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We examine the response of the Fermi arc in the context of quasiparticle interference (QPI) with regard to
a localized surface impurity on various three-dimensional Weyl semimetals (WSMs). Our study also reveals
the variation of the local density of states (LDOS), obtained by Fourier transforming the QPI profile, on
the two-dimensional surface. We use the T -matrix formalism to numerically (analytically and numerically)
capture the details of the momentum space scattering in QPI (real-space decay in LDOS), considering relevant
tight-binding lattice and/or low-energy continuum models modeling a range of different WSMs. In particular,
we consider multi-WSM (mWSM), hosting multiple Fermi arcs between two opposite chirality Weyl nodes
(WNs), where we find a universal 1/r decay (r measuring the radial distance from the impurity core) of the
impurity-induced LDOS, irrespective of the topological charge. Interestingly, the inter-Fermi arc scattering is
only present for triple WSMs, where we find an additional 1/r3 decay as compared to double and single WSMs.
The untilted single (double) [triple] WSM shows a straight line (leaf-like) [oval-shaped] QPI profile. The above
QPI profiles are canted for hybrid WSMs where type-I and type-II Weyl nodes coexist; however, hybrid single
WSM demonstrates strong nonuniformity, unlike the hybrid double and triple WSMs. We also show that the
chirality and the positions of the Weyl nodes imprint marked signatures in the QPI profile. This allows us to
distinguish between different WSMs, including the time-reversal-broken WSMs from the time-reversal-invariant
WSM, even though both of the WSMs can host two pairs of Weyl nodes. Our study can thus shed light on
experimentally obtainable complex QPI profiles and help differentiate different WSMs and their surface band
structures.
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I. INTRODUCTION

In condensed matter physics, the quantum Hall effect
(QHE) introduces the concept of symmetry-protected phases
that become relevant for topological quantum matter [1,2].
Digging deeper into topological matter, one can find that the
bulk of the three-dimensional (3D) system can be gapless
or gapped for Weyl semimetals (WSMs) [3–5] and topolog-
ical insulators [6], respectively. The former, namely WSMs,
breaking either time-reversal symmetry (TRS), inversion sym-
metry (IS), or even both, hosts pairs of Weyl nodes (WNs)
with opposite chirality [7] in momentum space. These WNs
are considered to be the monopole and antimonopole of the
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Berry curvature in reciprocal space. A Fermi arc surface states
exist between the surface projections of these bulk WNs.
Additionally, a tilting term can tilt the conical bulk spectrum,
resulting in a pocket-like Fermi surface instead of a point-like
one around the WN, where the former and latter are known
as type-I and type-II WNs, respectively [8,9]. Depending on
the different combinations of the WNs in the bulk, there exist
two categories of WSM, namely pure and hybrid WSM. For
pure WSMs, both WNs of the same pair are of same type,
while for hybrid WSMs one WN is type-I and its chiral partner
belongs to type-II [10–14]. Beyond the realm of single WSM
with topological charge n = 1 and linear dispersion, it has
been also shown theoretically that the anisotropic nonlinear
spectrum can lead to the topological charge n greater than
unity, referred to as multi-WSMs (mWSMs) [15–19]. To be
precise, n = 1 (n = 2) [n = 3] is referred to as single (double)
[triple] WSMs [20]. The WSMs contribute significantly in
the field of linear [21–28] and nonlinear [14,29–33] transport
phenomena due to their topological properties [34,35], and
chiral anomaly [36–39]. The WSMs have been experimentally
realized in several inversion asymmetric compounds such as
TaAs, MoTe2, and WTe2 (Co3Sn2S2, Heusler-alloy family,
and rare-earth carbides family) [40–43]. There also exist the-
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oretical predictions about WSMs showing higher topological
charges as well [16,17].

Having discussed the unique properties of WSMs, we
note that there exist various theoretical techniques to probe
their boundary effects other than exact diagonalization of
tight-binding Hamiltonians such as, iterative methods to
compute boundary Green’s functions [44–46], and solving
the Schrödinger equation [47–51]. Moreover, impurities and
defects in realistic materials can reveal the underlying topo-
logical nature of the boundary modes, which are considered
to be experimentally relevant probes as well, in addition to the
above theoretical techniques [52–59]. For example, the impu-
rity mediates scattering between different momentum modes
leading to quasiparticle interference (QPI) patterns. Interest-
ingly, the interference between the incoming and outgoing
momenta kin and kout associated with the impurity scattering
can yield an amplitude modulation in the local density of
states (LDOS) with spatial periodicity 2π/|kin − kout| [60].
Such behavior, referred to as Friedel oscillations, from which
the Fermi momentum of the system under consideration
can be estimated [61]. In the case of topological insulators,
angle-resolved photoemission spectroscopy and scanning tun-
neling microscopy/spectroscopy (STM/STS) have been used
to probe the topological nature of the surface states, fol-
lowing the QPI framework [62–66]. Note that also graphene
has paved to way to investigate the QPI from the theoretical
side, as well as experimental perspective, following Fourier-
transform (FT) STM techniques [67–74]. For example, it has
been found that the LDOS decays algebraically for mono-
layer graphene, exhibiting linear band touching, unlike other
two-dimensional systems [70,75–77].

The theoretical computation of the QPI pattern for surfaces
is possible within the T -matrix formalism [78,79], which
is extremely useful in capturing the information about the
boundary modes. With certain spatial profile of the impurity,
analytical treatments with various types of Green’s function
are possible that yield a deeper physical insight than numerical
techniques [80,81]. For instance, for infinite systems in one,
two, and three dimensions, the impurity potentials are chosen
to be point like, line like, and plane like, respectively, such that
the infinite systems split into two independent semi-infinite
regions described by point-, line-, and surface-Green’s func-
tions. The decay profile of LDOS and oscillations, as obtained
from this Green’s function technique, depends on the nature of
the impurity such as, magnetic or nonmagnetic impurity and
point-, or edge-like impurity [64,82–84].

In recent times, the QPI profiles in WSMs have been
studied to probe the boundary states, as well as bulk prop-
erties [81,85–88]. Given the fact that the information about
the surface Fermi arc states in WSMs can be extracted from
the QPI profile in presence of an impurity plane, we here
investigate the effect of a point impurity on the Fermi arc
residing in a given surface of WSM. Our aim is to distinguish
between single-, double-, triple-WSMs, and type-I, type-II,
hybrid multi-WSMs, TRS invariant and broken WSMs by
analyzing the interferences between incoming and outgoing
wave packets, scattered by a single-point impurity. To be
precise, we address the following questions that are exper-
imentally pertinent as well: How do the higher topological
charges influence the QPI profile and LDOS decay? What are

the effects of the tilt? How is the interplay between opposite
chirality Fermi arcs reflected there?

In this paper, we consider a variety of WSMs where the
nature and number of Fermi arcs are varied to investigate the
QPI profiles both within the same Fermi arc and/or between
two different Fermi arcs. We treat the problem with T -matrix
formalism. We first analytically derive the decay signature of
the LDOS with the radial distance r from the core of the im-
purity, considering a low-energy surface Hamiltonian derived
around the isolated WN that can also carry a higher topolog-
ical charge [see Eqs. (20)–(22)]. We find that the single and
double WSMs exhibit intra-Fermi arc scattering only where
the LDOS decays as 1/r. By contrast, there is an additional
1/r3 decay in triple WSMs, where inter-Fermi arc scattering is
observed. Still, the effects of higher topological charge are im-
printed on the various powers of 1/r decay. Next, employing
the T -matrix formalism on the tight-binding lattice models,
we numerically compute both the QPI and LDOS profiles in
the 2D momentum and real spaces, respectively, of the WSM
surface and as demonstrated in all the figures. Note that QPI
and LDOS are related to each other by a 2D Fourier trans-
formation. We clearly observe line-, leaf-, and oval-shaped
QPI profiles for untilted single, double, and triple WSMs,
respectively (see Figs. 1–3) from which we can differentiate
inter- and intra-Fermi arc scattering. The tilt further decorates
the QPI patterns due to the presence of bulk modes in the
Brillouin zone (BZ), allowing us to distinguish between the
type-I and type-II WSMs. Hybrid WSMs, hosting both type-I
and type-II WNs simultaneously, show a rotated QPI profile as
compared to the type-I tilted WSMs (see Fig. 4). Interestingly,
the hybrid WSMs exhibit strong diagonal accumulation in the
LDOS that is not observed for pure type-I or type-II WSMs.
Turning our attention to comparing TRS broken and TRS
invariant WSMs, now both hosting two pairs of WNs, we
find that the inter-Fermi arc scattering, positions, and chi-
ralities of the WNs can be understood by the distinct QPI
profiles in terms of presence or absence of leaf-like patterns
(see Fig. 5). On the other hand, the LDOS profiles for the
above models look qualitatively similar, due to the fact that
the inter and intra-Fermi arc scattering are simultaneously
present in both models. The hybrid phase of the these mod-
els can be further distinguished by their QPI profile around
the BZ boundary and angular LDOS structure (see Fig. 6).
Following this extensive analysis of various models, our re-
sults suggest that momentum space QPI and real-space LDOS
profiles are both useful in order to thoroughly differentiate
WSMs.

The remainder of the paper is organized as follows: In
Sec. II, we discuss the T -matrix formalism for a single im-
purity on the top surface of a WSM. We here derive the
numerical as well as analytical formalism. In Sec. III, we
report on the analytical findings for the impurity-induced
LDOS. In Sec. IV, we show the numerical results for the QPI
and LDOS profiles for single, double, and triple WSMs to
investigate the intra- and inter-Fermi arc scattering. We next
compare the results for hybrid phases in these models. We
then explore the QPI and LDOS profiles for two pairs of WNs
and distinguish between TRS invariant and TRS broken single
WSMs. Finally, we conclude with a discussion of possible
future directions in Sec. V.
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II. T -MATRIX METHOD FOR A POINT IMPURITY
ON THE SURFACE

The Hamiltonian for WSMs can be generally writ-
ten as H = ∑

k C†
k h(k)Ck with h(k) = n0(k)σ0 + nx(k)σx +

ny(k)σy + nz(k)σz, and C(k) = [ckα ckβ]T where α, and β

denote the pseudospin degrees of freedom [7,89]. The specific
forms of ni(k) will be discussed in Sec. III and Sec. IV for
low-energy and lattice models, respectively. Without loss of
generality, we consider a simple case where the WNs only ap-
pear at kc = (0, 0,±kz0 ) and the surface Fermi arc, connecting
the projections of two WNs, in the ky-kz (kx-kz) plane with
open boundary condition along x (y) direction. For simplicity,
the tilt term encoded in n0(k), only depends on kz that can
characterize type-I and type-II WSM. Considering the open
boundary condition along y direction, the Hamiltonian can be
written in terms of the good quantum momenta k‖ = (kx, kz )
as it preserves the translational symmetry along x and z axis

Ĥ0(k‖) =
Ly∑

yn=1

∑
l,k‖

[
C†

yn
(k‖)hyn,yn (k‖)Cyn (k‖)

+ C†
yn

(k‖)hyn,yn+l (k‖)Cyn+l (k‖) + H.c.
]
. (1)

The first (second) term represents the on-site (lth
nearest-order hopping) with hi, j (k‖) = n0(i, j, k‖)σ0 +
nx(i, j, k‖)σx + ny(i, j, k‖)σy + nz(i, j, k‖)σz. Ly is the length
of lattice sites along the y direction. Such a construction
of the Hamiltonian is useful to analyze the problem of a
single impurity V̂r0 localized on the top surface yn = 1 layer at
r = r0. The strength of a scalar impurity is denoted by V , such
that V̂r0 = V δ(r − r0)σ0. For this (0,1,0) slab termination, a
Fermi arc connects the surface projections of two bulk WNs
in the pristine WSM.

