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Using first-principles techniques, we study the structural, magnetic, and electronic properties of (111)-oriented
(LaMnO3)2n |(SrMnO3)n superlattices of varying thickness (n = 2, 4, 6). We find that the properties of the
thinnest superlattice (n = 2) are similar to the celebrated half-metallic ferromagnetic alloy La2/3Sr1/3MnO3,
with quenched Jahn-Teller distortions. At intermediate thickness (n = 4), the a−a−a− tilting pattern transitions
to the a−a−c+ tilting pattern, driven by the lattice degrees of freedom in the LaMnO3 region. The emergence
of the Jahn-Teller modes and the spatial extent needed for their development play a key role in this structural
transition. For the largest thickness considered (n = 6), we unveil an emergent separation of Jahn-Teller and
volume-breathing orders in the ground-state structure with the a−a−c+ tilting pattern, whereas it vanishes in the
antiferromagnetic configurations. The ground state of all superlattices is half-metallic ferromagnetic, not affected
by the underlying series of structural transitions. Overall, these results outline a thickness-induced crossover
between the physical properties of bulk La2/3Sr1/3MnO3 and bulk LaMnO3.
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I. INTRODUCTION

Oxide thin films and superlattices hold great promise
for future technologies, due to their remarkable versatility
[1–3] and high-precision synthesis through advanced tech-
niques such as molecular beam epitaxy [4–7] and pulsed
laser deposition [8–13]. Among them, manganites have
been under remarkable attention for potential applications
in oxide electronics and spintronics thanks to the ferro-
magnetic (FM) phase, a high spin polarization, and the
emergence of colossal magnetoresistance both in the bulk
[14–20] and in superlattices [21–23]. A major goal for the
research on manganite superlattices is to reach ferromag-
netism and half-metallicity at high temperatures [24]. While
the type of transport measurement determines whether true
half-metallicity is observed [25] and defects, spin-orbit cou-
pling, and temperature-dependent spin dynamics [26] have
a non-negligible effect, it is accepted that the prediction of
half-metallicity from temperature-free models represents a
valuable insight [27,28]. Early theoretical and experimental
studies focused on (001)-oriented mixed-valent manganite
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superlattices [29–34]; (111)-oriented superlattices with
LaMnO3 [35–39] or SrMnO3 [39,40] were also grown but
remain underexplored due to difficulties in sample syn-
thesis [41], especially concerning the SrMnO3 side [39].
Nevertheless, (111)-oriented superlattices can host intriguing
properties due to their symmetric character [42,43], a polar
discontinuity at the interface [44–46], and a subtle compe-
tition between spin, orbital, charge, and lattice degrees of
freedom.

Common compounds are LaMnO3 and SrMnO3, respec-
tively, an orthorhombic (Pnma space group) Jahn-Teller (J-T)
insulator with A-type antiferromagnetic (AFM) coupling,
a−a−c+ tilting system (in Glazer’s notation [47]) and Mott
correlation and a cubic (Pm3̄m) band insulator with G-type
AFM coupling and negligible octahedral tilts. Their solid
mixture with 1/3 Sr and 2/3 La is a rhombohedral (R3̄c
space group [48]) half-metal with FM coupling, a−a−a− tilt-
ing system, and colossal magnetoresistance [17,49,50]. The
Pnma space group with the a−a−c+ tilting system and the
presence of the J-T distortions are crucial for the stability of
the A-type AFM order of bulk LaMnO3 [51–54]. Like other
perovskite compounds, in superlattices we expect a competi-
tion of different tilting systems, charge and orbital orders, and
various magnetic states; strain and stoichiometry provide a
route to tune the tilting system [55,56] or to induce a crossover
from orbital order to charge order [54,56,57]; magnetic phase
transitions, coexistence, or separation may also occur [58–61].
Ab initio studies may be an outstanding instrument to de-
termine the interplay of various degrees of freedom and
predict emergent properties in superlattices. Our pilot study
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on a (111)-oriented (LaMnO3)12|(SrMnO3)6 superlattice with
the a−a−a− tilting system revealed the presence of a robust
half-metallic phase with rhombohedral symmetry that can be
stabilized with a small in-plane compressive strain [56]. In
this paper, we present the results of ab initio calculations
of (LaMnO3)2n|(SrMnO3)n superlattices with n = 2, 4, 6. We
provide a complete overview of structural, electronic, and
magnetic properties against varying thickness, in the ground
state (GS) as well as in excited states [62]. Our findings
demonstrate the crucial role played by J-T distortions in the
thickness-dependent structural transitions, as well as their
connection to an emergent symmetry breaking between Mn
sublattices within the a−a−a− tilting pattern.

