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Anomalous seismic data on Earth’s inner core have challenged our understanding of mineral physics for
decades. According to recent ab initio studies, bcc Fe may be a key to solving this long-standing problem.
However, simulating the bcc phase requires an enormous supercell, a long simulation time, and a prohibitive
computational cost. Consequently, available information about bcc Fe is very limited. Herein, we introduce a
more convenient approach for investigating the rheological and mechanical properties of the bcc structure under
deep-Earth conditions. Since bcc Fe behaves similarly to a liquid system while remaining within the solid state,
we treat it as a hard-sphere glass former in the elastically collective nonlinear Langevin equation theory. On
that basis, we can readily evaluate the contribution of local and nonlocal interactions to the motion of atoms
at various packing fractions. To consider finite-temperature and hydrostatic-pressure effects, we utilize the
statistical moment method. The mentioned strategy enables us to determine the diffusivity, viscosity, and rigidity
of bcc Fe without strenuous computational efforts. In addition, we discover a close connection between the glass
and superionic transitions. Our theoretical calculations agree quantitatively well with cutting-edge large-scale
molecular dynamics simulations. Therefore they would be valuable for unlocking the mysteries of Earth’s inner
core, such as the low shear resistance, the high Poisson ratio, and the strong seismic-wave attenuation.

DOI: 10.1103/PhysRevB.109.054112

I. INTRODUCTION

Earth’s inner core (IC) has become one of the most fas-
cinating research topics for geophysicists since 1936 [1–3].
Although this small solid ball currently occupies less than 1%
of the volume of our home planet [4], it profoundly affects
Earth’s dynamics, evolution, and habitability [5]. Specifically,
the slow but continuous growth of the IC promotes the vigor-
ous convection of liquid alloys in Earth’s outer core (OC) by
releasing fusion enthalpies and light elements [6]. This mech-
anism is chiefly responsible for powering and maintaining
the magnetosphere, which protects living creatures from fatal
solar winds [7]. Besides, the heat extracted from Earth’s core
is a crucial energy source for the fluidlike circulation of the
silicate mantle [8]. It should be stressed that mantle convec-
tion plays an essential role in driving geological processes at
Earth’s surface, such as plate tectonics, earthquakes, erosion,
and volcanism [9–11].

The above results have motivated a host of investigations
into minerals under extreme pressure-temperature (P-T ) con-
ditions to yield a deeper insight into the geophysical properties
of the IC [12–14]. In that context, Fe is considered the leading
object of study because this transition metal makes up more
than 80% of the weight of Earth’s core [15]. Accurate infor-
mation about the stability, rheology, and elasticity of Fe is
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indispensable for elucidating the past, present, and future of
the IC as well as the Earth [16–19].

The prevailing view among geophysicists is that the
most stable structure of Fe in the IC environment (P =
330−360 GPa and T = 5000−7000 K) is the hcp lattice
[20–23]. On the computational side, this point of view has
been actively supported by the substantial body of ab initio
calculations. Based on the ab initio thermodynamic integra-
tion (AITI) and the ab initio molecular dynamics (AIMD),
González-Cataldo and Militzer [24] demonstrated that hcp Fe
would have the lowest Gibbs energy among possible poly-
morphs in a pressure interval from 300 to 5000 GPa. Their
findings were highly consistent with the quantum-mechanical
simulations of Vocadlo et al. [25], Sun et al. [26], Wu et al.
[27], and Kruglov et al. [28]. Notably, Zhang et al. [29]
discovered the strong collective motion of Fe atoms in the
premelting region of the hcp phase by combining the AIMD
and the machine-learning molecular dynamics (MLMD). This
exciting phenomenon helped explain the strange mechanical
responses of the IC satisfactorily [29]. On the experimental
side, both static and dynamic data have shown the stabil-
ity of hcp Fe in planetary cores. Relying on the extended
x-ray absorption fine structure spectroscopy, Ping et al.
[30] observed the appearance of an 11-coordinated phase in
shock-compressed Fe samples from 90 to 560 GPa. This coor-
dination number aligned with the formal atomic arrangement
of hcp Fe with 12 nearest neighbors per site [30]. Likewise,
Kraus et al. [31] performed x-ray diffraction measurements
on ramp-compressed Fe systems, and they only detected the
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melting signatures of the hcp structure between 300 and
1000 GPa. The dominance of hcp Fe had also been confirmed
by the diamond-anvil-cell (DAC) experiments of Boehler et al.
[32], Anzellini et al. [33], and Sinmyo et al. [34] despite great
uncertainty about the location of melting points Tm.

However, using hcp Fe alone is insufficient to model the IC
interior. The situation leads to an intriguing hypothesis that the
IC may simultaneously contain hcp and bcc phases [35–37].
Even though the intrinsic stability of bcc Fe is very contro-
versial [38–41], this material still has a chance to exist in the
IC for the following three reasons. First, it is well-known that
the solid IC is formed via the bottom-up crystallization of the
liquid OC [2]. Yet, liquid Fe is unlikely to transform into hcp
Fe directly because this process necessitates an impractical
degree of undercooling (about 1000 K) [42]. A more reason-
able hypothesis is to consider that the nucleation occurs via
the two-step scenario of Sun et al. [43] as liquid→bcc→hcp.
Hence, there is a possibility that bcc Fe would appear within
the metastable state under IC conditions [35]. Second, apart
from Fe, the IC also contains a significant amount of S, Si,
and Ni [15]. These chemical elements are often viewed as a
bcc stabilizer in terms of thermodynamics [44,45]. Namely,
Ozawa et al. [46] indicated that Fe-S alloys would decompose
into bcc and hcp parts at P � 250 GPa. A similar picture was
also found in the subsequent DAC investigations into Fe-Si
binaries of Tateno et al. [47]. In that spirit, Ikuta et al. [48]
continued to investigate Fe-Ni-Si ternary alloys via the DAC
technique, thereby highlighting the decomposition of these
systems to hcp-bcc mixtures in harsh P-T environments. The
mentioned experiments [46–48] have received considerable
support from various ab initio calculations [49–51]. Thus the
thermodynamically stable coexistence of hcp and bcc struc-
tures is a possibility that should be carefully considered when
modeling the IC interior. Third, the bcc inclusion promises to
open a fruitful avenue for deciphering Earth’s enigmas. For
instance, it is viable to utilize the bcc phase to deal with the
nucleation paradox [43], the hemispherical dichotomy [37],
the elastic anisotropy [36], and the structural complexity [35]
of the IC. Additionally, since bcc Fe possesses the unique
features of both crystalline and molten metals [52], its appear-
ance would be beneficial to answer why the IC exhibits sharp
seismic attenuation and poor shear resistance [53].

