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When applying two-dimensional materials in advanced electronics, catalysts, and quantum computing, point
defects play crucial roles. However, experimentally determining the local structures and charge states of these
defects is challenging, and the use of first-principles calculations is beneficial. Yet the number of studies in this
area remains limited compared to those on three-dimensional materials, which is primarily due to difficulties
in corrections related to finite model sizes. In this study, we introduce a method to automate these corrections
and to reduce computational costs. Furthermore, we explore the impact of ill-defined dielectric profiles on the
corrections and demonstrate that the selection of the profiles potentially affects the corrections for defects far
from the surfaces significantly. We also illustrate how to correct the eigenvalues of host-derived orbitals in
calculations of charged defects.

DOI: 10.1103/PhysRevB.109.054106

I. INTRODUCTION

Two-dimensional (2D) semiconductors have attracted con-
siderable attention in recent years due to their promise in
advanced electronics [1], catalysis [2], energy storage [3],
sensing [4], and quantum computing [5]. Point defects are
pivotal in determining the electrical, ionic, and photocat-
alytic properties of 2D materials [1], making their control
essential for optimizing performance. In contrast to their
three-dimensional (3D) counterparts, defects in 2D materials
can be directly observed using techniques like scanning tun-
neling microscopy [6]. However, routinely employing these
experimental methods is challenging due to the requirements
for sample preparation and specialized measurement skills.
Moreover, experimentally determining the transition levels
and defect charge states remains a daunting task.

First-principles calculations are increasingly used to study
dominant point defects in 2D materials [7–17]. However, the
number of studies on these defects is still limited compared
to those on 3D materials. A major reason for this limitation
is the difficulty in finite size corrections, which are crucial for
calculating charged defects under periodic boundary condi-
tions (PBCs). Several groups have reported methods to correct
defect formation energies, yet routinely applying these tech-
niques in practical applications remains challenging [7–15].
This is because each defect charge combination requires a
unique correction process. Considering typical native defects
in 2D materials, such as vacancies, antisites, interstitials, and
adsorbed atoms, requires calculations of dozens of defect
charge combinations. Therefore, automating the correction
process and minimizing computational costs is vital for ad-
vancing defect calculations in 2D materials. To this end, we

*yukumagai@tohoku.ac.jp

introduce an interpolation technique to lessen computational
costs and simplify the processes.

The functional forms of the dielectric profiles have been
used as inputs for most correction methods proposed to
date [7–12]. Unfortunately, these profiles are, in principle,
ill defined, as will be discussed later. Although the dielec-
tric profiles were previously thought to minimally impact the
correction energies [8,11], we will explore the extent of this
influence on energy corrections using various types of defects.
Consequently, we find the correction energies for defects with
charge centers far from surfaces can be significantly affected
by the choice of dielectric profiles.

To effectively understand defect properties, it is crucial
to distinguish defect-induced eigenvalues from those of host-
derived bands. While the need for finite cell size corrections
for eigenvalues of localized defect states has been recognized
[7], discussions regarding host-derived bands are lacking. Un-
like in 3D systems, the eigenvalues of host-derived bands in
2D systems deviate significantly from those of pristine bulk
states. This deviation is due to the spurious electrostatic po-
tential caused by the defect and background charge. To correct
these artificial shifts, we propose aligning the electrostatic po-
tential in the region where the 2D material exists. We evaluate
its effectiveness and that of previously suggested corrections
for the defect-induced eigenvalues.

Overall, our study primarily focuses on three key areas:
First, we introduce a simpler and faster correction method
for defect formation energies and defect-induced eigenvalues,
utilizing the interpolation technique. Second, we assess the
potential errors arising from the uncertainty in the dielectric
profile. Third, we propose a method to correct the eigenvalues
of host bands in the charged defect calculations. This paper
is organized as follows: In Sec. II, we introduce the correction
method developed by Noh et al. [14] and Komsa et al. [11] and
the formula for calculating the isolated Gaussian charge devel-
oped by Sundararaman and Ping [21]. In Sec. III, we present
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the details of the first-principles calculations. In Sec. IV, we
discuss the automation of the corrections for defect forma-
tion energies in detail. Here, we propose interpolating the
long-range electrostatic interaction energies as a function of
the defect charge position and evaluating alignment terms via
one-dimensional (1D) electrostatic potentials. In Sec. V, we
investigate the influence of dielectric profiles using defects
in single-layer (SL) MoS2 and SL hexagonal BN (h-BN) as
examples. We also discuss how to correct the eigenvalues
of host-derived states and demonstrate the accuracy of these
corrections. Finally, we summarize the paper in Sec. VI.

