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A quantum system constrained to a degenerate energy eigenspace can undergo a nontrival time evolution on
adiabatic driving, described by a non-Abelian Berry phase. This type of dynamics may provide logical gates in
quantum computing that are robust against timing errors. A strong candidate to realize such holonomic quantum
gates is an electron or hole spin qubit trapped in a spin-orbit-coupled semiconductor, whose twofold Kramers
degeneracy is protected by time-reversal symmetry. Here we propose and quantitatively analyze protocols to
measure the non-Abelian Berry phase by pumping a spin qubit through a loop of quantum dots. One of these
protocols allows to characterize the local internal Zeeman field directions in the dots of the loop. We expect
a near-term realization of these protocols, as all key elements have been already demonstrated in spin-qubit
experiments. These experiments would be important to assess the potential of holonomic quantum gates for
spin-based quantum information processing.
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I. INTRODUCTION

Recent demonstrations of coherent electron and hole spin
control in semiconductor quantum dot arrays [1–6] represent
milestones toward a fault-tolerant quantum processor of spin
qubits. In such devices, spin-orbit interaction often plays an
important role. For example, in the presence of a magnetic
field, it enables resonant control of a spin qubit using an ac
electric field [7–9].

In the absence of a magnetic field, spin-orbit coupling
does not break the twofold Kramers degeneracy of a spin
qubit. However, spin-orbit does trigger qubit dynamics in
the presence of time-dependent electric fields via geometric
effects. On the one hand, if electric fields are intentionally
used to move the qubit adiabatically along a closed loop in real
space [such as in a loop of three quantum dots, as shown in
Fig. 1(a)], then the qubit state undergoes a nontrivial time evo-
lution in the two-dimensional Kramers-degenerate subspace,
described by a path-dependent propagator that is often called
the non-Abelian Berry phase [11–14].

Quantum gates based on such adiabatic control form the
building blocks of holonomic quantum computing [15]. As
simulations and experiments revealed, holonomic quantum
computation may overcome the challenges of building a large-
scale quantum computer due to its resistance to specific types
of faults [16]. Furthermore, as theoretical [17] and experi-
mental [2] analyses showed, the effect of charge noise on
semiconductor spin qubits becomes weaker as the Zeeman
splitting of the qubit is decreased. According to these find-
ings, holonomic quantum computing with such spin qubits,

*kolokba@edu.bme.hu
†palyi.andras@ttk.bme.hu

envisioned at zero external magnetic field, may have an ad-
vantage over standard resonant control that is carried out in
a finite magnetic field. On the other hand, the same mech-
anism implies that the interplay of spin-orbit coupling and
electrical fluctuations lead to geometrical qubit dephasing
[13,17]. To our knowledge, these geometric effects predicted
for spin-orbit-coupled particles have not yet been demon-
strated experimentally and the protocol proposed below is one
step toward the realization of holonomic quantum computa-
tion in semiconductor quantum dot devices.

The effect of the (Abelian) Berry phase [18] on nondegen-
erate levels has been observed in a variety of systems from
optical fibers [19] and semiconductor rings [20–22] to Bose
condensates of ultracold atoms [23]. In addition, geometrical
dephasing due to this Berry phase have been measured in
superconducting qubits [24,25].

As for the non-Abelian Berry phase, which is the focus of
our work, experimental evidence has been observed in nuclear
magnetic resonance experiments [26], and more recently in
two-dimensional hole gases in semiconductors [27], in Bose
condensates [28,29], in coupled photonic waveguide struc-
tures [30] and in classical optical interference measurements
using real space loops [31]. However, to our knowledge, the
non-Abelian Berry phase has not been experimentally studied
in quantum dot systems. In contrast to the recent experiments
on non-Abelian Berry phases, where degeneracy of the system
is achieved by fine tuning of the system’s parameters [28–31],
in a quantum dot system at zero magnetic field the energy de-
generacy is due to time-reversal symmetry. It is reasonable to
expect that this symmetry-based protection of the degeneracy
is more robust than protection based on fine-tuning. Hence,
we consider spin qubits in the presence of spin-orbit coupling
and absence of magnetic field as an outstanding experimental
platform to measure non-Abelian Berry phase effects.
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FIG. 1. Protocol to measure the non-Abelian Berry phase by
adiabatically pumping a spin qubit through a quantum-dot (QD)
loop. (a) Three QDs forming a loop. A reservoir resides next to QD1,
enabling Elzerman-type readout [10]. A current (I) pulse through the
wire (purple) induces magnetic field for initialization and readout.
(b) Current (I) and gate-voltage (ε, v) pulse sequence. Gate voltages
control QD on-site energies (ε) and interdot tunneling energies (v).
See Sec. V C for an alternative protocol that does not require pulsed
magnetic fields and relies on Pauli blockade for initialization and
readout.

Here we propose and theoretically analyze a protocol to
measure the non-Abelian Berry phase by adiabatically pump-
ing a spin qubit through a quantum-dot loop. Our main
protocol, see Fig. 1, incorporates dc-pulsed magnetic fields for
initialization and readout and qubit shuttling at zero magnetic
field. We also propose a second version of the protocol to
infer the key spin-orbit parameters of the multidot system,
and a third version which uses Pauli-blockade initialization
and readout, and requires neither the magnetic field dc-pulse
nor tunneling to a reservoir. Furthermore, we describe variants
for explicit demonstration of the non-Abelian (i.e., noncom-
mutative) nature of the adiabatic geometric quantum gates.
We anticipate that hole spin qubits in two-dimensional (2D)
arrays of germanium quantum dots [1,2,32–34] are prominent
candidates to carry out these experiments, due to their high
device quality, planar 2D layout, strong spin-orbit interaction,
and weak hyperfine effects. Note that single-electron shuttling
experiments have been carried out in GaAs-based devices
[35,36]; however, there hyperfine interaction is comparatively
strong, hindering spin qubit functionalities, and potentially
masking the non-Abelian Berry phase effect.

The rest of the paper is organized as follows. In Sec. II, we
present a minimal model describing the non-Abelian Berry
phase propagator of a spin qubit as it is pumped through a
quantum-dot loop. In Sec. III, we propose a measurement pro-
tocol to observe the non-Abelian Berry phase. In Sec. IV, we
show that the interdot pseudospin-non-conserving tunneling
parameters and the angles characterizing the local Zeeman

fields can be inferred via a similar measurement protocol.
We discuss an alternative protocol based on Pauli-blockade
initialization and readout, as well as risks, challenges and
further opportunities related to the proposed experiments, in
Sec. V. We draw our conclusions in Sec. VI.

II. ADIABATIC CHARGE PUMPING THROUGH
A QUANTUM DOT LOOP IN A MINIMAL MODEL

In this section, we introduce a minimal model to describe
the non-Abelian Berry phase in a loop of three quantum dots.

A. Setup, model, and the non-Abelian Berry phase

Consider a particle (an electron or a hole) in a quantum dot
loop, subject to spin-orbit interaction. The setup is shown in
Fig. 1(a). Assume that the qubit is initialized in a specific state
in the two-dimensional Kramers-degenerate subspace associ-
ated to the lowest-lying orbital of QD1. By slowly changing
the plunger and barrier gate voltages, as depicted in Fig. 1(b),
the qubit is adiabatically pumped through the loop. As a result
of being moved in the presence of spin-orbit interaction, the
qubit state is rotated by the end of a full cycle. This qubit
rotation can be phrased in terms of a non-Abelian Berry phase,
which we describe as follows.

We take into account the ground-state orbitals of each
QD, and the corresponding Kramers doublets which we call
pseudospin doublets. Hence, with three dots, the Hilbert space
is six dimensional. As long as we work with arbitrary pseu-
dospin basis states, the model Hamiltonian of this setup reads

H = Hon-site + Htun + Hstun, (1a)

Hon-site = ε1τ1 + ε2τ2 + ε3τ3, (1b)

Htun = ṽ12τ
x
12 + ṽ23τ

x
23 + ṽ31τ

x
31, (1c)

Hstun = h̄�̃12 · σ̃ ⊗ τ
y
12 + h̄�̃23 · σ̃ ⊗ τ

y
23

+ h̄�̃31 · σ̃ ⊗ τ
y
31, (1d)

where σ̃α is the αth Pauli operator acting on the pseudospin
degree of freedom for α ∈ {x, y, z}, σ̃ is the vector of σ̃α , τk

with k ∈ {1, 2, 3} is the projection on the kth dot, and τα
jk

with j, k ∈ {1, 2, 3} is the Pauli α operator between the dots j
and k.

