. 3. (a) Comparison of ξ as a function of the “period” T for
different sequence types; here the length of the sequence N = 1000
for a small kick amplitude λ = 0.01. (b) Dependence of ξ on N for
the same sequences in a strong kick amplitude regime, λ = 3.0, and
small period T = 0.01.

and 0.1), it leads to small ξ that very slowly grows with
N—this is a first signature of prethermalization that will be
investigated in Secs. IV B and IV C in detail.

Expanding this description to different sequence types, we
show in Fig. 3(a) the localization-delocalization transition
with growing T at small kick strengths (λ = 0.01) for dif-
ferent cases. As we previously advanced, the rapid growth of
ξ with T occurs at T � N1λ/(2N0). In turn, the seemingly
prethermalized regime with ξ very slowly growing with N
at large kick strengths (λ = 3) is more robust once the se-
quence is less complex, i.e., other than the periodic drive, the
quasiperiodic Fibonacci sequence displays most significant
resilience to thermalization, followed by the Thue-Morse and
Rudin-Shapiro sequences, directly related to the complexity
analysis in Fig. 1(a).

An analysis of the fate of multifractality of the eigenstates
of ÛN for increasing lattice sizes L can be made via a scaling
process [53–55]. For instance, for a system with L = Fm, the
mth Fibonacci number, the fractional dimension βn can be
calculated by

pn = F−βn
m , (13)

where pn is the probability density at the nth site. Ex-
tended, multifractal, and localized states are characterized
by βmin, the smallest βn for all sites, namely (i) βmin → 1,
extended, (ii) 0 < βmin < 1, multifractal, and (iii) βmin → 0,
localized [53,54]. Figure 4(a) shows this scaling for the aver-
age βmin over the eigenstate spectrum (βmin = ∑

α β
(α)
min/Fm).

Previous analysis in Fig. 2(e) indicated that at λ/J = 0.1 in
sequences with N = 104, T = 0.01 and 0.1 led to an aver-
age IPR exponent signifying localization and delocalization,
respectively, in a lattice with L = 1000. The scaling with
the system size in Fig. 4(a) indicates that, indeed, this is
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FIG. 4. (a) βmin as a function of the inverse Fibonacci index 1/m
at different parameters; color and markers are the same for param-
eters in Fig. 2(e) and lines are linear fittings. (b) Value of the IPR
exponent ξ (α) resolved for each eigenstate for the same parameters
as in (a). In both cases a lattice with L = 1000 is studied.

confirmed in approaching the thermodynamic limit (m →
∞), where βmin → 0 and 1. For a case where multifractality
was suggested in Fig. 2(e), λ = 3 with T = 1.2, for exam-
ple, we notice that the system size extrapolation of βmin for
N = 10 and 1000 indeed indicates that limm→∞ βmin ∈ (0, 1),
although one systematically approaches the extended regime
for increasingly large sequence lengths.

Lastly, while we have focused on the average properties
of the spectrum when describing its properties, it is important
to highlight that there may be significant discrepancies when
looking at individual eigenstates. We report in Fig. 4(b) the
values of the IPR exponent ξ (α) for each eigenstate for the
same parameters as in Fig. 4(a) in a lattice with L = 1000. Ex-
tended and localized cases lead to consistently large and small
values of ξ (α) across the spectrum. Still, in critical (or multi-
fractal) regimes, the spectrum can be highly inhomogeneous
with a broad range wherein ξ (α) lies. This highlights that it is
often necessary to resolve spectral features when describing
multifractal behavior in the quasiperiodically kAAH.

B. Prethermalization

Previous results for the average IPR exponent in specific
regimes of parameters suggest that one needs asymptoti-
cally large quasiperiodic drives to observe delocalization and
thus heating toward a featureless state. Such a preergodic
regime is not unfamiliar to isolated quantum systems driven
by quasiperiodic sequences, including Fibonacci [33], Thue-
Morse [47], and random-multipolar drives [38,39]. While
rigorous bounds on the heating rate have been developed for
the latter two types of driving [47], it is a daunting task to
obtain such bounds for generic quasiperiodic sequences.

Nonetheless, we note in what follows that the heating rate
can be shown to be extremely long—even more so for Fi-
bonacci drivings. For example, Fig. 5(a) shows the average
IPR exponent ξ with large kick strengths λ = 3 at strobo-
scopic Fibonacci times (i.e., by making use of the recurrence
relation ˆ̃Un = ˆ̃Un−1

ˆ̃Un−2 [33], with ˆ̃U1 = Û0 and ˆ̃U2 = Û0Û1)
contrasting various driving periods T . Notably, at small values
of T , ξ remains small even at very long sequences.