II. CORRECTION METHOD FOR DEFECT
FORMATION ENERGIES

In this study, we employ the correction method pro-
posed by Noh et al. [14] and Komsa et al. [11] (NK
method), which extends the Freysoldt–Neugebauer–Van de
Walle (FNV) method [18] to 2D systems. For simplicity, we
focus on tetragonal systems and align the directions perpen-
dicular to the surfaces with the z direction.

Assuming that the defect charge is enclosed in the super-
cell, the correction energy at defect charge q can be expressed
as [11,14]

Eσ
corr = �Eσ,q

lr (z0) + qV
σ,q
corr(z0, zfar ), (1)

where �Eσ,q
lr is the correction energy for long-range (lr) elec-

trostatic interaction, defined as

�Eσ,q
lr (z0) = Eσ,q

isolated(z0) − Eσ,q
periodic(z0), (2)

and V corr(z0, z) is the corrected potential at z, defined as

V
σ,q
corr(z0, z) = V ab initio(z) − V

σ,q
model(z0, z), (3)

both of which depend on the standard deviation σ and the
center position z0 of the model Gaussian charge distribution,
which is written as q

(2πσ )3/2 e−(x2+y2+(z−z0 )2 )/2σ 2
. The overline

on the potentials indicates planar averages along in-plane
directions. Here, Eσ,q

isolated represents the electrostatic energy
of an isolated Gaussian charge in infinite space. Eσ,q

periodic and
V σ,q

model respectively denote the electrostatic energy and poten-
tial caused by a Gaussian charge under PBCs. Vab initio is the
defect-induced potential, calculated by subtracting the bulk
supercell potential from that of the defective supercell. Note
that PBCs include the compensating uniform background
charge. zfar refers to the z coordinate most distant from the
defect under PBCs. The average electrostatic potential V

σ,q
model

should be set to zero to maintain consistency with ab initio
calculations. z0 is excluded from the variables when it is
fixed in this study. Eσ

corr depends on σ , unlike in the FNV
method [18], due to the spatial nonuniformity of the dielectric
profile. However, this dependence is negligibly small, so we
set σ = 0.5 Å and, for simplicity, omit σ from the notations
henceforth.

Electrostatic energies are calculated from the formula
E = 1

2

∫
V (r)ρ(r)dr, where V (r) is the electrostatic potential

and ρ(r) represents the charge density distribution. This ap-
plies under both open and periodic boundary conditions for
evaluating Eq

isolated and Eq
periodic, respectively. When the spatial

charge density distribution is defined, �Eq
lr is evaluated after

determining the electrostatic potentials under both boundary
conditions. This is done by solving the Poisson equation [11]:

−ε0, ‖(z)

(
∂2

∂x2
+ ∂2

∂y2

)
V (r) − ∂

∂z2
(ε0, ⊥(z)V (r)) = ρ(r).

(4)

Here, ε0, ‖ and ε0, ⊥ represent the lateral (in-plane) and ver-
tical (out-of-plane) dielectric profiles, respectively, at the
long-wavelength limit. These profiles are sums of ion-
clamped and ionic dielectric constants. Hereafter, we omit the
0 and write them as ε‖ and ε⊥ unless we need to explicitly
distinguish the electronic and ionic components.

Noh et al. [14] and Komsa et al. [11] originally deter-
mined Eq

isolated by extrapolating Eq
periodic calculated at various

supercell sizes to the infinite spacing limit. However, as em-
phasized in the literature [19,20], the scaling behavior of
electrostatic energies in slab systems is nonmonotonic, and
accurately estimating Eq

isolated necessitates large slab model
calculations. This extrapolation can be avoided if we adopt the
formula subsequently derived by Sundararaman and Ping [21]
for computing Eq

isolated using the truncated Green’s function
methodology [21], which is written as

Eq
isolated = q2

∫ ∞

0
ke−k2σ 2

Ukdk, (5)

where

Uk =
∑
G′,G

ei(G−G′ )z0−(G2+G′2 )σ 2/2D−1
G′G (6)

and the Hermitian

DG′G = δG′G
L(k2 + G2)

1 − e−kL/2 cos(GL/2)
+ L ˜�ε⊥, G′−GG′G

+ L ˜�ε‖, G′−Gk2. (7)

Here, G = 2πn
Lz

is the reciprocal lattice, where Lz is the side of

the supercell along the z direction and n is an integer. ˜�εi, G

(i =‖,⊥) is the Fourier transform of εi(z) − 1, and δ G′G is the
Kronecker’s delta. The denominator of the first term in Eq. (7)
appears as a consequence of the truncation of the Green’s
function. We can estimate Eq

isolated from the simple numerical
integration in Eq. (5) (see also Ref. [19]).