The T -matrix formalism is a useful tool to study the ef-
fects of disorder in electronic systems using Green’s function
method. It enables us to consider the contributions from all-
order impurity scattering processes as long as the impurity is
localized. On the other hand, one can use the Born approxima-
tion to examine the problem of extended impurities, under the
condition of weak impurity scattering. By using the T -matrix
technique, the full Green’s function for N number of localized
impurities can be expressed as [78,79,90–92]

Ĝ(ri, r j, ω) = Ĝ0(ri, r j, ω)

+
N−1∑

a,b=0

Ĝ0(ri, ra, ω)T̂ (ra, rb, ω)Ĝ0(rb, r j, ω),

(2)

where Ĝ0 denotes the bare Green’s function for the clean
system without impurities. The T matrix obeys the Bethe-
Salpeter equation

T̂ (ra, rb, ω) = V̂raδ(ra − rb)

+ V̂ra

N−1∑
n=0

Ĝ0(ra, rn, ω)T̂ (rn, rb, ω). (3)

In the present, we consider a single impurity, i.e., a = b =
n = 0, located at r0 = (0, yn = 1, 0) on the top surface. The
on-site full Green’s function at any position r = ri = r j is

given by

Ĝ(ri, ri, ω) = Ĝ0(ω) + Ĝ0(ri, r0, ω)T̂ (ω)Ĝ0(r0, ri, ω), (4)

with T̂ (ω) = [Î − V̂r0 Ĝ0(ω)]
−1

V̂r0 . Given the fact that the k‖ is
a good quantum number for the bare Hamiltonian in Eq. (1),
the bare Green’s function without any impurity in momen-
tum space can be obtained through Ĝ0(k‖, ω) = [ω + iη −
Ĥ0(k‖)]

−1
with η → 0. Further, the bare Green’s function in

real space can be calculated via FT of the Green’s function in
the momentum space,

Ĝ0(ri, r j, ω) = 1

Nk‖

∑
k‖

Ĝ0(k‖, ω)eik‖·(ri−r j ), (5)

where ri, j = (xi, j, yn = 1, zi, j ) denotes the spatial positions
and Nk‖ is the number of k‖ points. As a result, for ri = r j ,
Ĝ0(ω) = 1

Nk‖

∑
k‖ Ĝ0(k‖, ω) represents the average value of

Ĝ0(k‖, ω) over whole momentum space. Since we are mainly
interested in the variation of electronic densities on the sur-
face, we can extract the LDOS through the on-site full Green’s
function at the top surface layer along the y direction,

ρyn=1(ri, ω) = − 1

π
Im[Tr[Gyn=1(ri, ri, ω)]]

= ρ0
yn=1(ri, ω) + δρyn=1(ri, ω). (6)

The first term ρ0
yn=1 is the LDOS in the clean system, while the

latter term measures the fluctuation of LDOS induced by the
impurity. By adopting a r mesh constrained on the top layer
at yn = 1 with a grid size Nr = (Nx × Nz ), we can further FT
the fluctuation part δρ back into the momentum space. The
distribution of δρyn=1(ri, ω) in momentum space leads to the
QPI for an isoenergy contour at ω given by

δρyn=1(q‖, ω) = ρyn=1(q‖, ω) − ρ0
yn=1(q‖, ω)

= Re

[
1

Nr

∑
ri

δρyn=1(ri, ω)eiq‖·ri

]
. (7)

ρ0
yn=1(q‖, ω = 0) exhibits the Fermi arc surface states as a

signature of clean WSM.
We here focus on pseudospin-integrated LDOS as a mea-

sure of the QPI profile. All the numerical results are obtained
using a 400 × 400 grid in q‖ space and r‖ and with the in-
finitesimal imaginary part in the bare Green’s function set
to η = 10−4. Note that the momentum modes are taken as
qi = πm/Ni with m ∈ (−Ni, Ni] where Ni refers to the system
size along i direction. The numerical result is independent of
the number of layers along y direction due to the choice of
the surface impurity. For the numerical calculations, we com-
pute the changes δρyn=1(qx, qz, ω = 0) [δρyn=1(x, z, ω = 0)]
in the momentum [real] space to demonstrate the QPI [LDOS]
profile, as reported in Sec. IV, due to the localized point-
impurity effect on the top surface.

We next cast the QPI profiles in momentum space for pos-
sible analytical solutions. The generalized Green’s function
Ĝ(k1, k2, ω) is related to the translationally invariant bare
Green’s function Ĝ0(k, ω) as follows:

Ĝ(k1, k2, ω) = Ĝ0(k1, k2, ω)δ(k1 − k2)

+ Ĝ0(k1, ω)T̂ (k1, k2, ω)Ĝ0(k2, ω). (8)
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Note that the impurity breaks the translational invariance,
resulting in the perturbed Green’s function dependent on two
distinct momenta k1 and k2. The momentum q‖, discussed
above, can be formally expressed as q‖ = k1 − k2 ≡ kin −
kout. The T matrix is thus found to be

T̂ (k1, k2, ω) = V̂ (k1, k2)

+
∑

k′
V̂ (k1, k′)Ĝ0(k′, ω)T̂ (k′, k2, ω). (9)

The exact solution for the T matrix relies on the nature
of the impurity considered. We here demonstrate the generic
situations where the impurity may reside in the bulk, over
a plane, or on a line for the 3D system. For the localized
point impurity V̂r0 = V δ(r − r0)σ0 in the bulk of the system,
V̂ (k1, k′) becomes independent of momentum. As a result, the
T matrix takes the form

T̂ (ω) =
[

I − V
∫

d3k
V Ĝ0(k, ω)

]−1

V, (10)

where V denotes the volume of the BZ in 3D and the integral
over k is performed over the entire BZ. The T matrix does
not contain any delta function as the translation symmetry is
broken in all directions. For a line-like impurity V̂z = V δ(x −
x0)δ(y − y0)σ0 along the z direction in 3D, the T matrix
contains a delta function δk1z,k2z as the translation symmetry
is preserved (broken) along the z (x and y) direction. The T
matrix can hence be written as T̂ (kz, ω) while

∫
d3k/V →∫

dkxdky/S , where S denotes the area of BZ along kx-ky

plane. The case of plane-like impurity V̂yz = V δ(x − x0)σ0
localized on the yz surface at x = x0, allows us to further
reduce

∫
d3k/V → ∫

dkx/L, where L denotes the width of
BZ along kx only, with T̂ (ky, kz, ω), as the translational sym-
metry is preserved (broken) along y and z (x) direction by the
impurity along the x direction. As a result, the T̂ matrix con-
tains the delta function δk1y,k2yδk1z,k2z . Note that for 3D WSMs
such plane-like impurity has already been used to analyze
the Fermi arc surface states following this T -matrix formal-
ism [81,88]. Our setup is different from this, as discussed
below.

In our case, with a surface point impurity at the top-most
layer yn = 1, we compute the surface bare Green’s func-
tion Ĝ0(kx, kz, ω) from the projected surface Hamiltonian
H (kx, kz ) from the bare bulk Hamiltonian. As a result, T̂ (ω)
is defined as

T̂ (ω) =
[

I − V
∫

dkxdkz

S Ĝ0(kx, kz, ω)

]−1

V. (11)

We can compute the on-site Green’s function Ĝ0(x, z, ω) on
the top surface using the FT of Ĝ0(kx, kz, ω) = [ω + iη −
Ĥ (kx, kz )]−1. Here Ĥ (kx, kz ) represents the surface Hamilto-
nian. The T matrix does not depend on the momenta k1,2
enabling us to treat any k1- and k2-integral independently for
Ĝ0(k1, ω) and Ĝ0(k2, ω) in Eq. (8). For the delta-function
impurity located at r0 = (0, yn = 1, 0) on the top surface, the
modified LDOS at position ri = (xi, yn = 1, zi ) is then given
by

δρ(ri, ω) = −Im[Ĝ0(ri − r0, ω)T̂ (ω)Ĝ0(r0 − ri, ω)]. (12)

We are mainly interested in the quantity δρ induced by the
impurity, demonstrated in the QPI (LDOS) profile studied in
momentum (real) space. We note that Eq. (12) allows us to
obtain an analytical expression of the LDOS considering the
surface Green’s function. Next, we analyze the radial variation
of this LDOS.

III. ANALYTICAL RESULTS

In order to analytically investigate the LDOS modula-
tion due to an impurity on the top surface of a WSM,
we start with a low-energy continuum model. The gen-
eral low-energy form of a WSM around the WNs can
be written as Hn(k) = t0kzσ0 + kzσz + kn

−σ+ + kn
+σ− where

σ± = (σx ± iσy)/2, k± = kx ± iky and n = 1, 2, and 3, rep-
resent single, double, and triple WSMs, respectively. The
type-I (type-II) phase is characterized by t0 < 1 (t0 > 1)
with the tilt along the kz direction [20]. The sur-
face Hamiltonian HS

n ≡ Ĥ (kx, kz ), defined on the xz sur-
face, can be approximated by HS

n=1 = t0kzσ0 + kxσy + kzσx,
HS

n=2 = t0kzσ0 + k2
x σz + kzσx − kxσy, and HS

n=3 = t0kzσ0 +
k2

x σz + kzσx + (k3
x − kx )σy for single, double, and triple

WSMs, respectively [19,20]. These surface Hamiltonians are
obtained by projecting the bulk Hamiltonians Hn(k) in the
basis of σy, σx, σy for n = 1, 2, and 3 respectively, while the
particular term kn

y is associated with the above Pauli matrices.
Note that for open boundary condition along the y direction,
ky → i∂y. For simplicity we only consider the terms contain-
ing the maximum power of (i∂y), given by kn

y , to set up the
basis for the surface projection. A more rigorous calculation
would involve various powers of (i∂y) that might yield a more
accurate choice of the basis for such projection. As a re-
sult, the surface Hamiltonian can acquire a more complicated
form than what we use and the above approach is thus only
qualitative, with a more rigorous calculation for HS

n left for
future studies. We note that a point impurity on the top surface
demands for such surface Hamiltonian, as far as our analytical
method is concerned, the ability to extract the surface Green’s
function. Obtaining the surface Green’s function directly from
the 3D bulk Hamiltonian for such surface impurity has so far
been an open question. Our approach is the first attempt, to the
best of our knowledge, for solving the above problem from the
analytical side.

