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Suvendu Ghosh ,1,* Snehasish Nandy,2,3,† Jian-Xin Zhu,2,4,‡ and A. Taraphder 1,§

1Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 10 September 2023; accepted 10 January 2024; published 30 January 2024)

We investigate quantum transport through a rectangular potential barrier in Weyl semimetals (WSMs) and
multi-Weyl semimetals (MSMs), within the framework of Landauer-Büttiker formalism. Our study uncovers
the role of nodal topology imprinted in the electric current and the shot noise. We find that, in contrast to the
finite odd-order conductance and noise power, the even-order contributions vanish at the nodes. Additionally,
depending on the topological charge (J), the linear conductance (G1) scales with the Fermi energy (EF )
as GEF >U

1 ∝ E 2/J
F , U being the barrier height. We demonstrate that the EF dependence of the second-order

conductance and shot noise power could quite remarkably distinguish an MSM from a WSM depending on
the band topology, and may induce several smoking gun experiments in nanostructures made out of WSMs and
MSMs. Analyzing shot noise and Fano factor, we show that the transport across the rectangular barrier follows
the sub-Poissonian statistics. Interestingly, we obtain universal values of Fano factor at the nodes unique to their
topological charges. The universality for a fixed J , however, indicates that only a fixed number of open channels
participate in the transport through evanescent waves at the nodes. The proposed results can serve as a potential
diagnostic tool to identify different topological systems in experiments.

DOI: 10.1103/PhysRevB.109.045437

I. INTRODUCTION

Topological Weyl semimetals (WSMs) have attracted
tremendous attention lately due to their unique band topology
and potential technological applications. WSMs are character-
ized by linear bulk band crossings in their electronic structures
[1–6] under the violation of either spatial inversion symmetry
(IS) and/or time-reversal symmetry (TRS). These band cross-
ings around the Fermi level are expected to give rise to gapless
excitations (Weyl fermions) and are topologically protected
by a nonzero flux of Berry curvature monopole across the
Fermi surface. The flux of the Berry curvature is known as
the topological charge (J), which is quantized to J = ±1 [4].

It has recently been proposed that some particular con-
densed matter systems may provide an opportunity to explore
the topological properties of materials having Weyl nodes of
an arbitrary topological charge J > 1, known as multi-Weyl
semimetals (MSMs) [7–10]. However, it can be shown that
the underlying discrete rotational symmetry in a lattice im-
poses a strict restriction on the possible topological charge
in real materials, |J| � 3 [7,9]. The Weyl points with J = 1,
called single-Weyl points (or regular Weyl points), are hosted
by a plethora of materials, e.g., TaAs, MoTe2, etc. [11–15].
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The Weyl points with J = 2, known as double-Weyl points,
are suggested to be hosted by HgCr2Se4 and SrSi2 [7,8,10].
Lastly, materials like A(MoX )3, with A = Rb, Tl and X = Te
can accommodate Weyl points with J = 3, known as triple-
Weyl points [16].

Transport measurements in topological systems serve as
an important probe for their band topology. In the diffusive
regime, where the mean free path of the particle (λm f ) is
much shorter than the linear size or dimension (D) of the
medium, several studies in WSMs and MSMs focus on in-
trinsic Hall effects, anomaly-induced magneto-transport (e.g.,
negative longitudinal magnetoresistance and planar Hall con-
ductivity) and so on [3,4,17–22]. The ballistic transport (i.e.,
λm f � D regime) across the barriers formed in WSMs and
MSMs provides access to several unconventional features that
may have no analog in normal metals or semimetals [23–34].

For example, while transmitting through a double-interface
junction in WSMs, Weyl fermions show Klein tunneling
and perfect transmission rings due to transmission resonance
[25,33]. Recent studies have also shown that a Veselago lens
can be made from such a junction in WSMs, which can be
used as a probing tip in a scanning tunneling microscope
(STM) [27]. On the other hand, forming such a junction in
MSMs with the same topological charge on both sides of
the barrier, it was demonstrated using linear response, that
Klein tunneling, transmission resonance, and anti-Klein tun-
neling can occur depending on the orientation of the barrier
[28,31–33]. In addition, junctions of single and double-WSMs
were considered earlier in Ref. [33] to show the existence of
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classical Ramsauer-Townsend effect-like condition for both
E > U and E < U . The role of natural anisotropy of the
WSM and double-WSM dispersions on the transmission prob-
ability was also discussed.

Moving beyond the linear response, the nonlinear transport
phenomena in topological systems are important because not
only do they probe the higher-order topology of the bands, but
they also have potential technological applications [35,36].
Some of the prime examples in the context of WSMs are
quantized circular photogalvanic effect in the absence of dis-
order, high-frequency rectification, generalization of Onsager
reciprocal relations, and Berry curvature dipole-induced non-
linear Hall effect, offering new information about Weyl band
topology [17,35–39]. However, in contrast to the diffusive
regime, the nonlinear transport in the ballistic regime has not
been explored yet in WSMs and MSMs. Therefore, given
the considerable recent interest in this area, an immediate
question—what will be the signature of Weyl band topology
(where J = 1, 2, 3) on the nonlinear transport in the ballistic
regime, needs urgent attention. It is also important to ask
whether it does provide any diagnostic signature to distinguish
between a WSM (J = 1) and an MSM (J > 1).

The statistical behavior of Weyl and multi-Weyl fermions
(MWFs) in ballistic transport is entangled with the shot noise
and the Fano factor [40–42]. Arising from the discrete nature
of electron charges, shot noise in low-dimensional systems
reveals important pieces of information on fundamental con-
duction properties, even far from thermal equilibrium, that is
not available from the conventional dc current alone. On the
other hand, Fano factor is a dimensionless parameter char-
acterizing the strength of the shot noise with respect to the
classical Schottky limit [40,42]. However, these key quantities
are not yet investigated in the context of WSMs and MSMs.
It is now immediately relevant to ask about the shot noise and
Fano factor profiles of WFs and MWFs in connection with
both linear and nonlinear conductances through a rectangular
barrier.