The charge center, denoted as z0, generally varies depend-
ing on the specific combination of the defect and charge. For
example, when hydrogen is absorbed on the oxide surface in
a +1 charge state (protonic state), it forms a strong H-O bond.
Conversely, in a −1 charge state (hydride state), this typically
results in a longer H-O bond distance.

Note that Eq. (7) is an extension of the original for-
mula [21] that enables the utilization of different ε‖ and ε⊥.
When the 2D systems exhibit in-plane anisotropy, Eqs. (5)–(7)
are not applicable, and Eq

isolated for each defect and charge
combination must be estimated through extrapolation as
demonstrated in Refs. [11,14], which requires substantial
computational effort. In this study, to avoid calculating �Eq

lr
in Eq. (2) for all defect-charge combinations, we propose
evaluating them using interpolation of �Eq

lr as a function of
z0 (see Sec. IV C).
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III. CALCULATION CONDITIONS

The first-principles calculations were performed using
the projector augmented-wave (PAW) method [22,23] imple-
mented in VASP [24]. PAW data sets with radial cutoffs of
1.46, 1.01, 0.90, 0.79, and 0.58 Å for Mo, S, B, N, and H,
respectively, are employed. Mo 4p, 5s, and 4d; S 3s and 3p;
B 2s and 2p; N 2s and 2p; and H 1s orbitals are considered as
valence electrons. We adopted the Perdew-Burke-Ernzerhof
functional tuned for solids (PBEsol) [25]. For structure opti-
mization and band structure calculations, the k-point sampling
density was set to 2.5 Å−1. The force convergence criterion
was set to 5 meV/Å, while the cutoff energies were set to 336
(259) and 520 (400) eV for the calculations of SL MoS2 and
h-BN with (without) lattice constant relaxation, respectively.
The relaxed in-plane lattice constants are 3.138 and 2.505 Å
for SL MoS2 and h-BN, respectively. The dielectric constants
were evaluated based on the density functional perturbation
theory [26,27] with doubled k-point density along in-plane
directions.

In Sec. V, we discuss the accuracy of the corrections on
the defect formation energy E f [28,29], which is defined
as

E f [Dq] = {E [Dq] + Ecorr[D
q]} − EP −

∑
niμi

+ q(εVBM + �εF ), (8)

where E [Dq] and EP are the total energies of the slab model
with defect D in charge state q and the pristine model without
any defect, respectively. We discuss relative defect formation
energies as a function of the model size and corrections to
them; thus, only E [Dq] + Ecorr[Dq] − EP has meaning in this
study.

For the point defect calculations, the in-plane lattice con-
stants were fixed at those of the pristine models. Random
displacement is helpful in identifying the most stable struc-
ture; however, it also introduces errors into the calculated
formation energies due to the numerical convergence thresh-
old in force calculations, and minimizing such errors is crucial
to assess the accuracy of the corrections precisely. Therefore,
in this study, the initial neighboring atoms were not displaced
to increase the accuracy of E f . The k-point sampling density
was set to 1.8 Å−1 for the defect calculations.

For the performance test, we considered a hydrogen
adatom in the +1 charge state (H+1

ad ) on top of S in SL MoS2

[30] and N in SL h-BN. We also considered a Mn impurity
substituted on the Mo site in the +1 charge state (Mn+1

Mo) and
a single Mo and six S multiple-vacancy clusters in the −2
charge state (Va−2

MoS6) for SL MoS2 [11] and C on B in the +1
charge state (C+1

B ) and H on B in the −2 charge state (H−2
B )

for SL h-BN. The in-plane supercell size was then set to 6, 9,
12, 15, and 18, while the perpendicular dimension Lz was set
to 15, 20, 25, or 30 Å.

All the VASP input settings were generated using the VISE

code [31] (version 0.6.6), The processing related to defects
was conducted with PYDEFECT [31]. For this study, we devel-
oped the PYDEFECT_2D code [32]. This code automates the

FIG. 1. Workflow to estimate the corrections to the point defect
formation energies in 2D materials. The steps involving first-
principles calculations are colored blue. Steps 6–12 are done with
PYDEFECT_2D.

energy corrections of defects in 2D materials. It can be used
in conjunction with PYDEFECT.