These remarkable discoveries have sparked a strong in-
terest in bcc Fe in the geophysical community. One can
readily find valuable information about its thermodynamic,
electronic, and magnetic characteristics in the recent ab initio
reports of Bouchet et al. [54], Pourovskii et al. [55], and
Gambino et al. [56]. Relevant machine-learning outputs are
also publicly accessible via the works of Ghosh et al. [57]
and Brannvall et al. [58]. Therefore the remaining issue is to
illuminate the liquid-like rheological and mechanical behav-
iors of bcc Fe. According to Belonoshko et al. [59,60], the
above behaviors are mainly decided by the superionic self-
diffusion of Fe atoms in the bcc lattice. An enormous supercell
with at least 1024 atoms is required to generate and maintain
the superionic state in bcc Fe [39,41], where the sliding of
crystallographic planes is analogous to shuffling a deck of
cards. If not, the bcc architecture will be rapidly destroyed
by deviatoric stresses [39,41]. More seriously, one may need
to scrutinize millions of atoms over a long period to reach

the convergence of physical quantities [59]. These demanding
requirements make the simulation of diffusivity, viscosity, and
elasticity arduous. For example, to unambiguously determine
the AIMD elastic constants of bcc Fe at Earth’s center, Be-
lonoshko et al. [60] used 16 fat nodes with a memory of 384
GB at the Tetralith—the most powerful supercomputer cluster
in Sweden. Despite possessing state-of-the-art computational
tools, they still had to make a massive investment of time and
effort in completing their project [60]. Up to five weeks of
computer time were necessitated to capture the mechanical
response of a 2000-atom supercell to each applied strain [60].
As an inevitable consequence, available data on superionic
bcc Fe remains particularly scarce while they are vital for
designing geodynamic models.

Herein, we aim to improve this predicament by develop-
ing a combined theoretical approach for reliably predicting
the liquid-like behaviors of bcc Fe at minimal computational
expense. Our ideas originate from an intimate connection
between a superionic crystal and a glass former. Fundamen-
tally, both of them are intermediate between solid and liquid.
Hence, their physical properties are expected to be much the
same. Indeed, Gray-Weale and Madden [61,62] pointed out
numerous phenomenological resemblances between fluorite-
structured superionic conductors and atomic-disordered su-
percooled liquids, such as the violation of Arrhenius’s law
[63] for transport coefficients, the presence of abnormal peaks
in heat-capacity profiles, the two-step relaxation of time-
correlation functions, and the validity of the Adam-Gibbs
model [64] for mobility-entropy relationships. Zhang et al.
[65,66] also achieved the same conclusion after carrying out
classical molecular dynamics simulations on UO2 with the
embedded atom method (EAM). Besides, the vitrification
and superionic temperatures are very close to each other.
Phan et al. [67] applied machine-learning algorithms to about
100 amorphous pharmaceuticals and saw that they would be
vitrified at T ≈ Tm/1.4. An identical trend was also found
in semiempirical investigations into halide and oxide com-
pounds, where the superionic transition would typically occur
at T ≈ Tm/1.3 [68–70]. These results have offered us an at-
tractive prospect of dealing with complicated problems about
superionicity via available knowledge of glassy dynamics.

It is worth noting that the underlying physics of glass-
forming substances can be quantitatively understood via the
elastically collective nonlinear Langevin equation (ECNLE)
theory [71–74]. In the ECNLE, a hard-sphere fluid is uti-
lized as a general reference system for every material [71,72].
On that basis, scientists can readily analyze the impact of
local and collective interactions on the structural relaxation
of molecules at various time scales (from picosecond to
hectosecond) [71,72]. Specific information about the studied
object (e.g., molar mass and particle diameter) is encoded
in a chemical mapping [73,74], which converts the packing
fraction � to the hydrostatic pressure P and the absolute
temperature T . The success of the ECNLE has been con-
tinuously recorded in many cases, including thermal liquids
[75], polymer melts [76], amorphous drugs [77], glassy
graphene [78], and metallic glasses [79]. These impressive
achievements motivate us to extend the ECNLE to bcc Fe.
To construct the chemical mapping, we adopt the statisti-
cal moment method (SMM) and the work-heat equivalence
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principle (WHEP) [80]. The most prominent advantage of the
SMM-WHEP is that we can directly deduce the high-pressure
melting boundaries of metals from their room-temperature
equation-of-state (EoS) parameters without onerous computa-
tional processes [80]. Our theoretical calculations for bcc Fe
are comprehensively compared with cutting-edge simulations
and experiments. Their geophysical implications for the IC are
also discussed in detail.

II. THEORETICAL BACKGROUND

A. ECNLE reference system

The essence of the ECNLE is sketched in Fig. 1. As
introduced in the first section, any supercooled or supe-
rionic material can be mapped to an assembly of count-
less rigid spheres having the diameter σ and the density
ρ = 6�π−1σ−3 in the ECNLE [71,72]. To rapidly describe
the spatial arrangement of these spheres, we employ the well-
known Percus-Yevick approximation [81]. Namely, the direct
correlation function C(r) is explicitly expressed by [82]

C(r) =
{

3�(2 + �)2 r

σ
− (1 + 2�)2

[
�

( r

σ

)3
+ 2

]}

× �(σ − r)

2(1 − �)4 , (1)

where �(σ − r) is the Heaviside step function. Applying the
Fourier transform to Eq. (1) gives us

C(q) = 4π

q

∫ σ

0
C(r) sin (qr)rdr, (2)

where q is the wavevector. Based on Eq. (2), it is feasible
to calculate the static structure factor S(q) and the radial
distribution function g(r) by [83]

S(q) = 1

1 − ρC(q)
,

g(r) = 1 + 1

2π2ρr

∫ ∞

0
[S(q) − 1]q sin (qr)dq. (3)

FIG. 1. Illustration of the ECNLE reference system. Each atom
corresponds to a hard sphere whose motion is controlled by the
dynamic free energy Fdyn. When the tagged particle hops out of its
neighboring cage owing to the thermally activated event, it triggers a
long-range harmonic displacement field in the surrounding fluid.

Interestingly, according to Khrapak et al. [84], we can infer
the instantaneous shear modulus G from Eq. (3) as follows:

G = ρkBT

[
1 − 8

5
�σ lim

ε→0+

(
dg

dr

)
r=σ (1+ε)

]
, (4)

where the first and second terms represent kinetic and config-
urational contributions, respectively. For more convenience,
Eq. (4) is rewritten by

G = ρkBT

[
1 + 36

5

�2(1 + �)

(1 − �)3

]
, (5)

where kB symbolizes the Boltzmann constant.
To consider the molecular mobility of the afore-

constructed system, we adopt the nonequilibrium free-energy
method of Schweizer et al. [85–87]. Specifically, the in-
teraction between an arbitrarily tagged particle and its
surroundings is characterized by a dynamic quantity Fdyn as

Fdyn = Fideal + Fexcess. (6)

From a physical perspective, Fideal arises from the short-time
Fickian diffusion and promotes the delocalized fluid state. In
contrast, Fexcess denotes an entropic trapping potential, which
facilitates localization. Their analytical expressions are pro-
vided by [85–87]

Fideal = −3kBT ln
r

σ
, (7)

Fexcess = −kBT
∫

d �q
(2π )3

ρC2(q)S(q)

1 + S−1(q)
e− 1

6 q2r2[1+S−1(q)]. (8)

Figure 1 shows how Fdyn affects the motion of the tagged
particle. At � < 0.432, since Fideal overwhelms Fexcess, Fdyn

undergoes a monotonical reduction with increasing r [85–87].
This tendency implies that the tagged particle can readily dif-
fuse without kinetic constraints in dilute solutions. However,
when our system is dense enough (� � 0.432), a finite-
potential well with a depth of FB emerges in the dynamic
free-energy profile due to the enhancement of trapping ef-
fects [85–87]. Accordingly, the tagged particle is temporarily
confined in a local cage created by its nearest neighbors. For
simplicity, the cage radius rcage is approximated to be 1.5σ

