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Flat Landau levels and interface states in two-dimensional photonic crystals with a nodal ring
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Line degeneracies in the band structures have been largely explored and exhibit exotic phenomena, particularly
in three-dimensional (3D) photonic crystals. The flat Landau levels are a generic feature of nodal ring semimetals
when a magnetic field perpendicular to the nodal ring plane is applied. However, solid evidence for such
effects is still absent in photonic nodal ring systems due to limitations in magneto-optical materials and
structural complexity in 3D systems. In this paper, we propose a two-dimensional photonic structure that exhibits
nodal rings protected by mirror symmetry, demonstrable through a simple two-band tight-binding model. An
interacting term that breaks the mirror symmetry can open a photonic band gap, leading to the existence of
Jackiw-Rebbi-like interface states. By introducing gradient deformation to the photonic crystal ribbon, we create
a uniform pseudomagnetic field, further achieving flat Landau levels and gapless interface states. Additionally,
we can dynamically adjust the width of the interface state by modifying the pseudomagnetic field strength,
indicating a strategy for creating a waveguide with arbitrary widths. Our results offer a simple two-dimensional
platform to study nodal ring physics and its magnetic responses in a pure dielectric system, potentially providing
insights for manipulating electromagnetic waves through photonic crystals.
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I. INTRODUCTION

Degeneracies protected by symmetry within the bands have
aroused significant research interest due to their close associa-
tion with topological interface states. These degeneracies can
manifest in various forms, such as Dirac points [1,2], Weyl
points [3,4], and nodal lines [5–8]. Among these, nodal lines
possess higher-dimensional degeneracy compared to Dirac
points and Weyl points and thus are extensively explored in
three-dimensional (3D) systems. The nodal lines can assume
a range of shapes, including nodal ring [9–12], nodal link
[13–15], and nodal chain [16–19]. Nodal lines have been
observed experimentally in a variety of systems, such as
condensed matter physics, acoustics [20–22], and photonics
[23–28]. Exploring the diversity of nodal line structures in 3D
systems is natural since line degeneracies typically exist in 3D
momentum space. However, the realization and application
of nodal lines are significantly hindered by the complexity
of 3D structures. In principle, ideal nodal lines can exist in
the two-dimensional (2D) systems protected by mirror sym-
metry with an additional parameter dimension [25], yet their
practical realization in structures remains unexplored. There-
fore, achieving nodal lines in a 2D system would be highly
advantageous.

The presence of the flat Landau levels is a prevalent feature
in nodal ring semimetals under an external magnetic field
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perpendicular to the nodal plane [29–31]. This feature can be
used to realize the 3D quantum Hall effect. However, due to
limitations in materials with magneto-optical responses and
challenges associated with fabricating complex 3D photonic
crystals, investigations of flat Landau levels in photonic nodal
ring systems under real magnetic fields have been absent.
Nevertheless, strategies to construct a pseudomagnetic field
are proposed in graphene by strain engineering [32–39]. A
similar approach to generate pseudomagnetic fields is also
used in artificial structures by varying geometric parameters
to introduce a synthetic gauge field [40–47]. Thus, applying a
pseudomagnetic field is promising to induce the flat Landau
levels in a simple 2D nodal ring system, making such unex-
plored effects feasible for experiments.

In this study, we propose a 2D photonic crystal (PC) sup-
porting a nodal ring structure. Compared to a previous study
that employs orthogonality between TE and TM modes to
construct a nodal ring in a 2D system [27], here we utilize
the TM band (Ez component) in our system. The band struc-
ture exhibits two bands formed by two basis states without
interaction, implying its simple description by a two-band
tight-binding model (TBM). The absence of interaction is
attributed to the parity difference of these two basis states.
By introducing a deformation that breaks the mirror symme-
try but preserves the C6 symmetry, an effective interacting
term, proportional to the degree of deformation, is introduced
into the effective Hamiltonian, which can open a photonic
band gap. The Jackiw-Rebbi-like interface state exists at the
interface of regions with opposite interacting terms. By in-
ducing gradient deformations on the PC, we can introduce a

2469-9950/2024/109(5)/054108(7) 054108-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2910-8264
https://orcid.org/0000-0002-3416-6979
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.054108&domain=pdf&date_stamp=2024-02-15
https://doi.org/10.1103/PhysRevB.109.054108


JIN, CHEN, LU, ZHAN, AND CHEN PHYSICAL REVIEW B 109, 054108 (2024)