II. METHODS AND MODELS

Density functional theory (DFT) calculations are per-
formed using the projector-augmented wave method as im-
plemented in the Vienna ab initio simulation package (VASP)
[63,64]; the generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof parametrization [65,66] is adopted.
We used the pseudopotentials for Sr, La, Mn, and O which
treat explicitly 10, 11, 15, and 6 electrons, respectively, and
we chose an energy cutoff on the plane wave of 500 eV. The
sampling of the Brillouin zone is performed with �-centred k
meshes of 7 × 4 × 1, 7 × 4 × 2, and 7 × 4 × 3 for the n = 6,
4, and 2 superlattices, respectively. In combination with it, a
Gaussian smearing of 10 meV is used [except for the den-
sity of states (DOS), for which the tetrahedron method was
adopted]. An energy tolerance of 1 × 10−6 eV and of 1 ×
10−7 eV is adopted for the electronic loop during the structural
optimization and the calculations of the electronic properties,
respectively. Structures are considered relaxed with forces
within 5 × 10−3 eVÅ−1. The optimized lattice constant of
3.860 Å is in agreement with a previous study [56]. The Mn-
3d states [67] are better described using the on-site repulsive
correction via the rotationally invariant DFT+U approach
[68], with Hubbard and Hund parameters U = 3.8 eV and J =
1.0 eV, respectively. These values are in line with previous
work on (001)-oriented superlattices [56,69,70]. Moreover,
we have recently demonstrated that calculations performed
with the parameter-free metaGGA strongly constrained and
appropriately normed (SCAN) functional [71] yield very sim-
ilar results, confirming that the specific choice of U and J is
not crucial for our scope [72]. The A-type, C-type, and G-type
AFM orders, shown in Figs. 1(a)–1(c), are compared to the
FM order (not illustrated). In the following, we will refer
to these orders as A-AFM, C-AFM, and G-AFM, while we
will use the term spin to indicate the spin magnetic moments.
Full structural relaxation was performed to obtain the lattice
parameters, based on energy and stress tensor minimization
[56]. Crystallographic directions are defined by the Mn-O
bonds and referred to as a, b, and c; Cartesian axes x, y,
and z are the two in-plane directions and the out-of-plane
direction of the superlattice, respectively; crystallographic and
Cartesian directions are illustrated in Figs. 1(d) and 1(e). In
the (111) orientation, all three crystallographic directions a,
b, and c have both in-plane and out-of-plane components, as
opposed to (001) orientation, where two crystallographic axes
lie on the in-plane direction while the third axis coincides

FIG. 1. Sketch of the structure of the superlattice, illustrating
the magneticorders and the tilting systems considered. The AFM
A-type, C-type, and G-type orders are illustrated in (a), (b), and (c),
respectively; blue and red planes highlight the two spin channels.
The La, Sr, Mn, and O atoms are represented in dark green, yellow,
purple, and red, respectively; in (d) and (e), A-site cations (La/Sr)
are light green, whereas (f) and (g) show generic transition metal
and its octahedral cage. The x, y, and z (the superlattice direction of
growth) are along the crystallographic directions (a/