IV. DETAILS OF THE CORRECTION WORKFLOW

The NK correction technique is based on the concept that
the defect charge is contained within the supercell, which is
a typical prerequisite in corrections to charged defects. It is
also necessary to define the functional form of the dielectric
profile. Our goal is to evaluate the corrections of E f using
Eqs. (1)–(3). The workflow is depicted in Fig. 1. Since the
steps 1–4 are common in conventional point defect calcula-
tions, we begin with step 5.

A. Dielectric profiles (steps 5 and 6)

The dielectric profile is divided into the ion-clamped part
ε∞, which is a sum of electronic and vacuum permittivity,
and the ionic part εion. The value of ε∞ along the z direc-
tion (ε∞, ⊥) is assessed by introducing a dipole layer into
a vacuum and calculating the gradient of the electrostatic
potential. However, determining ε∞ in the in-plane direction
is challenging using the same method due to the absence of a
vacuum region laterally. Inserting a dipole layer within mate-
rials introduce artifacts in the electronic structure calculation.
Moreover, calculating εion is difficult since the defect-induced
electrostatic potential is not smooth anymore after the atomic
positions are relaxed. Hence, there is a need for defining the
dielectric profiles.

In the literature, two functional forms are commonly uti-
lized [7,11]: the stepwise function with smoothed edges,
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TABLE I. Ion-clamped (ε∞) and ionic (εion) dielectric constants
along the lateral (‖) and vertical (⊥) directions that are calculated
using the slab models with Lz = 20 Å.

εave
∞, ‖ εave

∞, ⊥ εave
ion, ‖ εave

ion, ⊥ εave
0, ‖ εave

0, ⊥

SL MoS2 5.19 1.34 0.07 0.00 5.26 1.34
SL h-BN 1.64 1.12 0.29 0.01 1.93 1.12

defined as

ε(z) = 1 + A

[
1 + erf

(
z − zleft

β

)][
1 + erf

(
zright − z

β

)]
,

(9)

where A represents the scaling parameter, zleft and zright are
the boundaries of the slab layer on the left and right sides,
respectively, and β is the parameter for edge smearing, and
the Gaussian-type function, expressed as

ε(z) = 1 + Bexp

(
− (z − z0)2

2σε
2

)
, (10)

where B is the scaling parameter, z0 is the Gaussian function’s
center, and σε is the Gaussian smearing parameter. The latter
is frequently applied to atomically thin 2D systems, where
all atoms are coplanar, as observed in h-BN. Considering the
displacement of the S and Mo planes in the z direction, we
adopt the stepwise profile for SL MoS2.

The method for determining dielectric profiles varies sig-
nificantly in the literature [7,8,10–14]. However, the dielectric
profiles should at least be consistent with the average di-
electric constants calculated using the same slab model εave

[11]. Note that the relationship between εave and the dielectric
profile is dependent on the direction: εave

‖ and εave
⊥ correspond

to those of capacitors connected in parallel and in series,
respectively, and can be expressed as

εave
‖ = 1

Lz

∫ Lz

0
ε‖(z)dz (11)

and

(εave
⊥ )−1 = 1

Lz

∫ Lz

0
ε−1
⊥ (z)dz. (12)

The scaling parameters A and B are determined to satisfy these
formula.

As examples, Table I shows εave of SL MoS2 and SL h-BN
at Lz = 20 Å. Interestingly, εave

‖ (5.26) and εave
⊥ (1.34) differ

significantly in SL MoS2. However, this difference is not pri-
marily due to variations in the dielectric constants within the
2D materials. Rather, it arises from the differences between
the averaging formulas in Eqs. (11) and (12).

Figures 2(a) and 2(b) display the lateral and vertical di-
electric profiles of SL MoS2 and SL h-BN, respectively, for
different step function widths w and Gaussian smearing pa-
rameters σε, derived from the same εave as in Table I. The
intermediate width of SL MoS2 (w = 5.15 Å) is determined
from the boundaries where the average charge density be-
comes 1.0 |e|/Å2, while that of SL h-BN (σε = 0.783 Å) is
taken from Ref. [11], where it is also determined from the
charge density. Figures 2(c) and 2(d) illustrate the heights

FIG. 2. (a) Dielectric profiles of SL MoS2 at three different step
function widths w, 3.15, 5.15, and 7.15 Å. The edge smearing pa-
rameter is set to 0.5 Å. (b) Those of SL h-BN at three different
Gaussian widths σε , 0.583, 0.783, and 0.983 Å. Dielectric constants
at the centers of the (c) SL MoS2 and (d) SL h-BN slabs as a function
of w and σε , respectively. The inset in (c) shows the schematics of
the equivalent circuits for calculating averaged dielectric constants
along the perpendicular (⊥; left) and parallel (‖; right) directions.