The matrix forms of these operators can be expressed
using the basis vectors representing wave functions local-
ized on quantum dot k. These basis vectors are denoted as
|k, ⇓̃〉 and |k, ⇑̃〉, and they are assumed to be Kramers pairs,
i.e., |k, ⇓̃〉 = T |k, ⇑̃〉 with T being the time-reversal oper-
ator. The operators in Eq. (1) read, for example, as τk =
|k, ⇓̃〉〈k, ⇓̃| + |k, ⇑̃〉〈k, ⇑̃|, τ x

jk = | j〉〈k| + |k〉〈 j| and τ
y
jk =

−i| j〉〈k| + i|k〉〈 j|. Tunneling between the jth and the kth dot
is described by four parameters (for each QD pair: one scalar
and three coordinates of a vector): ṽ jk is the pseudospin-
conserving tunneling, and �̃ jk is the vector describing the
pseudospin-non-conserving tunneling. The pseudospin-non-
conserving tunneling terms in the Hamiltonian are induced by
spin-orbit coupling [37].

Since the Hamiltonian H describes a single fermion in the
presence of time-reversal symmetry (no magnetic field), the
energy levels of H are twofold degenerate, known as Kramers
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FIG. 2. A convenient gauge transformation for calculating the
non-Abelian Berry phase. The pseudospin-non-conserving tunneling
matrix elements between the dot pairs (QD2,QD3) and (QD3,QD1)
are eliminated by the gauge transformation, which in turn transforms
the pseudospin-non-conserving tunneling matrix elements between
the dot pair (QD1,QD2) into �. By a further simultaneous pseu-
dospin rotation on all three dots, � = �(0, 0, 1) can be achieved.

degeneracy. Furthermore, the matrix form of the Hamiltonian
depends on the choice of the localized basis vectors, which
can be considered as a gauge degree of freedom. With an
appropriate gauge transformation, we can simplify the Hamil-
tonian, as illustrated in Fig. 2: (i) Two of the three tunneling
Hamiltonian terms, e.g., those between QD pairs (1,3) and
(2,3), can be transformed to a pseudospin-conserving form.
(ii) The pseudospin-non-conserving tunneling parameters of
the third QD pair (1,2), obtained after this gauge transforma-
tion, form a vector with a single positive component, � =
(0, 0,�).

In fact, after this gauge transformation, the tunneling terms
Htun and Hstun transform into the following form:

Htun = v12τ
x
12 + v23τ

x
23 + v31τ

x
31, (2a)

Hstun = h̄�σz ⊗ τ
y
12. (2b)

The parameters of these terms can be expressed with the old
parameters, see Appendix A for the formulas and the detailed
derivation. The Pauli matrices in Eq. (2) are expressed in the
new basis, denoted as |k,⇓〉, |k,⇑〉. Note that the above gauge
specification still leaves a gauge freedom, in the sense that a
further global pseudospin rotation around the z axis leaves the
Hamiltonian unchanged.

In our chosen gauge, the unitary qubit propagator U
(or “the non-Abelian Berry phase” or a “holonomic quan-
tum gate”) corresponding to a full adiabatic pumping cycle
QD1 → QD2 → QD3 → QD1 of the qubit through the loop
reads

U = 1√
v2

12 + h̄2�2

(
v12 + ih̄� 0

0 v12 − ih̄�

)
= ei θso

2 σz , (3)

where θso = 2 arctan( h̄�
v12

), and the basis ordering is |1,⇑〉,
|1,⇓〉. This unitary U is a pseudospin rotation around the z
axis with angle θso. We provide the derivation of this result in
the next subsection.

B. Derivation of Eq. (3)

The propagator Ucycle describing the time evolution of the
qubit through the complete adiabatic cycle QD1 → QD2 →

QD3 → QD1 is a 6 × 6 matrix, which can be represented
with the basis ordering |1,⇑〉, |1,⇓〉, |2,⇑〉, . . . , |3,⇓〉. This
cycle propagator can be expressed using the 6 × 6 propagators
W21, W32, and W13 of each tunneling step as

Ucycle = W13W32W21. (4)

We calculate the propagator W21, which corresponds to the
first shuttling step, using the block-diagonal unitary transfor-
mation V = diag(I,U †, I ), where U is the unitary defined
in Eq. (3). This transformation of the Hamiltonian renders
the tunneling between QD1 and QD2 pseudospin-conserving.
Although this transformation renders the tunneling between
QD2 and QD3 pseudospin-non-conserving, this does not com-
plicate the calculation as tunneling between QD2 and QD3
is suppressed in this shuttling step [see Fig. 1(b), showing
that the supports of v12(t ) and v23(t ) are disjoint]. Thus, the
transformed Hamiltonian is trivial for the pseudospin degree
of freedom.

Together with the adiabatic nature of the tunneling dynam-
ics, these imply that the propagator for the first tunneling step
has the following block-matrix form:

W̃21 =
⎛
⎝ 0 e−iφ+

21 0
e−iφ−

21 0 0
0 0 e−iε3τs

⎞
⎠. (5)

Here φ±
21 are dynamical phases depending on the actual pulse

shapes and timings, and τs is the time of the shuttling. Trans-
forming this propagator back, we obtain:

W21 = V †W̃21V =
⎛
⎝ 0 e−iφ+

21U † 0
e−iφ−

21U 0 0
0 0 e−iε3τs

⎞
⎠. (6)

For the other two shuttling steps, the tunneling is pseu-
dospin conserving, therefore the propagators have the follow-
ing form:

W32 =
⎛
⎝e−iε1τs 0 0

0 0 e−iφ+
32

0 e−iφ−
32 0

⎞
⎠, (7a)

W13 =
⎛
⎝ 0 0 e−iφ−

13

0 e−iε2τs 0
e−iφ+

13 0 0

⎞
⎠, (7b)

where φ±
32 and φ±

13 are dynamical phases.
Multiplying together the three propagators as in Eq. (4), we

arrive to the cycle propagator that reads

Ucycle =
⎛
⎝e−iφ1U 0 0

0 0 e−iφ2

0 e−iφ3U † 0

⎞
⎠. (8)

Here the phases are dynamical and could be expressed from
the dynamical phases described above. As long as the qubit
is localized on the first dot at the start of the process, the
relevant part of Ucycle is its top left 2 × 2 block with U being
defined in Eq. (3), and the dynamical phases have no physical
significance.
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III. MEASUREMENT PROTOCOL
FOR THE NON-ABELIAN BERRY PHASE

In the previous section, we derived a formula, Eq. (3), for
the non-Abelian Berry phase that characterizes an adiabatic
pumping cycle of a single particle in a loop of three quantum
dots. In general, the non-Abelian Berry phase of such a spin- 1

2
particle is a 2 × 2 unitary transformation. This unitary trans-
formation corresponds to a rotation on the Bloch sphere, and
therefore it can be described with an angle and an axis.

In this section, we propose a measurement to determine
the angle and the axis corresponding to the non-Abelian Berry
phase induced by an adiabatic pumping cycle in the quantum
dot loop. In fact, the angle is a gauge-invariant physical quan-
tity. The axis, however, is a gauge-dependent quantity; below
we describe how the axis is characterized by our measurement
protocol.

We consider a single particle in the three-dot loop as de-
scribed above and shown in Fig. 1(a). The setup includes a
metallic wire [purple stripe in Fig. 1(a)] that can host current
dc pulses [purple solid line in Fig. 1(b)] and a particle reser-
voir [black in Fig. 1(a)] that is used for Elzerman-type qubit
readout [10].

The protocol starts with having a single particle in QD1
and having no particles in QD2 and QD3. As the first step,
a current dc pulse is applied on the wire to produce a dc
magnetic field pulse that is felt by the particle in QD1 [38,39].
The duration of the dc pulse is long enough such that the
pseudospin of the particle in QD1 can thermalize, i.e., the
pseudospin is initialized with a sufficiently high fidelity. Af-
ter switching off the current (and hence the magnetic field),
the particle is adiabatically pumped through the loop via the
sequence QD1 → QD2 → QD3 → QD1 to induce the non-
Abelian Berry phase. This step might be repeated N times,
which amounts to performing the same geometric gate N
times. Finally, the qubit is read out in QD1 by Elzerman
readout, utilizing a second current dc pulse.

Let us denote the probability of reading out the qubit in
its excited state after the N th cycle as P(m)

1,e,N . Below, we argue
that the angle and the axis of the non-Abelian Berry phase can
be characterized from the experimental data of this readout
probability P(m)

1,e,N .
For this analysis, we first describe the time duration over

which the initial current dc pulse is switched on, creating a
magnetic field B. For simplicity, we assume that this magnetic
field is homogeneous over the volume of QD1. The Zeeman
term induced by the magnetic field, expressed in the same
general gauge as used in Eq. (1a), takes the following form:

HZeeman =
3∑

k=1

1

2
μBσ̃ · g̃kB ⊗ τk, (9)

where g̃k is the g tensor of the kth dot (a real, not necessarily
symmetric 3 × 3 matrix) and μB is the Bohr magneton. We
also introduce the notion of the local Zeeman vectors: h̄ω̃k =
μBg̃kB.