Motivated by the above questions, we study nonlinear
quantum transport, conductance, shot noise, and Fano factor,
through a rectangular potential barrier (of height U and width
L) in WSMs and MSMs, where the barrier is perpendicu-
lar to the linear momentum direction. Considering the same
topological charge at a time on both sides of the barrier, we
analytically show that the condition to survive the Klein tun-
neling does not depend on the barrier height. We identify two
special incident energies for which all the incident particles
get fully reflected. In the region (evanescent zone) between
these two energies, the barrier becomes highly impenetrable.

We further calculate the tunneling conductance (Gn) within
the framework of Landauer-Büttiker formalism in zero-
temperature limit. We find that the first-order conductance
(G1) follows a J-dependent scaling as GEF >U

1 ∝ E2/J
F . No-

tably, it becomes independent of U at the nodal points,
while still varies with L as G1,node ∝ L−2/J . Moving beyond
the linear regime, we show that the EF dependence of the
second-order conductance (G2) exhibits distinct qualitative
differences between MSM and WSM, implying G2 as an
important probe to distinguish between WSM and MSM de-
pending on their band topology. Our study demonstrates that,
although G2 vanishes at the nodes, the odd-order contributions

(namely, G1 and G3) to the electric current remain finite as
a consequence of the transport through evanescent modes.
The nonzero conductance at a nodal point implies the direct
consequence of nontrivial topology associated with the node,
and, thus, it can differentiate between a topological metal and
a normal metal in experiments.

Finally, we elucidate the quantum shot noise power and
Fano factor in the linear regime and beyond. Interestingly, like
G2, the EF dependence of shot noise power in second-order
regime (s2) is also found to have the potential to distinguish
an MSM from a WSM depending on their band topology. Ad-
ditionally, we find that, like in electric current, the odd-order
shot noise powers (i.e., s1 and s3) remain finite even at the
nodes, where s2 becomes zero.

In the context of the Fano factor (F ), we find that the shot
noise is suppressed due to the presence of one or more open
channels with transmission probability � 1 (e.g., Klein tun-
neling) and the Pauli correlations. Consequently, the transport
of current-carrying fermions across the rectangular barrier
follows the sub-Poissonian statistics (F < 1). Remarkably,
it is found to be universally true that the number of open
channels increases as the topological charge J increases. We
find that, for a fixed J , only a fixed number of open channels
participates in the transport at the nodes. Consequently, the
nodes remarkably show universal sub-Poissonian Fano factors
unique to their topological charge, specifically, F � 1+2 ln 2

6 ln 2 ,
� 1

3 , and � 7
30 for J = 1, 2, and 3, respectively. Therefore,

the very existence of different universal Fano factors at the
nodal points corresponding to each J could be used to distin-
guish these topological systems in experiments. Our results
on quantum conductance, shot noise, and Fano factor can be
directly validated by experiments.

The remainder of the paper is organized as follows. In
Sec. II, we briefly discuss the theoretical model of a WSM
as well as MSM, and the prescription to calculate the zero-
temperature nonlinear tunneling conductance, shot noise, and
Fano factor. Section III is devoted to the results obtained for
the above-mentioned transport quantities. Finally, we con-
clude by summarizing the important results in Sec. IV.

II. MODEL AND FORMALISM

As shown schematically in Figs. 1(a)–1(d), we consider
a double-interface junction (parallel to xy plane) between
either two WSMs or two MSMs, formed in a slab of
lengths Lx and Ly. Assuming two electrodes (reservoirs) to
be attached to the slab, we study the nonlinear quantum
transport of WFs and MWFs along z direction within the
framework of Landauer-Büttiker formalism. Neglecting the
electron-electron interaction effects, we restrict ourselves in
the single-particle scenario. Having concentrated on the quan-
tum transport in the bulk, we consider WFs and MWFs near a
single node and neglect the contribution of surface states and
intervalley scattering to conduction [25]. A rectangular poten-
tial barrier is created in the slab such that U (z) = U [�(z) −
�(z − L)], where �(z) is the unit step function, U is the
repulsive barrier height (U > 0), and L is the barrier width.
This type of structure could be made using two different
materials with same topological charge by taking advantage
of their different work functions and affinities [see Fig. 1(c)].
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FIG. 1. Schematic diagrams of the model used in the main text. (a) Electron-like excitations (magenta) are traversing through the Region
I and incident upon the barrier (Region II) with energy E . As the node is shifted upwards due to the barrier of height U , the conduction band
states for E < U would correspond to the valence band states (cyan) in the Region II and conduction band states (magenta) past the barrier.
For every incidence, the particle gets either transmitted to Region III or reflected back to the Region I from the barrier. Here, qz and kz are the
momenta of a particle inside the barrier and outside the barrier, respectively. Density of states associated to the model, corresponding to the
barrierless as well as finite barrier configurations, are plotted in (b). The situation described in (a) is relevant in a double-interface junction, as
depicted schematically in (c), which could be made using two different materials (A and B) with same topological charge by taking advantage
of their different work functions and affinities. The panel (d) depicts a schematic experimental setup to realize the above scenario: a slab of
WSM or MSM is attached to two electrodes (source and drain) and a local gate voltage (VG) is applied to create a rectangular barrier potential
in the slab.

Thus the Hamiltonian describing the above scenario, reads as
(h̄ = 1)

HJ (k, z) = HJ
msm(k) + U (z), (1)

where [43,44]

HJ
msm(k) =

∑
χ=±1

χ [v⊥k0(kJ
−σ+ + kJ

+σ−) + vz(kz − χQ)σz]

+ tχvz(kz − χQ) − χQ0 (2)

describes an IS- and TRS-broken system with two nodes
(of opposite chirality χ ) carrying the topological charge
or winding number χ |J|. Here, k± = (kx ± iky)/k0 with k0

representing a material-dependent parameter (dimension of
momentum) and σ± = (σx ± iσy)/2 with σx, σy, and σz being
Pauli matrices. vz and v⊥ are the velocity components along
and in the plane perpendicular to the z axis, respectively. Q0

separates two Weyl nodes along the energy axis and breaks
inversion symmetry. We restrict ourselves to a pair of nontilted
inversion-symmetric nodes (tχ = 0), which are separated by
2Q in momentum space due to broken TRS.