√
2,−b/

√
2, 0),

(a/2, b/2, −c/
√

2), and (a/
√

3, b/
√

3, c/
√

3), with axes in red,
green, and blue, respectively. The tilts along the c crystallographic
direction can be out of phase (d) and in phase (e). The main distor-
tions considered in this paper are the v-b Q1 (f) and the J-T Q2 and
Q3 (g), with formulas defined in Ref. [56].

with the out-of-plane direction (the direction of growth). The
rotation of the octahedra around the c axis is determined by
the Mn-O-Mn angles. As octahedra are stacked along the c
direction, these rotations can be either out of phase [Fig. 1(d)]
or in phase [Fig. 1(e)] accounting for the a−a−a− and a−a−c+
tilting systems, respectively [notice the superimposed posi-
tions of O lying along the a and b axes in Fig. 1(e) as opposed
to Fig. 1(d)]. The volume-breathing (v-b) distortion Q1 is
illustrated in Fig. 1(f); the volume-conserving J-T distortions
Q2 and Q3 are illustrated in Fig. 1(g). For the layer-resolved
magnitudes of Q1, Q2, and Q3, we use the same notation
formalized by Van Vleck and employed in previous work
[54,56,73]; layered-resolved charge and spin distributions are
computed according to Bader theory [74].
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TABLE I. Relative energy of various magnetic states and
tilting patterns, labeled with respect to the space group, of
(LaMnO3)2n|(SrMnO3)n superlattices with n = 6, 4, 2. Values are
given in meV per formula unit and with respect to the ground
state (GS) for any given n. The dashes for n = 2 in the Pnma
structure (a−a−c+ tilting system) indicate that our calculations never
converged to this arrangement, but always transitioned to the R3̄c
structure (a−a−a− tilting system).

Pnma R3̄c

FM A-AFM C-AFM G-AFM FM A-AFM C-AFM G-AFM

n = 6 GS 26.46 43.79 72.16 7.62 37.53 53.84 95.60
n = 4 GS 38.49 67.21 95.95 1.25 38.60 59.92 137.46
n = 2 GS 47.11 80.98 109.41

Superlattices are built from the Pnma and R3̄c bulk
structures, featuring a−a−c+ and a−a−a− tilting systems,
respectively. Describing the former tilting system requires a
doubling of the in-plane periodicity with respect to the lat-
ter one, for (111)-oriented superlattices; this corresponds to
two formula units per layer. For an accurate comparison of
energy with the same spacing of reciprocal lattice points, we
nevertheless model the structure with a−a−a− tilting systems
in the same Pnma supercell. The La and Sr slabs alternate with
thickness 2n and n, respectively, along the (111) direction, and
n takes the values 2, 4, and 6. Only the n = 6 case is shown in
Fig. 1 as the others are perfectly analogous. Odd values of the
thickness would result in structural and magnetic frustration,
and are not treated in the current paper.

Finally, the images of the structures are produced with
VESTA JP-Minerals [75], and the analysis of the electronic
properties is performed with the aid of the postprocessing
code VASPKIT [76].

III. RESULTS

We start with the thickness-dependent structural and mag-
netic hierarchy illustrated in Table I. For all values of n, the
magnetic ground state is FM, whereas the most competitive
AFM order is A-AFM, which highlights the driving role
played by LaMnO3; further, the C-AFM and G-AFM follow in
this order. A transition between the a−a−a− tilting pattern and
the a−a−c+ tilting pattern characterizes the structural order
(see Table I) and determines some intriguing property, as we
shall see below. For a comparison with LaMnO3 and SrMnO3

in the bulk, we point the reader to the results reported in
Ref. [56] (supplemental material), where the A-AFM and the
G-AFM orders are preferred to the FM order by 8.3 meV per
formula unit and 99.2 meV per formula unit in bulk LaMnO3

and bulk SrMnO3, respectively.