Let us transform the Hamiltonian H , which is now sup-
plemented by the Zeeman term HZeeman, to the same gauge
as it is in Eqs. (2a) and (2b). This means a rotation of the g
tensors (see Appendix B for details). As mentioned, the gauge

specification in Sec. II A still leaves a residual gauge freedom,
i.e., we can further specify the gauge with a global pseudospin
rotation that affects the Zeeman term only but leaves the other
three terms in H invariant. With the appropriate choice of the
rotation, we rotate the local Zeeman vector of the first dot into
the xz plane with x > 0. Effectively, this rotation transforms
the g tensors of the Zeeman term.

We denote the g tensors after the transformations as gk .
Then the Hamiltonian of the system in that gauge is the
following:

H = Hon-site + Htun + Hstun + HZeeman, (10a)

Hon-site = ε1τ1 + ε2τ2 + ε3τ3, (10b)

Htun = v12τ
x
12 + v23τ

x
23 + v31τ

x
31, (10c)

Hstun = h̄�σz ⊗ τ
y
12, (10d)

HZeeman = 1

2
μBB

3∑
k=1

gk (nk · σ) ⊗ τk, (10e)

where gk = |gkB|
B is the g factor of the kth dot correspond-

ing to the given direction of the magnetic field and nk =
(sin θk cos φk, sin θk sin φk, cos θk ) = gkB

gkB is the unit vector in
the direction of the local Zeeman field on the kth dot. More-
over, φ1 = 0, because, as we mentioned above, the local
Zeeman vector in QD1 is in the xz plane with x > 0.

The qubit ground state and excited state in QD1 are ex-
pressed in the basis |1,⇑〉, |1,⇓〉 as

|1, g〉 =
(

sin θ1
2

− cos θ1
2

)
, |1, e〉 =

(
cos θ1

2

sin θ1
2

)
. (11)

Therefore, the thermal equilibrium state of the system after
the initialization is

ρ1 = 1

1 + e− h̄ω1
kBT

(|1, g〉〈1, g| + e− h̄ω1
kBT |1, e〉〈1, e|), (12)

with ωk = |ω̃k|. After N pumping cycles, the pseudospin ex-
cited state occupation in QD1 yields

P1,e,N = 〈1, e|U N
cycleρ1U

†N
cycle|1, e〉

= a(θ1, T, ω1) − b(θ1, T, ω1) cos(Nθso), (13)

where θso = 2 arctan( h̄�
v12

), and we introduced the following
quantities:

a(θ1, T, ω1) = 1

2
− tanh

( h̄ω1
kBT

)
cos2 θ1

2
, (14a)

b(θ1, T, ω1) = tanh
( h̄ω1

kBT

)
sin2 θ1

2
. (14b)

However, due to the finite temperature of the reservoir, the
Elzerman-type readout does not yield the occupation prob-
abilities. The actual measurement outcome (P(m)

1,e,N ) has the
same form as (13) but with modified parameters:

P(m)
1,e,N = a(m)(θ1, T, ω1) − b(m)(θ1, T, ω1) cos(Nθso). (15)
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FIG. 3. The function A(x) defined in Eq. (16b), which reduces
the signal contrast due to the readout error caused by the thermal
broadening of Fermi-Dirac distribution of particles in the reservoir.

This means that the contrast of the oscillating signal is reduced
as

b(m)(θ1, T, ω1) = A

(
h̄ω1

2kBT

) tanh
( h̄ω1

kBT

)
sin2 θ1

2
, (16a)

A(x) = exp

(
x

1 − ex

)
− exp

(
x

e−x − 1

)
. (16b)

We illustrated the function A(x) in Fig. 3 to show how the
signal contrast is modified if the Zeeman splitting is compa-
rable to the temperature of the reservoir. The offset parameter
a(m)(θ1, T, ω1) is also changed due to the imperfect readout,
see the details of the calculation in Appendix C.

Equation (15) is the central result of this work. It is an
approximate result, valid in the adiabatic limit. To illustrate
its relation to experiments, where the adiabatic approximation
might break down, in Fig. 4(a) we show simulation results
obtained by solving the time-dependent Schrödinger equa-
tion numerically.

In the simulation, one shuttling step of the particle from the
jth QD to the kth QD is induced by the following pulses:

ε j (t ) = ε0 sin2 tπ

2τs
, (17a)

εk (t ) = ε0 cos2 tπ

2τs
, (17b)

v jk = v0 sin2 tπ

τs
. (17c)

Furthermore, for the shuttling between QD1 and QD2 (where
the tunneling is pseudospin-non-conserving), the parameter �

is varied in time in the same way as v jk . We used the above
time-dependent parameters to define the time-dependent
Hamiltonian, and numerically solved the Schrödinger equa-
tion to obtain the time evolution of the thermal state defined
in Eq. (12) as the initial state.

We emphasize that whenever the adiabatic condition holds,
the specific choice of the pulse shapes has a minor effect on
the result of the dynamics, as it only determines the minor

(a)

(b)

FIG. 4. Effect of the non-Abelian Berry phase on pumping a
spin-qubit through a quantum-dot loop. (a) Simulation results of the
measured excited state probability after N pumping cycles. Gray
solid line shows the result obtained from ideal adiabatic evolution,
Eq. (15). Further data sets correspond to different shuttling
times, see inset. For slow shuttling, τs = 2.5 ns, the simulation
result matches the solid analytical result. For faster braiding,
τs � 2 ns, the evolution is not adiabatic anymore. Parameters:
εk = 30 µeV, v12 = 30 µeV, v23 = 28 µeV, v31 = 32 µeV, h̄� =
4 µeV, T = 15 mK, B = 10 mT, g1 = 11, θ1 = 72◦, where the
parameters εk and v jk are the amplitudes of the applied signals
for the shuttling pulses shown in Fig. 1(b). Pulse shapes are
sine for εk-s and sine-squared for v jk-s. (b) Analytical result Eq. (15)
for the measured excited state probability for different magnetic
field strengths used for the initialization and different temperatures.
Parameters as above. Gray solid line is the ideal case when T = 0 K,
i.e., when initialization and readout are perfect.

deviations from adiabatic behavior. Furthermore, the adiabatic
evolution is essentially the same for any pulse as long as the
following conditions for the control parameters are fulfilled:

ε j − εk 
 v jk t = 0, (18a)

εk − ε j 
 v jk t = τs, (18b)

and that v jk is not zero at the point when ε j = εk .
Even though the simulation results depend on 10 input

parameters, in the adiabatic case, the frequency of the signal
depends only on the ratio of � and v12 [see the definition of
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θso below Eq. (3)], which depends on the actual material and
device details, and is hard to estimate theoretically. Based on
recent shuttling experiments [40], we estimate that v12 ∼ � is
very feasible and results in a high frequency in the order of 1
radian per shuttling cycle. In Fig. 4, we have used a conser-
vative choice � < v12, leading to oscillations with relatively
low frequency.

In Fig. 4, blue, red, and yellow data points show simulated
results for three different shuttling times (see inset), whereas
the solid line shows the adiabatic result of Eq. (15). First, the
solid line and the blue data points match to a high degree, con-
firming the analytical result Eq. (15). Second, as the shuttling
time is decreased (τs � 2 ns), the mismatch with the adiabatic
result grows significantly. We attribute the irregularities devel-
oping for shorter shuttling times to diabatic transitions during
the shuttling dynamics. The critical value of the shuttling time
can differ if the shape of the pulses are different. We will turn
back to the analysis of the nonadiabaticity in Sec. V A.

In Fig. 4(b), we illustrate the importance of the relative
strength of the Zeeman splitting used to initialize the qubit
and thermal fluctuations, focusing on the adiabatic limit for
simplicity. Figure 4(b) shows that increasing the Zeeman split-
ting at a fixed temperature leads to an enhanced contrast of
the oscillations, i.e., for a clear illustration of the effect it is
beneficial to increase the dc magnetic-field pulse strength and
decrease the temperature as much as possible.

The above theory analysis defines an experimental protocol
to infer the angle θso of the single-cycle non-Abelian Berry
phase and the angle θ1. For each N , the sequence “initializa-
tion → adiabatic cyclic pumping N times → readout” should
be repeated many times to obtain the probability data points
similar to those in Fig. 4. Those probabilities should then be
fitted with a harmonic function of the form (15) to extract the
angle θso of the single-cycle non-Abelian Berry phase. If the
temperature T and the Larmor frequency ω1 are known, then
the only fit parameters are θso and θ1.