The energy dispersion and the wave function of a multi-
Weyl node associated with chirality χ are given by

E ν
k,χ = ν

√
v2

⊥k2J
⊥

k2J−2
0

+ v2
z (kz − χQ)2, (3)

ψν
k,χ = Nν

k

⎡
⎢⎣

vz (kz−χQ)+ν
√

v2
⊥k2J

⊥ +v2
z (kz−χQ)2

v⊥k1−J
0 (kx+iky )J

1

⎤
⎥⎦, (4)

where ν = ± are the conduction and valence bands, respec-
tively, and Nν

k is the normalization constant. Note vz = v⊥ =
v makes the dispersion around a node with J = 1 isotropic in
all momentum directions (regular WSM). On the other hand,
for J > 1, we find that the dispersion around a double (triple)
Weyl node becomes quadratic (cubic) along both kx and ky

directions, whereas it varies linearly with kz. We take k0 and
v as units of momenta (kz and k⊥) and velocities (vz and v⊥)
such that E0 = h̄vk0 can be taken as the unit of energy. Sub-
sequently we set v = 1 and k0 = 1 without loss of generality.

As schematically shown in Fig. 1(a), the potential barrier
essentially divides the whole system into three regions: z < 0
defines the incident region or Region I, 0 � z � L is the bar-
rier region (Region II), and z > L designates the transmission
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region (Region III). We assume the incident particle to be
an electron-like excitation (i.e., Fermi energy EF lies in the
conduction band) with energy, E+

k = E > 0. One can now
generally conceive that electron-like excitations are traversing
through Region I and impinging upon the barrier in Region
II. Such an excitation can be described by expressing the
conduction band states [from Eq. (4)] in a plane wave form as
∼ψ+

k,χei(k·r−E+
k,χ

t ). However, as we are not considering explicit
time dependence, we omit the temporal part (eiEt/h̄). For every
incidence, the particle gets either transmitted to Region III or
reflected back to Region I from the barrier. The corresponding
transmission probability T or reflection probability R can then
be obtained by matching the wave functions at the barrier
interfaces ψI (0) = ψII (0), and ψII (L) = ψIII (L) [45].

Assuming that the current I depends nonlinearly on the
applied voltage V following the polynomial relation, I =∑∞

n=1 GnV n, the nth-order tunneling conductance (Gn) is ob-
tained from the transmission probability T using Landauer
formula as [46–48]

Gn = G(n)
0

∫ ∞

−∞

dn−1T (E )

dEn−1

(
−dfeq

dE

)
dE , (5)

where G(n)
0 = ηen+1LxLy

n!(2π )3 , η being the number of degrees of free-
dom such as valley, spin, and the energy-dependent transmis-
sion probability, T (E ) = ∫ kx,max

kx,min

∫ ky,max

ky,min
T (E , kx, ky) dkx dky.

The limits kx,min, kx,max, ky,min, and ky,max are taken in such
a way that only those transverse momenta are integrated for
which there are propagating states outside the barrier. This
condition requires kz to be purely real following the condition

− E

v⊥
< kJ

⊥ <
E

v⊥
,

where k⊥ =
√

k2
x + k2

y is the transverse momentum. Here,

A = LxLy denotes the area of the system with Lx and Ly chosen

much larger than the barrier width L. Note that the factor ∂ feq

∂E
( feq is the equilibrium Fermi distribution function) indicates
that Gn is a Fermi-surface quantity. It is also clear from Eq. (5)
that G1 is the linear conductance, which is dictated directly by
the momentum-resolved transmission probability T (E ). On
the other hand, Gn>1 is the nonlinear conductance governed
by the (n − 1)th derivatives of T (E ) with respect to E . Note
that we have restricted ourselves up to the third-order (i.e.,
n = 3) tunneling conductance.

Time-dependent fluctuations of electric current, out of
equilibrium, around its mean value I originates from the
partial transmission of quantized charge and is captured in
shot noise [40,42]. In the limit T → 0, shot noise is the
only source of electrical noise and the Landauer-Büttiker for-
malism enables direct characterization of shot noise in the
transport driven by V far from thermal equilibrium. Using the
wave-packet approach, the zero-temperature shot noise can be
obtained as [40–42,48]

S = ηe2

π

∫ EF +eV

EF

T (E )(1 − T (E ))dE . (6)

Note that the factor 1 − T (E ) implies the reduction of noise
due to the Pauli principle [41]. Assuming the shot noise to

contain nth-order noise power sn followed by the relation, S =∑∞
n=1 snV n, we have

sn = s(n)
0

∫ ∞

−∞

dn−1

dEn−1
[T (E )(1 − T (E ))]

(
−dfeq

dE

)
dE , (7)

where s(n)
0 = 2eG(n)

0 . It is clear from Eq. (7) that both linear
and nonlinear shot noise power in the limit T (E ) 
 1 can be
characterized by the classical shot noise following the relation
sn ∼ 2eGn. Otherwise, S deviates from the Poisson noise and
the corresponding quantum correction of S can be captured by
the Fano factor as F = S/2eI . In this limit, the leading-order
contribution of the Fano factor is found to be 1 − T (E ).