We next validate the above approximation for surface
Hamiltonians by corroborating the feature of the Fermi arcs
obtained from a numerical lattice calculation. At the outset,
we note that the analytical surface Hamiltonian is derived
from a bulk Hamiltonian of an isolated WN. Therefore, it is
not obvious to understand the Fermi arc quantitatively from
this surface Hamiltonian. Technically we therefore need to
consider two copies of such surface Hamiltonian in order to
host a Fermi arc. Without loss of generality, we assume the
Fermi arc between −π/2 < kz < π/2, with the WNs located
at (0, 0, kz = ±π/2). Nevertheless, we focus on the qualita-
tive connection with just one WN as follows. For the untilted
case, a single WSM, when solved by our numerical lattice cal-
culations, hosts a straight Fermi arc, shown in Fig. 1(a). This
term is successfully predicted by the k-linear terms in HS

n=1.
The bending of two Fermi arcs in double WSM, displayed
in Fig. 2(a), can be understood by the k2

x term in HS
n=2. In

a similar spirit, two curved Fermi arcs along with a straight
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Fermi arc for a triple WSM, displayed in Fig. 3(a), can be
connected to the k2

x and kx terms in the HS
n=3, respectively. The

number of Fermi arcs might thus be related to the maximum
power of kx. On the other hand, the effect of the tilt is also
encoded in HS

n where the tilt term with kzσ0 and Fermi arc
related term with kzσx both exist. Below we continue to work
with HS

n to obtain δρ, i.e., the LDOS change from a single
impurity in real space.

The surface bare Green’s function for a single WSM is

Ĝ0
n=1(kx, kz, ω) = 1

ω2 − k2

[
ω − t0kz kz − ikx

kz + ikx ω − t0kz

]
, (13)

while the surface Green’s function for a double WSM is

Ĝ0
n=2(kx, kz, ω) ≡ 1

ω2 − k2 + O(k4)

×
[
ω − t0kz + k2

x kz − ikx

kz + ikx ω − t0kz − k2
x

]
,

(14)

and the surface Green’s function for a triple WSM is

Ĝ0
n=3(kx, kz, ω) ≡ 1

ω2 − k2 + O(k4)

×
[

ω − t0kz + k2
x kz − i

(
k3

x − kx
)

kz + i
(
k3

x − kx
)

ω − t0kz − k2
x

]
.

(15)

In the following analytical treatment, we use polar coor-
dinates such that

∫
dkxdkz = ∫

kdkdθk with k = √
k2

x + k2
z ,

θ = arctan(kx/kz ). The T matrix following Eq. (11) be-
comes diagonal as the angular integration, defined on the
2D polar coordinate, for the off-diagonal terms vanish∫ 2π

0 {sin(lθk ), cos(lθk )} exp(imθk )dθk = {1, i}lδlm. The diag-
onal terms depend on ω−2

2F1(�,ω) with � being the
upper cut-off for the k integral and 2F1 denotes the
hypergeometric function. For compactness, we refer to the
diagonal terms in T̂ (ω) as t (ω). Using the Jacobi-Anger iden-
tity exp(ik · r) = ∑

l (i)
l Jl (kr) exp(ilθkr ) and following a FT

to Ĝ(r, ω) = ∫
d2k exp(ik · r)Ĝ(k, ω) with k = (kx, kz ), r =

(r sin θr, r cos θr ), and θkr = θk − θr , we obtain a closed form
expression of Ĝ(r, ω) in terms of Bessel and hypergeometric
functions. We are interested in the asymptotic limit ωr/v � 1
(we consider the Fermi velocity v to be unity for simplicity)
to analyze the decay of the density with respect to r in real
space. We find the following expressions of surface Green’s
function for single, double, and triple WSM:

Ĝ0
n=1(r, ω) ≈ cos(ωr)

(
ω

r

)1/2
[

1 − t0 exp(iθr ) exp(iθr )

exp(−iθr ) 1 − t0 exp(iθr )

]
, (16)

Ĝ0
n=2(r, ω) ≈

⎡
⎣cos(ωr)

(
ω
r

)1/2
(1 − t0 exp(iθr )) + 1

ωr2 + f exp(iθr ) cos(ωr)
(

ω
r

)1/2

exp(−iθr ) cos(ωr)
(

ω
r

)1/2
cos(ωr)

(
ω
r

)1/2
(1 − t0 exp(iθr )) + 1

ωr2 − f

⎤
⎦, (17)

Ĝ0
n=3(r, ω) ≈

⎡
⎣cos(ωr)

(
ω
r

)1/2
(1 − t0 exp(iθr )) + 1

ωr2 + f exp(iθr ) cos(ωr)ω1/2

r3/2 − ω5/2

r3/2

exp(−iθr ) cos(ωr)ω1/2

r3/2 − ω5/2

r3/2 cos(ωr)
(

ω
r

)1/2
(1 − t0 exp(iθr )) + 1

ωr2 − f

⎤
⎦, (18)

with f = O(ω−2r−4) + O( ω3/2

r1/2 cos(ωr)). During the above derivations of effective surface Green’s functions, we only keep the

Bessel functions to the zeroth and first order. Note that t0(ω/r)1/2 can become more important than O( ω3/2

r1/2 ) cos(ωr) terms in the
long-distance limit due to ω → 0 and t0 	= 0.

We can now compute the modification of the LDOS in real space analytically through [70,77,79,93,94]

δρyn=1(r, ω) = −Im[Ĝ0(r, ω)T̂ (ω)Ĝ0(−r, ω)]

≈ −
∑
ζ ,ζ ′

Im[ei(kζ ′−kζ )·rĜ0
ζ (r, ω)T̂ (ω)Ĝ0

ζ ′ (−r, ω)]

=
∑
ζ ,ζ ′

δρ
ζζ ′
yn=1(r, ω), (19)

giving rise to the QPI on the 2D surface, as a measure of scattering between the momentum modes ζ and ζ ′ of WSMs. Note that
Ĝ0

ζ denotes the bare Green’s function associated with momentum mode kζ while omitting the topological charge n = 1, n = 2,
and n = 3 for ease of the notation. At low-energies these modes are close to or on the surface Fermi arc depending on the tilt
strength. Note that θζ ,ζ ′

r → θζ ,ζ ′
r + π for r → −r, where the kζ · r term leads to the θζ

r angle. Note also that G0
ζ = G0

ζ ′ as the
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surface Green’s functions in Eqs. (16)–(18) are defined on the real space r only. For simplicity of notation, we omit the subscript
yn = 1 in δρ and we arrive at the following impurity-induced LDOS changes for single, double, and triple WSMs

δρ
ζζ ′
n=1(r, ω) ∝ Re

[
ω

r
t (ω) cos2(ωr)ei(kζ ′−kζ )·r(1 − ei(θζ

r −θζ ′
r ) − χ

)]
, (20)

δρ
ζζ ′
n=2(r, ω) ∝ Re

[
t (ω)ei(kζ ′−kζ )·r

[
ω

r
cos2(ωr)

(
1 − ei(θζ

r −θζ ′
r ) − χ

) + 1

ω2r4
+ cos(ωr)

ω1/2r5/2
+ O(r−9/2) + O

(
t2
0

)]]
, (21)

δρ
ζζ ′
n=3(r, ω) ∝ Re

[
t (ω)ei(kζ ′−kζ )·r

[
ω

r
cos2(ωr)

(
1 − ei(θζ

r −θζ ′
r )

r2
− χ

)
+ 1

ω2r4
+ cos(ωr)

ω1/2r5/2
+ O(r−9/2) + O

(
t2
0

)]]
, (22)

respectively, with χ = t0(eiθζ
r − eiθζ ′

r ) representing the effect
of tilt. To continue we consider the following setup for the
Fermi arc, generating the allowed momentum modes. For
untilted single WSM, kζ ,ζ ′ ∈ (kx = 0,−π/2 < kz < π/2),
while for small tilt, kζ ,ζ ′ ∈ (0 < kx < kc

x ,−π/2 < kz < π/2),
and for the overtilted case, bulk modes appear in addi-
tion to the Fermi arc even in the low-energy regime such
that kζ ,ζ ′ ∈ (−π < kx < π,−π < kz < π ). For untilted dou-
ble WSM, kζ ,ζ ′ ∈ (−kc

x < kx 	= 0 < kc
x ,−π/2 < kz < π/2),

while for small tilt, kζ ,ζ ′ ∈ (−kc1
x < kx 	= 0 < kc2

x ,−π/2 <

kz < π/2). For untilted and low-tilted triple WSM, the kζ ,ζ ′

entails a similar set of momentum as observed for double
WSM in addition to kζ ,ζ ′ ∈ (kx = 0,−π/2 < kz < π/2) as
found in single WSM. For the overtilted case in double and
triple WSMs, kζ ,ζ ′ behave similarly; however, there are ad-
ditional momentum modes for triple WSM as compared to
double WSM. The Fermi arcs are depicted in Figs. 1(a), 2(a),
and 3(a), respectively, for untilted single, double, and triple
WSMs from which the above momentum intervals can be
qualitatively motivated.

We now analyze the functional dependence on distance
r from the impurity in the impurity-induced LDOS δρ. For
an untilted single WSM with t0 = 0 in Eq. (20), it decays
as r−1 in addition to the sinusoidal variation as dictated by
ei(kζ ′−kζ )·r cos2(ωr). The momentum space profile of the Fermi
arc determines the period of oscillations in the real space
through the phase factor ei(kζ ′−kζ )·r for ω → 0. Note that the
angular profile is not isotropic rather LDOS builds up for
θζ ,ζ ′

r ≈ ±π/2 as the Fermi arc lies along kz only. A close

inspection suggests that ei(θζ
r −θζ ′

r ) → −1 when θζ
r and θζ ′

r are
separated by π . The LDOS profiles along x(z) direction are
given by θζ

r → ±π/2 (0, π ) where the spatial oscillations are
governed by the above phase factors associated with kζ

x (kζ
z ).