If we define a characteristic sequence length such that
ξ = ξc = 0.5, we can compile what is the minimum sequence
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FIG. 5. (a) ξ as a function of the length of sequence N at fixed
disorder amplitude λ = 3, for various driving times T ; system size
is L = 1000. (b) The renormalized critical length of the sequence√

ln NS to reach the ξ = 0.5 as a function of the driving rate ln(1/T )
for Fibonacci, Thue-Morse, and Rudin-Shapiro sequences (see text);
here the system size is L = 400 and the lines are linear fittings in the
range where they are displayed. (c) The corresponding slope

√
CNS

obtained by linear fitting in (b) for various sequences and system
sizes L; the inset shows the same when recast in terms of the actual
time τ (see text).

length NS that results in delocalization according to the driving
time T used, as shown in Fig. 5(b) for a lattice with L = 400.
Reference [47] showed that the heating time in a Thue-Morse
quasiperiodic sequence is bounded as τh ≈ eC{ln[1/(T g)]}2

, with
a constant C that depends on the type of driving used and
g a local energy scale. Indeed, we find that our data follow
such a scaling form [see Fig. 5(b)], whose slope

√
C in the

delocalization time
√

ln NS vs driving rate ln(1/T ) plot is
close to 1 for the Thue-Morse sequence [see Fig. 5(c)], in
agreement with the results of Refs. [39,47], which employ
completely different Hamiltonians than ours.

These results, which exhibit a small system-size depen-
dence [see again Fig. 5(c)], show that the coefficient in the
heating time strongly depends on the quasiperiodic sequence
used, leading to Fibonacci-type drivings being the slowest
in inducing delocalization. Once again, these results point
out the role of the sequence’s complexity in determining the
fate of the localization properties: the smaller the Lempel-Ziv
complexity, the longer the sequence (and consequently time)
needed to induce heating. In particular, we notice that, while
we cast the heating times in terms of the sequence length NS ,
we notice that they are related, i.e.,

τh = N0

N1 + N0
NST . (14)
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For the case of the Fibonacci sequence, this can be rewritten as
τh = NST/(ϕ̃ + 1), while for Thue-Morse or Rudin-Shapiro,
we obtain that τh = NST/2. This does not affect the scal-
ing relation and the slopes

√
C are unchanged [see inset

in Fig. 5(c)]. We notice that in quasiperiodic drivings in
other types of Hamiltonian, exponential [τh ∝ exp(1/T )] and
stretched exponential [τh ∝ exp(

√
1/T )] scaling for the heat-

ing time have been suggested for Fibonacci and Thue-Morse
sequences, respectively [41]. We notice that while for the
Fibonacci driving the τh scaling is sufficiently good with these
other functional forms, that is not the case for the Thue-Morse
and Rudin-Shapiro sequences in our settings, where the above
scaling form, intermediate between algebraic and exponential,
fares best [47].

C. Wave packet propagation

While the analysis of the IPR of the eigenstates of the uni-
tary “Floquet” propagator leads to a complete characterization
of the physics of the quasiperiodic kAAH, it is instructive
to determine how transport occurs in practice in these condi-
tions. Suppose one starts with a state that is initially localized
in the middle of the lattice: |ψ (0)〉 = ĉ†

L/2|0〉. After a long

time, τ = N0T , the state can be expressed as |ψ (τ )〉 = ÛN =
Ûb0Ûb1Ûb2 . . . ÛbN |ψ (0)〉 and the degree of the initial wave
packet spreading in position space can be quantified by the
root mean square of the displacement (RMSD), defined as

σ (τ ) =
[

L∑
n=1

(n − L/2)2|ψn(τ )|2
]1/2

. (15)

Typically, the RMSD has a power law dependence in time
σ (τ ) ∼ τ γ [22,23], wherein γ = 1, 1/2, and 0 indicate
ballistic growth, diffusive growth, and localized behavior,
respectively. Regimes with 0 < γ < 1/2 correspond to subd-
iffusion, whereas 1/2 < γ < 1 corresponds to superdiffusion.

