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The electrical conductivity of one-dimensional (1D) disordered solids exhibits exponential decay with
respect to their length, a well-known manifestation of the localization phenomenon. In this study, we in-
vestigate alterations in the conductivity resulting from the insertion of 1D semiconductors into single-mode
electromagnetic cavities, focusing specifically on the regime of nondegenerate doping. Our approach employs
the Green’s function technique adapted for the nonperturbative consideration of cavity-excited states. This
encompasses coherent electron-cavity effects, such as electron motion within the zero-point fluctuating field,
as well as incoherent photon emission processes during tunneling. The energy spectrum of electron transmission
across the cavity develops Fano-type resonances linked to virtual photon emission, passage along a resonant
level, and photon reabsorption. The quality factor of the Fano resonance depends on whether the intermediate
state is coupled to the leads, reaching its maximum when this state is deeply localized within the disorder
potential. Coupling to the cavity also raises the energies of shallow bound states, bringing them close to the
conduction band bottom. This effect results in an enhancement of the conductance at low temperatures.
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I. INTRODUCTION

The exploration of manifestations stemming from the
nonempty electromagnetic vacuum in measurable real-life
phenomena has been a focal point of research since the
inception of quantum field theory [1–3]. Historically, most
observed manifestations, such as the electron’s anomalous
magnetic moment and the Lamb shift, have been confined
to the realm of atomic physics. Recent advances in the fab-
rication of high-quality electromagnetic cavities [4], coupled
with the discovery of ultra-confined electromagnetic waves
[5,6], have given rise to the intriguing concept of manipulating
the macroscopic properties of matter through zero-point os-
cillations [7–13]. Remarkable experimental examples include
the manipulating of superconducting critical temperatures
with cavities [14] and the modification of chemical reac-
tion rates [15]. Nonetheless, changing the conductivity of
solids, the property of primary interest in electronics, has
been traditionally deemed implausible even under resonant
coupling [16]. Indeed, the momentum an electron acquires
in a zero-point vacuum field is much less than thermal
or Fermi momentum at achievable temperatures and carrier
densities.

Recent experiments have challenged this perspective. Ref.
[17] demonstrated cavity-enhanced conductivity in a disor-
dered organic semiconductor adjacent to a photonic crystal.
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Reference [18] showcased the impact of microwave cavities
on the magnetoresistance of quantum wells. Subsequent in-
vestigations of analogous systems revealed a finite dissipative
conductivity on the fractional quantum Hall plateaus [19].
Reference [20] uncovered the existence of strong photocurrent
in the level anticrossing gap induced by an optical cavity.
The intricacy of these experiments lies in comparing sam-
ple properties with and without a cavity, a task complicated
by non-equivalent disorder, intrinsic fields, and geometric
variations. It is thus intriguing to theoretically elucidate the
conditions under which the conductivity of solids may vary
due to electromagnetic cavities. Once these conditions are
identified, the incorporation of cavities could emerge as a
novel turning knob for manipulating electrical properties,
complementing traditional approaches such as doping and
field effects.

In this study, we demonstrate that a particularly suit-
able playground for pronounced manifestations of zero-point
electromagnetic oscillations, even under weak coupling, is
found in one-dimensional (1D) disordered conductors oper-
ating within the localized regime [21,22].

Previous works primarily focused on transport in cavity-
coupled ordered systems [23–28], or cavity modifications of
individual scattering events [29,30]. In 1D systems electrically
decoupled from the leads, the impact of the cavity field on
the localization length was observed to be oscillatory un-
der strong coupling conditions [31]. Recently, Refs. [32,33]
presented studies on conductance and the quantum Hall ef-
fect in cavity-coupled disordered 1D and 2D systems in the
case of degenerate doping. They argued for the emergence
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FIG. 1. One-dimensional disordered semiconductor in a cavity. (a) Mechanisms of conduction modifications via electromagnetic cavity
fluctuations (1) An electron can emit a virtual photon, travel along an electronic quasibound resonant level, and reabsorb the photon. The
quasi-bound level is susceptible to decay into source and drain, resulting in electroluminescence (2) Similar to (1), but an electron is genuinely
bound in the disorder potential, precluding luminescence (3) The coupling of the conductor to a cavity with strength γ induces the expulsion
of the shallow bound states from the disorder potential. Consequently, new resonances may appear in the transmittance (b) Extended states’
space for a tight-binding chain strongly coupled to a cavity mode. Each atomic site with potential Ui is now characterized by a number of
cavity photons |N〉, as do the states in the leads. Different-colored paths represent various possibilities of source-drain tunneling. Green: elastic
tunneling perturbed by emission/absorption of virtual photons, blue: tunneling with single photon absorption, red: tunneling with two-photon
emission. (c)–(e) Examples of electromagnetic cavities where the effects under study can take place (c) microwave slot resonator of size order
of free-space wavelength λ0 (d) cavity based on a polar dielectric with size order of phonon-polariton wavelength λp−p (e) 2D plasmonic cavity
based on a 2D material supporting confined 2D plasmons with wavelength λp.