For finite tilt t0 	= 0, the angular profile will be visible for a fi-
nite region centered around θζ ,ζ ′

r ≈ ±π/2. As a result, χ 	= 0;

however, ei(θζ
r −θζ ′

r ) 	= 1, leading to a cos2(ωr)/r behavior with
r =

√
x2 + y2. We note that δρ, according to Eq. (20), can

vanish for the untilted case χ = 0 when θζ
r = θζ ′

r . This results
in a situation where LDOS profile becomes independent of
r in the leading order. Such an intriguing situation no longer
arises even for infinitesimal tilt χ 	= 0. We note that this r-
independent behavior may be an artifact of the present method
based on the effective surface Hamiltonian.

Based on Eq. (21), we discuss the following for a double
WSM. Without the tilt, the symmetric bending of the Fermi
arc along kx direction would lead to a similar LDOS profile

to that of a single WSM with tilt. The LDOS for double
WSM has a similar cos2(ωr)/r as the single WSM, which
sets the longest distance decay. In addition, double WSMs
host faster decaying terms, including a 1/r4 term that is not
accompanied by cos2(ωr) variation. Overall, this leads to a
similar long-distance modulation for double WSM compared
to single WSM, but with rapid short-distance decay. In pres-
ence of tilt, the asymmetric bending of Fermi arcs with kx

leads to a more noticeable profile along x direction. This is
due to the fact that ei(θζ

r −θζ ′
r ) could be −1 for certain θ ’s and

χ 	= 0. Unlike the single WSM, δρ continues to depend on r
even for untilted case with θζ

r = θζ ′
r . This indicates that the

LDOS always decays with r for untilted double WSM.
Finally, based on Eq. (22), we discuss triple WSMs. The

untilted triple WSM shows an admixture of double and single
WSM behavior as far as the decay profile is concerned. Sur-
prisingly, the leading order cos2(ωr)/r decay is commonly
observed irrespective of the charge of the WSMs, but we find
that cos2(ωr)/r3 [1/r4] decay is absent in double [single]
WSM but present for triple WSM. For the bending nature
of Fermi arcs, the LDOS shows an angular profile; however,
mostly centered around θζ ,ζ ′

r ≈ ±π/2. The LDOS profile
along z at x = 0 becomes further suppressed by χ factors as
compared to the untilted case. Similar to the untilted double
WSM, δρ continues to depend on r even for untilted case. No-
tice that θζ

r = θζ ′
r results in an additional 1/r3 radial decay of

LDOS in triple WSM irrespective of the tilt strength. In fact,
we find a universal behavior for all the above WSMs in the
overtilted case that is dominated by χ resulting in cos2(ωr)/r
profile. All the above analytical findings for WSMs, in general
can be useful to understand the numerical results based on a
lattice model, that we discuss below in Sec. IV for ω = 0.
Note, however, the above analysis was under the assumption
that ωr � 1 as we could not address the ω → 0 limit.

We next investigate the r-dependent algebraic terms in
the LDOS and their possible origin as found in Eqs. (20)–
(22). The exponential terms involving (kζ ,ζ ′ · r) and θζ ,ζ ′

r are
modified when there exist inter- as well as intra-Fermi arc
scattering. In order to capture the inter-Fermi arc scattering,
θζ

r is always considered to be different from θζ ′
r while for

analyzing intra-Fermi arc scattering, θζ
r and θζ ′

r can be same

as well as different. Note that ei(θζ
r −θζ ′

r ) cos2(ωr)/r term is
present for all the WSMs irrespective of their topological
charges; this could thus be tentatively considered as a signa-
ture of the intra-Fermi arc scattering that is present for single,
double and triple WSMs. On the other hand, inter-Fermi arc
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scattering can be manifested in the term ei(θζ
r −θζ ′

r ) cos2(ωr)/r3,
which is only present in triple WSM. The linear kx,z terms
in HS

n lead to cos2(ωr)/r behavior irrespective of the charge
of the WSM. On the other hand, there exist 1/r4 decay for
both double and triple WSM, unlike the single WSM, which
we believe can be considered to be a signature of nonlinear
dispersion. This might be related to the k2

x term present in the
surface Hamiltonian for double and triple WSM. The k3

x term
in triple WSM HS

n=3 can potentially lead to the cos2(ωr)/r3

term, which is absent in single and double WSMs. The above
termwise analysis is only qualitative and exact quantitative
breakdown is mathematically extremely difficult due to the
presence of various cross terms. We also emphasize that
obtaining an accurate signature of inter-Fermi arc scattering
through the radial variation of LDOS is beyond the scope of
the present paper. We can only comment on some possible
qualitative signatures. In our case of WSMs, inter-Fermi arc
scattering might cause faster decay as compared to intra-
Fermi arc scattering. On the other hand, the 1/r decay in
bilayer graphene can be connected with that for the double
WSMs as both the models are nonlinear in momentum [72].

The 2D FT of the LDOS δρn(r, ω), expressed in Eqs. (20)–
(22), can yield the QPI profile in the momentum space. We can

find exp(ilr) cos2(ωr)/r
FT−→ 2 sign[q + l] + sign[q+l+2ω]

+ sign[q + l − 2ω], exp(ilr)/r4 FT−→ (q + l )3sign[q + l] and

exp(ilr) cos2(ωr)/r3 FT−→ 2(q + l )2 sign[q + l] + (q + l +
2ω)2sign[q + l + 2ω] + (q + l − 2ω)2sign[q + l − 2ω])
with q = √

q2
x + q2

z and l corresponding to occupied
momentum modes in the pristine system. The QPI profile
becomes finite for |q| < |l|, provided ω → 0, where q and l
can take positive and negative values. However, the different
decay characteristics of LDOS with r cause different shapes
of QPI patterns as far as the algebraic q dependence are
concerned.

To compliment the analytical results above, we also inves-
tigate another version of an effective low-energy model with
the aim of see if a change could be advantageous for cer-
tain properties, while also investigating the robustness of our
already derived results. In particular, the low-energy model
considered above have only one isolated WN, and as such, the
exponentially localized surface states at zero energy, reached
by applying open boundary condition along y direction, is not
evident when doing the substitution ky → −i∂y. If we instead
consider an alternative effective low-energy model with the
kzσz term replaced with (α − k2

x − k2
y − k2

z )σz keeping the rest
unaltered, we recover the two WNs, located at (0, 0, kz ) =
(0, 0,±√

α). Introducing a surface along y direction we
arrive at H (kx, ∂y, kx ) = H0(∂y) + H1(kx, kz ) with H0(∂y) =
(α − ∂2

y )σz − i∂yσy, H1(kx, kz ) = −(k2
x + k2

z )σz + kxσx. This
allows us to obtain the exponentially localized surface states at
zero energy ψ ∼ N (α) exp(−y/2 + ikxx + ikzz)(1, 1)T such
that H0ψ = 0, where N (α) is a normalization factor. This
solution can be anticipated to form the surface Fermi arc in
the kxkz plane while the underlying bulk Hamiltonian now
encompasses the information of two distinct and well sepa-
rated WNs. As such this is a more realistic model of both the
bulk and the surface than our previously employed analyti-

cal model. However, the Hamiltonian for the surface Fermi
arc can still not be derived from the projection 〈χ |H1|χ〉
with |χ〉 = (1, 1)T . In fact, the derivation of the surface
Hamiltonian, mimicking the Fermi arc, is an open prob-
lem, while the boundary projected Hamiltonian are obtained
for other cases [95,96]. This alternative effective low-energy
bulk Hamiltonian hence does not have any real additional
advantage over the previous one as far as the computation
of the surface Hamiltonian and mimicking the Fermi arc, is
concerned.

Still proceeding with our alternative low-energy model,
we next consider the change it induces to the radial profile
of the LDOS in Eqs. (20)–(22). A detailed derivation gives
that the kz terms, appearing on the off-diagonal parts of the
surface bare Green’s function Ĝ0

n(kx, kz, ω) in Eqs. (13)–(15),
are replaced by α − k2 where k2 = k2

x + k2
z . The off-diagonal

part of the real-space surface Green’s function Ĝ0
n(r, ω), ob-

tained by Fourier transformation, consists of r−1/2. This is
due to the fact that the leading order contribution of

∫
k(α −

k2)J0(kr)dk/(ω2 − k2) yields α/(ωr)1/2 + ω3/2/r1/2. This
causes r−1 behavior of δρ when the (α − k2)σz term is con-
sidered. Note that this r−1 dependence is already present in
our previous analysis for impurity-induced LDOS as shown
in Eqs. (20)–(22) using the kzσz term. Therefore, even after
taking into account the (α − k2)σz term, we do not expect any
qualitative change in the impurity-induced LDOS, as far as
the linear radial decay is concerned. There might exist other
ω-dependent terms different from the linear ω terms in δρ, but
since we are interested in the functional form of δρ in terms
of r mainly, we can still comment that the 1/r decay seems
to be unambiguously predicted from low-energy models and
appears both for a single WN as well as models where two
WNs are present.

As a final comment, we note that surface Green’s func-
tions in Eqs. (13)–(15) are not able to mimic the Fermi arc
accurately extending between two discrete surface projections
of the bulk WNs. This is true both for the low-energy models
having a single WN and the alternative model with two WNs.
It would be possible in principle to capture the surface Fermi
arc from the bulk Weyl nodes (WNs) by considering a plane of
impurities leading to an open surface [81]. However, in such
an approach, one would need to use the a T -matrix formalism
at the beginning in order to get the surface Green’s function,
carrying the information of the surface Fermi arc. To be pre-
cise, one can introduce a plane of impurities in the xz plane
breaking the translation symmetry along the y axis only. This
would then lead to the surface Green’s function hosting Fermi
arc on the kxkz plane. We do not choose to follow this approach
as we need then adopt two successive T -matrix operations to
look for the impurity scattering within and/or among Fermi
arcs in the presence of a single-point impurity. The first T
matrix is for obtaining the surface Green’s function from the
bulk WNs and the second T matrix is for impurity-induced
LDOS from the surface Green’s function. This would be too
complicated to handle analytically within the scope of this
paper. Having said that, we still expect the algebraic 1/r decay
to be present also in calculations that could capture the Fermi
arc, as the Bessel function J0(kr) is the most significant one
among all Jn’s. Apart from the this decay due to intra-Fermi
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arc scattering, the dominant contribution for intra-Fermi arc
scattering leading to 1/r3 decay is also caused by J0(kr). To
summarize, while the analytical information we derive in this
section is approximative and miss some essential facets of the
problem, it is still useful in providing some analysis of the full
lattice model numerical results we present in the following
Sec. IV. At the same time we would like to note that analytical
results are derived with small but finite ω 	= 0 while numerical
results are for ω = 0.