FIG. 1. 2D PC and TBM with nodal ring band structures. (a)
Schematics of 2D PCs, which are composed of six rectangular sil-
icon dielectric columns (εr = 11.68) embedded in an air background
(ε0 = 1). The lattice constant of the PC is denoted as a. The height
and width of the dielectric column are h = 0.32a and w = 0.05a,
respectively. The displacement of the dielectric column from the
original position is dc = δd sin θ with δd = 0.12a. (b) When dc = 0,
the simulated and numerical band structures (TBM parameters in a
normalized frequency are ε1 = 0.895, t1 = 0.015, ε2 = 0.913, t2 =
0.023) are represented by black and red curves, respectively. (c) Band
structures for PC (black lines) and TBM (red curves) with θ = 0.253,
respectively. (d) Left panel: The nodal ring in the kx − ky−θ 3D
synthetic space. Right panel: the band gap width is proportional to
sin θ . (e), (f) Band structure in the kx − ky plane with θ = 0 and
θ = 0.253, respectively.

position-dependent interacting term into the effective Hamil-
tonian. In this way, we successfully realize an equivalent
pseudomagnetic field in the system. This approach enables
the realization of a variety of magnetic effects, such as flat
Landau levels and gapless interface states, in the photonic
nodal ring system. Additionally, by varying the deformation
gradient, we can manipulate the frequency of Landau levels
and the localization of interface states.

II. NODAL RINGS IN PHOTONIC CRYSTAL

We consider a 2D PC maintaining C6v symmetry, as illus-
trated in the left panel of Fig. 1(a). We displace the dielectric
column to break the mirror symmetry. The displacement, de-
noted as dc, occurs in two directions, yielding dc > 0 and dc <

0. Figures 1(b) and 1(c) depict the band structures of PCs with
dc = 0 and dc = 0.03a, respectively. The distance between the
center of each dielectric column and the PC center is 0.3a.
All simulations are carried out using finite element analysis
software, COMSOL MULTIPHYSICS. For the PC with mirror
symmetry (dc = 0), two bands cross linearly along K − �

and � − M in the first Brillouin zone (BZ), which forms a
photonic nodal ring. As illustrated in Fig. 1(b), these two
eigenstates at the � point exhibit opposite parities, denoted
as the fy(3x2−y2 ) and fx(x2−3y2 ) orbitals in hydrogenic atoms,
marked by the label f1 and f2, respectively. The overlap in-
tegration between the two orbitals is zero along lattice vector

directions. Without mirror symmetry, the two eigenstates at
the � point exhibit hybrid orbitals as shown in the inset of
Fig. 1(c). Consequently, mirror symmetry breaking (dc = 0)
induces nonzero overlap integration and lifts the degeneracy
of the nodal ring. The nodal ring degeneracy extends into
a 3D synthetic space when expressing the mirror symmetry
breaking term as dc = δd sin θ , with θ interpreted as a syn-
thetic dimension. The nodal ring exists in the kx − ky panel
with θ = 0 as shown in the left panel of Fig. 1(d). This system
accumulates a Berry phase of π along any closed path [see red
dotted ring in Fig. 1(d)] in the first BZ encircling the nodal
ring, reflecting the topological nature of the nodal ring [28].
Away from the θ = 0 plane, the band gap width is propor-
tional to δd sin θ , as shown in the right panel of Fig. 1(d). This
relation only holds for small dc in our system; otherwise, an
additional s orbital emerges between the two f -like orbitals.

We construct a TBM to describe the nodal ring which com-
prises two orbitals ( f1 orbital and f2 orbital) as basis states.
Here, only the nearest coupling is taken into consideration.
The f1 ( f2) orbital has an on-site energy ε1 (ε2). The nearest
coupling parameters for f1 − f1 hopping and f2 − f2 hopping
are given by t1 and t2, respectively. The overlap integration
between two orbitals is denoted by m. By utilizing the afore-
mentioned parameters, we can derive an effective Hamiltonian
in momentum space k = (kx, ky) as

H =
(

ε1 + t1[h(kx, ky)] m
m ε2 − t2[h(kx, ky)]

)
, (1)

where h(kx, ky) = cos(kx ) + cos( kx+
√

3ky

2 ) + cos( kx−
√

3ky

2 ). We
rewrite the 2 × 2 Hamiltonian with Pauli matrices:

H = d0(�k)σ0 + d1(�k)σ1 + d3(�k)σ3, (2)

where d0(�k), d1(�k), and d3(�k) can be expanded into:
d0(�k) = ε1+ε2

2 + (t1 − t2)[h(kx, ky )], d1(�k) = m, d3(�k) =
ε1−ε2

2 + (t1 + t2)[h(kx, ky)]. Consequently, the eigenvalues of
the Hamiltonian are

E
′
± = d0(�k) ±

√
d1(�k)