[78]. The localization length rL and the barrier position rB are
determined by numerically solving the extremum condition
of Fdyn. From there, the local barrier height FB is given by
[85–87]

FB = Fdyn(rB) − Fdyn(rL ). (9)

After getting confined, the tagged particle tries to escape
from confinement via thermally activated hopping processes
[71,72]. It should be noted that the jump distance �r =
rB − rL is quite long on the cage scale. For instance, �r can
be up to 0.412σ at � = 0.64. Thus this escape perturbs the
surrounding fluid by generating a long-range distortion field
[71,72]. To quantify the displacement u(r) of particles outside
the cage, we use the Landau-Lifshitz continuity equation as
[88]

u(r) = �reff

( rcage

r

)2
, (10)
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where �reff ≈ 0.09375�r2r−1
cage indicates the expansion of

the first coordination shell [71,72]. Because u(r) is much
smaller than rL, it is reasonable to treat each shoved
particle as a harmonic oscillator with the Hooke con-
stant KL = (∂2Fdyn/∂r2)r=rL and the free-energy change
�Fdyn = KLu2(r)/2. This treatment helps us to quickly calcu-
late the total strain energy FE stored in the remaining elastic
medium by [71,72]

FE =
∫ ∞

rcage

4πr2ρg�Fdyndr

≈ 12��r2
eff

( rcage

σ

)3
KL, (11)

where g(r) ≈ 1 for r � rcage.
Now, it is conspicuous that the tagged particle needs to

overcome not only the local barrier FB but also the collec-
tive barrier FE to break out of the cage. The role of FB and
FE in structural relaxation crucially depends on the packing
fraction � of the system. As demonstrated by Mirigian and
Schweizer [71,72], FE is essentially negligible compared to
FB at � < 0.55. Nevertheless, when � exceeds 0.57, the
growth rate of FE becomes significantly faster than that of
FB. This event leads to the dominance of collective dynamics
near the glass transition point (�∗ ≈ 0.611) and explains why
glass formers exhibit non-Arrhenius behaviors during isobaric
cooling [71,72]. The mechanism is most likely also valid for
superionic crystals [65,66]. Relying on the above arguments,
we can estimate the average time for escape or the so-called
structural relaxation time τα via the modified Kramers theory
as [71,72]

τα = τs

[
1 + 2π√

KLKB

kBT

σ 2
exp

(
FB + FE

kBT

)]
, (12)

where KB = −(∂2Fdyn/∂r2)r=rB . Details about τs were exten-
sively reported in earlier ECNLE works [89–91].

Equation (12) enables us to investigate the rheology of
the hard-sphere fluid at different time scales spanning from
picosecond to hectosecond [71,72]. Indeed, the time depen-
dence of the mean square displacement 〈r2(t )〉 of the tagged
particle is described by

〈r2(t )〉 = �r2

τα

t . (13)

Similar to AIMD and quasi-AIMD simulations [59], the dif-
fusivity D is defined by

D = lim
t→∞

[ 〈r2(t )〉
6t

]
= �r2

6τα

. (14)

Notably, Belonoshko et al. [59] indicated that the diffusion of
Fe atoms in the bcc phase would be fully Brownian over a long
interval. This indication suggests that we can compute the
viscosity η by the Stokes-Einstein relation [92,93] instead of
the Green-Kubo formula [94,95] to save computational costs.
Therefore η is directly associated with D via

η = kBT

2πσD
. (15)

Numerical results derived from Eqs. (5), (12), (14), and (15)
are tabulated in the Appendix A. Emphasize again that these

results are universal. Applying them to a specific substance
necessitates an appropriate chemical mapping [73,74]. So,
how do we satisfy this requirement? A detailed answer is
presented in the subsequent section.

B. SMM-WHEP chemical mapping

Overall, there are two ways to link the ECNLE reference
system to an actual material.

(1) Constructing Schweizer’s mapping. In pioneering EC-
NLE works, Schweizer et al. [73] equated the Percus-Yevick
dimensionless compressibility with its experimental counter-
part to represent � as a function of P and T . This strategy
succeeded in capturing the glassy dynamics of numerous
thermal liquids [75] and polymer melts [76]. Notwithstand-
ing, Schweizer’s approach [73] is inapplicable in the current
situation. The primary reason is that EoS data for bcc Fe
in the superionic state are unavailable. As mentioned in the
introduction, conducting AIMD investigations into bcc Fe is
a grand challenge in the extreme P-T domain [39,41,59,60].
Consequently, we do not have enough information about the
isothermal compressibility of the superionic phase to build
Schweizer’s mapping. Besides, the analytical expression for
�(P, T ) [73] is quite bulky. It should be restressed that our
ultimate goal is to get a reliable description of bcc Fe with
minimal computational efforts. In that spirit, all mathematical
aspects of our theoretical model need to be as simple as
possible.

(2) Constructing Phan’s mapping. Lately, Phan et al. [74]
proposed a more viable solution for converting ECNLE out-
puts from the � space to the P-T one. Their principal idea
came from the thermal dilation of glass-forming liquids dur-
ing isobaric heating. On that basis, Phan et al. successfully
deciphered the structural relaxation of amorphous pharma-
ceuticals [77], graphene melts [78], and metallic glasses [79]
under various thermodynamic conditions, even when the EoS
parameters of these materials were entirely unknown. Their
ECNLE calculations were not only physically understandable
but also mathematically straightforward [77–79]. Hence, the
conversion from � to P and T merely took a few minutes
on a personal computer. The above advantages make Phan’s
method [74] the most suitable choice for our research.

In the case of bcc Fe, we have

�(P, T ) = �0{1 − β(P)[T − T0(P)]}, (16)

where �0 is the initial packing fraction, T0 is the initial
temperature, and β is the volumetric expansivity α times
the scaled particle density ρρ−1

0 . It is clear to see that T0 is
associated with the superionic temperature T ∗ via

T0(P) = T ∗(P) + 1

β(P)

�∗ − �0

�0
. (17)

Inserting Eq. (17) into Eq. (16) creates

�(P, T ) = χ (P)[T ∗(P) − T ] + �∗, (18)

where χ = �0β = πρ0σ
3β/6. Because σ only drops slightly

from 2.57 Å at 0 GPa [96] to 2.40 Å at 360 GPa [52], we
set σ = 2.57 Å throughout our analyses. Eq. (18) denotes the
final form of Phan’s mapping. This expression works best in
a P-T area enclosed by bcc-liquid and hcp-bcc boundaries.
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Accordingly, our task is to find how Tm and T ∗ vary under
hydrostatic compression.