A. Structural properties and magnetic hierarchy

Naturally, the results for n = 2 are the closest to
bulk La2/3Sr1/3MnO3, in line with recent measurements
of the magnetic and transport properties of (111)-oriented
(LaMnO3)2|(SrMnO3)1 superlattices [39]. For such a small
thickness, the a−a−a− tilting pattern is the ground state,
whereas it is not even possible to stabilize the a−a−c+ tilt-

FIG. 2. Layer-resolved Van Vleck distortions (a) and charge and
spin distributions (b) of the n = 2 superlattice, FM solution. The So

and Se sublattices show similar properties.

ing pattern as a metastable state. The octahedral distortions
are virtually null, mirrored by a homogeneous distribution of
charge and spin (see Fig. 2). Despite the difference in the
chemical environment around the Mn between the SrMnO3

region and the LaMnO3 region, the Mn charge remains the
same. In this scenario of valence states, the octahedra in the
SrMnO3 region tend to be larger than those in the LaMnO3

region. Because of the symmetry, the two Mn atoms lying
on the same layer are equivalent. With a notation which is
explained in detail below, we indicate this fact by Se = So.
The magnetic order is FM, with a rather large energy gain with
respect to the competing AFM orders (see Table I). We further
notice that in Ref. [39] the SrMnO3 layer has a Mn surrounded
by Sr on one side and La on the other, whereas in the n = 2
case of the current paper there is a Mn layer surrounded by Sr
on both sides.

As we increase the thickness of the superlattice, the ground
state remains FM for all thicknesses and tilting patterns (see
Table I). For a thickness larger than those we considered, we
expect to recover bulk properties for both regions, namely a
FM to A-AFM transition in the LaMnO3 region and a FM
to G-AFM transition in the SrMnO3 region. A simulation of
the mixed A-AFM/G-AFM order was performed to verify
this hypothesis, finding an energy of 26.4 meV per formula
unit above the ground state, meaning that such mixed order is
still unfavorable at n = 6. Additionally, a mixed A-AFM/FM
order was simulated, finding an energy of 26.8 meV per for-
mula unit above the ground state. Therefore, with the A-AFM
order in the LaMnO3 regions and FM, G-AFM, and A-AFM
in the SrMnO3 region (compare also with Table I), a negligible
energy cost is found for a FM-AFM transition in the SrMnO3

region. This is due to the close and subtle competition between
FM and AFM exchange coupling revealed in our previous
work [56]. This competition also suggests that the FM to G-
AFM transition in the SrMnO3 region is likely to be preceded
by local spin flips, which is consistent with the fact that bulk
SrMnO3 is a wide-gap band insulator.

Moving to the structural analysis, and as mentioned above,
Table I shows that increasing thickness from n = 2 to 4 in-
duces a change of tilting pattern, from a−a−a− to a−a−c+.
The thicker superlattice allows for more variability in the plots
of the lattice distortions and the charge/spin distributions
across the layers, illustrated in Fig. 3. With hindsight, we can
group the Mn sites into two distinct sublattices, depicted as
alternating blue and red (001) planes in Fig. 1(a) and labeled
as So and Se, respectively [77]. Despite the fact that these
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FIG. 3. Layer-resolved Van Vleck distortions (a) and charge and
spin distributions (b) of the n = 4 superlattice, FM solution. The So

and Se sublattices show similar properties.