We emphasize here, that we have outlined this procedure
in terms of a specific minimal model, but the procedure is
more general. In any model describing a quantum dot loop,
the non-Abelian Berry phase can be described as a rotation (of
angle θso) on the Bloch sphere, and the magnetic field used for
initialization and readout defines a Kramers basis to which the
axis of the rotation can be compared (θ1).

IV. MEASUREMENT PROTOCOL FOR THE INTERNAL
ZEEMAN FIELD DIRECTIONS

A small variation of the previous protocol gives a technique
to parametrize the local Zeeman field directions θ2 and φ2 in
QD2, as well as θ3 and φ3 in QD3. The setup is the same
as before [Fig. 1(a)], but this protocol uses two further vari-
ants of the initialization, as shown in Fig. 5. These variants
differ in the location of the particle during the initializing
magnetic-field pulse. After that pulse, the particle is adiabati-
cally pumped, counterclockwise, to QD1.

Each of these three different preparation procedures results
in a different pseudospin state located in QD1, with the pseu-
dospin state depending on the local Zeeman field direction of
the QD where the particle was initialized. Then the protocol
is continued the same way as in the previous section, i.e., N

0

init.

init.

init.

readout
times

FIG. 5. Protocol to infer local Zeeman field directions on the
quantum dot of the loop. Three preparation procedures (left) are
distinguished. Particle position (filled circle) is shown at the subse-
quent steps of the protocol. Initialization (“init.”) is done when the
particle is localized in one of the dots. Then the particle is shuttled
counterclockwise to QD1. After N adiabatic pumping cycles, readout
is done in QD1.

adiabatic pumping cycles in the loop and then the pseudospin
measurement in QD1. From the measurement data obtained
this way, the angles θ2, φ2, θ3, φ3 describing the local Zeeman
field directions in the specific gauge can be inferred. This pro-
vides a full characterization of our minimal model described
in Sec. II A.

Although we have described this protocol using a minimal
model, we note that the goal of this protocol and the protocol
itself generalizes naturally to any model describing adiabatic
pumping through a quantum-dot loop. In such a generalized
model, the angle parameters φk and θk can still be defined
as the directions of the local Zeeman fields in the dots in a
gauge, where pseudospin is conserved on tunneling between
pairs QD3 ↔ QD1 and QD2 ↔ QD3.

To analyze the protocol, let us fix the same gauge as before
in Eq. (10), i.e., interdot tunneling is pseudospin conserv-
ing everywhere except between QD1 and QD2, where it is
described by the vector � pointing in the z direction. The
Zeeman field direction in the kth dot is described with two
angles θk , φk and we further assume that φ1 = 0.

In this gauge, the ground state and the excited state can
be expressed in the |k,⇑〉, |k,⇓〉 basis, when the particle is
localized in the kth dot, and the magnetic field is switched on:

|k, g〉 =
(

sin θk
2

−eiφk cos θk
2

)
, |k, e〉 =

(
e−iφk cos θk

2
sin θk

2

)
. (19)

Thus, after thermalization, the system is in the following state:

ρ̃k = 1

1 + e− h̄ωk
kBT

(|k, g〉〈k, g| + e− h̄ωk
kBT |k, e〉〈k, e|). (20)

The thermalization is followed by counterclockwise adiabatic
shuttling of the particle to QD1 (e.g., from QD2, on the route
QD2 → QD3 → QD1), where the tunneling is pseudospin-
conserving. Therefore, the state |k, g〉 (|k, e〉) evolves to the
state

|gk〉 = sin
θk

2
|1,⇑〉 − eiφk cos

θk

2
|1,⇓〉, (21)

(analogous formula for |ek〉), which has the same amplitudes
as |k, g〉 in Eq. (20) (|k, e〉), but is expressed in the basis
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FIG. 6. The effect of the non-Abelian Berry phase
depending on the qubit position during initialization. Dots are
simulation results, solid lines are analytical results of Eq. (15).
Simulation shows agreement with the analytics. Parameters:
τs = 2.5 ns, εk = 30 µeV, v12 = 30 µeV, v23 = 28 µeV, v31 =
32 µeV, h̄� = 4 µeV, T = 15 mK, B = 10 mT, g1 = 11, g2 =
10.2, g3 = 15, θ1 = 72◦, φ1 = 0◦, θ2 = 102.9◦, φ2 = 30◦, θ3 =
36◦, φ3 = 144◦, where the parameters εk and v jk are the amplitudes
of the applied sine and sine-squared of sine pulses for the shuttlings
shown in Fig. 1(b).

|1,⇑〉, |1,⇓〉 localized in QD1. As a consequence, the state
of the system after this preparation procedure reads:

ρk = 1

1 + e− h̄ωk
kBT

(|gk〉〈gk| + e− h̄ωk
kBT |ek〉〈ek|). (22)

The next step is to adiabatically pump the particle through
the loop N times. The probability of the excited state occupa-
tion in QD1 after N cycles reads

Pk,e,N = 〈1, e|U N
cycleρkU

†N
cycle|1, e〉

= ak − bk cos(Nθso − φk ), (23)

where θso = 2 arctan( h̄�
v12

), as before, and we introduced the
parameters,

ak (θk, θ1, T, ωk ) = 1

2
− tanh

( h̄ωk
2kBT

)
cos θ1 cos θk

2
, (24a)

bk (θk, θ1, T, ωk ) = tanh
( h̄ωk

2kBT

)
sin θ1 sin θk

2
. (24b)

As a refinement of this result, we consider the same type of
readout error as in the previous section. This implies that the
oscillation contrast of the measured excited-state probability
P(m)

k,e,N is reduced with respect to bk in Eq. (24b) by the same

thermal damping factor A( h̄ω1
2kBT ) as in Eq. (16a). We numeri-

cally simulated the resulting excited-state probabilities in the
limit of adiabatic pumping, and show results in Fig. 6.

Using measurement data obtained via this protocol, one
can infer the parameters of the model in Eq. (10). To this end,
the measurement data obtained through the three variants (as
shown in Fig. 6) is fitted simultaneously, e.g., using θso, θ1, θ2,
φ2, θ3, and φ3 as fit parameters, assuming that temperature T
and Larmor frequencies ω1, ω2, and ω3 are known. We note

that θso is the only joint fit parameter of the three data sets, and
it is the common “frequency” characterizing the oscillation of
all P(m)

k,e,N as functions of N .

V. DISCUSSION

In this section, we discuss potential challenges and exten-
sions of our proposed experimental protocol.

A. Optimizing the shuttling time: diabatic transitions, hyperfine
interaction, and charge noise

We expect that the experimental protocols we have pro-
posed will work if the shuttling time is adjusted properly:
It should be neither too fast nor too slow. Too fast shuttling
leads to diabatic transitions, leading to errors, such as those
exemplified in Fig. 4(a). Too slow shuttling enables qubit
decoherence due to various noise types.

We estimate a lower bound on the shuttling time using the
Landau-Zener description for the diabatic transition in a two-
level system with Hamiltonian:

H =
(

δε(t )
2 v

v − δε(t )
2

)
, (25)

where δε(t ) = αt . In the Landau-Zener setup, dynamics starts
in the ground state at t = −∞ and ends at t = ∞. The dia-
batic transition probability (Pd) is given by the Landau-Zener
formula [41]:

Pd = e− v2

hα , (26)

To describe the dynamics in our shuttling setup, we esti-
mate the sweep velocity as α = επ

τs
. Substituting the realistic

parameter values ε = 20v = 1.2 meV, for a Pd < 10−4 sup-
pression of the diabatic transition, we obtain the following
constraint for the shuttling time:

τs � 4 ns. (27)

This Landau-Zener description applies to a different type of
pulse sequence than the one we used in our simulation. In that
case, a more sophisticated method is required to obtain the
analytic lower bound of the shuttling time which is omitted
here. However, the simulation results in Fig. 4(a) and the
above estimation support the fact that the adiabatic shuttling
of the particle between two dots is achievable within few
nanoseconds.

We estimate an upper bound on the shuttling time by con-
sidering the effect of hyperfine interaction, caused by nuclear
spins in the semiconductor hosting the quantum dots. Hy-
perfine interaction is an important and well-described cause
of dephasing in semiconductor spin qubits. Using a specific
dephasing model [42], the qubit inhomogeneous dephasing
time T ∗

2 caused by hyperfine interaction is expressed as:

h̄2

T ∗2
2

= 1

2Nn
νI (I + 1)A2

n, (28)

where ν is the abundance of the isotope having nuclear spin
I , Nn = πa∗2

B w/v0 is the number of atoms in the quantum dot
(a∗

B is the effective Bohr radius of the dot, w is the width of the
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quantum well, v0 is the atomic volume of the host material),
and An is the hyperfine interaction strength.