2 + d3(�k)
2
. (3)

When d1(�k) = d3(�k) = 0, two bands cross and the crossing
points form a ring in the k space, following the con-

tour cos(kx ) + cos( kx+
√

3ky

2 ) + cos( kx−
√

3ky

2 ) = ε1−ε2
2(t1+t2 ) . From a

symmetry consideration, the existence of nodal rings is pro-
tected by the parity difference of f1 and f2 orbitals on the θ =
0 plane. Two orbitals with opposite mirror symmetry ensure
that the interaction between two orbitals is zero along lattice
vector directions, avoiding band repulsion and contributing to
the band crossings, as shown by the red curve in Fig. 1(b).
Figure 1(e) depicts these band structures in the kx − ky plane
with θ = 0, implying a nodal ring in the first BZ. When
θ �= 0, the TBM displays a complete band gap as illustrated
in Fig. 1(c), also shown in Fig. 1(f). The band gap width is
given by 2|m|. In our system with dc = 0.12a, m = 0.08 in a
normalized frequency.

We provide a scheme that is experimentally feasible to
detect the nodal ring. In reality, such an experiment can be
conducted in PCs with appropriate height sandwiched by two
metallic plates. We simulate a sample consisting of 42 × 42
unit cells and employ a point source at the center. Here we
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FIG. 2. Simulated nodal ring in a bulk sample. The point source
is excited at three frequencies shown in (a). (b) The simulated Ez

field distribution. The inset indicates that states in both two bands
are excited successfully. (c) The equifrequency surface of ω1, ω2,
and ω3 in the first BZ. Two circles merge at frequency ω2.

excite the point source in three frequencies as illustrated in
Fig. 2(a). The Ez field distribution in Fig. 2(b) reveals that the
point source can simultaneously excite Bloch modes in both
two-band modes. We perform a 2D Fourier transformation
and obtain the equifrequency surface in the first BZ, as shown
in Fig. 2(c). As expected, two circles merge at frequency ω2,
in contrast to two separated circles at frequencies ω1 and ω3,
confirming the existence of the nodal ring.

III. INTERFACE STATES

Now we consider a system that supports interface states at
the interface of opposite mass terms. The function h(kx, ky) al-
most describes a circle in the k space; we further approximate
it using k2

x + k2
y . To simplify the analysis, we assume a Fermi

energy of zero and set t1 = t2 = t . Thus, we can rewrite the
Hamiltonian:

H1 =
(

ε − t
(
k2

x + k2
y

)
m(y)

m(y) −ε + t
(
k2

x + k2
y

))

≡ m(y)σ1 + [
ε − t

(
k2

x + k2
y

)]
σ3. (4)

We consider an interface between positive and negative
interacting terms m: m(y) = { m,

−m,

y > 0
y < 0 [48,49]. By taking ky =

i∂y, we can translate Eq. (4) into

H1 = m(y)σ1 + [
ε − t

(
k2

x − ∂2
y

)]
σ3. (5)

The interface mode which propagates along x and is nor-
malizable along y takes the form:

ψ (kx, y) =
(

1
±sign(m)

){
eikx−

√
ε−tk2

x y y > 0

eikx+
√

ε−tk2
x y y < 0

. (6)

We note that there are two Jackiw-Rebbi-like modes at k ∈
(−√

ε
t ,

√
ε
t ), different from dispersive interface states near the

K and K′ valleys in the valley photonic system.
To verify the existence of such Jackiw-Rebbi-like inter-

face states, we consider a model with a interacting term
m = { m1 y > 0

−m1 y < 0, as illustrated in Fig. 3(a), where an interface
exists between two regions with opposite interacting terms.
We employ a PC ribbon to realize this model, as illustrated in
Fig. 3(b). The PC ribbon has dc = 0.03a for y > 0 and dc =
−0.03a for y < 0 corresponding to m1 = 0.02 in the TBM.
The dispersion curve for the PC ribbon in the k space is shown
in Fig. 3(c), which reveals the emergence of interface states
within the gap of bulk states. These interface states exhibit
flat dispersions at certain frequencies. The Poynting vectors
associated with flat interface states reveal a distinct vortexlike