IV. NUMERICAL RESULTS

We next numerically examine the lattice results for var-
ious WSMs as described below. These numerical results
involve the full 3D lattice of the WSM and hence accu-
rately capture both all WNs and the Fermi arc(s) connecting
them. Also, these numerical results are performed inde-
pendently of the analytical results in the previous section;
however, whenever beneficial we connect these analytical
results.

A. Single WSMs

For single WSMs we adopt (n0, nx, ny, nz ) =
(t0 cos kz, sin kx, sin ky, mz − cos kx − cos ky − cos kz ) where
the WNs of topological charge n = 1 with chirality ±1 are
located at kc = (0, 0,±π/2) for mz = 2 [19,97,98]. For the
untilted case with t0 = 0 the surface Fermi arc with momenta
kFA is a straight line with kx

FA = 0 [see Fig. 1(a)]. The most
favorable scattering momenta, arising from kin, kout ∈ kFA,
thus share an identical kx component as the Fermi arc does not
disperse along kx. The resulting QPI pattern does not have any
dispersion along qx as kx

in = kx
out = 0 while it only stretches

along qz due to the fact that kz
in 	= kz

out [see Fig. 1(b)]. Notably,
the intensity for qz = ±π in the QPI profile is substantially
weaker compared to the rest of the qz’s. The resulting LDOS
change thus is vanishingly small around the surface projection
of the bulk WNs at kz = ±π/2 over the Fermi arc. As the
tilt increases, the Fermi arc disperses along the kx direction,
causing a narrow belt of momenta with kx 	= 0 to contribute
into the scattering process [see Fig. 1(e)]. For the tilted type-I
case at t0 = 0.5, the curved Fermi arc displays a leaf-like QPI
profile where the width along qx(z) direction is determined by
qx,z = |min{kx,z

in } − max{kx,z
out}| [see Fig. 1(f)]. The leaf-like

structure is oriented along z direction as the Fermi arc
spans between kz = ±π/2, referred to as a “figure 8” in a
previous study [86], although the evolution of such leaf-like
pattern was not studied under the gradual application of
tilt. For the overtilted type-II case of t0 = 1.2, we find that
the Fermi arc surface states dissolve into the bulk modes
with substantially extended electron and hole pockets [see
Fig. 1(i)]. The “X”-shaped structure of QPI near the origin
(qx, qz ) = (0, 0) can be simply viewed as the intra-Fermi
arc scattering [see Fig. 1(j)]. However, additional scattering
from the bulk modes leads to a blurred background in the
QPI profile, making intra-Fermi arc scattering less visible
compared to untilted or type-I WSMs.

We next concentrate on the spatial variation of LDOS with
impurities. The impurity can lead to prominent accumulation
or weak depletion of LDOS as shown by red and blue color in

FIG. 1. Single WSM. Momentum resolved surface spectral
weight (yellow)ρ0

yn=1(k‖, ω) for clean WSM and impurity-mediated
QPI profile (blue) δρyn=1(q‖, ω), obtained from Eq. (7), are demon-
strated in (a), (e), (i), and (b), (f), (j), respectively. The LDOS change,
or the Fourier transformed (FT) QPI, in Eq. (6) on the top xz surface
that embeds the localized impurity at (x, z) = (0, 0) in (c), (g), and
(k). The normalized radial decay profiles are depicted in (d), (h),
and (l), qualitatively corroborating with the analytical findings in
Eq. (20). We choose tilt strengths t0 = 0, 0.5, and 1.2 for upper (a),
(b), (c), (d) (untilted WNs), middle (e), (f), (g), (h) (type-I WNs), and
lower (i), (j), (k), (l) (type-II WNs) panels, respectively. We choose
ω = 0 to look for scattering phenomena caused by the zero-energy
surface states. The axes for the plots are shown in the lower left
corner in the top row and are then used for all subsequent plots
in the same column. We consider −π < kx, kz, qx, qz � π for the
momentum space resolved LDOS in the first and second columns.
In the third column, we show the microscopic variation of LDOS for
−20 � x, z � 20. In the fourth column, we choose r ∈ [−100, 100]
to study the macroscopic radial behavior. Note that r = √

x2 + z2,
while θr = 0, π/2 and π/4 correspond to (0, z), (x, 0), and (x, z),
respectively. We consider [−200:200] × [−200:200]-grid for the top
xz layer in momentum as well as real space. Note that the third
column captures the LDOS within a short spatial range around the
impurity site, while the fourth column apprehends the variation of
LDOS for a longer range. The red (blue) color corresponds to the
accumulation (depletion) of LDOS in the third column. We consider
impurity strength V = 1 in the unit of the hopping t = 1 for single
WSMs. We adopt the above representation in all the following fig-
ures. For single WSMs we find that with increasing tilt, the Fermi
arc bends and the QPI profile acquires a leaf-like structure. The in-
homogeneous LDOS structure becomes prominent for intermediate
tilt strength, while the LDOS is highly anisotropic (isotropic) for the
untilted (overtilted) case.

Figs. 1(c), 1(g), and 1(k). Overall, the depletion is more spread
out while accumulation is concentrated. For untilted WSMs,
the LDOS shows a 1/z decay along z direction around x = 0
while it behaves as constant along the x direction around
z = 0 [see Fig. 1(c)]. The decay profile along z(x) direction
is suppressed (not suppressed) substantiating the anisotropic
nature of LDOS around the impurity core that is consistent
with the anisotropic QPI profile [see Fig. 1(d)]. We note that
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the r-independent behavior of LDOS along z direction at
x = 0 in untilted single WSM can be qualitatively understood
from the analytical findings with θζ

r = θζ ′
r and χ = 0 when

δρ becomes r independent in the leading order [see Eq. (20)].
We attribute this behavior to the idealized straight Fermi arc
with its completely flat energy dispersion at zero energy. This
generates an idealized QPI profile localized at qx = 0 and
varying only with qz, which then results in this idealized
real-space behavior. In a real material, the Fermi arc no longer
remains completely straight will be dispersive, which induces
a decay in the LDOS. In the present case, depletion in LDOS
can occur for ω 	= 0 such that its accumulation at ω = 0 is
compensated.

For the tilted case, the leaf-like QPI structure of finite
width along qx yields a variation of the LDOS with x over
the z = 0 line [see Figs. 1(g) and 1(k)]. Such angular varia-
tion is caused by the exp(iθζ

r ) term; however, the modulation
decays with distance from the center [see Fig. 1(h)]. The
short-(long-)period oscillations along z(x) direction can be
understood analytically from δρ [Eq. (20)], where the phase
factor ei(kζ ′−kζ )·r with the available momenta kζ ,ζ ′ ∈ kin, kout

bears the signature of spatial periodicity. For the overtilted
case, the LDOS decays rapidly (uniformly) with r (angle)
as dominated by the tilt term [see Fig. 1(l)]. A qualita-
tively isotropic LDOS profile, as compared to the previous
anisotropic behavior under small tilt, is observed for the over-
tilted case [see Fig. 1(k)]. This might be caused by the uniform
variation of phase factors θζ ,ζ ′

r , due to bulk modes in the
tilt-mediated χ term [Eq. (20)]. Importantly, with increasing
tilt strength, rapid decay profiles resemble delta-function-like
behavior around the impurity core, irrespective of the radial
direction. The bulk modes contribute significantly that can
lead to destructive interference away from the impurity core
for the overtilted case.

B. Double WSMs

For double WSMs we consider (n0, nx, ny, nz ) =
(t0 cos kz, cos kx − cos ky, sin kx sin ky, mz − cos kx − cos ky −
cos kz ), where the WNs of topological charge n = 2 with
chirality ∓1 appear at kc = (0, 0,±π/2) for mz = 2
[16,19,20,98]. For the untilted case, two symmetrically
dispersive Fermi arcs k1,2

FA appear [see Fig. 2(a)], which lead
to a leaf-like structure in the QPI [see Fig. 2(b)]. This reminds
us strongly of a tilted single WSM. Importantly, this means
that intra-Fermi arc scattering is responsible for this QPI
profile, with its breadths and widths are determined by the
appropriate combinations of kin ∈ ki

FA and kout ∈ ki
FA for

a given i = 1, 2. This directly indicates the suppression of
inter-Fermi arc scattering as momenta from two different
Fermi arcs k1

FA and k2
FA do not mix, leading to a regular

leaf-like structure only around qx ≈ 0 line. The suppression
of inter-Fermi arc scattering is additionally evident from
the tilted case. Here the asymmetric dispersive nature of
Fermi arcs results in one Fermi arc k1

FA to be relatively
flattened with respect to the other k2

FA [see Fig. 2(e)]. This
causes the QPI profile around the central region close to
the qx = 0 line to be substantially pronounced as compared
to the boundary of the leaf-like region [see Fig. 2(f)].
As a result, the leaf-like structure is less prominent. For

FIG. 2. Double WSM. We repeat Fig. 1 for a double WSM, with
the Fermi arcs are shown in (a), (e), and (i). We find a prominent
leaf-like QPI profile in (b), (f), but in (j) only around qx ≈ 0. The
LDOS shows high anisotropy on the top surface demonstrated in (c),
(g), and (k). The LDOS decays radially without showing significant
oscillations, as depicted in (d), (h), and (l). We consider the same set
of parameters for double WSM as considered for single WSMs in
Fig. 1.

the overtilted type-II case, the dispersive Fermi arcs and
bulk modes result in a poorly visible leaf-like structure
in the center with a strong background signal in the QPI
[see Fig. 2(j)].

The LDOS for the untilted case exhibits a horizontal leaf-
like structure along x direction around the z = 0 line that
is consistent with the QPI profile along qz in the reciprocal
space [see Fig. 2(c)]. We notice strong depletion of LDOS
around the diagonals x ≈ ±z. Compared to the untilted single
WSM, we find much stronger suppression of LDOS away
from the center along the x direction [see Fig. 2(d)]. This
we attribute this to the 1/xl decay with l > 1 as found an-
alytically. Interestingly, the rapid decay in the orthogonal
direction, unlike the single WSM, is likely a consequence of
the absence of a straight Fermi arc in double WSM. In par-
ticular, the analytical findings suggest that δρ ∝ ei(kζ ′−kζ )·r/r4

for χ = 0 and θζ
r = θζ ′

r [Eq. (21)]. The above gives us a hint
about the decaying behavior with the oscillatory nature of
δρ along the x direction [see Fig. 2(d)]. For tilted cases, the
LDOS displays a non-negligible angular profile for a short
distance [see Fig. 2(g)]. The LDOS is significantly enhanced
near z = 0 along x direction as compared to the untilted
case. This might be due to additional correction generated
by the t0 exp(iθζ

r )/r factor. For overtilted cases, LDOS in
double WSM behaves similarly to that of a single WSM [see
Fig. 2(k)]. Although the LDOS decays slower along x direc-
tion for intermediate tilt as compared to the overtilted case
[see Figs. 2(h) and 2(l)].