In Figs. 6(a) and 6(b), we present σ (τ ) in the Fibonacci
driving sequence for kick strengths λ = 0.01 and λ = 3,
respectively, with different driving times T . In the small
kick-strength limit, the wave packet’s width evolves from
localization to ballistic transport with growing T . On the
contrary, as shown in Fig. 6(b) for large kick strengths, γ goes
from 0 to �0.5, signifying a diffusive spread in this regime.
Compiling these exponents γ for different values of T , we
contrast in Fig. 6(c) the different sequences for λ = 0.01. In
this small kick-strength case, γ quickly evolves from 0 to
1. Still, the departure reaches γ = 0.5 in the critical point
T = N1λ/(2N0), for whichever driving type, quasiperiodic
or periodic, where diffusive behavior characterizes the cor-
responding critical regime. In turn, when λ = 3, γ for all
cases changes from 0 to 0.5, indicating the transition between
localized and multifractal states, where periodic, Fibonacci,
Thue-Morse, and Rudin-Shapiro exhibit descending order of
critical points with T (i.e., when γ departs from zero).

A direct observation of prethermalization is also evident in
terms of wave-packet spread. For instance, by selecting the
Rudin-Shapiro sequence, the time dependence of the RMSD
σ (τ ) is shown in Fig. 7, contrasting large system sizes L =
1000, 5000, and 10000 with kick amplitude λ = 3 and driv-
ing time T = 0.1. Before τ ∼ 20, the wave-packet exhibits
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)

σ(τ) ∼ τ 0.98(a)λ = 0.01

T

100 101 102 103

τ

σ(τ) ∼ τ 0.48(b)λ = 3

T

0.000 0.005 0.010

T

0.00
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0.75

1.00

γ

(c)λ = 0.01

T
=

0.
30

9λ

T
=

0.
50

λ

Fibonacci

Thue-Morse

Rudin-Shapiro

Periodic

0.0 0.5 1.0 1.5

T

(d)λ = 3

γ = 0.5

FIG. 6. RMSD σ as a function of time τ in a Fibonacci sequence
for various driving times T at fixed kick amplitude (a) λ = 0.01
and (b) λ = 3. Values of T in (a) range from 0 to 0.01 in steps
of 2.5 × 10−4; in (b), from 0 to 1.5 in steps of 0.0375. The red
dashed line gives a power-law fit for the largest T used, where we can
extract the value of γ . Fitted γ as a function of period T for various
sequences at fixed kick amplitude (c) λ = 0.01 and (d) λ = 3; the
vertical dashed lines in the former annotate the transition point for
small kick strengths, T = N1λ/(2N0). The horizontal dashed line in
(d) marks the diffusive regime where multifractality abounds.

localization and, after that, it thermalizes with RMSD σ (τ ) ∼
τ 0.46, displaying small finite-size effects. Here, the inset shows
the corresponding growth of the spatial distribution of wave
functions at representative times τ .

FIG. 7. RMSD σ as a function of time τ for different system size
L at fixed kick amplitude λ = 3 and period T = 0.01. Inset shows the
probability density distributions of an initially localized state after
various time τ .
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10−1 100 101 102 103

τ

100

101

σ
(τ

)

Fibonacci, T = 0.23

Thue-Morse, T = 0.04

Rudin-Shapiro, T = 0.04

Periodic, T = 0.65

FIG. 8. τ dependence of the RMSD σ , for different quasiperiodic
sequences, under strong kicks λ = 3 and various driving times.

In fact, as our previous results have suggested, such behav-
ior is not unique to this sequence. As shown in Fig. 8, σ (τ )
can exhibit behavior akin to prethermalization at large kick
strengths as long as T is not too large. In particular, the kAAH
model can display prethermalization for all sequences in such
a regime, including periodic cases, in carefully selected sets of
parameters: the less complex a sequence, the longer the driv-
ing time T one can insert to observe a robust prethermalization
time scale.

V. SUMMARY

We have studied a family of quasiperiodic binary drivings
in the kAAH model. Initially, utilizing the Floquet theorem
and the BCH formula, we demonstrated the relationship be-
tween the sequence’s mathematical properties, such as the
fraction of its element types, N1/N0, the associated complex-
ity, and the localization properties. In this case, we describe
the critical point in the high-frequency (or short T ) regime
by a straightforward generalization of the standard dynamical
localization in this model. That is, if it originally occurs at
a critical point λ/T = 2 for periodic drivings, it becomes
λ/T = 2N0/N1 in quasiperiodic sequences. This is confirmed
by an analysis of different quantities, such as properties of the
eigenstates of Floquet operators and the transport properties

TABLE I. Different quasiperiodic sequences and their corre-
sponding positive eigenvalue of substitution matrices (see Ref. [31],
pp. 132) and the ratio of its elements N1/N0. Notice that the
Rudin-Shapiro and paper folding sequences possess two posi-
tive eigenvalues, owing to their intrinsic four-element nature (see
Sec. III); here, the N1/N0 is determined by the largest eigenvalue.