sublattices are different by symmetry the results obtained
for n = 4 show a quasidegeneracy, for all magnetic orders.
Therefore, only one set of curves is reported in Fig. 3, for
a clearer visualization. These data show that, for n = 4, the
Q1 v-b distortion in the FM ground state dominates over the
J-T distortions, still quenched. The suppression of the J-T
distortions here is not a mere consequence of the tilting system
[78,79] and the small LaMnO3 thickness, but is an effect of
the magnetic degrees of freedom. In fact, the J-T distortions
emerge in the A-AFM solution, as illustrated by Fig. 4. This
is particularly evident for Q2, as it is linked to the orbital
order along the [001] planes, likely promoting FM coupling
therein. These findings are consistent with the fact that J-T dis-
tortions are necessary for the formation of the A-AFM order
[51–54]. Going back to the analysis of Fig. 3, volume, charge,
and spin oscillate in the LaMnO3 region, featuring a peak
in the innermost layer; the v-b Q1 distortion is mirrored by
the layered-resolved charge/spin distribution, as previously
reported for the a−a−a− tilting pattern (n = 6) [56]. In the
center of the SrMnO3 region, volume and spin reach a peak,
whereas the charge varies more smoothly. This demonstrates
the complex interplay between the various degrees of freedom
which prevents a simple picture based on the assumption of a
homogeneous charge transfer.

We now move to the data for n = 6, which is the largest
thickness we study. Figure 5 shows the distribution of layered-
resolved Van Vleck distortions, charge, and spin of the FM
ground state. In contrast with the n = 4 case, a dramatic
difference arises between the sublattices So and Se. The v-b Q1

distortion is still mirrored by the layered-resolved charge/spin
distribution [compare Fig. 5(a) with Fig. 5(c) and Fig. 5(b)
with Fig. 5(d)]. Moreover, we now have marked J-T dis-

FIG. 4. Layer-resolved Van Vleck distortions (a) and charge and
spin distributions (b) of the n = 4 superlattice, A-AFM solution. The
So and Se sublattices show similar properties.

FIG. 5. Layer-resolved structural and electronic/magnetic prop-
erties of the ground state of the n = 6 superlattice, the FM solution
with the a−a−c+ tilting pattern: Van Vleck distortions in sublattice So

(a) and Se (b); charge and spin distributions in sublattices So (c) and
So (d).

tortions for the FM ground state. The J-T Q2 distortion is
obviously accompanied by orbital order [52,80]. The largest
contributions to Q2 arise mainly from the So sublattice [see
Fig. 5(a)], while these modes seem quenched in the Se sublat-
tice [see Fig. 5(b)].

The relative weight of the Q1 mode is particularly large
in the Se sublattice, while it is comparable to Q2 for So.
Moreover, Q1 exhibits oscillations in the Se sublattice, while
it varies smoothly in the So sublattice. Therefore, also for Q1

we observe a qualitative difference across the two sublattices,
which is connected to the charge distribution. The larger
charge in the So sublattice [see Fig. 5(c)] points to a larger
La-Sr valence separation therein and suggests a propensity of
the So sublattice to restore the bulklike orbital order and the
J-T distortions, by withstanding the interfacial charge transfer
from LaMnO3 to SrMnO3. Such valence separation is crucial
for the emergence of mixed structural features, because a
valence closer to 3+ drives the eg occupation closer to 1/2,
prompting J-T distortions. On the other hand, opposite values
of the Q3 distortion and different charge states in the LaMnO3

region for the two sublattices promote a FM coupling along
(001) within the Goodenough-Kanamori model [81–83]. Note
that the hopping between two sublattices occurs not along the
same layer (same z value), but between adjacent layers.

We proceed to the analysis of the A-AFM order for n =
6. The Van Vleck distortions and the charge/spin distribution
are illustrated in Fig. 6. The curves for So and Se sublattices
are virtually equivalent, and therefore only one set of curves
is shown. Analogously to the n = 4 case, the Q2 distortion
in the A-AFM solution is larger than that in the FM ground
state and arises in the LaMnO3 region, unsurprisingly. The
Q3 distortion oscillates between positive and negative values,
with a small amplitude, and peaks at the interfaces. In contrast
with the FM solution, Q1 changes abruptly at the interface
but does not show oscillations within either bulk region [see
Fig. 6(a)]; again, the Q1 distortion is mirrored by charge/spin
oscillations [see Fig. 6(b)].
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FIG. 6. Layer-resolved Van Vleck distortions (a) and charge and
spin distributions (b) of the n = 6 superlattice, A-AFM solution. The
So and Se sublattices show similar properties.