Let us start with Tm first. To determine the melting proper-
ties of bcc Fe, we utilize the SMM-WHEP scheme of Cuong
and coworkers [80]. The SMM-WHEP scheme is built on the
fact that both mechanical deformation and heat absorption can
cause the liquefaction of crystals by breaking down chemical
bonds [97]. In other words, the work done when expanding
along isotherms and the heat absorbed when dilating along
isobars are equivalent [98–100]. This principle allows us to
access the high-pressure melting curve of metals via their
room-temperature EoS as [80]

Tm(P) = T1(P1) + [T2(P2) − T1(P1)]

√√√√ ∫ ξ

ξ1
P300K(ξ ′)ξ ′2dξ ′∫ ξ2

ξ1
P300K(ξ ′)ξ ′2dξ ′

,

ξ = ξ ′(P, 300 K), ξ1 = ξ ′(P1, 300 K),

ξ2 = ξ ′(P2, 300 K), (19)

where T1(P1) and T2(P2) stand for two reference melting
points. To simplify EoS-related integrals, we employ the Vinet
parametrization method [101], which is

P300K(ξ ′) = 3B0ξ
′−2(1 − ξ ′)e

3
2 (B′

0−1)(1−ξ ′ ). (20)

Whereas ξ ′ is the cube root of the normalized atomic volume,
B0 and B′

0 are the isothermal bulk modulus and its partial
derivative to pressure at standard conditions. Entering Eq. (20)
into Eq. (19) gives us

Tm(P) = T1(P1) + [T2(P2) − T1(P1)]

√
W (ξ ) − W (ξ1)

W (ξ2) − W (ξ1)
,

W (ξ ) =
[

1 + 3

2
(B′

0 − 1)(ξ − 1)

]
e

3
2 (B′

0−1)(1−ξ ). (21)

The accuracy of Eq. (21) was validated for benchmark met-
als whose melting lines were unambiguously reported up to
hundreds of gigapascals [80] (e.g., Al, Cu, and V). Especially
for hcp Fe, the SMM-WHEP [80] was proven to outperform
conventional semiempirical models (e.g., the Lindemann law
[102] and the Burakovsky theory [103]). To apply Eq. (21) to
bcc Fe, we extract P1 = 0 GPa, P2 = 5.2 GPa, T1 = 1811 K,
and T2 = 1991 K from the well-established low-pressure
phase diagram of Swartzendruber [104]. In addition, B0 =
198.76 GPa and B′

0 = 5.05 are deduced from solving the force
balance criterion with the moment recurrence technique in
quantum statistical mechanics [105–107]. The quality of these
Vinet parameters is verified in Appendix B.

Figure 2 depicts the impact of P on the growth of Tm. Ex-
perimentally, the existing data are strongly scattered, but we
can categorize them into three principal groups: (i) low-Tm, (ii)
intermediate-Tm, and (iii) high-Tm [Fig. 2(a)]. Group (i) chiefly
consists of the DAC data of Boehler et al. [32], Aquilanti et al.
[108], and Basu et al. [109], where Tm is expected to reach
4850 K at the OC-IC interface. Meanwhile, group (ii) is con-
structed from the DAC measurements of Jackson et al. [110],
Zhang et al. [111], and Sinmyo et al. [34], where Tm is pre-
dicted to be ≈ 5700 K at the bottommost OC. This Tm value
can increase by ≈ 250−700 K if one considers experimental
data in group (iii). Remark that group (iii) is the largest,
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FIG. 2. Our theoretical calculations for the melting temperature
of bcc Fe in comparison with previous experiments [31–34,108–115]
(a) and simulations [24,26,29,41,54,116–120] (b).

retaining a vast body of information supplied by Anzellini
et al. [33], Morard et al. [112], Li et al. [113], Turneaure
et al. [114], Hou et al. [115], and Kraus et al. [31]. Moreover,
group (iii) shows a concurrence between state-of-the-art static
and dynamic experiments, which is absent in group (i) and
group (ii). Thus it is widely believed that Fe would undergo
the solid-liquid transition at high temperatures [31,33,112–
115]. The low and intermediate melting points published in
prior DAC papers [32,34,108–111] may stem from carbon
contamination, plastic deformation, pressure overestimation,
or chromatic aberration [112,115].

Sharing the opinion of experimentalists in group (iii)
[31,33,112–115], most theorists recommend a steep melting
curve for Fe [Fig. 2(b)]. Specifically, Eq. (21) indicates that
Tm rises dramatically from 6452 K at 330 GPa to 11994 K
at 1500 GPa. Our SMM-WHEP analyses agree quantitatively
with earlier ab initio [24,26,54,116–119], quasi ab initio [41],
and machine-learning [29,120] simulations. The relative error
is less than 5% over most of the examined pressure range. This
number confirms that Eq. (21) is sufficiently accurate to place
the upper limit for the variable T in Phan’s mapping.
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Nevertheless, there is still an open question about the melt-
ing relation between hcp Fe and bcc Fe. Bouchet et al. [54]
suggested that hcp and bcc architectures would be liquified
under identical physical conditions. Unfortunately, their con-
clusion was drawn from the one-phase approach, so it may
be incorrect owing to superheating phenomena. In contrast
to the view of Bouchet et al. [54], Belonoshko et al. [41]
believed the melting temperature of bcc Fe would be 6%
higher than that of hcp Fe after performing quasi ab initio
free-energy simulations on unprecedentedly large supercells
with 16 000 000 atoms. Yet, their computational results re-
main debatable due to the limitations of the EAM potential.
Recall that the EAM parameters of Belonoshko et al. [41]
were derived from FPLMTO profiles at 0 K. An ad hoc
correction was required to add the electronic entropy to the
EAM free energy [41]. Therefore their EAM model may be
unsuitable for clarifying the difference between T hcp

m and T bcc
m

under the extreme heat of Earth’s core. Unlike Bouchet et al.
[54] and Belonoshko et al. [41], Sun et al. [26] argued that
the bcc-liquid equilibrium line should sit below the hcp-liquid
counterpart. The gap between these melting boundaries would
narrow from 189 K at 323 GPa to 173 K at 360 GPa [26].
Although the AITI calculations of Sun et al. [26] included the
contribution of both ions and electrons naturally, the finite-
size problem was not fully addressed. Consequently, more
efforts are necessary to settle the heated debate about the
melting transition of Fe at elevated pressures.

Next, we turn our attention to T ∗. On the experimen-
tal side, Hrubiak et al. [121] measured the variation of T ∗
during squeezing from 95 to 221 GPa by combining in-
situ and spatially resolved x-ray diffraction methods. On the
computational side, Belonoshko et al. [41] simulated the hcp-
bcc structural transformation of Fe at 120 and 360 GPa by
coupling the quasi-AIMD with the AIMD. A good agree-
ment between experiments [121] and simulations [41] was
achieved. That means we can exploit information from these
studies [41,121] to describe the T ∗ versus P correlation. Con-
spicuously, the hcp-bcc coexistence points of Hrubiak et al.
[121] and Belonoshko et al. [41] are well parametrized by the
Simon-Glatzel law as [122]

T ∗(P) = k1

(
1 + P

k2

) 1
k3

, (22)

where k1 = 1293 K, k2 = 17.17 GPa, and k3 = 2.29. By com-
paring Eqs. (21) and (22), we realize that the Tm-to-T ∗ ratio
approximately equals 1.35 in the fitting interval between 95
and 360 GPa, consistent with the machine-learning predic-
tions of Phan et al. [67].

More fascinatingly, it is practicable to deduce χ from T ∗.
Indeed, the pressure impact on the bulk dilation can be evalu-
ated via the Dass-Kumari formula as [123]

χ (P) = χ (0)

1 + B∗′
0

B∗
0

P.
(23)

Here, B∗
0 and B∗′

0 have the same physical meaning as B0

and B′
0, but they should be calculated at T = k1 instead of

T = 300 K. Relying on the dislocation-mediated phase-
transition theory [103,124,125], we can link B∗

0, B∗′
0 , and T ∗
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FIG. 3. ECNLE and AIMD estimations for the coefficient χ in
Phan’s mapping.

in the low-pressure regime as

T ∗(P) ≈ T ∗(0)

[
1 + B∗′

0 − 1

B∗
0

P + 1

B∗2
0

(
1

2
− 5

6
B∗′

0

)
P2

]
.