FIG. 3. Observation of flat interface states. (a) The distribution of interacting terms in the y direction. m = 0.02 for y > 0 and m = −0.02
for y < 0. (b) Schematic of PC ribbon composed of PCs with dc = 0.03a for y > 0 and dc = −0.03a for y < 0. (c) Left panel: dispersion curve
of the PC ribbon in (b). Right panel: corresponding Ez fields and Poynting vectors for the interface modes. (d) The distribution of interacting
terms with m = 0 for |y| < L. (e) Schematic of PC ribbon doped two unit cells with dc = 0. (f) Left panel: dispersion curve of the PC ribbon
in (e). Right panel: corresponding Ez fields and Poynting vectors for the interface modes.
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FIG. 4. Interface states transportation in waveguide structures.
(a), (d) Schematic of the waveguide structure. (b), (e) Transmis-
sion of interface mode in the waveguide as shown in (a), (d). (c),
(f) Normalized electric field intensity along the red dotted line
in (b), (e).

distribution. In contrast to interface states in the valley Hall
system protected by the valley Chern number, our system
lacks topological protection, making the observed band gap
between two Jackiw-Rebbi-like interface states. Such band
gap can be closed by doping nodal ring unit cells. We consider

a step interacting term: m = {
m1 y > L
0 |y| < L

−m1 y < −L
, as illustrated in

Fig. 3(d). Here, L =
√

3a
2 denotes the length of a PC in the y

direction. The corresponding PC ribbon exhibits the doping of
two nodal ring unit cells at the original interface, as depicted in
Fig. 3(e). Due to the gapless properties of the nodal ring, two
interface states cross each other to form a gapless interface
state, as shown in Fig. 3(f).

To investigate the transmission characteristics of inter-
face states, we design two waveguides, as illustrated in
Figs. 4(a) and 4(d). The corresponding interface states with
f = 0.92(c/a) propagate along the white dotted lines, as
shown in Figs. 4(b) and 4(e). The normalized Ez field intensity
along the red dotted line, as depicted in Figs. 4(c) and 4(f), re-
veals that the electromagnetic wave is predominantly confined
to the interface, displaying exponential decay towards the bulk
regions.

IV. PSEUDOMAGNETIC FIELD AND FLAT
LANDAU LEVELS

A prevalent feature in a nodal ring system is the emer-
gence of flat Landau levels under an external magnetic field.
Here we introduce a gradient interaction term to mimic the
magnetic field [47]. When the interaction m(�r) is position
dependent, the effective Hamiltonian can be expressed as
H ′ = d0(�k)σ0 + m(�r)σ1 + d3(�k)σ3. Such gradient interaction
m(�r) acts as a pseudomagnetic field, given by �B = ∇ × �A,
with �A = [m(�r), 0, 0]. Since m(�r) is almost linearly dependent
on dc, we can implement a gradient PC ribbon with dc =
(y/L)�dc to realize this model, as depicted in Fig. 5(a). This
approach introduces a pseudomagnetic field into the nodal
ring system, where y/L denotes the cell along the y direction,
and �dc represents the fixed displacement gradient of dc. We
fit the linear relation shown in Fig. 5(b) with m(y) = 0.77y�dc

a2 .
In this way, a vector potential Ax(y) = m(y) contributes to

y
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FIG. 5. Schematic of gradient structure to achieve pseudomag-
netic field. (a) Schematic of PC ribbon with gradient deformation of
dc along the y direction with dc = (y/L)�dc. (b) The distribution of
interacting terms for the gradient PC ribbon in (a). (c) The distribu-
tion of interacting terms for an 81-layer gradient PC ribbon.

a uniform pseudomagnetic field along the z direction with
�B = ∇ × �A = ∂Ay

∂x − ∂Ax
∂y = − 0.77�dc

a2 for the whole sample,
whose strength is proportional to �dc. We note a series of
discrete flat Landau levels that pertain to a specific range
arising from the pseudomagnetic field. Especially, the zero-
order Landau level is nearly fixed at the frequency of the
nodal ring, regardless of the strength of the pseudomagnetic
field. The frequency of the other order Landau levels can
be predicted relative to the zero-order Landau level: ωN =
ω0 + sign(N )

√|N |ωc, where N labels the level order and ωc

represents the photonic analog of the electron cyclotron fre-
quency vD

√
2|Bz| with vD being the reduced Planck constant

giving the relationship between the energy and frequency of a
photon [40,44].

We investigate the bulk properties of 81-layer gradient PC
ribbons; the corresponding interacting terms are illustrated in
Fig. 5(c). In the absence of a pseudomagnetic field (�dc = 0),
the dispersion curve for the gradient PC ribbon reveals con-
tinuous bulk states around the frequency of the nodal ring, as
depicted in Fig. 6(a). Specifically, by setting �dc = 0.001a,
we successfully introduce a pseudomagnetic field with B0 =
−0.00077 a−1 into the gradient PC ribbon. Consequently, bulk
states quantize into flat Landau levels as shown in Fig. 6(b). In
detail, the frequency difference between the first-order Landau
level and the zero-order Landau level is �ω1 = 0.007(c/a),
which follows �ωN = ωN − ω0 = sign(N )

√|N |ωc. As �dc

increases (corresponding to increasing B), more distinct flat
Landau levels appear, as shown in Fig. 6. Notably, these
quantized flat Landau levels are doubly degenerate, a charac-
teristic feature predicted in nodal rings under the real magnetic
fields [30,31]. Similar phenomena have been observed in 2D
electron gas [50] and carbon nanotubes [51].