III. RESULTS AND DISCUSSIONS

Starting from the transmission probability T , we investi-
gate the ballistic nonlinear conductance Gn (n = 1, 2, 3) and
nonlinear shot noise power sn for the system consisting of
WSMs and MSMs mentioned above. We set the chirality,
χ = 1, without any loss of generality. We filter the physically
allowed plane wave solutions for Region I and III in such
a way that the exponentially growing z → −∞ solutions in
Region I and z → ∞ solutions in Region III get excluded.
However, Region II is free from such restrictions. Therefore,
the wave functions in three different regions can be written as

ψI = Nk

(
α+
1

)
eikzz + rN−k

(
α−
1

)
e−ikzz,

ψII = cNq

(
β+
1

)
eiqzz + bN−q

(
β−
1

)
e−iqzz, (8)

ψIII = tNk

(
α+
1

)
eikzz,

where α± = ±vzkz+E
v⊥(kx+iky )J , β± = ±vzqz+E−U

v⊥(kx+iky )J , with v2
z k2

z = (E2 −
v2

⊥k2J
⊥ ) and v2

z q2
z = [(E − U )2 − v2

⊥k2J
⊥ ]. Here, N±k = (1 +

α2
±)−1/2 and N±q = (1 + β2

±)−1/2 are the normalization fac-
tors. We note that kz and χQ always appear together in the
form of (kz − χQ), and Q does not separately affect the trans-
mission probability. Since the factor (eikxx+ikyy) is common to
the wave functions in all three regions, we drop them.

A. Transmission probability

Matching ψ’s at the interfaces, we analytically calculate
the expression for the transmission probability for WFs and
MWFs as

TJ = (E2 − v2
⊥k2J

⊥ ){(E − U )2 − v2
⊥k2J

⊥ }
E2(E − U )2 + v4

⊥k4J
⊥ − v2

⊥k2J
⊥

2 {(U − 2E )2 + U 2 cos 2δ}
,

(9)

where δ = L
vz

[(E − U )2 − v2
⊥k2J

⊥ ]1/2. It is clear from Eq. (9)
that the fermions in WSMs and MSMs, being quantum me-
chanical particles, have a finite-transmission probability even
when E < U and remarkably, leads to the celebrated Klein
tunneling [49,50] following the condition T (k⊥ = 0) = 1 at
normal incidence. This is a consequence of the conservation of
pseudospin. As the backscattered MWFs at normal incidence
would have opposite pseudospin, the backscattering needs to
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FIG. 2. Variation of the transmission probability (T ) of WF and
MWFs with incident energy E and the barrier width L, for different J
are depicted in (a) and (b) respectively. In each case, we have chosen
k⊥ = 0.7 k0, v⊥ = 0.8 v, vz = v. In (a), the barrier width is fixed at
L = 25/k0. Except around the point E = U , T is oscillating with
E , where the peaks correspond to the transmission resonances. In
(b), the incident energy is fixed at E = 5 E0. T is also an oscillatory
function of L. In both cases, the barrier is set at U = 4 E0. The lower
limit of energy in (a) is chosen such that kz remains purely real:
0.56, 0.392, and 0.2744 (in E0 unit) for J = 1, 2, and 3 respectively.

be suppressed in order to maintain the conservation of pseu-
dospin. Consequently, it gives rise to a perfect transmission, in
agreement with the results obtained in other studies for WSMs
[25] and MSMs [31–34].

Interestingly, the perfect transmission of the particles as-
sociated with any value of J can occur even beyond normal
incidence for δ = nπ (where n = 1, 2, ..). This is known as
transmission resonance and can be explained as a conse-
quence of constructive interferences between plane waves.
In analog to a Fabry-Pérot interferometer, the region inside
the potential barrier, with two interfaces at z = 0 and z = L,
serves as the cavity accommodating oscillating waves. Con-
sequently, an incoming particle described by a plane wave
interferes with itself between the two interfaces in Region
II. If they interfere constructively, the transmission reso-
nances occur with T = 1, in agreement with other studies
in the context of WSMs [25] and MSMs [31–34]. A simi-
lar phenomenon occurs for graphene [51], whereas no such
resonance condition exists for a one-dimensional Schrödinger
particle with E < U [52].

The transmission probability (T ) as a function of incident
energy E is depicted in Fig. 2(a). It can be seen that, except

around E = U point, T oscillates with E where the oscillation
peaks correspond to the transmission resonances following the
condition δ = nπ (where n = 1, 2, ..) [25,32,33]. The peak
positions for E < U and E > U are decided by the conditions

En = U ∓
√

n2π2v2
z /L2 + v2

⊥k2J
⊥ (n = 1, 2, 3..) respectively.

Now, δ itself depends on the barrier width (L) and the relative
position of incident energy (E ) with respect to the barrier
height U . Therefore, the dimension of the barrier, namely
U and L, and also the position of E with respect to the
barrier height U decide the energy scale that characterizes
the period of the oscillations in the transmission. At very low
energy i.e., E 
 U , the transmission probability can be ap-

proximated as TE
U � ξ−2U 2v2
⊥k2J

⊥
ξ−2U 2v2

⊥k2J
⊥ cos2 δ0

, where ξ = 2E2U 2 +
2v4

⊥k4J
⊥ and δ0 � L(U 2 − v2

⊥k2J
⊥ )1/2/vz. This implies that, for

any J , transmission resonances for δ0 = nπ (n = 1, 2, ..)
as well as Klein tunneling ([TE<<U ]k⊥=0 = 1) can survive
for E 
 U .

It can also be seen from Fig. 2(a) that, as the topological
charge J increases, the amplitude of oscillations becomes
shorter. Interestingly, we find that the amplitude of oscillations
in Fig. 2(a) is related to the quantity (q2

z − k2
z ) = U

v2
z
(U − 2E ).

Therefore, what really decides the amplitude is the relative
position of the incident energy (E ) with respect to the barrier
height U . We find that when E < U/2, the amplitude is dic-
tated by the quantity (U − 2E ). As E increases, the quantity
(U − 2E ) decreases and the amplitude is gradually shrinking
for E < U/2, as depicted in Fig. 2(a). This is only when the
incident energy is exactly equal to half of the barrier height
(i.e., E = U/2) that the amplitude of oscillations becomes the
shortest as a consequence of (U − 2E ) = 0. At this point,
the momenta outside and inside the barrier follow the rela-
tion q2

z = k2
z , which readily implies that the magnitude of the

momentum inside the barrier exactly equals to that outside
the barrier, i.e., |qz| = |kz|. When U/2 < E < U , the quantity
|U − 2E | controls the amplitude of oscillations. It increases
with increase in E , which makes the amplitudes in this energy
range increasing. Interestingly, as soon as the incident energy
reaches E = U − v⊥kJ

⊥, the momentum inside the barrier qz

becomes identically zero, and consequently the transmission
resonance vanishes. It can also be seen from Eq. (9) that
the transmission probability becomes identically zero at this
point.