(24)

Simultaneously, by applying the Taylor-Maclaurin expansion
[126] to the Simon-Glatzel law [122], we have

T ∗(P) ≈ k1

(
1 + 1

k2k3
P + 1 − k3

2k2
2k2

3

P2

)
. (25)

Equating the coefficients of the above expressions results in

B∗
0 = k2k3

(√
1 + 24k3 + 5

)
6(k3 − 1)

, B∗′
0 = 6k3 + √

1 + 24k3 − 1

6(k3 − 1)
.

(26)

Continuing to enter Eq. (26) into Eq. (23) yields

χ (P) ≈ χ (0)

1 + 6k3+
√

1+24k3−1
k2k3(

√
1+24k3+5)P

. (27)

Equation (27) highlights an intimate connection between the
intrinsic superionicity and the thermal expansivity. To en-
sure consistency with previous ECNLE works, we choose
χ (0) = 6 × 10−4 K−1. The figure was obtained by fitting
Eq. (18) to Schweizer’s mapping for polystyrene, polycar-
bonate, polyisobutylene, and orthoterphenyl [75]. Due to the
difficulty in gathering EoS data, Phan et al. [74] proposed
that χ (0) would be constant for all soft-matter systems.
This assumption helped Phan et al. capture the molecular
dynamics of many drugs, polymers, and alloys in the super-
cooled state [77,79,127–129]. From there, we can expect that
χ (0) = 6 × 10−4 K−1 still works effectively for bcc Fe.

To reinforce our arguments, we compare Eq. (27) with

χ (P, T ) = π

6
σ 3ρ(P, T )α(P, T ), (28)

where the product of ρ and α is taken from the AIMD sim-
ulations of Bouchet et al. [54]. This comparison is detailed
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in Fig. 3. Fundamentally, χ is barely affected by finite-
temperature effects. Eq. (28) shows that χ climbs very slowly
from 1.18 × 10−5 to 1.20 × 10−5 K−1 when bcc Fe is iso-
barically heated from 4983 to 6681 K at 360 GPa. That
means we can ignore the thermal variation of χ in ECNLE
approximations.

Another noteworthy feature is that AIMD outputs are only
one-third of ECNLE counterparts at the IC center. Why does
this discrepancy occur? We believe that this is due to the
suppression of superionicity by the small cell sizes used by
Bouchet et al. [54]. Bouchet et al. [54] simulated the bcc
structure via a small supercell (128 atoms) with volume/shape
restrictions. Their approach caused superionic excitations to
be entirely suppressed, thereby underestimating the coeffi-
cient χ . As presented in Appendix C, there is a dramatic
increase in χ after switching from nonsuperionic to superionic
regimes. By considering the AIMD density-temperature pro-
file of typical Fe-based crystals [39,130–132], we find out that
χ often triples because of intrinsic superionicity. Interestingly,
it is possible to draw the same conclusion from available
experimental data for the thermal expansion of soft-matter
systems in glassy and supercooled states [133]. The listed ev-
idence corroborates the reliability of Eq. (27)—the last puzzle
piece to complete Phan’s mapping.

III. RESULTS AND DISCUSSION

A. Rheological properties

Figure 4 depicts how the mean square displacement of
bcc Fe changes over time at P = 360 GPa. In general, 〈r2〉
grows linearly with t at an arbitrarily given temperature be-
tween 6000 and 7000 K. This tendency is in stark contrast
to the case of hcp Fe, where 〈r2〉 is almost independent of t
[59]. More intuitively speaking, in the hcp phase, Fe atoms
primarily vibrate around their equilibrium positions. On the
other hand, in the bcc phase, Fe atoms become more diffusive
than usual. Hence, whereas hcp Fe acts like an ordinary solid,
bcc Fe behaves like an exceptional liquid. This perspective is
further clarified by analyzing the radial distribution function
in Appendix D.
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FIG. 4. The influence of temperature on the evolution of the
mean-square displacement of Fe atoms in the bcc lattice at 360 GPa.

FIG. 5. Our theoretical predictions of the rheology of bcc Fe
at the IC center. AIMD and quasi-AIMD data points [59] are also
plotted to verify the reliability of the ECNLE-SMM-WHEP model.

It should be noted that tracing the evolution of 〈r2〉 in the
bcc structure is a thorny issue in molecular dynamics compu-
tations. Take T = 7000 K as an example. The mean square
displacement does not converge until the number of atoms
reaches 128 000 [41]. Furthermore, if the simulation time
is shorter than 10 ps, the signatures of superionic diffusion
cannot be detected [59]. These stringent criteria cause the
cost of establishing the 〈r2〉-t relationship to be prohibitively
expensive.

Fortunately, the predicament we face here can be signifi-
cantly improved by the ECNLE-SMM-WHEP. This combined
theoretical approach helps accelerate computational processes
dramatically while preserving the necessitated accuracy.
Namely, it only takes us a few dozen minutes to finish
ECNLE-SMM-WHEP calculations on our laptops. Besides,
our numerical outcomes are in good accordance with the
computational results of Belonoshko’s group [59]. Recall that
Belonoshko et al. used up to 2 048 000 atoms to simulate
bcc Fe from 0 to 1000 ps with the aid of cutting-edge su-
percomputers [59]. With such treatment, the quality of their
quasi-AIMD outputs was strictly ensured since unexpected
finite-size and finite-time effects were safely eliminated [59].

Having determined the time variation of the mean square
displacement, we can effortlessly investigate the rheological
features of bcc Fe via Eq. (14), (15), and (18). Figure 5
illustrates how the diffusivity and the viscosity depend on
the inverse temperature at Earth’s center. Generally, while D
decreases sharply during isobaric cooling, η increases con-
siderably during the same process. If we raise T −1 from
0.133 × 10−3 to 0.196 × 10−3 K−1 at P = 360 GPa, D and
η will vary by about ten orders of magnitude. Our ob-
served trends align with the AIMD and quasi-AIMD data
given by Belonoshko and coworkers [59]. The slight differ-
ence between the ECNLE-SMM-WHEP and the AIMD at
T = 7000 K may stem from the finite-size problem. Admit-
tedly, the capability of current supercomputers is insufficient
to carry out AIMD simulations with more than 2000 Fe atoms
[39,41,52,59,60]. This technical limitation may lead to an er-
ror in computing D and η. More attempts are needed to obtain
a fully converged AIMD picture of bcc Fe under deep-Earth
conditions.
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FIG. 6. The viscosity of Fe along the solid-liquid coexistence
line gained from ECNLE-SMM-WHEP calculations, AIMD simu-
lations [136], and uniaxial deformation experiments [135].