Further calculations, for example the analysis of the struc-
tural distortions of the C-AFM, reveal that the quasiequiva-
lence between Se and So sublattices does not depend on the
type of AFM order; therefore, as illustrated in Fig. 7, we show
only one set. While in the FM solution single-spin sublattices
display a broken structural symmetry; if the spin is compelled
to adopt two distinct states the lattice degrees of freedom
adjust and relax to a single-phase configuration.

B. Electronic properties

For every thickness, the FM solution features a half-
metallic state which persists across all the layers of the
superlattice, as shown by the projected density of states
(PDOS) in Fig. 8. The A-AFM solution is instead fully in-
sulating with a band gap across the eg states. Such gap is
constant throughout the superlattice for n = 2 and 4, whereas
it is enhanced in the LaMnO3 region for n = 6. In particular,
it amounts to ≈ 0.16, ≈ 0.22 and 0.56 eV for n = 2, 4, and
6 (LaMnO3 region), respectively. These values are well below
the value of ≈ 1.2 eV calculated for bulk LaMnO3, confirming
that the relaxation to an insulating AFM phase (bulklike) may
happen only at a larger thickness. This reflects a spatially
extended charge transfer between Sr and La regions, which
is also evident from the charge densities (data not shown) and
the plots of the Bader charges. Overall, these features are fully
consistent with recent data for (111)-oriented LaAlO3|SrTiO3

superlattices [45]. In connection with the aforementioned FM-
AFM transition, expected at large n, this charge distribution
will cease extending and eventually recede when the system
becomes insulating.

FIG. 7. Layer-resolved Van Vleck distortions (a) and charge and
spin distributions (b) of the n = 6 superlattice, C-AFM solution. The
So and Se sublattices show similar properties.

Furthermore, we observe that the character of the bands in
both the FM and the A-AFM solution slightly changes with
thickness. In fact, a gap between the t2g states and eg states
exists in all regions (LaMnO3, interface, SrMnO3) for n = 2,
whereas it is present only in the LaMnO3 region for n = 4
and 6 (see the DOS in Fig. 8); such trend is seen for both
FM and A-AFM solutions. On the other hand, a residual t2g-eg

mixing is observed in the LaMnO3 region, which can reflect
the octahedral distortions as seen in Figs. 2–6.

We notice that our computational approach may neglect
effects that are detrimental to the half-metallic character we
predict in this family of superlattices. For example, we do not
include spin-orbit coupling nor do we investigate the occur-
rence of noncollinear magnets; this latter would mix the two
spin channels and decrease spin polarization of the carriers
[84,85]. Moreover, we do not include explicit many-body
effects, which may lead to nonquasiparticle states forming
inside the minority-spin band gap [26]. While these effects
go beyond the scope of the present paper, which we expect to
be unaffected in terms of structural and magnetic hierarchy,
as well as excitation spectra, one should also stress that de-
viations from a full spin polarization may become larger and
much more relevant in transport properties, depending on the
type of measurement [25].

IV. DISCUSSION AND CONCLUSIONS

The main results of the current paper are the evolution
of properties with thickness—showing that Jahn-Teller dis-
tortions kick in before the metal-insulator transition or the
FM-AFM transition—and the relation of the structural and
spin degrees of freedom—showing a sublattice separation of
structural phases in the spin-degenerate FM ground state and
that the sublattices become (quasi)degenerate in structural
properties when the spin degeneracy is lifted. The former
result highlights the primary role played by the J-T distortions
originating from the LaMnO3 region of the superlattice; the
latter points to a symmetry-dependent separation—it occurs
only in presence of the a−a−c+ tilting pattern—which is
realized on either of the lattice or spin degrees of freedom.
The fact that J-T distortions in the FM phase are sizable for
n = 6, but dramatically quenched for n = 4, is interpreted as
a precursor of the transition to a different tilting pattern, which
happens for n = 2.