Beyond this point, qz becomes imaginary and remains
so until E = U + v⊥kJ

⊥. At this energy, qz = 0 again makes
T = 0. Thus, we identify two special incident energies (E =
U ± v⊥kJ

⊥), where the barrier becomes completely opaque,
giving rise to the full reflection of incident particles. Con-
sequently, in the energy window of width �E = 2v⊥kJ

⊥
(evanescent region) bounded by the above two points, a negli-
gibly small transmission probability, without any oscillation,
arises due to the imaginary qz, which decays exponentially
with L. In fact, for E = U , the Eq. (9) simplifies as TE=U =

(E2−v2
⊥k2J

⊥ )k2J
⊥

{E2 cosh2(v⊥kJ
⊥L/vz )−v2

⊥k2J
⊥ }k2J

⊥
. Consequently, using the L’Hopital’s

rule, we find that limk⊥→0 TE=U = 1 for all values of J , imply-
ing that the Klein tunneling still exists at E = U . In contrast,
it is clear from the above expression that the Fabry-Pérot
like resonance condition (when k⊥ �= 0) vanishes for E = U .
In fact, the presence of the cosh2(v⊥kJ

⊥L/vz ) term in the
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FIG. 3. Variation of zero-temperature nonlinear Landauer conductance Gn, where n = 1, 2, 3, with the Fermi energy EF for different J .
First row [(a)–(c)] shows Gn (n = 1, 2, 3) in the regime 0 � EF � U/2. Second row [(d)–(f)] illustrates the variation of Gn (n = 1, 2, 3) for
EF � U/2. In each case, v⊥ = 2 v, vz = 3 v, U = 4 E0, and L = 25/k0. The range of transverse momentum is chosen such that kz remains
purely real.

denominator indicates that the finite-transmission probability
at E = U decays exponentially with increasing L.

As soon as E exceeds (U + v⊥kJ
⊥), qz becomes real and

nonzero, and oscillations can be seen in the transmission
spectrum, as shown in Fig. 2(a). For E > U , as E increases,
(U − 2E ) decreases, which, in turn, makes the amplitude of
oscillations shrinking again. For E � U , the transmission
probability becomes asymptotically equal to unity (T → 1
and R → 0) as E → ∞. As a result, its variation with E ,
as shown in Fig. 2(a), resembles the conventional Ramsauer-
Townsend effect [52–54], which occurs for a nonrelativistic
quantum particle with E > U and was originally proposed in
atomic systems. A somewhat similar observation, in the con-
text of WSMs and double-WSMs, was discussed in Ref. [33].
It is important to note that T is oscillatory [see Fig. 2(b)] also
as a function of the barrier width L for all values of J , where
the period of oscillation is given by �L = πvz/{(E − U )2 −
v2

⊥k2J
⊥ }1/2.

B. Tunneling conductance

Having explained the transmission probability, we now in-
vestigate the nonlinear quantum transport of WFs and MWFs
across the rectangular barrier within the framework of the
nonlinear Landauer conductance formula. To begin with, the
Fermi energy (EF ) dependence of the zero-temperature lin-
ear conductance (G1) for WSMs and MSMs are depicted in
Figs. 3(a) and 3(d). Small oscillations can be seen in G1 for
all J . It stems from the Fabry–Pérot-like oscillations in the
transmission probability for each transverse mode at oblique
incidence. Following the definition of T (E ), such oscillations
for each independent transverse mode add up to inflict small
conductance oscillations. Thus, it can be attributed to the
reflections between the walls of the potential barrier [55–57].

Apart from these small oscillations, the behavior of G1 is
imprinted by the variation of density of states (DOS) with
Fermi energy, which is shown in Fig. 1(b). When EF < U/2,
G1 follows the DOS corresponding to a nearly barrier-free
(U � 0) condition and increases sharply to a local maxima
(for all J) at EF = U/2. This indicates that the effect of
the barrier is negligible as long as EF < U/2. However, it
becomes dominant only when EF exceeds U/2. Consequently,
G1 decreases with EF following the DOS corresponding to a
U �= 0 case. Only at EF = U/2, the DOS corresponding to
U = 0 and U �= 0 cases intersect each other. Interestingly,
the event of intersection at EF = U/2 is independent of the
U value in a sense that the DOS curves corresponding to
U = 0 and U �= 0 cases always intersect exactly at EF = U/2
whatever the nonzero value U takes.

On the other hand, it is evident from Fig. 3(d) that, despite
the vanishing DOS at EF = U , G1 unexpectedly takes nonzero
minimum values. This is caused by the transport through
evanescent (exponentially damped) waves corresponding to
qz = iv⊥kJ

⊥/vz. Remarkably, G1 at this point shows a univer-
sal relation [G1]J=1

EF =U < [G1]J=2
EF =U < [G1]J=3

EF =U , irrespective
of the values of U and L. Upon investigation, we find that
the minimum conductance at this point varies with the barrier
width as [G1]J

EF =U ∝ L−2/J (as also found in Ref. [32]) and
interestingly becomes independent of U for a given L. If
we tune EF further above U , G1 increases in an unsaturated
way. We find that it follows a scaling given by GJ

1 ∝ E2/J
F

for EF > U , which is directly linked to the DOS ∝ E2/J
F [58].

Notably, as one varies the Fermi energy, the positive value of
GJ

1(EF > 0) implies a nonzero reciprocal response in linear
regime following the condition I (V ) = −I (−V ).