A vital point to highlight is that the temperature depen-
dence of D and η does not obey the classical Arrhenius law
[63]. Near T ∗, a strong nonlinearity is recorded in the log-
arithm plot of these rheological quantities. So, what is the
root of the non-Arrhenius behaviors of bcc Fe? The answer
lies in its cooperative dynamics. Indeed, the collective barrier
FE grows at breakneck speed with reducing T [71–74]. This
phenomenon makes the structural relaxation switch from the
Arrhenius regime to the super-Arrhenius one when bcc Fe
shrinks along isobars. In addition, according to Stokes [92]
and Einstein [93], we have η ∝ D−1 ∝ τα . Thus it is under-
standable why the famed Arrhenius ansatz [63] is invalid in
the present circumstance. The breakdown of the Arrhenius
model reaffirms that there is a close analogy between super-
cooled and superionic materials. To be more specific, bcc Fe
is closely analogous to an intermediate glass-forming liquid
with a fragility index m∗ of 89.47 at the IC center (m∗ =
[∂ (log10 τα )/∂ (T ∗/T )]T =T ∗ [134]). Our theoretical findings
concur with previous phenomenological and computational
results [61,62,65,66].

Figure 6 shows how the viscosity of bcc Fe changes along
the melting curve, which is one of the most critical paths
to exploring Earth’s interior [31–34]. Overall, our considered
system is more and more viscous thanks to the positive con-
tribution of hydrostatic pressures. When P goes up from 100
to 360 GPa, η climbs by a factor of 9.46 from 0.93 to 8.80
kg m−1 s−1. Surprisingly, it is unlikely to find such low values
in hcp models, even though both bcc Fe and hcp Fe exist
within the crystalline state. By conducting uniaxial defor-
mation experiments with D111-type and D-DIA apparatuses,
Nishihara et al. [135] indicated that the hcp viscosity in the
IC environment would be higher than 1019 kg m−1 s−1, far
beyond our predictions of the bcc phase in the same thermody-
namic condition. Otherwise, by running AIMD computations
in the projected-augmented-wave formalism, Li et al. [136]
demonstrated that the viscosity of liquid Fe would range be-
tween 0.006 and 0.01 kg m−1 s−1 along the melting boundary.
These AIMD outputs [136] are only a few hundred times
lower than our ECNLE-SMM-WHEP outcomes in spite of

the essential difference between liquid and solid structures.
The above events suggest that the appearance of bcc Fe may
be a key to solving a great puzzle about IC anelasticity [59],
which has challenged our understanding of mineral physics
for decades.

B. Mechanical properties

Figure 7 shows the shear modulus of Fe as a function of
temperature at 360 GPa. In the hcp phase, a pronounced drop
in G is recorded during isobaric heating. Notwithstanding,
mineral-physics results [137–139] remain appreciably larger
than seismic ones [140–142]. To bridge the gap, Martorell
et al. [138] took into account premelting effects. This treat-
ment generated a strong nonlinearity in the G-T profile at T �
7000 K. Accordingly, G plunged to 180 GPa just before melt-
ing [138], in line with the preliminary reference Earth model
(PREM) of Dziewonski and Anderson [140] (G = 176 GPa).
Unfortunately, the above agreement seems to be an accident.
Martorell et al. [138] only ran AIMD codes with a diminu-
tive supercell containing 64 atoms. This figure is insufficient
to avoid finite-size issues. Indeed, Li and Scandolo [139]
developed a machine-learning interatomic potential for hcp
Fe to reduce computational expenses while retaining AIMD
accuracies. When the number of atoms increased to 1440, the
nonlinear shear weakening was no longer observed in their
MLMD simulations [139]. As an inevitable consequence, the
profound contradiction between PREM and AIMD returned.
This event highlights the enormous difficulties of interpreting
seismic observations via the elastic features of the hcp struc-
ture.

Remarkably, everything would become much easier to
solve if the IC is partially composed of bcc Fe. Our conclusion
relies on the following two reasons. First, the ECNLE-SMM-
WHEP theory reveals that the bcc structure is significantly
softer than its hcp counterpart due to the superionic diffusion.
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At the SMM-WHEP melting point, we acquire G = 208 GPa,
about 27% lower than the AIMD data collected by Martorell
and colleagues [138]. This finding is actively bolstered by the
robust computations of Belonoshko et al. [60], who studied
the unique mechanical responses of the bcc phase via the
largest supercell ever designed for AIMD (2000 atoms). Sec-
ond, in contrast to the case of hcp Fe, the shear softening
in bcc Fe does not require unrealistic thermal conditions. To
recreate the PREM rigidity [140], Martorell et al. [138] had to
heat their samples to 7350 K, which fell entirely outside the
ab initio melting region [24,26,54,116–119]. Meanwhile, our
theoretical melting temperature is only about 6681 K, which
is very suitable for modeling the IC interior [143–145].

Figure 8 shows the bulk modulus B and the Poisson ratio
ν of Fe at 6600 K and 360 GPa. Theoretically, these elastic
quantities are defined by [146]

B = �(
∂�
∂P

)
T

,

ν = 3B − 2G

2(3B + G)
. (29)

Solving Eq. (29) by ECNLE-SMM-WHEP techniques brings
us B = 1454 GPa and ν = 0.43, nearly identical to PREM
values [140] (B = 1425 GPa and ν = 0.44). Excitingly, our
numerical analyses for B are in consonance with prior atom-
istic simulations [60,138,139] regardless of using hcp or bcc
structures. The maximum deviation between ECNLE-SMM-
WHEP, AIMD [60,138], and MLMD [139] approaches is
merely 9 %. This number implies that the strangely high
Poisson ratio of the IC does not originate from its bulk mod-
ulus. Instead, the low rigidity is the root of the problem. Our
discoveries are fervently supported by the large-scale ab initio
calculations of Belonoshko’s group [60].

Notably, despite achieving certain successes, our combined
theory is temporarily not capable of describing the seismic
anisotropy of the IC. In principle, dealing with anisotropic
conundrums necessitates intimate knowledge of the elastic
constants Ci j of single crystals [19,60,147]. Meanwhile, with
the current level, the ECNLE-SMM-WHEP can only provide
information about the elastic moduli of polycrystals. If we
have Ci j , we can effortlessly infer G and B from the Voigt
[148], Reuss [149], or Voigt-Reuss-Hill [150] approximations.
However, the story becomes much more complicated when
approaching from the inverse direction. As far as we know,
there is no way to convert G and B to Ci j . Rebuilding the EC-
NLE reference system from nonspherical particles may be a
viable strategy for circumventing these limitations. Hence, we
believe the IC anisotropy deserves consideration in a separate
ECNLE-SMM-WHEP study.

C. Geophysical implications

To illustrate the applicability of the ECNLE-SMM-WHEP
scheme to Earth and planetary sciences, we revisit the long-
standing controversy about the IC shear-wave attenuation
[151]. Seismologically, the IC is the most attenuative part
of our home planet, and its inverse quality factor Q−1

μ

is often measured via normal-mode or body-wave tech-
niques. Whereas normal-mode measurements give Q−1

μ =
0.0091–0.0118 [152–155], body-wave experiments yield
Q−1

μ = 0.0032–0.0083 [156–158]. Although seismic data ex-
hibit a wide variation, none match the energy dissipation in
hcp Fe. The inverse quality factor of the hcp structure is on
the level of 10−4–10−5 [53], far below normal-model and
body-wave benchmarks [152–158]. The situation becomes
even more alarming with the emergence of coda-correlation
studies on the IC, where Q−1

μ has to escalate to 0.0476 to
reproduce synthetic waveforms [159].