of ε‖ and ε⊥ at the centers of the slabs as w and σε vary,
respectively. It is evident that the height of ε⊥ decreases more
steeply than ε‖ with increasing w and σε. The dielectric pro-
files largely depend on the choice of parameters, but this does
not significantly affect the correction energies when defects
exist in the slabs. However, when defects are located far from
the surfaces, such as absorbed ions, the dielectric profiles are
likely related to relatively large errors, as will be shown later
(see Sec. V A).

B. z0 and Vcorr (steps 7 and 8)

The next steps involve the determination of the model
Gaussian charge position z0. One may expect that z0 cor-
responds to a defect site, e.g., a vacant site or an impurity
site itself. We demonstrate V corr of H+1

ad on the SL MoS2

calculated by setting z0 to the proton site in Fig. 3(a). There is
an obvious gradient of V corr(z) (V

′
corr) in a vacuum, indicating

the presence of the macroscopic dipole. Therefore, the proton
site is not adequate as z0, and its fine tuning is necessary for
evaluating Ecorr, as discussed in Ref. [8].

To automatically determine the optimized z0 (zopt
0 ) that

fully eliminate the macroscopic dipole, we propose the fol-
lowing workflow:

(1) Calculate V model(z0, z) for different z0 under 1D PBCs.
Due to the dimensionality reduction, the computational cost
is negligibly small. The potentials are reusable for any defect
charge combination.

(2) Compute V ab initio(z) from first-principles calculations.
(3) For different z0 considered in step 1, com-

pute V corr(z0, z) = V ab initio(z) − V model(z0, z) and estimate its
derivative, i.e., electric field V

′
corr at zfar [V

′
corr(z0, zfar )].

(4) Select z0 with the smallest absolute value of
V

′
corr(z0, zfar ) as zopt

0 .
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FIG. 3. (a) Dielectric profiles and planar-averaged Gaussian
charge distribution (top) and V ab initio, V model, and V corr of the H+1

ad
model on SL MoS2 with 6×6 in-plane size and Lz = 20 Å (bottom;
see text for details). The charge center z0 is set to the protonic posi-
tion. (b) Electric field at the point farthest from the Gaussian charge
in the z direction V

′
corr(zfar ) as a function of the Gaussian charge

position z0. Results calculated with the three different dielectric (z0)
profiles in Fig. 2(a) are shown. The vertical dashed lines indicate the
atomic positions of Mo, S, and absorbed H, while the black arrow
indicates zopt

0 . (c) Same as (a), but for z0 = zopt
0 in this study (see text

for details).

Figure 3(b) displays the variation of V
′
corr(zfar ) for H+1

ad as
a function of z0, utilizing the three distinct dielectric profiles
illustrated in Fig. 2(a). Crucially, the optimal value of zopt

0
varies depending on the dielectric profile, yet for all profiles,
zopt

0 shifts from the proton towards the SL MoS2, indicating
electron transfer from SL MoS2 to H+1

ad . Figure 3(c) presents

FIG. 4. The long-range correction energy �Eq=+1
lr] of a Gaussian

charge in the slab models with a 6×6 in-plane size and Lz = 20 Å.
The three different dielectric profiles in Figs. 2(a) and 2(b) are
considered.

V corr(z
opt
0 , z), where a flat potential is observed in vacuum,

underscoring the efficacy of this workflow.

C. �Eq
lr (z0) (steps 9–11)

Generally speaking, �Eq
lr (z

opt
0 ) is required for individ-

ual defect charge combinations. As discussed above, many
calculations of �Eq

lr should be avoided due to their high
computational costs. In this study, we propose estimating �Eq

lr

by interpolation. Figures 4(a) and 4(b) show �Eq=+1
lr for SL

MoS2 and SL h-BN, respectively, as a function of z0 for the
three dielectric profiles shown in Fig. 2(a). When the dielectric
profile is smooth, �Eq=+1

lr (z0) is effectively fitted as shown
in Fig. 4. Once the interpolated function is obtained, we can
evaluate �Eq

lr from �Eq
lr = q2�Eq=+1

lr . This interpolation is
extremely useful for low-symmetry materials because they
require very high computational costs for evaluating �Eq

lr , as
mentioned above.