of cavity-induced long-range electron hopping. The complex-
ity of this regime stems from the Pauli blocking of electronic
states following the emission of cavity photons. These effects
can be accurately addressed only through Keldysh Green’s
function technique. This has been applied to related systems,
such as molecular transistors strongly coupled to phononic
vibrations [34,35]. Unfortunately, extending this technique
to ultrastrong coupling proves challenging due to the com-
plex nature of diagrammatic expressions for electron-photon
self-energies.

In this work, we focus on the conductivity of non-
degenerate disordered 1D semiconductors coupled to single-
mode cavities. The low fermionic occupation numbers
nF � 1 allow us to disregard Pauli blocking effects, enabling
a numerical and nonperturbative treatment of electron-cavity
couplings. The absence of Pauli blocking uncovers strong
coupling effects, primarily — but not exclusively —involving
the emission of virtual photons during transport. From an
experimental viewpoint, the nondegenerate regime is realized
in intrinsic and moderately doped semiconductors, always
achievable through gating.

We find that coupling a one-dimensional semiconductor
to a cavity results in resonances in the electron transmission
T (E ) at energies corresponding to the multi-photon repli-
cas of quasibound states, E = Ei + Nh̄ω [process No. (1)
in Fig. 1(a)]. The replica resonances in transmission have

a Fano-type structure. The probabilities of photon-assisted
tunneling have resonances at the same replica energies, albeit
having a standard Lorentzian shape. At large photon energies
h̄ω � kT , the emergence of such resonances does not lead
to any modifications of 1D conductivity. The reason is that
such resonances appear at the high energy tail of electron
Boltzmann distribution. The situation changes at lower cavity
photon energies h̄ω � kT or at relatively large disorder ampli-
tudes δU � h̄ω. In such a case, replica resonances may appear
near the nominal conduction band edge EC and significantly
contribute to the enhanced conduction. The mechanism of
conductivity in this regime represents electron hopping to the
true bound state in the disorder potential with virtual photon
emission, passage along this state, and subsequent photon
absorption [process No. (2) in Fig. 1(a)]. Finally, we find that
coupling of disordered 1d wires to cavities can result in the
rise of the bound states from the disordered tail to the band,
then becoming accessible from the leads [process No. (3) in
Fig. 1(a)]. At a coupling strength corresponding to the level
unbinding, the thermally-averaged transmittance acquires a
resonance.

Our study is based on a modified Landauer-Buttiker
formalism in the tight-binding approximation. The non-trivial
modification involves the inclusion of cavity degrees of free-
dom populated according to the thermal Gibbs distribution.
The developed method enables the evaluation of both direct
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tunnelings modified by the zero-point oscillations of the cav-
ity field and the tunneling aided by the absorption/emission
of real photons. Some examples of the relevant processes are
shown in Fig. 1(b). Section II will describe the developed the-
oretical method, while Sec. III will discuss the results on the
conductance of disordered 1D chains coupled to the cavities.
Section IV explores possible experimental setups where the
cavity modifications of conductance can be observed.

II. MODEL: LANDAUER-BUTTIKER APPROACH
FOR A TIGHT-BINDING CHAIN IN A CAVITY

A. Hamiltonian of the cavity-coupled chain

The model system under investigation is a 1D atomic chain
comprising nat sites. The chain with its contacts is embedded
in the electromagnetic cavity with characteristic size Lcav of
the order of electromagnetic wave length and much exceeding
the conductor length. Examples of such cavities are shown
in Figs. 1(c)–1(e). These can be metallic slot-type resonators
with characteristic size order of free-space photon wave-
length [Fig. 1(c)], such cavities are favorable at microwave
frequencies [18]. Another example [Fig. 1(d)] is represented
by cavities supporting photon-polariton resonances in polar
dielectrics such as hexagonal boron nitride [36], such cav-
ities are best combined with 1D systems based on layered
semiconductors. The third possible example is represented by
2D plasmonic cavities [5], where the studied 1d conductor is
proximized with a 2D material supporting highly confined 2D
plasmons [Fig. 1(d)].