We estimate T ∗
2 ≈ 1.4 µs from Eq. (28), using realistic

parameter values for holes in natural germanium [43]: a∗
B =

50 nm, w = 15 nm, v0 = 2.26 × 10−2 nm3, ν = 0.0776, I =
9/2, and An = −1.1 µeV. The dephasing time gives a con-
dition for the shuttling time and the number of cycles which
reads as

3Nτs � T ∗
2 . (29)

With the substitution of τs = 4 ns, we get an upper bound
for the number of coherent cycles: N � 100. Hence, we con-
clude that our proposed experiment is feasible with hole spin
qubits in natural germanium. Motional narrowing [35,36] and
isotopic purification can further suppress effects of hyperfine
interaction and hence increase this feasibility.

Charge noise, including fluctuating charge traps, gate-
referred noise, and electron-phonon interaction, could also
affect the feasibility of the experiment [44,45]. [44,45] Based
on experimental results on the coherence time of germanium
hole spin qubits [1,2,40], we conclude that the effect of charge
noise for our proposed experiments is probably insignificant.
Our argument is as follows. Static qubits were investigated in
Ref. [1] with Larmor frequencies in the range of 2–4 GHz,
and the observed coherence times T ∗

2 were 150–400 ns. In
Ref. [40] the same device was used to demonstrate coherent
shuttling. The Larmor frequencies of the qubits were between
0.8 and 1.1 GHz, and characteristic decay constants (num-
ber of coherent shuttlings) n∗ = 64–77 was reported, which
maps to T ∗

2 = 320–385 ns with shuttling time τs = 4 ns and
1 ns of idle time between each shuttling. In Ref. [2], a static
qubit with Larmor frequency fL = 21 MHz was measured
and the coherence time was found to be T ∗

2 = 17.6 µs. These
experimental results suggest that effect of the charge noise
can be suppressed by decreasing the Larmor frequency as
it was predicted theoretically [17]. Therefore, in our exper-
imental protocol where the Larmor frequency is zero, we
expect that the coherence time of few tens of microseconds
is achievable which translates to 1000 coherent shuttling
cycles.

Charge noise can also induce direct dephasing in zero mag-
netic field, called geometric dephasing [17]. The geometric
dephasing time was estimated as Tgeom ≈ 20 ms for GaAs
quantum dots at T = 50 mK in Ref. [17]. This suggests, that
in our protocol the geometrical dephasing is negligible as
compared to hyperfine noise.

To conclude, the timescale estimates collected in this sec-
tion suggest the feasibility of the experiments proposed in
Secs. III and IV.

B. Risks and challenges

Earth’s magnetic field. The Earth’s magnetic field amounts
to a few tens of microteslas. This may be regarded “weak,” but
it is strong enough to affect the experiments proposed above.
In fact, the Larmor precession time corresponding to a mag-
netic field of BE = 65 µT with g factor g = 2 is TL ≈ 550 ns.
This Larmor time can be further shortened in materials with
strong spin-orbit coupling, e.g., for planar hole quantum dots,
where the g factor is enhanced in an out-of-plane magnetic

field [2,46,47]. For shuttling times comparable to TL, the
non-Abelian adiabatic dynamics would be overwhelmed by
the Larmor precession due to the magnetic field. The effect
can be reduced by using shorter shuttling times, e.g., in the
few-nanosecond ballpark discussed above. To further mitigate
this effect, the Earth’s magnetic field should be shielded in
the experiment, which can be done using well-established
methods [48–51].

Coincidental alignment of the two axes (θ1 = 0). The key
feature of the measurement results of the experimental proto-
col proposed in Sec. III is the oscillatory behavior of P(m)

1,e,N as
the number N of cycles is increased, as shown in Eq. (15)
and Fig. 4. From Eq. (16a), it is clear that this oscillatory
behavior is absent if θ1 = 0. The success of the experiment
proposed in Sec. III relies on the assumption that the Kramers
basis |1, g〉, |1, e〉, defined by the local magnetic field used for
initalization and readout, does not coincide with the Kramers
eigenbasis |1,⇑〉, |1,⇓〉 of the non-Abelian Berry phase prop-
agator. This is formalized as the assumption θ1 �= 0. More
generally, the relative angles θk play an important role in deter-
mining the contrast of the oscillations described by Eqs. (16a)
and (24b). In an experiment, these angles, which are deter-
mined by the microscopic details of spin-orbit interaction,
confinement and potentials, strain patterns, and disorder, can
presumably be changed by continuous tuning of gate volt-
ages, or by changing the charge occupations of the dots
[2,9,52–54].

Efficient initalization and readout. As illustrated in
Fig. 4(b), a strong magnetic field pulse and a low tempera-
ture are essential for high-fidelity initialization and readout,
and consequently, for obtaining high-contrast excited-state
probability oscillations in the experiment. A current pulse
through an on-chip wire in the close vicinity of the quantum
dot loop could deliver a millitesla-scale magnetic field [38],
although its engineering and fabrication might be challenging.
Therefore, to improve the visibility of the results one might
need to cool the device below 15 mK (i.e., the value we have
used in our simulations). Note that that the submillikelvin
cooling of mesoscopic electronic devices is an active research
area with recent successes [55–58]. Lower temperature has
the additional advantage that it reduces the thermal excitation
in the shuttling processes. One should also be careful about
switching off the magnetic field instantaneously, because it
can lead to leakage to higher level orbital states. The leakage
is proportional to g∗μBB/� in first order, where g∗μBB is the
characteristic energy scale of the Zeeman splitting, and � is
the gap between the ground-state orbital and the first excited
orbital of the confinement. This is in the order of 10−3 for
B = 5 mT with a typical orbital level spacing of � = 1 meV.
Thus, the leakage can be neglected even if the magnetic field is
switched off instantaneously, let alone in the case of a smooth
switch-off which is realistic in an experiment.

C. An alternative protocol without magnetic-field pulses: Using
the singlet state for initialization and readout

In the previous section, we have discussed the chal-
lenges of creating a strong-enough magnetic-field pulse and
a low-enough temperature for our experimental protocols.
As a possible workaround of these, we now provide an
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QD1

QD2

QDR

QD3

QD1

QD2

QDR

QD3

FIG. 7. Alternative protocol to measure the non-Abelian Berry
phase using a reference dot and the Pauli blockade mechanism for
initialization and readout. The advantage of this protocol is that direct
dot–reservoir tunneling and magnetic-field pulses are not required.
Initialization is done by separating a two-qubit singlet state in QDR
into QDR and QD1; readout is done after N adiabatic pumping cycles
QD1 → QD2 → QD3 → QD1, by spin-to-charge conversion using
Pauli blockade between QD1 and QDR. Left panel illustrates the
tunneling terms of the Hamiltonian in an arbitrary gauge; right panel
does the same in a convenient gauge where all tunneling terms are
pseudospin-conserving, except the one on the QD1 ↔ QD2 bond.

alternative protocol, which requires an extra reference dot,
denoted as QDR in Fig. 7, and utilizes a two-qubit singlet
state in that reference dot for initialization and readout, which
is a well-known procedure for initialization [59]. This pro-
tocol can reveal the angle θso characterizing the non-Abelian
Berry phase, without requiring a magnetic-field pulse. Fur-
thermore, the low-temperature requirement is also relaxed,
because initialization and readout is based on Pauli spin
blockade, where the energy scale (the two-qubit singlet-
triplet splitting in QDR) competing with temperature can
be made much greater than the Zeeman splitting in a few
millitesla [59].

The layout for this alternative protocol is shown in Fig. 7.
To simplify the discussion, we use a specific gauge (i.e., speci-
fication of the Kramers-pair basis in the dots) where tunneling
is pseudospin-conserving on the bonds QDR ↔ QD1, QD2 ↔
QD3, and QD3 ↔ QD1, and it is pseudospin-non-conserving
only on the bond QD1 ↔ QD2. In this protocol, initialization
consists of thermalizing a two-qubit singlet state in QDR, and
separating the two particles with an adiabatic shuttling step,
by tuning the detuning and tunneling between QDR and QD1
in time. Before this shuttling, the double quantum dot formed
by QDR and QD1 is in the (2,0) charge configuration regime
and its pseudospin degree of freedom is in the singlet state.
During the shuttling, the parameters are tuned adiabatically
such that the system prefers the (1,1) charge configuration.
Thus, after the shuttling, the double quantum dot is in the
(1,1) charge configuration occupied by a pseudospin-singlet
state. Ideally, the tunneling matrix element v1R is switched
off exactly before and after the shuttling step. This initializa-
tion procedure results in the separated singlet configuration
depicted in Fig. 7.