C. Triple WSMs

For triple WSMs we consider (n0, nx, ny, nz ) = (t0 cos kz,

sin kx[3 cos ky− cos kx−2], sin ky[3 cos kx− cos ky − 2], mz −
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FIG. 3. Triple WSM. We repeat Fig. 1 for triple WSM, where
the Fermi arcs are shown in (a), (e), and (i). We find prominent oval-
shaped QPI profiles in (b), (f), and (j) only around qx ≈ 0 that is an
admixtures of straight line- and leaf-like profiles. The anisotropy in
LDOS is clearly visible in (c), (g), and (k). The long-range oscillatory
nature of the LDOS are depicted in (d), (h), and (l). The results are
obtained with the same set of parameters as that for single WSMs in
Fig. 1.

cos kx − cos ky − cos kz ), where the WNs of topological
charge n = 3 with chirality ±1 appear at kc = (0, 0,±π/2)
for mz = 2 [16,19,20,98]. We find two dispersive Fermi arcs
k1

FA, k2
FA, and one flat Fermi arc k3

FA [see Fig. 3(a)]. The
intra-Fermi arc scattering leads to a straight and leaf-like
QPI profile out of flat and dispersive Fermi arcs, respectively
[see Fig. 3(b)]. This behavior is expected from that of
single and double WSMs in the two previous subsections.
Interestingly, the extended leaf-like structure along with its
circular background is then an outcome of inter-Fermi arc
scattering. The QPI profile for triple WSMs can be regarded
to form an oval-shaped pattern around qx ≈ 0, unlike the
prior leaf-like patterns. The radius of the outer circle (inner
oval) shape is directly related to the scattering between the
two dispersive Fermi arc k1

FA, and k2
FA (straight Fermi arc k3

FA

and dispersive Fermi arcs k1,2
FA ) at kz = 0 [see Fig. 3(b)]. For

tilted type-I case, k1
FA (k2

FA) gets flattened (curved) leading
to a more intense central line close to qx = 0 (an enlarged
leaf-like region) in the QPI profile [see Figs. 3(e) and 3(f)].
The inter-Fermi arc scattering further complicates the QPI
profile outside the oval-shaped region. For the overtilted
type-II case, bulk modes contribute to the scattering in
addition to the inter- and intra-Fermi arc scattering, giving
rise to a complex profile around qx ≈ 0 as well as at ±π [see
Figs. 3(i) and 3(j)]. However, a leaf-like QPI pattern is still
visible around qx ≈ 0.

For the untilted case, the LDOS oscillates with an overall
decaying profile along the z direction around the x = 0 re-
gion [see Fig. 3(c)]. One can find an accumulation of LDOS
along the x direction at z = 0 similar to the single WSM;
however, there now exists spatial variation in LDOS along
this direction, unlike for the single WSM. To be precise, the

LDOS oscillates around a mean finite value along x direction
from the impurity core [see Fig. 3(d)]. The LDOS with such a
constant average is due to the intra-Fermi arc scattering from
an idealized straight Fermi arc as also noticed for single WSM
in Fig. 1(c). The oscillations can be caused by the inter-Fermi
arc scattering that is necessarily absent for a single WSM.
Importantly, the inter-Fermi arc scattering in triple WSM re-
sults in such a notably different LDOS compared to double
WSM, where LDOS exhibits algebraic decay. The LDOS
decays more rapidly along the z direction as compared to x
direction referring to the fact that the angular LDOS profile
is substantially anisotropic [see Fig. 3(d)], stemming from
the anisotropic Fermi arcs. The above numerical findings can
be naively anticipated from the analytical findings [Eq. (22)]
such as δρ ∝ ei(kζ ′ −kζ )·r)(1/r − 1/r3) for χ = 0 and θζ

r = θζ ′
r .

With increasing tilt, the LDOS diminishes substantially
along the x direction away from z = 0 line [see Fig. 3(g)].
A careful observation suggests both the short-range and long-
range decays for LDOS could be related to the predominant
1/r and the subdominant 1/r3 decay as predicted in Eq. (22)
[see Fig. 3(h)]. The inter-Fermi arc scattering might cause
such a profile. A long-range oscillatory profile with r > 10
is observed for triple WSM as opposed to single and double
WSMs, which we attribute to the flat Fermi arc. For the
overtilted case, we observe a more extended LDOS profile,
especially we find a depletion of LDOS around the diagonals
x ≈ ±z for triple WSM is not observed in overtilted single
and double WSMs [see Figs. 3(k)]. Beyond this depletion the
LDOS profile is much more isotropic for overtilted than less
titled WSMs, reflected in the nearly isotropic LDOS profile
and rapid radial decay as observed for single and double
WSMs [see Figs. 3(l)].

D. Hybrid WSMs

We next examine impurity scattering for a hybrid phase
hosting type-I and type-II WNs simultaneously [10,14,99].
We consider single, double, and triple WSMs with the iden-
tity term n0 = t1 cos(kz − ψ1) + t2 cos(2kz − ψ2). Here the
pseudospin independent first- and second-nearest-neighbor
hopping along z direction are denoted by t1 exp(−iψ1) and
t2 exp(−iψ2), with ψ1,2 modeling a flux modulation of the
hopping. Due to the hybrid nature, the Fermi arc now extends
between a type-I right-side WN at kc = (0, 0, π/2) and type-
II left-side WN at kc = (0, 0,−π/2) through the bulk modes
[see Figs. 4(a), 4(e), and 4(i)]. The number of Fermi arcs is
again determined by the topological charge of the WNs. Note
that this hybrid phase does not support any straight Fermi arc,
in contrast to the untilted type-I phase.

Let us first discuss the hybrid phase for a single WSM.
The nonflat dispersive Fermi arc leads to a leaf-like QPI pro-
file. Interestingly, the nonsymmetric nature of the Fermi arc
with respect to kx and kz causes a deformed leaf-like profile,
with its boundary around qx ≈ qz near origin (qx, qz ) = (0, 0)
substantially pronounced [see Fig. 4(b)]. The scattering from
bulk modes is also present; however, we find that intra-Fermi
arc scatterings are predominant. For hybrid double WSM,
the deformed leaf-like structure is oriented at an angle with
respect to the qz axis [see Fig. 4(f)], although the angle is
different compared to the hybrid single WSM. We attribute the
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FIG. 4. Hybrid WSMs. We repeat Fig. 1 for hybrid WSMs,
where the Fermi arcs are shown in (a), (e), and (i). Top row show
hybrid single WSM, middle row hybrid double WSM, and bottom
row hybrid triple WSM. The Fermi arcs are in contact (not in contact)
with the bulk modes for the type-II (type-I) WNs as depicted in (a),
(e), and (i). We find rotated QPI profiles in all of the hybrid WSMs as
compared to the earlier type-I and type-II WSMs. The LDOS varies
diagonally along x = ±z direction, unlike the previous cases. An
oscillatory profile in addition to the algebraic decay becomes visible.

leaf-like structure to the absence of the intra-Fermi arc scat-
tering, which is similar to the previous cases with single and
double WSMs. However, we note that the leaf-like structure
notably rotates in momentum space, in contrast to the previous
type-I and type-II phases showing a leaf-like structure formed
along the qz axis around qx ≈ 0. For hybrid triple WSM,
in addition to the intra-Fermi arc scattering, inter-Fermi arc
scattering leads to finite QPI intensity also along the qx axis at
qz = 0 [see Fig. 4(j)]. A rotated oval-shaped QPI profile along
the axis qx = −qz is observed with finite scattering momenta
qx 	= 0 around qz ≈ 0. The bulk modes also participate in
building up the background profile for QPI, more and more
prominently with increasing topological charge.

We remarkably find an accumulation of LDOS around the
diagonal along x = −z(x = z) direction for hybrid WSMs
with topological charge unity (two and three) [see Figs. 4(c),
4(g), and 4(k)]. And we find a strong suppression of LDOS
along the x direction around z = 0 line for all three instances.
This is caused by the QPI profiles in momentum space that
are more pronounced along the diagonal orthogonal to the
real-space LDOS profile. A similar orthogonality was seen for
the nonhybrid WSMs. However, the LDOS structure obtained
from the previous nonhybrid WSMs instead showed deple-
tion along the diagonals. This difference is due to the fact
that one edge of the leaf-like structure is more pronounced
than the other edge for hybrid WSMs, while they are equally
pronounced for the nonhybrid WSMs. We also note that the
resulting orientation of the QPI profiles is opposite between
single and double WSMs in the hybrid phase, which can be
traced back to the different curvatures of the Fermi arcs. With
increasing the topological charge further, the amplitude of the

diagonal LDOS becomes suppressed [see Fig. 4(k)]. Some
oscillations in the LDOS exists, but it quickly decays with
radial distance, corroborating theoretical prediction for tilted
WSMs, in hybrid WSMs irrespective of the topological charge
[see Figs. 4(d), 4(h), and 4(l)].

E. TRS invariant and broken pure single WSMs

We next compare TRS invariant and broken WSMs. For the
former we consider (n0, nx, ny, nz ) = (t0 cos kz, 1 − cos2 kx −
cos ky − cos kz, sin ky, cos kz ) that respects TRS, generated by
K (complex conjugation) but breaks IS, generated by σx,
leading to two pairs of WNs at kc = (±π

2 , 0,±π
2 ) [97]. For

the TRS broken case, in order to match with the four WNs
with the TRS invariant case, we consider the TRS broken
single WSM, already described previously, but now with
mz = 0. This results in four WNs at kc = (0, π,±π

2 ) and
kc = (π, 0,±π

2 ). Note that there were two WNs for mz = 2
used in Fig. 1.

Having established the same number of WNs for both the
TRS invariant and broken case, we can compare their scatter-
ing responses. First we plot their Fermi arcs in the untilted
case [see Figs. 5(A-a) and 5(B-a)]. We find two Fermi arcs
of opposite chiralities for both models. For the TRS-broken
WSM, we find that one of the Fermi arcs is connected across
the BZ, unlike the TRS invariant case where both the Fermi
arcs are connected within the BZ. To be precise, we find
k1[2]

FA = (kx = π/2[−π/2],−π/2 < kz < π/2) for the TRS
invariant case and k1

FA = (kx = 0, π/2 < kz < 3π/2), k2
FA =

(kx = π,−π/2 < kz < π/2) for the TRS broken case. The
QPI profiles for both these models look qualitatively similar
around qx ≈ 0, as expected when kin and kout share the same
set of values of kx. On the other hand, the QPI profiles look
different around qx ≈ π as kin and kout contains different
set of kx separated by π . Based on the results for single
WSMs, we attribute the above characters to intra- and inter-
Fermi arc scattering for qx ≈ 0 and qx ≈ π , respectively [see
Figs. 5(A-b) and 5(B-b)]. The difference at qx ≈ π for the two
cases is that the QPI intensity vanishes at (qx, qz ) = (π, 0)
only for TRS broken case, due to an absence of scattering
between the surface projection at kc = (0,±π/2) and kc =
(π,±π/2) of bulk WNs with the same chirality. This prohibi-
tion of scattering between the same chirality WNs also causes
the vanishing profile of the QPI at q = (0,±π ) [q = (π,±π )]
for both the models [only TRS invariant model].