Electron transport in the chain is considered within the
tight-binding approach, with a constant nearest-neighbor hop-
ping integral t and random on-site energies Ui (Fig. 1). The
amplitudes Ui follow an uncorrelated Gaussian distribution
with a variance of δU . The electromagnetic field of the
single-mode cavity is treated using Pierles’ modification of
the hopping integrals [27],

t → t exp{±ieAxa/h̄c}, (1)

where Ax is the vector potential along the chain, and a is the
lattice constant. As the typical cavity lengths exceed the length
of 1D conductors, the vector-potential can be considered as
position-independent. In this limit, the quantization rule for
the cavity field can be presented as

Ax → Avac(b̂ + b̂+), (2)

where b̂+ and b̂ are raising and lowering operators for the field,
and

Avac =
(

2π h̄c2

ωV

)1/2

(3)

is the amplitude of zero-point oscillations in the cavity of vol-
ume V . The quantization rules (2) and (3) imply a single-mode
approximation to the cavity spectrum. The lowest-frequency
(fundamental) mode of the cavity typically interacts with 1D
conductor most strongly. This is justified by the decrease in
zero-point amplitude with frequency [Eq. (3)]. Further on, we
see that cavity-induced corrections to the energy levels of a
disordered conductor are also increasing with lowering the
frequency, even at a constant Avac.

The above prerequisites lead us to the following Hamilto-
nian Ĥ, comprised of a free-field part Ĥf and an interacting
chain part Ĥch(γ ):

Ĥ = Ĥf + Ĥch(γ ), (4)

Ĥf = h̄ωb̂+b̂, (5)

Ĥch(γ ) =
nat∑

i=1,±
Uiâ

+
i âi + te± iγ

t (b̂+b̂+ )â+
i±1âi. (6)

In the above expression, âi, â+
i are fermionic annihilation and

creation operators at site i, γ = eatAvac/h̄c is the hopping
amplitude associated with photon emission/absorption.

B. Coupling of the interacting chain to the leads

The model chain is connected to source and drain metal-
lic leads, assumed to be noninteracting, and maintained in
thermal equilibrium. The effect of the leads on the conductor
under study is typically described by the self-energy operator
�̂ = �̂s + �̂d , where �̂s and �̂d govern the effects of source
and drain contacts, respectively [37]. Once the functional form
of self-energy is specified, all the necessary information about
transport is encoded in the propagators (Green’s functions)
Ĝ(E ). They are determined from

Ĝ(E ) = [EÎ − Ĥ − �̂]−1, (7)

where E is the energy and Î is the identity operator.
From this point, our approach to considering electron-

boson interactions deviates from conventional diagrammatic
expansions of the electron’s Green’s function in powers of
interaction strength [34,35]. We aim at the nonperturbative
account of electron-cavity couplings. Therefore, all Green’s
functions will be defined in the states’ space spanned by elec-
tron and cavity degrees of freedom. In other words, we will
deal with new quasiparticles, electrons dressed in N cavity
photons. The state of such quasiparticles is characterized by a
multi-index |α〉 = |i, N〉, where i is the position in the chain
and N is the number of photons in the cavity mode. The energy
argument of Green’s function E is the total energy of the
dressed electron, which, without interactions, comprises the
electronic part ε and the photonic part Nh̄ω.

The extended states’ space for the dressed electron can now
be represented by a 2D network shown in Fig. 1(b). Each
horizontal line corresponds to a constant number of cavity
photons. Each vertical line corresponds to an electron at a
given atomic site, with different possible numbers of photons
in the cavity. Importantly, each N th horizontal line of this
network is coupled to the leads, which implies the possibility
of inelastic processes, i.e., retaining the cavity in the excited
state after the electron passage. The paths between the source
and drain across this network have a transparent physical
interpretation. For example, the path starting at |N〉 = |0〉 and
ending at |M〉, M �= 0 corresponds to an electron entering the
cavity in the photonic ground state and leaving the cavity with
M excited photons [red line in Fig. 1(b), tunneling with photon
emission].