During a single pumping cycle QD1 → QD2 → QD3
→ QD1, the particle in QD1 is pumped around. There-
fore, the time evolution of the two-qubit system is governed
by the following unitary, expressed in the two-qubit ba-
sis |⇑⇑〉, |⇑⇓〉, |⇓⇑〉, |⇓⇓〉, with the first (second) arrow

referring to QD1 (QDR):

V =

⎛
⎜⎜⎝

eiθso 0 0 0
0 eiθso 0 0
0 0 e−iθso 0
0 0 0 e−iθso

⎞
⎟⎟⎠. (30)

Since the initial two-qubit state is the singlet state,

|S〉 = 1√
2

(|⇑⇓〉 − |⇓⇑〉), (31)

after N pumping cycles, it evolves into

V N |S〉 = 1√
2

(eiNθso |⇑⇓〉 − e−iNθso |⇓⇑〉)

= cos(Nθso)|S〉 + i sin(Nθso)|T0〉. (32)

At this point, the QDR and the single particle in it can
be utilized once again, now for readout via spin-to-charge
conversion based on Pauli blockade. Specifically, an attempt
to shuttle the particle in QD1 to QDR is made, and charge
sensing is done on the dots to reveal if the final state of QDR
contains one or two particles. Due to Pauli blockade, one (two)
particle(s) measured in QDR implies that the state V N |S〉
was triplet (singlet). The singlet measurement probability is
expressed from Eq. (32) as

PS = |〈S|V N |S〉|2 = cos2(Nθso). (33)

The measurement data obtained for this singlet probability, as
a function of the number N of the cycles, should show oscilla-
tions, whose “frequency” reveals the angle of the non-Abelian
Berry phase.

This protocol has advantages over the one described in
Sec. III, which uses magnetic-field-enabled initialization and
readout. First, no additional wire is required to create the
magnetic-field pulse. Devices without that element are read-
ily available in the 2 × 2 quantum dot array layout [1,2,32–
34,40]. Second, the oscillation of the measured singlet proba-
bility is not suppressed by the factor of sin2 θ1 (i.e., the angle
between the axis of the non-Abelian Berry phase and the local
Zeeman axis) appearing in Eq. (16a). Third, the effect of the
finite temperature, e.g., appearing in the suppression factor
A(x) in Eq. (16a), is weakened, as the singlet-triplet splitting
in QDR can be made much greater than the Zeeman splitting
caused by a few millitesla magnetic field.

A challenging component of this alternative protocol may
be to sufficiently reduce the exchange interaction J between
the two spins, after they have been separated at the end of the
initialization step. A nonzero exchange interaction strength
introduces a nonzero singlet-triplet energy splitting in the
two-particle spectrum, and hence a corresponding timescale
h/J , which poses an upper limit on the timescale 3Nτs of the
N pumping cycles. That is, the condition 3NτsJ

h � 1 should
be satisfied to neglect the effect of the residual exchange
interaction. Substituting τs = 3 ns and N = 50, we obtain the
condition J/h � 2.3 MHz.

Also, if the exchange interaction is nonzero, then charge
noise can in principle corrupt the two-qubit state. However,
this is probably not the a critical threat for the proposed
alternative protocol, for the following reasons. In the initial-
ization step, when the exchange interaction is strong between
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cycle A cycle B

1

2

3

1

2

3

(a) (b)

FIG. 8. Revealing the non-Abelian character of the geometric
quantum gates. Panels (a) and (b) depict two different pumping
cycles A and B in a 2 × 2 quantum dot array. In general, performing
cycle A first and cycle B second leads to a different measurement
result then shuttling in the reverse order.

the pseudospins, the system is in its ground state, and the
evolution is adiabatic, hence charge noise has no effect on it
as long as it is quasistatic and not resonant with the singlet-
triplet splitting. Experimental results confirm this as well,
see, e.g., Ref. [59]. After the separation of the particles, the
exchange interaction is turned off completely, at least in an
ideal scenario. The remnant nonzero exchange interaction is a
potential threat to the alternative protocol during the circular
shuttling cycles, but its quasistatic fluctuation is irrelevant
as long as the condition J/h � 2.3 MHz is met during the
process.

An additional challenge one might think of is that strong
spin-orbit coupling can make Pauli blockade readout dysfunc-
tional, as reported in many papers, e.g., in Ref. [1]. However,
this is not a problem in this protocol because of the absence
of an external magnetic field. In this case, in a well-chosen
gauge, in which the tunneling between QDR and QD1 is
pseudospin-conserving, the pseudospin is a conserved quan-
tity, and therefore Pauli blockade is not lifted and can be
utilized for readout.

D. Setups for proving the non-Abelian nature
of the geometric quantum gate

A possible generalization of the proposed measurement is
to show that the induced geometric quantum gate in a quantum
dot loop is truly non-Abelian. One way to achieve this is by
extending the loop in Fig. 1(a) with an additional quantum
dot. Then the qubit can be driven through two different cycles
after each other, as shown in Figs. 8(a) and 8(b). By show-
ing that the induced transformation depends on the ordering
of the different cycles, one can conclude that the geometric
single-qubit gates induced by cycle A or cycle B do not
commute.

The demonstration of the non-Abelian character of the ge-
ometric gate could also be attempted using three quantum dots
only, by utilizing nearby orbitals in QD2 and QD3. To discuss
a simple example, we denote the charge configuration of the
three dots as (N1, N2, N3), where Nj denotes the number of
particles in QD j, counted with respect to a certain filled-shell
configuration. Using this notation, the cycle QD1 → QD2 →

QD1

QD2

QDR

QD3

(b)(a)

FIG. 9. Relation of the local Zeeman field directions and the
quantization axis tilt angles. (a) Layout of the device used in
Ref. [40]. Red solid vectors depict local Zeeman field directions n1,
n2, n3. Labels on the tunnel couplings indicate the gauge choice:
pseudospin-non-conserving tunneling (�) appears only on the bond
between QD2 and QD3. (b) Quantization axis tilt angles ϑ12 and ϑ23

that were measured in Ref. [40]. Blue/green/orange arrow shows the
local Zeeman field direction in QD1/QD2/QD3.

QD3 → QD1 studied so far corresponds to, e.g., (1, 0, 0) →
(0, 1, 0) → (0, 0, 1) → (1, 0, 0); call this cycle A. A different
cycle, say, cycle B, can be defined using the same three quan-
tum dots by shifting the charge configuration of QD2 and QD3
such that the cycle takes the form (1, 2,−2) → (0, 3,−2) →
(0, 2,−1) → (1, 2,−2). Since spin-orbit features, e.g., spin-
dependent tunneling, is expected to vary between different
shells [52], hence the non-Abelian Berry phase corresponding
to cycle A and B are expected to be different, and in general,
noncommuting.

E. Relation of our proposals to a recent “triangular
shuttling” experiment

In a recent experiment [40], coherent shuttling of a spin
qubit through a quantum dot loop was demonstrated. In
that manuscript, the “quantization axis tilt angles” of tunnel-
coupled quantum dot pairs were determined by spectroscopy,
and also by using time-resolved shuttling experiments. Both
experiments were carried out in a nonzero magnetic field with
a fixed direction.

Here we establish the relation between the quantization
axis tilt angles and the parameters in our model. In Fig. 9(a),
we draw the four-dot configuration used in Ref. [40]. In
Fig. 9(a), we also indicate the gauge choice that is used in
Ref. [40]: tunnel couplings between QDR ↔ QD1, QD1 ↔
QD2, and QD2 ↔ QD3 are transformed to be pseudospin-
conserving, and the tunnel coupling between QD3 ↔ QD1
is retained as pseudospin-non-conserving. In this setting, the
system of the three numbered QDs is described by the Hamil-
tonian in Eq. (10), with the only difference that in Hstun, the
operator τ

y
12 is replaced by τ

y
23.

In this gauge, at a finite magnetic field, the quantization
axes of the numbered dots are given by the unit vectors nk ,
see below Eq. (10). We illustrate these quantization axes in
Fig. 9(a), where the thick red arrows depict the vectors nk (ar-
bitrary example), and the corresponding polar and azimuthal
angles θk and φk are also indicated. The quantization axes
nk are shown together in Fig. 9(b), where the angle enclosed
by n1 and n2 is denoted by ϑ12, and the angle enclosed by
n2 and n3 is denoted by ϑ23. These angles ϑ12 and ϑ23 were
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determined in the experiment [40]. The relation between these
quantization axis tilt angles and the angle parameters of our
Hamiltonian reads

ϑ jk = arccos(cos(φ j − φk ) sin θ j sin θk + cos θ j cos θk ),
(34)

where jk ∈ {12, 23}.
Note that the protocol we suggest in Sec. IV enables a more

complete characterization of the Hamiltonian than the infer-
ence of the tilt angles; i.e., our protocol enables the inference
of all five angle parameters θ1, θ2, φ2, θ3, φ3 [from these, the
quantization axis tilt angles can be calculated using Eq. (34)],
as well as the strength � of the pseudospin-non-conserving
tunneling term.