With increasing tilt, the Fermi arcs bend identically (oppo-
sitely) for TRS broken (invariant) WSMs [see Figs. 5(A-e)
and 5(B-e)]. This causes the recurrence (disappearance) of
the leaf-like pattern around qx ≈ ±π for TRS broken (in-
variant) case [see Figs. 5(A-f) and 5(B-f)]. To be precise,
the QPI intensity appears (vanishes) over the line qx = ±π

for TRS broken (invariant) WSM. Instead the TRS invariant
case shows intensity at smaller but finite qx. The vanishing
intensity of the QPI profile at (0,±π ) and (±π, 0) is similarly
observed for the tilted case as well. For the overtilted case
where Fermi arcs terminate into the bulk, the QPI instead
exhibits a vertical leaf-like structure for the TRS invariant
case more prominently as compared to TRS broken case [see
Figs. 5(A-j) and 5(B-j)]. The leaf-like QPI profile is not al-
ways observed for curved Fermi arc doublet when TRS is

054201-11



XIONG, HE, LIU, BLACK-SCHAFFER, AND NAG PHYSICAL REVIEW B 109, 054201 (2024)

FIG. 5. TRS invariant single WSM (A) and TRS broken single WSM (B). We repeat Fig. 1 for for TRS invariant and broken single WSMs,
where the Fermi arcs are shown in (a), (e), and (i). Top row shows untilted case with t0 = 0, middle row moderate tilted case with t0 = 0.5, and
bottom row overtilted case with t0 = 1.2. We find one Fermi arc out of two lying within (across) the BZ for TRS invariant (broken) WSM. The
QPI profile around qx ≈ ±π for the tilted cases in (A-f) and (A-j) can be distinguished from (B-f) and (B-j). The angular nature of LDOS and
radial decay profiles are also different as shown in (A-g), (A-k), (B-g), (B-k) and (A-h), (A-l), (B-h), (B-l). We find rapid radial oscillations in
LDOS around a finite (vanishingly small) averaged value referring to the presence of inter-Fermi arc scattering for untilted (tilted) cases.

preserved [see Fig. 5(A-f)]; this is in contrast to Fig. 1 where
the leaf-like QPI pattern appear in presence of a single curved
Fermi arc and in absence of TRS.

Now turning to the spatial LDOS profile, we find that TRS
invariant and broken WSMs behave in a qualitatively similar
manner for all tilts [see Figs. 5(A-c), 5(g), and 5(k) and 5(B-c),
5(g), and 5(k)]. However, there exist some differences. This is
in contrast to the momentum-space QPI profiles that behave
quite distinctly for the above two models. With increasing
the tilt, the LDOS profile builds up away from the z = 0
line for both models referring to the fact that LDOS behavior
is not sensitive to the bending characteristics of Fermi arcs.
For the untilted case, we find rapid oscillations in x over the
z = 0 line, which we attribute to the inter-Fermi arc scattering
between the straight Fermi arcs [see Figs. 5(A-d) and 5(B-d)].
Note that the LDOS oscillates around a constant finite average
that could be considered as a signature of intra-Fermi arc
scattering from the idealized straight Fermi arc also found
for single WSM in Fig. 1. The oscillation period is related
to qx ≈ π while the mean average value might be related
to qx ≈ 0. Interestingly, when the tilt strength is moderate,
the LDOS decays rapidly close to the impurity core while a
slower decay is observed for a larger distance [see Figs. 5(A-
h) and 5(B-h)]. This double decay nature may be related to
the inter-Fermi arc scattering where 1/r3 and 1/r decay are
obtained analytically in Eq. (22) for the radial decay profile in
a triple WSM. However, the clear evidence of 1/r3 decay is
yet to be examined in the future, as is the applicability to TRS
invariant WSMs. Long-distance oscillations are observed here
similar to the triple WSMs as shown in Fig. 3(d) indicating
the presence of the inter-Fermi arc scattering between the
curved Fermi arcs. For the overtilted type-II case, the LDOS
decay quite rapidly similar to the type-I phase; however, the

oscillations are significantly suppressed as compared to other
tilted type-I cases [see Figs. 5(A-l) and 5(B-l)]. Comparing
to Fig. 1 with a single Fermi arc, we find repeated leaf-like
patterns in Fig. 5(B) due to the Fermi arc doublet while both
the models break TRS.

F. TRS broken and invariant hybrid single WSMs

Finally, we examine the hybrid case when consider-
ing the TRS broken and invariant WSMs discussed in the
last subsection. For this purpose, we replace t0 cos kzσ0 →
[t1 cos(kz − ψ1) + t2 cos(2kz − ψ2)], with t1 = t2 = 0.5 and
ψ1,2 = π, π/2 in the previously discussed hybrid single
WSM in Sec. IV D. For the TRS invariant WSM, the Fermi
arcs, connecting WNs at kc = (π/2, 0,±π/2) and kc =
(−π/2, 0,±π/2), bend oppositely with respect to each other
[see Fig. 6(a)]. The bulk modes are also visible around
kx = ±π/2 with kz = −π/2. The Fermi arcs for TRS bro-
ken WSM, connecting WNs at kc = (0, π,±π/2) and kc =
(π, 0,±π/2), bends identically [see Fig. 6(e)]. The bulk
modes are also visible around kx = 0, π with kz = −π/2.
The QPI profiles in the hybrid phase for both cases closely
resemble their behavior in the type-I phase with moderate tilt
as shown in Figs. 5(A-f) and 5(B-f).

A leaf-like structure appears around qx ≈ 0 for both the
models, while around qx ≈ ±π , the QPI shows different
patterns for TRS invariant and broken hybrid WSMs [see
Figs. 6(b) and 6(f)]. This profile is mainly caused by the
scattering from the bulk modes, connected with two Fermi
arcs in addition to the scattering between the Fermi arc surface
modes. Moreover, the QPI profile vanishes around qz ≈ ±π

(qz ≈ 0) for qx ≈ ±π in the case of TRS invariant (bro-
ken) hybrid WSM. This we attribute to the absence of the
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FIG. 6. TRS invariant and broken hybrid single WSM. We repeat
Fig. 1 for TRS invariant (top row) and broken hybrid single WSMs
(bottom row). The Fermi arc connectivities are different for these two
models as shown in (a) and (e). The QPI profiles around qx ≈ ±π ,
the LDOS structure around the impurity core, and the radial decay
characteristics also vary for these two cases.

inter-Fermi arc scattering between the same chirality WNs.
A close inspection suggests that QPI profile becomes convex
(concave) oscillatory around qx ≈ ±π unlike the central leaf-
like pattern around qx ≈ 0 for TRS invariant (broken) hybrid
single WSM.

We find a substantial variation in the LDOS along the
diagonals x = ±z for both cases, but, the amplitudes of the
LDOS decay quicker for TRS invariant case compared to the
broken counterpart [see Figs. 6(c), and 6(g)]. Such an angular
variation is dominated by the type-II nature of the WNs and
the scattering between the bulk modes. When compared with
the hybrid single WSM with broken TRS, shown in Fig. 4(c),
we find prominent LDOS structure only along x = −z due
to the intra-Fermi arc scattering within a single curved Fermi
arc. In contrast, in the present case, inter-Fermi arc scattering
between two different curved Fermi arcs leads to a double di-
agonal structure of LDOS. The LDOS decays very fast along
the x and z directions for the TRS invariant case as compared
to the TRS broken hybrid single WSM [see Figs. 6(d) and
6(h)]. We additionally find different angular and radial varia-
tions of LDOS around the impurity for these two models that
are evident from the microscopic LDOS distribution shown
[see Figs. 6(c) and 6(g)].

V. DISCUSSION, CONCLUSION, AND OUTLOOK

In this paper we consider a localized surface impurity in
order to analyze the structure of the Fermi arc in (kx, kz )
plane to provide signatures to distinguish a range of different
WSMs. In particular, we consider single, double, and triple
WSMs, type-I and type-II, as well as hybrid WSMs, and also
both TRS invariant and broken WSMs. We primarily focus
on the QPI profile, obtained using the T -matrix formalism,
in momentum space spanned by (qx, qz ) ∈ kin − kout. In other
words, our study aims at extracting the Fermi arc momenta out
of intriguing QPI profiles, and thereby also the type of WSM.
We also examine the real-space modulation of LDOS on the
top surface that is obtained by Fourier transforming the QPI

profile. To be precise, our study reveals the angular and radial
(θ, r) variations of LDOS away from the impurity.

As a first step, we study single, double, and triple WSMs
where the number of Fermi arcs increases with topological
charge n = 1, 2, 3, respectively. Here we are able to partly
analyze the LDOS profile analytically, considering an approx-
imate low-energy Hamiltonian. We find a universal 1/r decay
as a signature of the WSM, where there exist additional 1/rn

corrections for n > 1 for topological charge greater than unity
[see Eqs. (20)–(22)]. By also studying a more accurate lattice
model of these WSMs, we find that inter-Fermi arc scat-
tering appears only for triple WSM, while only intra-Fermi
arc scattering is present for single and double WSMs (see
Figs. 1–3). We might therefore qualitatively attribute inter-
Fermi arc scattering to the special 1/r3 decay for LDOS in
triple WSM found analytically. On the other hand, intra-Fermi
arc scattering can be captured by 1/r decay. These decay
profiles are in addition associated with a periodic angular
dependence.