V. RESULTS AND DISCUSSION

A. Dependence of Ecorr on dielectric profiles

As mentioned earlier, the functional form of the dielectric
profile is an input parameter. Given the inherent uncertainty in
the dielectric profile, it is crucial to understand the sensitivity
of formation energies for meaningful discussions in practical
applications. Ecorr is obtained by summing �Eq

lr (z
opt
0 ) obtained

in step 11 and qV corr(z
opt
0 , zfar ) obtained in step 8 in Fig. 1.

qV corr(z
opt
0 , zfar ) is inversely proportional to the supercell vol-

ume and is usually negligibly small because the defect models
for 2D materials typically have a large vacuum. Thus, �Eq

rl
closely represents Ecorr.

As shown in Fig. 4(a), �Eq=+1
lr within the SL MoS2 slab

are relatively insensitive to the dielectric profile, consistent
with Ref. [11]. However, variations increase when moving
from the middle of the slab towards the vacuum. These vari-
ations are attributed to errors caused by the selection of an
ill-defined dielectric profile. Therefore, it is important to keep
in mind that defects with charge centers distanced from the
surfaces may exhibit significant errors. In the case of SL
h-BN, as illustrated in Fig. 4(b), these variations are more re-
duced, primarily due to the smaller dielectric constant within
the slab and the reduced thickness of the single layer.
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FIG. 5. Cell size dependences of defect formation energies Ef of (a) and (d) H+1
ad on SL-MoS2, (b) and (e) Mn+1

Mo, (c) and (f) Va−2
MoS6 in

SL MoS2, (g) H+1
ad on SL h-BN, (h) C+1

B , and (i) H−2
B in SL h-BN with and without corrections. (a)–(c) show the results as a function of the

inverse of the vertical distance of the supercells Lz, with a fixed in-plane size of 6×6. (d)–(i) show the results as a function of the inverse of the
horizontal in-plane size Lx , with Lz = 20 Å. The units in (d)–(i) are the inverse of the in-plane lattice constants ain-plane. The energy zeros are set
to the energies obtained for the largest supercells corrected with the dielectric profiles with intermediate widths. The three different dielectric
profiles shown in Figs. 2(a) and 2(b) are considered for each. The result in (i) highlighted by the red rectangle exhibits an unintended electron
trap in a vacuum (see text for details).

Figures 5(a)–5(c) and 5(d)–5(i) illustrate E f with and with-
out corrections as a function of Lz and in-plane dimension Lx,
respectively. Although the model size dependences have been
examined in terms of Lz [7,8,11], this study also investigates
dependences on Lx. Note that when either Lx or Lz is extended
while the other is kept fixed, the uncorrected E f diverges
towards positive infinity. This divergence is mitigated upon
applying the corrections in all cases, resulting in E f remain-
ing nearly constant as Lz or Lx is increased. However, this
does not necessarily indicate the accuracy of the corrections,
as the corrected E f in Fig. 5 do not converge to identical
values across different dielectric profiles. This discrepancy is
attributed to spurious interactions along the fixed direction.
To accurately determine E f in the dilution limit, isotropic

expansion of supercells is required, but it is computationally
prohibitive.

We observe a significant energy lowering of E f in Fig. 5(i)
when the in-plane lattice constant is expanded to 6×6. This
discrepancy arises from an unintended electron trap in the cen-
tral portion of the vacuum region, resulting from a background
charge (see also Ref. [7]). Because the background charge
density is inversely proportional to the volume, this artifact
is absent in the calculations of the 9×9 supercell or larger.

Regarding defects in SL MoS2 [Figs. 5(a)–5(f)], the cor-
rected E f does not depend on Lz, while a slight cell size
dependence is observed when changing Lx. As mentioned by
Freysoldt and Neugebauer [8], the electrostatic interactions
in the vertical directions are irrelevant to the details of the
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FIG. 6. (a) Eigenvalues of perfect SL MoS2 and (b) those of the
6×6 supercell including H+1

ad , Mn+1
Mo, and Va−2

MoS6 defects. Lz is set
to 30 Å. (c) The eigenvalues corrected by subtracting the potential
for electrons at z = 15 Å (Mo layer) as shown in (d). The spatial
distributions of the eigenstates denoted as A and B are shown in
Figs. 7(a) and 7(b), respectively. Red and blue dots indicate the oc-
cupied and unoccupied states, respectively. (d) The planar averaged
potential profile of the Gaussian model V model with z0 = 15 Å in
the 6×6 supercell. The dielectric profile with w = 5.15 Å shown in
Fig. 2(a) is adopted. The Mo and S positions are indicated by dashed
lines.