Let us now focus on the nonlinear conductance Gn>1.
Figures 3(b) and 3(e) depict the EF dependence of the second-
order conductance (G2) at zero temperature. Since GJ

2 is given
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by the following quantity [ dT (E )
dE ]E=EF , its behavior with EF

can be understood from the slope of GJ
1. It can be seen from

Fig. 3(b) for EF < U/2 that G2 shows distorted spike-like
structures in connection with low-energy conductance oscil-
lations. Around EF = U/2, corresponding to local maxima in
G1, it undergoes a sign change (from positive to negative) for
all values of J . If we increase EF further, GJ

2 encounters an-
other sharp change of sign, corresponding to the local minima,
at EF = U . In the case of second-order conductance, the con-
dition of nonreciprocity usually satisfies as I (V ) = G2V 2 =
I (−V ). However, we find two special points, EF = U/2 and
U , where the second-order conductance for any J becomes
zero and consequently the leading order nonreciprocal re-
sponse becomes absent.

It is interesting to notice from Fig. 3(e) that the behavior
of G2 is significantly different in MSMs compared to a WSM.
For example, around EF = U , it grows linearly for a WSM,
whereas shoots up almost like a smoothed step function for
MSMs. Moreover, beyond EF = U , G2 for WSM continues
to increase linearly whereas, in the case of MSMs, it becomes
nearly independent of EF . These spectacular qualitative dif-
ferences of G2 between MSM (J = 2, 3) and WSM (J = 1)
arise due to the inherent anisotropy in their dispersions. For

a particular transverse momentum (k⊥ =
√

k2
x + k2

y ) channel,

both of them show similar transmission behavior, as shown in
Fig. 2. This is because the dispersions of MSM and WSM are
linear in the momentum (kz) along the propagation direction.
However, the fundamental difference between them, linked to
their band topology, is inscribed in the dispersions along kx

and ky directions. While WSMs are typically characterized
by linear band crossings in all momentum directions, the
dispersions in MSMs become quadratic and cubic along the
transverse momentum k⊥, following Ek(kz = 0) ∝ kJ

⊥. Now,
all the conducting channels associated with the transverse
momenta are added up to get the energy-dependent transmis-
sion probability T (E ), which in turn determines the first- and
second-order conductance. Consequently, the J-dependent
anisotropic dispersions of MSMs along the transverse mo-
mentum direction make their conductance profiles different
from WSMs.

It is interesting to note that G2 captures the difference
between the behavior of a WSM and an MSM more conspic-
uously than the first-order conductance. This is due to the fact
that, while G1 is regulated by the momentum-resolved trans-
mission probability [T (E )]E=EF , its derivative [ dT (E )

dE ]E=EF

determines G2. Thus, the variation of second-order conduc-
tance with Fermi energy shows incredible merit to distinguish
an MSM (J = 2, 3) from a WSM (J = 1) depending on their
band topology, and may attract several smoking gun experi-
ments in MSM nanostructures in relation with that.

Going beyond the second-order regime, we now investigate
the third-order zero-temperature conductance G3. Its variation
with the Fermi energy (EF ) is demonstrated in Figs. 3(c) and
3(f). In the interval 0 < EF � U/2, G3 for all J shows asymp-
totic spike-like structures in connection with the distorted
spike-like structure in G2. Above EF = U/2, the conductance
oscillations (as discussed in case of G1) become large. How-
ever, the oscillation is irregular with a tooth-shaped structure
around EF = U . In spite of that, since GJ

3 is governed by

the second derivative of the momentum-resolved transmission
probability T (E ), its behavior with EF can be understood
from the slope of GJ

2. The profile of G3 also depicts some
distinct signatures for an MSM and a WSM, which become
comprehensible only beyond the point EF = U . Specifically,
G3 for MSMs oscillates around zero, whereas for WSM, it
oscillates around a positive value. It is no wonder that the
dominance of oscillations in G3 due to the quantum interfer-
ence effects ruins the scope of the third-order conductance to
be a discernible diagnostic tool for WSMs and MSMs.

C. Shot noise and Fano factor

We now investigate the quantum shot noise in connection
with the tunneling conductance of WFs and MWFs across
a rectangular potential barrier. The variations of the zero-
temperature shot noise power (sn) with EF are presented in
Figs. 4(a) and 4(d). Below EF = U/2, the first-order shot
noise power s1 for all J oscillates irregularly around some
positive value, which increases gradually to a local maximum
around EF = U/2. Like in the conductance, the oscillations
in s1 are also due to the Fabry–Pérot-like oscillations in the
transmission probability for each transverse mode, which can
be attributed to the reflections (inside a channel) between the
walls of the potential barrier [55–57]. Above EF = U/2, apart
from the small oscillations, s1 decreases sharply for all J . As
it reaches near EF = U , we find a plateau of finite s1 corre-
sponding to finite but small GJ

1 around EF = U . If we tune the
Fermi energy further, s1 again increases monotonically.

The variation of the second-order shot noise power (s2)
with EF is shown in Figs. 4(b) and 4(e). When EF < U/2,
s2 for all J shows highly irregular spike-like structures, which
correspond to the irregular oscillations in s1 in this region.
We note that since the behavior of sJ

2 with EF is dictated by
the first derivative of the quantity T (E )(1 − T (E )) at EF , it
can be understood from the slope of sJ

1. Above EF = U/2,
the inherent oscillations in s2 due to the interference between
different transmission channels are no longer small as com-
pared to s1. Nevertheless, it can be seen from Fig. 4(e) that
s2 for a WSM oscillates around some value, which increases
linearly with EF . On the other hand, for MSMs, it oscil-
lates around a constant, which is negative in magnitude. At
EF = U , for all J , s2 ∼ 0 corresponds to the nearly flat region
in s1. Interestingly, even above the point EF = U , s2 for a
WSM continues to increase linearly, in contrast to the case for
MSMs, where it oscillates around a constant, which is now
positive in magnitude. Thus, like in the case of G2, we find
that the second-order shot noise power also shows some clear
distinguishing features between a WSM and MSM, which are
experimentally observable.