The past forty years saw tireless attempts to gain a unified
picture of IC anelasticity. Singh et al. [53] treated the IC as
a two-phase composite consisting of a hcp Fe matrix and a
liquid Fe filler. This idea allowed them to explain seismic
observations quantitatively. Yet, Sumita et al. [160] demon-
strated that liquid Fe would be expelled from the IC because
of viscous compaction or convective instability. Recently, Be-
lonoshko et al. [59] proposed that the IC would be principally
made of bcc Fe rather than hcp Fe. This perspective enabled
them to handle the IC attenuation without liquid inclusion.
Nonetheless, the dominance of bcc Fe stays unconfirmed. Ad-
ditionally, Xian et al. [161] were concerned that the bcc model
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FIG. 9. The IC rigidity and the IC attenuation acquired from
ECNLE-SMM-WHEP calculations (solid lines with filled cir-
cles) and seismic measurements [140–142,152–159] (purple-shaded
regions). Orange-shaded areas are where theoretical predictions co-
incide with experimental observations.

of Belonoshko et al. [59] would cause a contradiction between
the IC viscosity and the IC rigidity at seismic frequencies.

Herein, inspired by the latest publication of Zhang et al.
[35], we describe the IC as a special combination of hcp
and bcc phases. Mineralogically, this mixture can be formed
thanks to the two-step nucleation of Fe [43] or the presence
of bcc stabilizers S, Si, and Ni in the IC environment [46–48].
Seismologically, the hcp-bcc coexistence can be explored by
scrutinizing the structural complexity at the OC-IC interface
[35]. Therefore our assumption is acceptable. To quickly esti-
mate the inverse quality factor of the IC, we adopt the effective
medium theory of Singh et al. [53]. Specifically, the complex
shear modulus μ is written by

μ = μ0 − 2

15
μ0ψ

{
8

3

(
λ0 + 2μ0

λ0 + μ0

)(
1 + 2π i f τ

1 + 2π i f ϒτ

)

+16

(
λ0 + 2μ0

3λ0 + 4μ0

)[
1 + 8i f ηa

μ0c

(
λ0 + 2μ0

3λ0 + 4μ0

)]−1
}

,

ϒ = 1 + a

πc

κ0

μ0

(
λ0 + 2μ0

λ0 + μ0

)
, τ = 10−12

ψ2

ψmη

KmB
. (30)

TABLE I. Inputs to our IC model [Eqs. (30) and (31)].

Symbol Definition Value Reference

f Frequency of seismic wave 0.1–1 Hz [157–159]
μ0 Shear modulus of hcp matrix 265 GPa [139]
κ0 Bulk modulus of hcp matrix 1340 GPa [139]
λ0 Lame constant of hcp matrix 1163 GPa [139]
ψm Porosity of hcp matrix 0.4 [162]
Km Permeability of hcp matrix 10−18 m2 [53]
ψ Volume fraction of bcc filler 0.1–0.4 This work
a/c Aspect ratio of bcc filler 1 This work
η Viscosity of bcc filler 8.8 Pa s This work
B Bulk modulus of bcc filler 1454 GPa This work

Details about Eq. (30) are supplied in Table I [53,139,157–
159,162]. From there, it is feasible to determine Q−1

μ by

Q−1
μ = Im(μ)

Re(μ)
. (31)

Figure 9 depicts the IC rigidity and the IC attenuation
as a function of the volume fraction of bcc Fe at differ-
ent frequencies. Similar to recent seismic investigations into
the IC, we focus on a frequency range from 0.1 to 1 Hz
[157–159]. Generally, whereas |μ| is almost unaffected by f ,
Q−1

μ is extremely sensitive to the period of seismic signals.
This sensitivity may be the origin of the discrepancy between
normal-mode [152–155], body-wave [156–158], and coda-
correlation [159] measurements on Q−1

μ . Another possible
cause is the depth dependence of Q−1

μ [151]. Normal modes
are primarily employed to probe the IC top. Meanwhile, body
and coda waves are mainly applied to penetrate deep into
the IC.

Remarkably, with ψ = 0.36–0.39, we can simultane-
ously answer why the IC is so soft and attenuative. Our
ECNLE-SMM-WHEP analyses are congruent with the DAC
experiments of Ituka et al. [48], where the bcc structure often
accounts for 26%, 36%, or 42% of the volume of Fe-Ni-Si
alloys after decomposition. Moreover, the viscosity-rigidity
paradox raised by Xian’s group [161] is resolved. In our phys-
ical picture, the low viscosity of bcc Fe does not make the IC
shear resistance unrealistic. Conversely, this unique property
is highly advantageous for decoding seismic results as long
as bcc Fe and hcp Fe are mixed with appropriate ratios. A
better description of the IC can be reached if the influence of
light elements is explicitly taken into account. Our findings
would open a promising avenue for unraveling the mystery of
planetary interiors.

IV. CONCLUSION

We have merged the ECNLE with the SMM-WHEP to
generate a useful theoretical tool for capturing the liquidlike
behaviors of bcc Fe under extreme conditions. This tool has
helped us compute the rheological and mechanical proper-
ties of the bcc structure at breakneck speed. A quantitative
consistency between our calculations and simulations has
been achieved. Furthermore, a reasonable explanation for
the IC viscoelasticity has been provided. These encouraging
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outcomes have shown the effectiveness of the ECNLE-SMM-
WHEP method in geophysical applications. To facilitate
subsequent research projects on the IC, we have expressed
all physical quantities in explicit analytical forms. All crucial
data have also been carefully systematized in appendices. We
are eager to see new advances in this challenging field in the
foreseeable future.

ACKNOWLEDGMENTS

We thank anonymous referees for their valuable comments
and suggestions.

APPENDIX A: ECNLE GENERAL OUTPUTS

Our hard-sphere calculations are shown in Table II.

APPENDIX B: SMM EQUATION OF STATE

In this Appendix, we briefly introduce how to determine
the EoS parameters of bcc Fe at room temperature Tr =
300 K.

First of all, since Tr is far below T ∗, we can view bcc Fe
as an ordinary solid at Tr . Accordingly, in the thermodynamic
equilibrium state, the displacement of Fe atoms, characterized
by the n-th order moment 〈un〉, has to satisfy [80]

k〈u〉 + γ 〈u3〉 − p = 0. (B1)

Here, k is a quasiharmonic coefficient, γ is an anharmonic
coefficient, and p is a supplemental force. Applying the
Leibfried-Ludwig expansion [163] to the quasi ab initio po-
tential energy E of Ye et al. [164] brings us

k =
(

∂2E

∂u2
δ

)
eq

, γ = 1

6

(
∂4E

∂u4
δ

)
eq

+
(

∂4E

∂u2
δ∂u2

ζ

)
eq

, (B2)

TABLE II. The mechanical and rheological features of the EC-
NLE reference system at different packing fractions

� Gσ 3

kBT log10 τα (s) log10
D
σ 2 (s−1) log10

ησ 3

kBT (s)

0.44 10.4505 −11.2298 8.3004 −9.0983
0.45 11.7861 −11.1905 8.5749 −9.3729
0.46 13.2955 −11.1377 8.6865 −9.4844
0.47 15.0019 −11.0789 8.7363 −9.5342
0.48 16.9323 −11.0149 8.7524 −9.5504
0.49 19.1173 −10.9450 8.7460 −9.5439
0.50 21.5924 −10.8665 8.7207 −9.5187
0.51 24.3981 −10.7733 8.6747 −9.4727
0.52 27.5815 −10.6532 8.5985 −9.3964
0.53 31.1969 −10.4796 8.4678 −9.2658
0.54 35.3073 −10.2043 8.2359 −9.0339
0.55 39.9856 −9.7610 7.8376 −8.6356
0.56 45.3172 −9.0932 7.2170 −8.0150
0.57 51.4013 −8.1497 6.3223 −7.1202
0.58 58.3546 −6.8333 5.0552 −5.8531
0.59 66.3136 −4.9817 3.2515 −4.0494
0.60 75.4395 −2.2904 0.6051 −1.4031
0.61 85.9226 1.5582 −3.2029 2.4050
0.62 97.9887 7.0477 −8.6562 7.8583

TABLE III. The influence of hydrostatic compression on the
cube root of the normalized atomic volume provided by room-
temperature SMM calculations for bcc Fe.