Sequence μ+ N1/N0

Fibonacci 1+√
5

2
1

μ+ = 0.618

Silver 1 + √
2 1

μ+ = 0.414

Bronze 3+√
13

2
1

μ+ = 0.303
Copper 2 μ+ − 1 = 1.0
Nickel 1+√

13
2 μ+ − 1 = 1.303

Thue-Morse 2 μ+ − 1 = 1.0
Period-doubling 2 1

μ+ = 0.5

Rudin-Shapiro 2,
√

2 μ+ − 1 = 1.0
Paper folding 2, 1 μ+ − 1 = 1.0
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(b)

FIG. 9. Extension of Fig. 1 to include extra types of quasiperi-
odic sequences. As before, (a) Lempel-Ziv complexity and (b) the
ratio N1/N0 of the number of its elements over a sequence length
N . The asymptotic value of the ratio of quasiperiodic sequences
can be directly extracted from the mathematical properties of the
quasiperiodic sequences.

of an initially localized wave packet. Typically, the regime
of validity of such a critical line separating the localization
and delocalization shortens when considering more complex
sequences. As we analyzed in Sec. II, the failure of the ef-
fective Hamiltonian comes not only from the breakdown of
the periodicity but also from the accumulation of high-order
terms generated from the BCH formula.

We notice that both periodic or quasiperiodically kAAH
models exhibit multifractal states and prethermalization in
specific regimes of parameters. Concerning the former, we
remark that the exquisite emulation of the periodic kAAH

0.000 0.005 0.010 0.015 0.020

T

0.0

0.2

0.4

0.6

0.8

ξ

(a) λ = 0.01

Random
Periodic
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Rudin-Shapiro
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Copper
Nickel

Period-Doubling
Paper-Folding

101 102 103

N

0.00

0.02

0.04

ξ

(b) λ = 3, T = 0.01

Random
Periodic

Thue-Morse
Rudin-Shapiro

Copper Paper-Folding

FIG. 10. Similar to Fig. 3 but now including extra quasiperiodic
sequences as described in the legend. In (a) ξ as a function of period
T at fixed kick amplitude λ = 0.01; here N = 1000. (b) ξ as a
function of length of sequences N with kick amplitude λ = 3 and
period T = 0.01; here we focus on sequences that exhibit N1/N0 = 1.
Lattice size is L = 1000.
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FIG. 11. Average IPR exponent ξ in the T –λ plane. This phase diagram complements the one shown in Figs. 2(a) and 2(b), extending
it to include other sequences. In particular, [(a), (d)] show results for the Fibonacci case, [(b), (e)] for the Thue-Morse, and [(c), (f)] for the
Rudin-Shapiro. Upper panels [(a)–(c)] and lower panels [(d)–(f)] give results for sequence lengths N = 100 and 500, respectively. Dashed
lines mark the localization-delocalization transition at small T and λ, given by T = λN1/(2N0). System size is L = 100.

model in platforms of ultracold atoms is now a reality [48]
and a generalization to tackle the case of quasiperiodic se-
quences can be easily foreseen. Importantly, this would allow
the observation of multifractality, a particular focus of that
study, in a regime of parameters (smaller T ’s and λ’s) that is
more friendly to experiments using ultracold atoms owing to
heating to interband transitions that naturally affect them—see
Appendix B for a detailed discussion.

Besides that, the sequence’s complexity (here quantified by
the Lempel-Ziv metric) determines how fast heating occurs:
the more random, the quicker the breakdown of dynamical
localization when growing the sequence’s length. In addi-
tion, the quasiperiodically kAAH model expands the types
of driving that allow one to observe slow heating rates
(prethermalization) compared to the case of completely ran-
dom sequences (see Appendix A for an extended discussion
on the regime of parameters). Lastly, we showed that the rig-
orously derived scaling for the heating time in a Thue-Morse
sequence [47] also applies to other quasiperiodic sequences.
The main difference is related to the constant, seemingly a
characteristic of each quasiperiodic sequence, that connects
the delocalization time and the driving rate.
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APPENDIX A: OTHER QUASIPERIODIC SEQUENCES