The third-order shot noise power s3 with EF is also de-
picted in Figs. 4(c) and 4(f). It can be seen that for EF < U/2,
s3 also shows some sharp spike-like structures in connec-
tion with the spiky profile in the second-order regime. Note
that, since sJ

3 is governed by the quantity [ d2

dE2 {T (E )(1 −
T (E ))}]E=EF , it helps us to understand the sensitivity of s2

as a function of EF . It is evident from Figs. 4(c) and 4(f)
that s3 for all J shows predominantly irregular oscillations,
except around the point EF = U . However, it can be noticed
that s3 oscillates being almost parallel to the EF axis for J = 1
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FIG. 4. Variation of zero-temperature nonlinear shot noise power sn, where n = 1, 2, 3, with the Fermi energy EF for different J . First
row [(a)–(c)] shows sn (n = 1, 2, 3) in the interval: 0 � EF � U/2. Second row [(d)–(f)] portrays sn for EF � U/2. In each case, v⊥ = 2 v,
vz = 3 v, U = 4 E0, and L = 25/k0. The range of transverse momentum is chosen such that kz remains purely real.

(WSM), whereas becomes oscillatory about zero for J = 2, 3
(MSMs).

We now investigate the Fano factor (F ), which compares
the current signal and the shot noise as F = S/2eI . To begin
with, we calculate it in the first-order regime (i.e., S = s1V
and I = G1V ), and plot its variation with Fermi energy in
Fig. 5. It shows similar oscillatory behavior with EF for all
J . Nevertheless, it can be noticed that, around EF = U/2,
F shows a mild peak and, beyond EF = U/2, it decreases
almost linearly with oscillations for all J except in the region
adjacent to EF = U . Ideally, in a true ballistic transport (in
the absence of impurities and lattice defects) at submicron
scale in the zero-temperature limit, shot noise is expected
to be completely absent and should result in a zero Fano
factor [40]. However, in the presence of a rectangular barrier,
the mechanisms that may potentially lead to a nonzero shot

FIG. 5. Variation of zero-temperature Fano factor (F ) with the
Fermi energy EF for different J . In each case, v⊥ = 2 v, vz = 3 v,
U = 4 E0, and L = 25/k0.

noise are tunneling processes across the barrier and quantum
interferences inside the barrier region.

It is interesting to notice that, for all J , the Fano factor is
sub-Poissonian (F < 1). It typically suggests that there exist
one or more channels (open channel) with transmission proba-
bility equal or comparable to 1 (for example, Klein tunneling).
Interestingly, the Fano factor for different J follows a univer-
sal relation F J=1 > F J=2 > F J=3, irrespective of the barrier
height (U ) and width (L). This indicates that the number of
open channels increases as the topological charge J increases.
Again, as a Poissonian Fano factor (F = 1) is associated with
a random process, its sub-Poissonian value indicates correla-
tions between different conduction channels. This correlation
comes from the Pauli exclusion principle during the tunneling
process. Conforming to this principle, the current carrying
fermions follow each other more regularly than they would
in a classical case [59,60].

It can be noticed from Fig. 5 that, for every J , F takes
the maximum value at EF = U . We numerically find that the
values of F at this point for different J become universal in a
sense that they are independent of the barrier height and width,

F J=1
max � 1 + 2 ln 2

6 ln 2
, F J=2

max � 1

3
, F J=3

max � 7

30
. (10)

Like in graphene [61,62], these universal maximum values
of Fano factors for different J can be understood as a con-
sequence of the transport via evanescent modes at EF = U .
Away from this point, for a particular J , the number of prop-
agating wave states (open channels) substantially increases
and, consequently, the Fano factor is reduced.

Previously, F J=1
max � 1+2 ln 2

6 ln 2 and F J=2
max � 1

3 was found to be
contributions from the nodal points in a WSM and double-
WSM, respectively, in the clean (ballistic) limit [23,63,64].
However, in those calculations, no barrier was considered,
and consequently, the nodal points could be accessed by
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setting EF = 0. On the contrary, in our case, the presence
of a rectangular barrier of height U makes the nodal points
(for different J) shifted to EF = U . As a result, despite the
vanishing density of propagating wave states at the nodal
points, the ballistic transport through evanescent modes gives
rise to universal maximum values of Fano factors for different
J . This remarkably suggests that it is possible to shift the
nodal positions by tuning U and, subsequently, detect the new
position through Fano factor measurements.

Now, it can be understood from Fig. 3(d) that the condition
T (E ) 
 1 is satisfied around a nodal point (EF = U ). In that
case, Eq. (7) indicates that F ∼ 1 is expected here, at least in
the first-order regime. Thus, despite the negligible effect of
Pauli correlation, the emergence of a sub-Poissonian F at the
nodes is only due to the existence of open channels through
evanescent modes. The universality of the values, however,
suggests that the number of such channels for a particular J is
fixed at the nodes and solely depends on J . Note that F J=3

max �
7

30 is one of the important results coming out of our study
and shows that the quantum transport through a triple-WSM
is more ballistic as compared to a WSM and a double-WSM.
On the other side, the existence of different universal Fano
factors at the nodal points corresponding to each J could be
used to distinguish these topological systems in experiments.

While in the first-order regime, the Fano factor (i.e., F =
s1/2eG1) depends on the bias voltage (V ) only tacitly, the V
dependence becomes explicit in the subsequent regimes. For
example, up to the third-order regime, F̃ = s1V +s2V 2+s3V 3

G1V +G2V 2+G3V 3 .
For a typical range of bias voltage |eV | � 100 µeV used in
shot noise measurements [65,66], we numerically investigate
the Fano factor F̃ and notice that adding nonlinear contribu-
tions in the current (I) and the shot noise (S) do not change
the universal values of F [given in Eq. (10)] around the nodal
points.

IV. DISCUSSIONS

In this paper, following Landauer-Büttiker formalism, we
have studied quantum transport through a rectangular poten-
tial barrier (perpendicular to the z axis) between two WSMs
or MSMs. Keeping J same on both sides of the barrier, we
analytically show that the transmission probability T is an os-
cillatory function of the incident energy E , except around the
point E = U . Interestingly, we identify an evanescent zone,
where the barrier becomes highly impenetrable. This zone is
bounded by the two special points in energy space given by
E = U ± v⊥kJ

⊥, where all the incident particles remarkably
get fully reflected. Moreover, our study reveals the existence
of Klein tunneling for all J even for E = U .