dielectric profile when Eq. (12) is satisfied. However, the in-
teractions in the lateral directions are inversely proportional to
the dielectric constants, which introduces the in-plane size de-
pendence [Figs. 5(d)–5(f)]. Compared to defects in SL MoS2,
those in SL h-BN exhibit smaller dependences on the dielec-
tric profile. The reason is attributed to the smaller dependence
of Eq=+1

lr (Fig. 4) as mentioned earlier.
Defects with larger |q| may have greater potential errors

because Eq
lr is proportional to q2. This is particularly pro-

nounced for defects situated far from the surface of SL MoS2

owing to the more significant dielectric profile dependence.
Indeed, the cell size dependence of E f with corrections for
Va−2

MoS6 in SL MoS2 is relatively large, as demonstrated in
Fig. 5(f).

B. Corrections on eigenvalues of host bands

In the point defect calculations, analyzing electronic eigen-
values is crucial for identifying the presence and energy
positions of perturbed host states and defect localized states
[33–35]. In Figs. 6(a) and 6(b), the eigenvalues of pristine
SL MoS2 where the in-plane lattice constant is expanded to

6×6 and those in supercells including H+1
ad , Mn+1

Mo, and Va−2
MoS6

are shown, respectively. It is evident that in the presence of
the positively (negatively) charged defects, the eigenvalues
are significantly downward (upward) shifted from those in
the pristine slab model. Such shifts are introduced by an
electric field caused by the defect and background charge. As
exemplified in Fig. 3(c), in regions where SL MoS2 exists,
the positive (negative) potential operates if the defect charge
is positive (negative). Because the host bands in 2D materials
are distributed within the MoS2 plane, we need to subtract the
electrostatic potential on the MoS2 plane from the eigenval-
ues.

Figure 6(d) illustrates V model in the model where a Gaus-
sian charge is placed at the center of the SL MoS2. Note
that the potential for electrons is the negative of V model,
so the corrections are achieved by adding V model(z = 15Å).
Figure 6(c) displays the constantly shifted eigenvalues of the
supercells with defects. The eigenvalues corresponding to the
host bands are accurately reproduced in all three calculations,
and the defect levels are distinctly discerned. Note that the
precision of the corrections to the host-derived eigenvalues is
not quantified by comparing those in the pristine supercell.
This is because the host-derived orbitals are altered by the
point defects, and some deviation of eigenvalues from those
in the pristine 2D materials may inherently occur.

In 3D materials, the host-derived bands distribute across
the entire cell, and the average potential remains approx-
imately zero, even if a background charge is present.
Therefore, such corrections are necessary only for defects in
lower-dimensional models including a vacuum.

C. Corrections to eigenvalues of defect states

The defect localized states necessitate different corrections
from the host-derived bands, which can be estimated using the
relation proposed by Chen and Pasquarello [36], known as

εcorr = −2

q
Ecorr. (13)

The corrected eigenvalues are comparable with the band edges
in the corresponding pristine slab model. However, in slab
calculations, the potential reference depends on the vacuum
region in low-dimensional models because the average elec-
trostatic potential is set to zero. Therefore, to discuss the
eigenvalues between supercells with different Lz, they must
be aligned with the vacuum level.

Figures 7(a) and 7(b) depict the spatial distributions of
squared wave functions for two defect levels in Mn+1

Mo and
Va−2

MoS6, labeled A and B in Fig. 6(c), respectively. Both lev-
els exhibit strong localization. Figures 7(c) and 7(d) display
the eigenvalues relative to the vacuum level as a function of
Lz. Without corrections, eigenvalues monotonically decrease
(increase) for positively (negatively) charged defects with in-
creasing Lz. Conversely, corrected eigenvalues using Eq. (13)
remain nearly constant, affirming their validity. Nevertheless,
these corrected eigenvalues can vary by several tens of eV,
depending on the dielectric profile selection. Thus, a care-
ful choice of dielectric profile, considering factors such as
charge density distribution, is crucial for accurate corrections.
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FIG. 7. (a) and (b) Squared wave functions denoted as A and B in
Fig. 6(c). Visualization is performed with VESTA [37]. (c) and (d) The
eigenvalues with and without corrections with respect to the vacuum
level as a function of the inverse of Lz. For the corrections, the three
dielectric profiles shown in Fig. 2 are considered. The in-plane size
is fixed to the 6×6 supercell.