The device and protocols used in Ref. [40] are very
similar to those described in our present work, highlight-
ing the near-term feasibility of our proposals. The device
in Ref. [40] has no on-chip pulsed magnetic field source,
and utilizes Pauli blockade for initialization and readout. As
a consequence, it enables the direct implementation of our
alternative protocol described in Sec. V C, and correspond-
ingly, the inference of the angle of rotation of the holonomic
quantum gate induced on the qubit by a single pumping cy-
cle through the quantum dot loop. In fact, the “triangular
shuttling” protocol, which is carried out in a nonzero static
magnetic field in Ref. [40], is identical to our alternative
protocol (Sec. V C), if the magnetic field is switched off in the
experiment.

Based on Ref. [40], we identify the slow diagonal shuttling
(shuttling time of τs ≈ 36 ns) as a potential bottleneck to ob-
serve the oscillations predicted by Eq. (33). As we described
above, the Earth’s magnetic field and hyperfine interaction set
an upper bound on the time window of the experiment (pre-
sumably around one microsecond), and the qubit dynamics
induced by the non-Abelian Berry phase may be masked by
those magnetic effects if shuttling is too slow. Improvements
are expected if the diagonal shuttling is sped up (e.g., by
using a dedicated barrier gate addressing the corresponding
tunnel barrier), by shielding the Earth’s magnetic field, and by
using isotopically purified materials to suppress the hyperfine
effect.

VI. CONCLUSION

We provided a theoretical description of the non-Abelian
Berry phase or geometric quantum gate of a spin qubit, in-
duced on an adiabatic shuttling cycle through a quantum-dot
loop in the presence of spin-orbit interaction and absence of
magnetic field. Time-reversal symmetry is expected to pro-
vide an extra level of protection of the Kramers degeneracy
exploited in this setup, in contrast to earlier experiments where
the degeneracy relies on fine-tuning of system parameters.
We highlighted two experimental protocols to detect features
of the non-Abelian Berry phase: the first (second) one relies
on a pulsed magnetic field (zero-field Pauli spin blockade)
for initialization and readout. Furthermore, we predict that a
variant of the first protocol can be used to infer the parameters
of the spin-orbit-coupled Hamiltonian. We expect a near-term
realization of our protocol, as all key elements of it have been
demonstrated in spin-qubit experiments. Such a realization

would be important to assess the potential of holonomic quan-
tum gates for spin-based quantum information processing.
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APPENDIX A: GAUGE TRANSFORMATION IN THE
THREE-DOT LOOP

In this Appendix, we formulate the gauge transformation
shown in Fig. 2, i.e., the transformation of the tunneling terms
of the Hamiltonian from the form of Eq. (1) to Eq. (2). The
tunneling terms of the Hamiltonian (1c) and (1) in the block
form expanded in the orbital degree of freedom reads as:

Htun + Hstun =
⎛
⎝ 0 ṽ12 − ih̄�̃12 · σ̃ ṽ31 + ih̄�̃31 · σ̃

H.c. 0 ṽ23 − ih̄�̃23 · σ̃

H.c. H.c. 0

⎞
⎠,

(A1)

where σ̃ are the Pauli matrices defined with the basis
(|⇑̃〉, |⇓̃〉). Let us first choose an appropriate basis in QD3 to
eliminate the pseudospin-non-conserving tunneling between
QD1 and QD3, that is, to eliminate �̃31 in Eq. (A1). We do
this by choosing new local Kramers pairs to define the local
Pauli operators; these new local Kramers pairs |⇑̂〉, |⇓̂〉 are
chosen as

|k, ⇓̂〉 = U3|k, ⇓̃〉, |k, ⇑̂〉 = U3|k, ⇑̃〉, (A2)

where U3 is a local pseudospin rotation in QD3 with rotation

axis ω̃31 = �̃31/|�̃31| and angle θ̃ (31)
so = 2 arctan h̄|�̃31|

ṽ31
in the

clockwise (negative) direction. Explicitly, it reads

U3 = e−i θ̃
(31)
so
2 ω̃31·σ̃⊗τ3 . (A3)

Note that the Kramers basis states on QD1 and QD2 are
unchanged by U3.

The Pauli operators in the new gauge, denoted as σ̂, are
related to the original Pauli operators σ̃ as

σ̂ ⊗ τk = U3(σ̃ ⊗ τk )U †
3 , (A4)

for all k ∈ {1, 2, 3}. Note that the unitary U3 has the same form

in the two gauges, i.e., U3 = e−i θ̃
(31)
so
2 ω̃31·σ̃⊗τ3 = e−i θ̃

(31)
so
2 ω̃31·σ̂⊗τ3 .

Using this identity, the tunneling Hamiltonian in the new
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gauge reads as

Htun + Hstun =

⎛
⎜⎜⎝

0 ṽ12 − ih̄�̃12 · σ̂ (ṽ31 + ih̄�̃31 · σ̂ )e−i θ̃
(31)
so
2 ω̃31·σ̂

H.c. 0 (ṽ23 − ih̄�̃23 · σ̂ )e−i θ̃
(31)
so
2 ω̃31·σ̂

H.c. H.c. 0

⎞
⎟⎟⎠ =

⎛
⎝ 0 ṽ12 − ih̄�̃12 · σ̂ v31

H.c. 0 v̂23 − ih̄�̂23 · σ̂

H.c. H.c. 0

⎞
⎠,

(A5)

where we utilized the identity eian·σ = cos(a) + i sin(a)n · σ, and introduced the parameters

v31 = ṽ31 cos
θ̃ (31)

so

2
+ h̄|�̃31| sin

θ̃ (31)
so

2
=

√
ṽ2

31 + h̄2|�̃31|2, (A6a)

v̂23 = ṽ23 cos
θ̃ (31)

so

2
− h̄�̃23 · ω̃31 sin

θ̃ (31)
so

2
= ṽ23ṽ31 − h̄2�̃23 · �̃31√

ṽ2
31 + h̄2|�̃31|2

, (A6b)

�̂23 = 1

h̄

(
(ṽ23ω̃31 + h̄�̃23 × ω̃31) sin

θ̃ (31)
so

2
+ h̄�̃23 cos

θ̃ (31)
so

2

)
= ṽ31�̃23 + ṽ23�̃31 + h̄�̃23 × �̃31√

ṽ2
31 + h̄2|�̃31|2

. (A6c)

The pseudospin is indeed conserved on tunneling between the third and the first dot in the new gauge, as v31 appearing in the
top right block of the matrix on the right-hand side of Eq. (A5) is a scalar.

Next, we eliminate the pseudospin-non-conserving tunneling between QD2 and QD3 with a rotation of the quantization

axes on the second dot around ω̂23 = �̂23/|�̂23| with an angle θ̂ (23)
so = 2 arctan h̄|�̂23|

v̂23
in the clockwise (negative) direction. The

corresponding unitary transformation is U2 = e−i θ̂
(23)
so
2 ω̂23·σ̂⊗τ2 . We denote the new basis as:

|k,⇑〉 = U2|k, ⇑̂〉, |k,⇓〉 = U2|k, ⇓̂〉, (A7)

similarly to the previous case. The transformation of the matrix form of the tunneling Hamiltonian is analogous to the previous
one. This means that the tunneling between QD1 and QD3 remains invariant, the tunneling between QD2 and QD3 become
pseudospin-conserving and the last tunneling term between QD1 and QD2 transforms nontrivially. Written out with the Pauli
operators σ defined in the new gauge:

Htun + Hstun =

⎛
⎜⎜⎝

0 (ṽ12 − ih̄�̃12 · σ)e−i θ̂
(23)
so
2 ω̂23·σ v31

H.c. 0 ei θ̂
(23)
so
2 ω̂23·σ (v̂23 − ih̄�̂23 · σ)

H.c. H.c. 0

⎞
⎟⎟⎠ =

⎛
⎝ 0 v12 − ih̄�12 · σ v31

H.c. 0 v23

H.c. H.c. 0

⎞
⎠,

(A8)

with the new parameters:

v12 = ṽ12 cos
θ̂ (23)

so

2
− sin

θ̂ (23)
so

2
h̄�̃12 · ω̂23 = ṽ12v̂23 − h̄2�̃12 · �̂23√

ṽ2
23 + h̄2|�̃23|2

= ṽ12ṽ23ṽ31 − ṽ12h̄2�̃23 · �̃31 − ṽ31h̄2�̃12 · �̃23 − ṽ23h̄2�̃12 · �̃31 − h̄3�̃12 · (�̃23 × �̃31)√(
ṽ2