In this Appendix, we extend some of the results of the
main text and check the localization properties of quasiperi-
odic kAAH models with various other sequences to illustrate
the generality of our conclusions. All the generation rules of
quasiperiodic sequences can be found in Ref. [31]. In short,
one can obtain the ratio of its elements N1/N0 via the positive
eigenvalues of the substitution matrices, which establish the
iteration rules that govern the creation of the quasiperiodic
sequences. This is summarized in Table I and can be seen
to indeed give the asymptotic numerical values of the ratio
N1/N0 for large sequence sizes in Fig. 9(b). As also shown
in Fig. 9(a), we also compute the corresponding Lempel-Ziv
complexities: quasiperiodic sequences such as bronze, silver,
and period-doubling exhibit a smaller complexity even if com-
pared to the Fibonacci sequence.

According to the critical value for the extended-to-
localized transition at short driving times T [see Eq. (12)],
this states that such sequences would require a much shorter
driving time T at the same small kick amplitude λ to lead
to delocalization. This is indeed confirmed in Fig. 10(a),
in the regime where an effective Hamiltonian works well,
λ = 0.01, where we show the average IPR exponent ξ vs
T . That is, a small period T leads to the quick buildup of ξ

such that delocalization (ξ → 1) ensues for the less complex
sequences. In the large kick amplitude, on the other hand,
as also shown in the main text, a quasiperiodic driving that
is less complex typically requires a much lengthier sequence
to induce delocalization, as demonstrated in Fig. 10(b); for
convenience, we focus on sequences that have N1/N0 = 1. The
observation that the rate of thermalization of localized states
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FIG. 12. Fraction of the eigenstates of the Floquet operator exhibiting multifractality (see text). Two lengths of sequences are contrasted:
N = 100 [(a), (b), (e), and (f)] and 500 [(c), (d), (g), and (h)]; system size is L = 100. Here, we further compare periodic and quasiperiodic
sequences studied in the main text.

is intrinsically connected to the complexity can be noted by
comparing paper folding and Rudin-Shapiro, which are sim-
ilarly complex, against copper and Thue-Morse, again with
close complexity: the speed of thermalization of the former
two is similar and obviously greater than that of the latter
two.

APPENDIX B: OTHER PHASE DIAGRAMS AND SPAN
OF MULTIFRACTALITY

In the main text we focus on the Fibonacci sequence, dis-
playing the phase diagram given by the average IPR exponent
ξ as a metric to understand (i) the localization-delocalization
transition at small T and λ and (ii) to see how the delocalized
region with small ξ shrinks as one progresses with longer
driving sequences. Figure 11 extends this for the Thue-Morse
and Rudin-Shapiro cases. First, the line delimiting the tran-
sition, corresponding to an effective AAH time-independent
Hamiltonian with potential N1λ

N0T Ĥ1 [see Eq. (10)], is indeed
generic to whichever sequence. Still, as we have predicted at
the end of Sec. II, such effective description narrows in the
parameters’ space (i.e., to even smaller values of T and λ) for
longer driving sequences.

Besides that, the region exhibiting localization at shorter
driving T ’s, but large kick amplitudes λ more quickly dis-
appears for sequences with growing complexity (Fibonacci,
Thue-Morse, and then Rudin-Shapiro), an indication that
prethermalization is more easily seen in sequences that are
less complex, as indicated by Figs. 3(b) and 10(b).

One of the main goals of the recent experimental emulation
of the kAAH [48] is the observation of multifractality in
an extensive regime of parameters, as the theoretical phase
diagrams suggest. Still, due to heating via interband transi-
tions, this regime, primarily located at both large T and λ, is
challenging to access. In Fig. 12, we display the multifractal
“phase diagram,” i.e., the fraction of eigenstates of ÛN that ex-
hibit IPR exponent 0.2 < ξ < 0.8 in the λ–T plane. Taking a
not-so-long sequence (N = 100), it is clear that multifractality
is more easily seen at small T ’s for quasiperiodic sequences
than in the purely periodic case. Thus this would be beneficial
for experiments. Nonetheless, we notice that taking much
longer sequences (N = 500), while multifractality is still seen
indeed at small T ’s, the range in the phase diagram shrinks.
Consequently, balancing sequence length and complexity can
substantially improve the likelihood of studying multifractal
behavior in detail.
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