Furthermore, it is vital to interpret calculation results within
the variation.

VI. CONCLUSIONS

In this study, the PYDEFECT_2D code was developed to
automate corrections to point defect formation energies and
eigenvalues in 2D materials. Our method builds on the ap-
proach proposed by Noh et al. [14] and Komsa et al. [11]
and utilizes the self-energy computation of isolated Gaussian
charges based on the formalism by Sundararaman and Ping
[21]. To reduce computational costs and processing time,
interpolation of the long-range electrostatic interaction was
proposed along with estimation of the potential alignment
term from 1D potentials. Unfortunately, the dielectric profiles
employed in these corrections are ill defined. Thus, we exam-
ined how the choice of dielectric profiles affects the correction
energies and eigenvalues. Through the test calculations of
three different types of defects in MoS2 and h-BN, it was
found that the selection of dielectric profiles can relatively
influence the corrections for absorbed atoms. To address the
artificial shifts of host-derived eigenvalues, aligning the po-
tential in the region where the 2D material is present was
suggested. The precision of our corrections and previously
proposed defect-induced eigenvalue corrections were also
evaluated. We believe that our developed code, computational
techniques, and extensive tests contribute significantly to the
study of point defects in 2D materials.
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APPENDIX: SUMMARY OF THE
CORRECTION METHODS

Other than the NK method, various types of correction
techniques for defects in 2D models have been proposed
[7–17]. For example, da Silva et al. proposed a method to
correct the electrostatic potential in self-consistent field cal-
culations to reproduce the potential under open boundary
conditions [7]. This method prevents artificial strong electric
fields in the vacuum and accurately reproduces the electronic
structure in the dilute limit. However, this technique does
not allow for the relaxation of atomic positions, which may
result in significant errors in the formation energies of charged
defects in ionic compounds. Freysoldt and Neugebauer (FN)
proposed an a posteriori technique to evaluate the correction
energy using the image charge method [8] which is nearly
as accurate as the NK method. The method proposed by
Vinichenko et al. [12] is similar to the NK method, but it
suggests calculating the long-range correction energy using
the defect charge density. However, this approach may be
challenging to apply if the defect charge state is submerged
in the valence or conduction bands.

Note that most of these correction methods necessitate
knowledge of the dielectric profiles. An exception is the
method proposed by Wang et al. [15], in which the supercell
model is scaled to eliminate spurious electrostatic interaction.
While this method obviates the need for postcorrections, it
does not accommodate the site dependence of the correction
energies. A similar method is the special vacuum (SV) method
proposed by Komsa et al. [11], in which the supercell model
is determined in a like manner. The difference lies in the fact
that, in Wang’s method, the scaling is established by a series
of first-principles calculations on various slab sizes, whereas
in the SV method, it is deduced from Gaussian charge models
under an assumed dielectric profile.

The advantages and disadvantages of the correction meth-
ods are summarized from three perspectives as follows and in
Table II.

(1) Ionic relaxation. da Silva et al.’s method does not
support the relaxation of ionic positions, a critical aspect
for ionic compounds. Conversely, other methods can account
for relaxation effects by employing a dielectric profile that
includes both electronic and ionic contributions (in the NK,

TABLE II. Summary of the differences between correction meth-
ods for charged point defects in 2D materials. An asterisk indicates a
situation where an isotropic dielectric profile is assumed.

NK FN da Silva Wang SV

Allow ionic relaxation
√ √

✗
√ √

Require dielectric profile
√ √

*
√

* ✗
√

Require defect center
√ √ √

✗ ✗
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FN, and SV methods) or by conducting scaling calculations
that incorporate ionic relaxation (in Wang’s method).

(2) Dielectric profile. da Silva et al.’s method and the
FN method currently assume a three-dimensionally isotropic
dielectric profile, which may be unsuitable for materials ex-
hibiting distinct screening behaviors in lateral versus vertical
directions. While the NK and SV methods suit lower-
dimensional systems, they face limitations when in-plane
dielectric profiles are anisotropic. In such cases, extrapolat-
ing Eperiodic becomes necessary to calculate Eq

isolated. Although

Wang’s method circumvents the need for a dielectric profile, it
demands multiple defect calculations across varying supercell
sizes, leading to substantial computational expense.

(3) Defect center. The methods developed by Komsa
et al., FN, and da Silva et al. necessitate specifying the de-
fect center’s position, whereas Wang’s method and the SV
method do not. However, the latter methods cannot account
for the dependence of the correction energy on the defect
center, which may lead to significant errors for absorbed
ions.
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