An interesting question arising from our paper is on the
emergence of the separation of J-T and v-b sublattices and
its connection to magnetism. Our most plausible explana-
tion is drawn in the light of an antagonism between the
A-AFM magnetic order of the LaMnO3—promoted by J-T
and the a−a−c+ tilting pattern—and the FM order of the
superlattice—promoted by strain and charge transfer. While
in the a−a−a− tilting pattern the J-T distortions are naturally
suppressed by symmetry [78,86], as the thickness increases
and the tilting pattern of bulk LaMnO3 is adopted, the J-T dis-
tortions appear in the AFM solutions. For the largest thickness
considered, while the FM order is still preferred, the tilting
pattern tends to promote J-T distortions but cannot maximize
them via an insulating A-AFM order because such state is not
energetically competitive. Thus, the system adopts a mixed
configuration: in one sublattice, the J-T are stronger and in
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FIG. 8. Layer-resolved PDOS of the n = 2, 4, and 6 superlattices, FM, and A-AFM solution. For all systems, we represent the central layer
of the LaMnO3 region (LMO), the layer at the interface (IF), and the central layer of the SrMnO3 region (SMO).

the other they are weaker and overshadowed by the v-b. This
interpretation also suggests why the two sublattices remain
degenerate for n = 4 even in the FM solution: there is not
enough room for the above-mentioned competition to develop
along the direction of growth.

A broader connection to the analysis above is provided
by existing measurements and models for bulk LaMnO3.
On one hand, Raman spectra [20] and magnetotransport
measurements [87] show the occurrence of a phase separa-
tion, where J-T regions are sided by regions with no J-T,
under a moderate hydrostatic pressure. On the other hand,

ab initio calculations show a (hidden) competition between
Van Vleck modes Q2 (J-T) and Q1 (v-b) [54]. We advance
the hypothesis that in (111)-oriented mixed-valent superlat-
tices, a combination of strain and charge transfer parallel
the moderate hydrostatic pressure causing the aforementioned
phase separation. Further investigations based on scanning
transmission electron microscopy (STEM) could verify the
actual realization and character of structural features—such
as octahedral tilts—which are deeply linked to electronic and
magnetic properties according to our predictions. In addition,
orbital occupations (at the interfaces) may be investigated
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using x-ray magnetic linear dichroism (XMLD) in reflectivity.
We also note that epitaxial strain may tune the structural phase
separation observed in the current paper, as it does not occur
with the a−a−a− tilting pattern which is favored by a range of
substrates.

Finally, our results support the importance of symmetry in
the description of electronic properties and electronic correla-
tions, as recent research work [78,79,86,88] has highlighted.
Since v-b (J-T) distortions are linked to the emergence of
Hund (Mott) correlations [57,78], further research on these
and similar superlattices is expected to unveil the strong inter-
twining between Mott and Hund physics. In this sense, similar
systems, often showing Hund-driven charge disproportiona-
tion, are nickelates [57,89–93] and ruthenates [94–96].

Concluding, we presented an ab initio study on (111)-
oriented (LaMnO3)2n|(SrMnO3)n superlattices with n =
2, 4, 6. All studied systems exhibit a robust half-metallic FM
order, persistent across all the layers. We observe a crossover
between bulk La2/3Sr1/3MnO3 and bulk LaMnO3 with vary-
ing thickness, where the J-T distortions play a crucial role.
In the Pnma structure, the FM GS consists of two sublat-
tices with qualitatively different Van Vleck distortions and
charge/spin distributions. These sublattices become quaside-
generate for all AFM orders, which are also accompanied by
growing J-T distortions. These findings highlight the complex
and fascinating relationship between lattice, charge, orbital,
and spin degrees of freedom in (111)-oriented manganite
superlattices, and underscore their potential for novel func-
tionalities and applications.
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