P (GPa) ξ P (GPa) ξ

0 1.0000 1600 0.7279
10 0.9862 1700 0.7230
20 0.9746 1800 0.7184
30 0.9647 1900 0.7140
40 0.9560 2000 0.7099
50 0.9482 2100 0.7059
60 0.9411 2200 0.7021
70 0.9346 2300 0.6985
80 0.9287 2400 0.6950
90 0.9231 2500 0.6917
100 0.9180 2600 0.6885
200 0.8793 2700 0.6854
300 0.8532 2800 0.6824
400 0.8334 2900 0.6795
500 0.8175 3000 0.6768
600 0.8041 3100 0.6741
700 0.7925 3200 0.6715
800 0.7824 3300 0.6689
900 0.7733 3400 0.6665
1000 0.7651 3500 0.6641
1100 0.7577 3600 0.6618
1200 0.7508 3700 0.6595
1300 0.7445 3800 0.6573
1400 0.7386 3900 0.6552
1500 0.7330 4000 0.6531

where δ and ζ are the Cartesian indexes (δ �= ζ = x, y, z). The
explicit form of k and γ can be obtained by following the
instructions in Supplemental Material of Refs. [99,107].

Next, we utilize the SMM to solve the mentioned force-
balance criterion. This statistical method allows us to connect
all of the moments of the studied system via the quantum
density matrix [105,106]. Namely, 〈u3〉 is represented via 〈u〉
as follows [80]:

〈u3〉 = 〈u〉3 + 3θ〈u〉∂〈u〉
∂ p

+ θ2 ∂2〈u〉
∂ p2

+ θ

k
(X − 1)〈u〉,

θ = kBT, X = h̄ω

2θ
coth

h̄ω

2θ
, ω =

√
k

m
, (B3)

where h̄ is the reduced Planck constant and m is the atomic
mass. Inserting Eq. (B3) into Eq. (B1) leads to

γ θ2 ∂2〈u〉
∂ p2

+ 3γ θ〈u〉∂〈u〉
∂ p

+ γ 〈u〉3

+ k〈u〉 + γ θ

k
(X − 1)〈u〉 − p = 0. (B4)

Conspicuously, Eq. (B4) only contains a single variable 〈u〉,
so we can readily handle it via the Tang iterative technique
[165]. When p goes to zero, we have [80]

〈u〉 =
√

2γ θ2

3k3
A, (B5)
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where A is a dimensionless quantity [166–168]. On that basis,
the cube root of the normalized atomic volume ξ is given by

ξ = d (P, 0) + 〈u〉(P, Tr )

d (0, 0) + 〈u〉(0, Tr )
, (B6)

where d is the nearest neighbor distance.
Finally, our numerical results for ξ are listed in Table III.

Fitting them with the Vinet EoS [101] yields B0 = 198.76 GPa
and B′

0 = 5.05. These parameters entirely concur with the
AIMD data of Belonoshko et al. [130] (B0 = 198.07 GPa,
B′

0 = 5.426) and Bouchet et al. [54] (B0 = 199.520 GPa,
B′

0 = 5.070). Thus they can serve as high-quality inputs to the
WHEP program to predict the melting characteristics of bcc
Fe in planetary cores.

APPENDIX C: SUPERIONIC DIFFUSION VERSUS
THERMAL EXPANSION

To elucidate the impact of superionic diffusion on thermal
expansion, we employ

χ (P, T > T ∗)

χ (P, T < T ∗)
=

(
∂ρ

∂T

)
P,T >T ∗(

∂ρ

∂T

)
P,T <T ∗

, (C1)

where the right-hand side is computed by fitting density-
temperature data with linear functions. Figure 10 displays our
analyses based on available AIMD information about bcc Fe
[39,130], hcp FeC [131], and hcp FeH [132] at 360 GPa. It
is easy to see that the slope of density-temperature profiles
changes abruptly at T ∗ [Fig. 10(a)]. Although the tested
systems have different structures and components, their
density variations obey the same rule. After the superionic
transition occurs, the coefficient χ increases about threefold
irrespective of whether bcc or hcp lattices are studied
[Fig. 10(b)]. This phenomenon is strikingly similar to what
happens in glass formers. As proven by Lunkenheimer et al.
[133], the volumetric expansivity of soft materials always
grows by a factor of 3 after transforming from glassy to
supercooled states. Hence, it is plausible to model the dilation
of superionic bcc Fe via Eq. (27).

APPENDIX D: RADIAL DISTRIBUTION FUNCTION

Figure 11 presents the radial distribution function of bcc
Fe at 360 GPa. Overall, we can quantitatively understand the
spatial arrangement of Fe atoms via the Percus-Yevick theory
[81]—a ubiquitous approximation in the soft-matter commu-
nity [71–79]. The proof is that Percus-Yevick and AIMD
profiles are pretty much the same. Our Percus-Yevick analyses
reveal that g(r) reaches the first minimum at rmin = 1.38σ and
the first maximum at rmax = 2.01σ , consistent with rmin =
1.40σ and rmax = 1.90σ predicted by the AIMD simulations
of Belonoshko et al. [59]. Additionally, the effective coordina-
tion number can be calculated by the Percus-Yevick integral
as N = 4πρ

∫ rmin

0 r2g(r)dr = 12, congruent with N = 11 in-
ferred from the AIMD method [52]. It is conspicuous that
the obtained numbers are markedly higher than previously
thought (N = 8 [30]). The reason is that the drastic thermal
motion of Fe atoms in the bcc lattice can result in the overlap
between the first and second neighboring shells at elevated
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FIG. 10. (a) The density-temperature profile of bcc Fe, hcp FeC,
and hcp FeH given by prior AIMD simulations [39,130–132] (open
symbols) and our linear fits (solid lines) at 360 GPa. (b) Our estima-
tions for the χ enhancement of bcc Fe, hcp FeC, and hcp FeH due to
superionic effects (open symbols). The latest result of Lunkenheimer
et al. [133] is also included to highlight the resemblance between
superionic crystals and glass formers (dashed line).
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FIG. 11. Our Percus-Yevick calculations versus the large-scale
AIMD computations of Belonoshko et al. [59] for the radial distribu-
tion function of bcc Fe.
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temperatures [52]. Remark that no adjustable parameters are
needed to achieve the consensus between Percus-Yevick and

AIMD calculations. That means bcc Fe is indeed equivalent
to a glass-forming liquid.
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