In the context of tunneling conductance, we find that the
first-order zero-temperature tunneling conductance (G1) fol-
lows the DOS corresponding to a barrier-free region when
0 < EF < U/2, and the effect of the barrier is dominant only
when EF > U/2 [see Fig. 1(b)]. It follows a J-dependent
scaling with EF as GEF >U

1 ∝ E2/J
F . Moving beyond first-order,

we reveal that the qualitative distinctions between an MSM
and a WSM depending on their band topology become clearly
visible in the second-order regime, as compared to G1 and
G3. This suggests that the EF dependence of G2 may attract
several conclusive experiments to distinguish an MSM from

a WSM in nanostructures of these materials. Additionally,
we find that while G1 provides a nonzero reciprocal response
following the condition I (V ) = −I (−V ) for EF > 0, the lead-
ing order nonreciprocal response from G2 becomes absent at
EF = U/2 and U .

Investigating the shot noise associated with Gn, our cal-
culations show that, like the second-order conductance, the
EF dependence of shot noise power in second-order regime
also depicts clear distinctive features between an MSM and
a WSM depending on their band topology, and thus could
potentially be used as a diagnostic tool for them in experi-
ments. We also show that the shot noise is suppressed due to
the presence of one or more open channels (e.g., Klein tun-
neling) and the Pauli correlations. Consequently, the transport
of WFs and MWFs across the rectangular barrier follows the
sub-Poissonian statistics (F < 1). Moreover, it is found to be
universally true that the number of open channels increases as
the topological charge J increases.

Our Fano factor calculations clearly corroborate the fact
that the presence of a rectangular barrier of height U makes
the nodal points (for different J) shifted to EF = U . Thus it
is possible to shift the nodal positions by tuning U through
a local gating and, subsequently, detect the new position
through Fano factor measurements. The nodes remarkably
show universal sub-Poissonian Fano factors unique to their
topological charge, in particular, F � 1+2 ln 2

6 ln 2 , � 1
3 , and � 7

30
for J = 1, 2, and 3, respectively. The universality of the above
values interestingly suggests that the number of open channels
for a particular J is fixed at the nodes and solely depends on
J . Although the Pauli principle has little effect in reducing
noise at the nodes, a sub-Poissonian F arises solely due to the
existence of open channels through evanescent modes. There-
fore, the very existence of different universal Fano factors at
the nodal points corresponding to each J could be used to
distinguish these topological systems in experiments.

Having identified EF = U as the nodal position, we note
that the first-order conductance at the nodes becomes indepen-
dent of the barrier height, whereas varies with barrier width
as G1,node ∝ L−2/J . In the subsequent regimes, the odd-order
tunneling conductances (i.e., G1 and G3) at the nodes remain
finite due to the transport through evanescent waves, while G2

astonishingly vanishes at the nodal points, irrespective of their
topological charges (see Fig. 3). This purely quantum effect
is a direct signature of nontrivial topology at the Weyl and
multi-Weyl nodes and is experimentally observable. Similar
effects can be seen to exist also in the case of shot noise
power (see Fig. 4). We would like to point out that if the
barrier would be in the x − z plane (the direction of carrier
propagation would be along y axis instead of z axis), one could
still expect different transport behavior for different J because
of the J-dependent anisotropic energy dispersions of MSMs,
Ek(kz = 0) ∝ kJ

⊥. However, we leave the problem for a future
study.

In this paper, we use a low-energy continuum model
[Eq. (2)] for a MSM with two nodes of opposite chirality
(χ ), which are separated by 2Q in momentum space due
to broken time-reversal symmetry. The separation between
the Weyl nodes is an important momentum scale because of
the internode scattering-induced contribution. However, since
scattering from the potential barrier must conserve transverse
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momenta, the internode scattering is suppressed at low en-
ergies when the Weyl nodes occur at different transverse
momenta [67]. It has been shown in Ref. [28] that one can
safely ignore the internode scattering for MSMs when Q fol-
lows the relation Q � L/a2,U/h̄v, EF /h̄v (EF is close to the
nodes), in particular, Q � 1/2a where a is the lattice spacing.
In contrast to a lattice model, the low-energy model of an Weyl
semimetal lacks a physical ultraviolet cutoff (beyond which
the low-energy description is no longer valid) to its energy.
Hence, one needs to introduce such energy cutoff by hand.
The usual ultraviolet cutoff for the momentum and energy are
� ∼ 1

a , and εc ∼ h̄vF � respectively [68,69]. In our paper, we
have bounded the low-energy model with a physical ultravio-
let cutoff to the low-energy spectrum by considering a proper
E0. In a numerical calculation, εc ∼ 0.3 − 0.5 eV is usually
used in the literature [70,71]. In comparison, E0 ∼ 20 meV
and k0 ∼ 0.125 nm−1 of our paper would correspond to the
variation of E and U in the range ∼0 − 150 meV, and L
in the range ∼0 − 200 nm, which is also consistent with the
Refs. [25] and [72].

Our results on quantum conductance, shot noise, and Fano
factor could be essential in understanding the quantum trans-
port through a double-interface junction, which could be made
using two different materials (A and B) with same topological
charge by taking advantage of their different work functions

and affinities, as depicted schematically in Fig. 1(c). The
barrier configurations discussed in this paper could be gen-
erated through a local gate voltage (VG) in a slab of WSM
or MSM attached to two electrodes (source and drain) with
a bias voltage (V ), as schematically shown in Fig. 1(d). In
such experiments in graphene, L ∼ 350 nm, |V | � 350 µV,
and |VG| � 20 V are used [62,73], which is consistent with
the range in our discussions. Thus, given several material
realizations of WSMs and MSMs, the results predicted in this
paper could be directly verified in experiments.
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