Moving on to the momentum space profile, which we
extract numerically, we find that the QPI acquires mini-
mum intensity at (qx, qz ) = (0, 2kp

z ) indicating the surface
projection of WNs at (kx, kz ) = (0,±kp

z ), regardless of the
topological charge or the tilt of type-I WSM. Furthermore,
a straight Fermi arc leads to the straight-line feature in QPI,
while curved ones give rise to a leaf-like feature, with its
vertical width and horizontal length reflecting the maximum
momenta dispersed for the Fermi arcs along kx and kz direc-
tion, respectively. Importantly, the inter-Fermi arc scattering
leaves its marked signature along qx around qz ≈ 0 that is
clearly present (absent) for triple (single and double) WSM(s).
The vertical QPI structure along qx away from qz = 0 can also
considered as an identification for type-II WSMs as compared
to type-I WSMs. Finally, for overtilted type-II cases, the bulk
modes add a strong background signal on top of the above
QPI structure from the Fermi arcs. Interestingly, for the nu-
merically extracted impurity-induced change in the LDOS, we
observe a nonzero LDOS along the x direction, clearly noticed
for the untilted single WSM, where only one straight Fermi
arc exists along kz. This LDOS starts to oscillates along x
direction around a finite mean value, as noticed for untilted
triple WSM, where straight as well as curved Fermi arcs
both are present. A characteristically different variation in the
LDOS along x direction is found for untilted double WSM
where there exist no straight Fermi arcs. We can hence antic-
ipate that a straight Fermi arc causes a constant (oscillatory)
LDOS in the transverse direction in the absence (presence) of
inter-Fermi arc scattering. The above special behavior can be
naively understood from the spatial dependence of the LDOS,
considering the phase factor ei(kζ ′−kζ )·r with θζ

r = θζ ′
r , χ = 0

and ignoring the radial decay, that are obtained analytically
in Eqs. (20)–(22). However, we note that further studies are
required in order to understand the accurate decay nature of
LDOS and connect them with the intra- and inter-Fermi arc
scattering.

As a next step we extend our analysis to the hybrid phase
where one WN is type-I and its chiral partner is type-II
such that pocket-like and point-like Fermi surfaces coexist
(see Fig. 4). In this case we find a leaf-like structure due
to the curved Fermi arc. However, a uniform leaf-like QPI
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profile is not observed as for the nonhybrid cases, rather it
is substantially strong only along one edge around qx ≈ qz.
This is markedly different compared to the nonhybrid WSMs,
where the leaf-like structure is uniformly visible. With in-
creasing topological charge, Fermi arcs of opposite curvature
contribute to the rotated leaf-like QPI profile. Therefore, hy-
brid double and triple WSM can be distinguished from their
nonhybrid counterparts as far as the orientation of the leaf-like
structure is concerned. Again, we find signs of inter-Fermi arc
scattering only for hybrid triple WSM, as evident from the
QPI profile along qx around qz ≈ 0. Interestingly, the corre-
sponding LDOS builds up diagonally in the hybrid phases,
instead of vertically for the nonhybrid cases. However, higher
topological charge leads to a rapid decay as consistent with
the analytical findings.

We then turn to QPI profiles for TRS invariant and broken
WSMs. Here we compare cases where they both have four
WNs (see Fig. 5). The absence of scattering between the
same chirality WNs, residing on two different Fermi arcs,
leads to a unique QPI profile in the qx = π region. This
allows us to track the position and chirality of the WNs in
the BZ. A tilt causes the leaf-like profile in the QPI to show
up differently around qx = ±π and qz = ±π for the TRS
invariant and broken WSMs. Interestingly, for the TRS broken
single WSM with two WNs, the leaf-like QPI profile only
appears around qx ≈ 0, thus rendering a qualitative difference
for TRS broken WSMs with different number of WNs. The
LDOS for the untilted WSMs behaves similarly, irrespective
of their TRS broken and invariant nature. This can be under-
stood qualitatively from the low-energy surface Hamiltonian
derived analytically around an isolated WN. However, we
can distinguish TRS invariant from broken WSMs with tilt
by the microscopic details of the LDOS structure. Addition-
ally, we analyze the TRS broken and TRS invariant hybrid
WSMs where two WNs are of type-II and the other two
correspond to type-I (see Fig. 6). The QPI profiles around
qx = ±π are distinct, caused by the inter-Fermi arc scat-
tering, for the two types of WSMs. The leaf-like profile
around qx = 0 is the signature of scattering within the same
curved Fermi arc. The diagonal variation of LDOS provides
another distinct signature. Both WSMs show inter-Fermi arc
scattering that can be responsible for rapid radial decay;
however, this needs to be analyzed in the future with great
detail.

Having demonstrated the intra- and inter-Fermi arc scatter-
ing in many different models, we commonly find that the latter
can be present for IS broken as well as in preserved cases. For
example, pure and hybrid double WSM models (see Figs. 2
and 4), considered here, break the IS, i.e., Ph(k)P−1 	= h(−k)
with P = σz and do not support inter-Fermi arc scattering.
By contrast, pure and hybrid triple WSMs both exhibit inter-
Fermi arc scattering while the former (latter) respects (breaks)
IS. Notice that all the hybrid cases we consider break IS due to
the identity term, while pure single and triple WSMs preserve
IS. Therefore, we find that inter-Fermi arc scattering is not
directly related to the IS of the model, rather the details of
the band structure might be responsible for such scattering. It
would be an interesting future direction to more in detail in-
vestigate the origin of inter-Fermi arc scattering, for example
by considering other models.

We also need to point out that in our paper we are occa-
sionally considering Fermi arcs that are flat at zero energy
and nondispersive, which is clearly an idealized situation.
Problematic is that we find that such straight Fermi arcs
cause a constant impurity-induced LDOS profile or oscilla-
tory LDOS around a nonzero mean value depending on the
specific location of the Fermi arc. Such long-range LDOS
response is not a realistic for a localized impurity. Note that
we here only investigate the impurity-induced LDOS at zero
energy. We believe that there will be a depletion of LDOS
from finite energy to at least compensate in terms of total
amount of states in the system. Interestingly, finite tilt always
yields nonflat dispersive Fermi arc in our models, and there
we always find that the LDOS decays spatially away from the
impurity. We therefore attribute the nondecaying LDOS to the
pathologically flatness of the Fermi arc. Since Fermi arcs in
real materials are always at least slightly dispersive, we do
not expect this idealized, pathological case of nondecaying
LDOS to be experimentally present. Still, our results highlight
that for very flat Fermi arcs, very long-range impurity-induced
LDOS changes are expected. In this context, we also note that
the analytical technique adopted here is an effective approach
to obtain a closed-form expression for the radial decay of that
LDOS that can qualitatively hint towards it basic features.
However, more detailed microscopic analytical calculations
can be implemented in the future to estimate the quantitative
features.

Having discussed various findings on different WSMs, we
now also discuss the connections and limitations of T -matrix
approach, as far as the real experimental results are concerned.
First of all, we note that T -matrix approach is not a perturba-
tive approach [78] and we thus do not neglect any correction
terms that may alter the QPI profiles. Overall, the T -matrix
approach is valid if the impurities are sparse and they do
not interact among themselves, i.e., without any long-range
correlation among each other. Thus for clean sample with
only sparse impurities to generate the QPI profiles, our re-
sults should be experimentally relevant [100–102]. Moreover,
our QPI results from model calculations of a single WSM
closely resembles that of a recent first principle calculation
[86], further supporting the validity of our results. In partic-
ular we point out that different types of WSMs, exhibiting
various orientations and natures of Fermi arcs and bulk WNs
structures, can be experimentally distinguished as long as the
dilute impurity limit is applicable. For more dirty samples we
expect the leaf-like QPI profiles in Figs. 1–6 to get deformed
and randomly weighted with contributions coming from the
otherwise white regions due to complex scattering processes.
Finally, our results are also more accurate when the sample
size is relatively large such that in-plane momenta are well
defined. We have checked our main results using larger sam-
ples with a mesh up to size 800 × 800 and find no significant
corrections. Taken together, we expect that our lattice results
are robust and experimentally accurate in large sample with
low defect concentrations.

To summarize, our systematic investigations of momentum
space QPI and real-space LDOS shed light on the character-
istics of surface Fermi arcs in the WSMs. We summarize our
results in Table I. Given the fact that our results are based
on tight-binding models, we believe these QPI profiles can
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TABLE I. Summary of main findings on QPI and LDOS profiles in different WSMs.

WSM
Number of WNs
and charge

Number of
Fermi arcs

Inter-Fermi
arc scattering

QPI profile in presence of tilt
(apart from background blur)

Radial LDOS profile in presence of
tilt (apart from algebraic decay)

Single WSM
(Fig. 1)

2, ±1 1 no type-I: uniform leaf-like, type-II:
X-shape near origin

type-I: short-range oscillations,
type-II: no short-range oscillations

Double WSM
(Fig. 2)

2, ±2 2 no type-I: nonuniform leaf-like,
type-II: uniform leaf-like

type-I and type-II: no short-range
oscillations

Triple WSM
(Fig. 3)

2, ±3 3 yes type-I: inner over-shaped outer
circle-like, inter Fermi arc
scattering, type-II: weak leaf-like

type-I: oscillations around finite
mean, type-II: substantially
suppressed oscillations around zero
mean

Hybrid WSM
(n = 1, 2, 3)
(Fig. 4)

n, ±n n only n = 3 n = 1: nonuniform leaf-like,
n = 2: nonuniform tilted
leaf-like, n = 3: tilted
over-shaped

n = 1, 2: negligible short-range
oscillations, n = 3: substantially
suppressed short-range oscillations

TRS invariant
single WSM
[Fig. 5(A)]

4, ±1 2 yes type-I: nonrepeated leaf-like,
type-II: X-shape near origin and
presence of vertical leaf-like

type-I: rapid short-range
oscillations, type-II: substantially
suppressed short-range oscillations

TRS broken
single WSM
[Fig. 5(B)]

4, ±1 2 yes type-I: repeated leaf-like,
type-II: X-shape near origin and
absence of vertical leaf-like

type-I: rapid short-range
oscillations, type-II: substantially
suppressed short-range oscillations

TRS invariant
hybrid single
WSM (Fig. 6,
top row)

4, ±1 2 yes central leaf-like and boundary
convex oscillatory

substantially suppressed short-range
oscillations

TRS broken
hybrid single
WSM (Fig. 6,
bottom row)

4, ±1 2 yes central leaf-like and boundary
concave oscillatory

suppressed short-range oscillations

directly be verified by the STM experiments [103,104]. One
complication is that there often exist multiple WNs in most
real WSMs materials. Our findings are directly relevant when
two and/or four WNs are present close to the Fermi energy,
but some conclusions can also be drawn for more WNs based
on our results. Our study can also be extended to Dirac or
nodal semimetal to probe the surface states, with straightfor-
ward additional calculations. We have here considered only
spin-unresolved QPI and its associated LDOS structures for
WSMs, and the results are thus insensitive to the magnetic
nature of the impurity potential for all WSMs that already
break TRS. However, the effect of magnetic impurity on the
TRS invariant WSMs is an open future question. Moreover,
the effect of a surface impurity on the bulk physics of WNs
is another interesting point to investigate in presence of exter-

nal magnetic and electric fields. In particular, the connection
between the surface Fermi arc and the bulk chiral anomaly
effect in presence of impurity may be interesting, but clearly
go beyond our paper.
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