23 + h̄2|�̃23|2
)(

ṽ2
31 + h̄2|�̃31|2

) , (A9a)

v23 = ṽ12 cos
θ̂ (23)

so

2
− sin

θ̂ (23)
so

2
h̄�̃12 · ω̂23 =

√
v̂2

23 + h̄2|�̂23|2 =
√

ṽ2
23 + h̄2|�̃23|2, (A9b)

�12 = 1

h̄

(
(ṽ12ω̂23 + h̄�̃12 × ω̂23) sin

θ̂ (23)
so

2
+ cos

θ̂ (23)
so

2
h̄�̃12

)
= v̂23�̃12 + ṽ12�̂23 + h̄�̃12 × �̂23√

ṽ2
23 + h̄2|�̃23|2

= ṽ12ṽ23�̃31 + ṽ31ṽ12�̃23 + ṽ23ṽ31�̃12 + ṽ12(h̄�̃23 × �̃31) + ṽ23(h̄�̃12 × �̃31) + ṽ31(h̄�̃12 × �̃23)√(
ṽ2

23 + h̄2|�̃23|2
)(

ṽ2
31 + h̄2|�̃31|2

)
− h̄2(�̃23 · �̃31)�̃12 − (�̃12 · �̃31)�̃23 + (�̃12 · �̃23)�̃31√(

ṽ2
23 + h̄2|�̃23|2

)(
ṽ2

31 + h̄2|�̃31|2
) . (A9c)
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To arrive to the form of Eq. (2), one needs to rotate the basis
with a global pseudospin transformation to rotate the �12

vector to the z direction. Therefore the � parameter in Eq. (2b)
reads as � = |�12|.

APPENDIX B: GAUGE TRANSFORMATION
OF THE ZEEMAN TERM

Let us calculate the effect of a local basis transformation on
the Zeeman term of the Hamiltonian. The local Zeeman term
of a dot can be written as

HZeeman = 1
2μBσ̃ · g̃B, (B1)

as given in Eq. (9). Consider the gauge transformation U =
e−i θso

2 n·σ̃ , similar to the transformations in the previous Ap-
pendix. Then the Pauli operators defined with the new basis
are related to the original ones by the formula

σ̃ = U †σU = Rn(θso)σ, (B2)

where we introduced Rn(θso) as a 3 × 3 rotation matrix around
n with angle θso. Then the Zeeman term expressed using the
Pauli operators of the new basis is

HZeeman = 1
2μB[Rn(θso)σ] · g̃B

= 1
2μBσ · [

Rn
−1(θso)g̃

]
B

= 1
2μBσ · gB, (B3)

where we introduced the new g tensor g = Rn
−1(θso)g̃.

Using the above considerations, we express the local g
tensors of the three-dot loop after the gauge transformation
considered in the previous Appendix:

g1 = g̃1, (B4a)

g2 = R−1
ω̂23

(
θ̂ (23)

so

)
g̃2, (B4b)

g3 = R−1
ω̃31

(
θ̃ (31)

so

)
g̃3. (B4c)

APPENDIX C: QUBIT READOUT ERROR DUE
TO TEMPERATURE BROADENING

OF THE FERMI-DIRAC DISTRIBUTION

The Elzerman readout scheme [10] for quantum-dot spin
qubits relies on spin-to-charge conversion and subsequent
charge readout. In this scheme, spin-to-charge conversion is
enabled by a nearby reservoir of particles and energy-selective
tunneling between the dot and the reservoir. In particular,
the on-site energy of the dot is tuned such that the chemical
potential of the reservoir is in between the two Zeeman-split
sublevels of the spin qubit, such that tunneling to the reservoir
is suppressed (enhanced) for the ground (excited) state of the
spin qubit. In turn, the absence or presence of the particle
in the dot is measured by a sensitive charge sensor, e.g., a
quantum point contact or a single-electron transistor.

The reservoir used for spin-to-charge conversion has a
finite temperature, hence the Fermi-Dirac distribution of the

particles in the reservoir is thermally broadened. This implies
a nonzero readout error which we characterize in what fol-
lows. In particular, we ask the following question: if the spin
qubit occupies the excited state with probability Pe right be-
fore readout, then what is the probability P(m)

e of the inference
that it was in the excited state? The fact that Pe �= P(m)

e (see
below) is interpreted as a thermally induced readout error,
and it influences the contrast of the oscillations described in
Secs. III and IV.

In our model, we define the excited-state inference prob-
ability P(m)

e as the probability that the particle has left the
dot at least once during the charge sensing measurement. We
consider the case when charge sensing is done such that the
chemical potential of the reservoir aligns with the average
energy of the two Zeeman sublevels of the spin qubit. To
describe the tunneling events, we introduce the tunneling-out
rates as

�g = �[1 − f (μ − h̄ω/2)], (C1a)

�e = �[1 − f (μ + h̄ω/2)], (C1b)

where � is the bare tunneling amplitude between the dot and
the reservoir, f is the Fermi-Dirac distribution and h̄ω is the
splitting between the excited state and the ground state.

Let us assume, that the system is in the excited (ground)
state. Then the probability that it has not tunneled out after
time τr is e−�eτr (e−�gτr ). Thus, the probability of jumping
out from the excited (ground) state is 1 − e−�eτr (1 − e−�gτr ).
Therefore, the inferred excited-state probability reads as

P(m)
e (Pe, τr ) = (1 − e−�eτr )Pe + (1 − Pe )(1 − e−�gτr )

= (e−�gτr − e−�eτr )Pe + (1 − e−�gτr ). (C2)

This implies that the contrast of the signal obtained from many
Elzerman-type measurement runs is reduced by the factor

Ã(ω, T, �, τr ) = e−�gτr − e−�eτr . (C3)

To maximize the contrast at a given magnetic field, temper-
ature, and tunneling rate, this factor Ã should be maximized
over the readout time τr. This yields a maximal contrast at an
optimal readout time of

τ ∗
r = ln(�g/�e )

�g − �e
. (C4)

In this optimized setting, the contrast reduction factor reads:

A

(
h̄ω

2kBT

)
= Ã(ω, T, �, τ ∗

r )

= exp

(
�g ln(�e/�g)

�g − �e

)
− exp

(
�e ln(�e/�g)

�g − �e

)

= exp

(
−

h̄ω
2kBT

e
h̄ω

2kBT − 1

)
− exp

(
−

h̄ω
2kBT

1 − e− h̄ω
2kBT

)
.

(C5)
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Note that the maximum value does not depend on the tunnel-
ing amplitude �. The formula of the measured excited-state
probability after all reads as

P(m)
e = A

(
h̄ω

2kBT

)
Pe + 1 − exp

(
−

h̄ω
2kBT

e
h̄ω

2kBT − 1

)
. (C6)

The parameters a(m) and b(m) in Eq. (15) can be calculated by
substituting P1,e,N defined in Eq. (13) into Pe in Eq. (C6). The

exact formulas read as

a(m) = A

(
h̄ω

2kBT

)
a(θ1, T, ω1) + 1 − exp

(
−

h̄ω
2kBT

e
h̄ω

2kBT − 1

)
,

(C7a)

b(m) = A

(
h̄ω

2kBT

)
b(θ1, T, ω1), (C7b)

where a(θ1, T, ω1) and b(θ1, T, ω1) are defined in Eqs. (14).
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[6] S. G. J. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de
Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D.
Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst,
G. Scappucci, and L. M. K. Vandersypen, Universal control of
a six-qubit quantum processor in silicon, Nature (London) 609,
919 (2022).

[7] V. N. Golovach, M. Borhani, and D. Loss, Electric-dipole-
induced spin resonance in quantum dots, Phys. Rev. B 74,
165319 (2006).

[8] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K.
Vandersypen, Coherent control of a single electron spin with
electric fields, Science 318, 1430 (2007).

[9] A. Crippa, R. Maurand, L. Bourdet, D. Kotekar-Patil,
A. Amisse, X. Jehl, M. Sanquer, R. Laviéville, H. Bohuslavskyi,
L. Hutin, S. Barraud, M. Vinet, Y.-M. Niquet, and S.
De Franceschi, Electrical spin sriving by g-matrix modu-
lation in spin-orbit qubits, Phys. Rev. Lett. 120, 137702
(2018).

[10] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren,
B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven,
Single-shot read-out of an individual electron spin in a quantum
dot, Nature (London) 430, 431 (2004).

[11] F. Wilczek and A. Zee, Appearance of gauge structure
in simple dynamical systems, Phys. Rev. Lett. 52, 2111
(1984).

[12] V. N. Golovach, M. Borhani, and D. Loss, Holonomic quantum
computation with electron spins in quantum dots, Phys. Rev. A
81, 022315 (2010).

[13] P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.
Zarand, Geometric phases in semiconductor spin qubits: Ma-
nipulations and decoherence, Phys. Rev. B 77, 045305 (2008).
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