The normalized frequency difference between Nth-
order Landau levels and the zero-order Landau level is
�ωN/�ω1 = √|B/B0|N . We plot the simulated normalized
frequency differences as the pseudomagnetic field strengths
vary from B0 to 5B0, indicated by the hollow dots in Fig. 6(e).
The results demonstrate excellent agreement with the the-
oretical predictions, indicating that the discrete flat Landau
levels tend to merge into bulk as their frequency difference is
proportional to

√
B/B0.
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FIG. 6. Flat Landau levels under different pseudomagnetic field
strengths. (a)–(d) Dispersion curves for gradient PC ribbons with
B = 0 (�dc = 0), B = 1 B0 (�dc = 0.001a), B = 3 B0 (�dc =
0.003a), and B = 5 B0 (�dc = 0.005a), respectively. (e) The nor-
malized frequency difference (�ωN/�ω1) between the Nth Landau
levels and the zero-order Landau level with pseudomagnetic field
increasing from B0 to 5B0. The curves and hollow dots repre-
sent the result for theoretical prediction and simulating calculation,
respectively.

The gapless interface states are indicated by blue dots on
both sides of the zero-order Landau level (marked by red dots)
as depicted in Fig. 6(d) [51]. Figure 7(a) illustrates the Ez

field distributions of the interface states at kx = 0.7 (π/a) un-
der different pseudomagnetic field strengths. The localization
of interface states is notably influenced by the pseudomag-
netic field, with a substantial enhancement observed as the
pseudomagnetic field strength increases. To demonstrate this
property, we design a waveguide as depicted in Fig. 7(b),
where the pseudomagnetic field undergoes an abrupt change
from B = 5 B0 to B = 0.5 B0 in the middle. Using a line
source, we excite the interface state with f = 0.903 (c/a).
Figure 7(b) distinctly demonstrates the width of the interface
state transition from narrow to wide and back to narrow within
the waveguide [52,53]. The adjustable width of the waveguide
facilitates highly efficient energy collection from a wide re-
gion and directs all captured energy into a narrow channel.
Additionally, Fig. 7(c) displays the transmission spectrum of
the waveguide, which is calculated by the ratio of |Ez|2 near

B=0.5B0 B=5B0B=5B0
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FIG. 7. The gapless interface state under different pseudomag-
netic field strengths. (a) The Ez fields distribution of interface states
under different pseudomagnetic field strengths; the white dotted
line indicates the position of the cell with dc = 0. (b) Simulated
electric field intensity distribution using a line source excitation at
f = 0.903(c/a) on the left boundary of the waveguide. The pseudo-
magnetic field is sharply reduced from B = 5B0 to B = 0.5B0 in the
middle. (c) The simulated transmission spectrum for the waveguide
in (b).

the input and output ports. This demonstrates that despite
sudden changes in the width of the transmission channel,
the interface states efficiently propagate. The waveguide, with
adjustable width, demonstrates significant versatility in inter-
facing with other photonic components, offering substantial
potential for photonic device design. In contrast, valley in-
terface states are confined around domain walls, lacking the
degree of freedom in mode width, which imposes limitations
on potential device applications.

V. CONCLUSIONS

In conclusion, we demonstrate the realization of photonic
nodal rings in 2D PCs. We have successfully introduced a
uniform pseudomagnetic field into the nodal ring PCs, leading
to the realization of magnetic-field-like effects in this purely
dielectric system, such as the emergence of flat Landau levels
and gapless interface states. Notably, the localization of the
interface states can be adjusted by varying the strength of the
pseudomagnetic field. Our proposed 2D photonic nodal ring
systems are feasible to design and fabricate, which can be
extended to other 2D artificial systems, including optical and
acoustic systems. The approach we developed to construct
a uniform pseudomagnetic field can also be used to explore
other magnetic field effects, such as Chern insulators and cir-
culators. Additionally, by introducing a pseudomagnetic field
into a magneto-optic system, we can investigate the interplay
between the pseudomagnetic field and the real magnetic field.
Our research provides insights into the manipulation of elec-
tromagnetic waves using artificial microstructures.
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