The computation of the Green’s function for the compound
quantum system (7) requires determining the Hamiltonian and
self-energy matrix elements. They are obtained and evaluated
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in two steps: initially concerning cavity states and subse-
quently focusing on electron states. The elements of H with
respect to cavity states, denoted as 〈M|Ĥ|N〉, are analytically
computed using the Baker-Campbell-Hausdorff formula (Ap-
pendix A). Within a tight-binding subspace, H is represented
by an ordinary tridiagonal matrix.

Obtaining the self-energy operator �̂ for the interacting
chain poses a more intricate challenge. This complexity arises
from the fact that an electron departing the channel can do
so either by maintaining the cavity in its initial state or by
emitting/absorbing N cavity photons [Fig. 1(b)]. The rate at
which the electron leaves the cavity should depend solely on
the electron’s energy ε = E − Nh̄ω. The state of the cav-
ity should not influence the possibility of electron escape.
Clearly, an electron cannot exit the cavity if its energy E −
Nh̄ω lies outside the conduction band in the leads. Let us
assume that the noninteracting chain’s self-energy is known
and denoted as �̂0(E ). The self-energy for the interacting
chain, denoted as �̂(E ), satisfying the above requirements,
would have the following matrix element with respect to the
cavity states:

〈M|�̂(E )|N〉 = δNM�̂0(E − Nh̄ω). (8)

The physical meaning of Eq. (8) becomes clearer when
considering that the imaginary part of the self-energy is pro-
portional to the rate of electron escape from the studied
system. Mathematically, this can be expressed as Im�0(ε) ∼
h̄v(ε)/a, where v(ε) is the electron velocity, and a is the inter-
atomic distance. Equation (8) simply represents the fact that
emission of N cavity photons reduces the electron velocity
from v(E ) to v(E − Nh̄ω), consequently lowering the rate of
electron escape from the chain. If E − Nh̄ω < 0, the velocity
becomes imaginary, reflecting the energy constraint on the
electroluminescence.

After the self-energy for the dressed electron is related
to that of a bare electron with Eq. (8), we are left with
the specification of the functional form of �̂0 = �̂s + �̂d .
The general property of this operator is its action only on the
terminal atoms in the chain. In other words, the matrices of
�̂s and �̂d in the tight-binding representation have a single
nonzero element each. A formal representation of this fact is

〈i|�̂s(E )| j〉 = δi jδi,1gs(E ), (9)

〈i|�̂d (E )| j〉 = δi jδi,nat gd (E ). (10)

The particular form of scalar coupling functions gs/d on the
density of states in the leads and microscopic details of atomic
bonds. We adopt the scalar coupling functions gs/d in the sim-
plest approximation of 1D contact with the same bandwidth
as the channel [37],

gs(E ) = gd (E ) = 2t2

E − 2t + i
√

E (4t − E )
. (11)

C. Generalized Landauer formula for the current
in the interacting chain

The current I0 in a non-interacting one-dimensional system
biased by voltage eVsd = μs − μd is given by the Landauer

formula [38]:

I0 = 2e

h

∫ +∞

−∞
dE [nF (E ) − nF (E − eVsd )]T0(E ), (12)

where nF (E ) are the fermionic occupation numbers. The
energy-dependent transmission probability in the non-
interacting chain T0(E ) can be expressed via [39]

T0 = Tr[
̂SĜ
̂DĜ+], (13)

where Ĝ is the Green’s function in the tight-binding represen-
tation, + stands for Hermitian conjugate, and 
̂s/d are the rate
matrices of electron exchange with source and drain, 
̂s/d =
i[�̂s/d − �̂+

s/d ] [37]. The expression for transmission T0 is

greatly simplified in 1D atomic chains, where �̂-operators act
only at the terminal sites [39]

T0(E ) = 4�gs(E )�gd (E )|〈1|Ĝ(E )|nat〉|2; (14)

here, � stands for the imaginary part. In other words, the
transmittance is proportional to the modulus squared of
source-drain propagator |〈1|Ĝ|nat〉|2.

Our next goal is to modify the Eqs. (12) and (13) to
account for electron-cavity interactions to an arbitrary order
of the interaction strength. The first crucial building block
in this modification is the system’s density matrix,” electron
in the leads + cavity”. We assume that the electromagnetic
field does not penetrate the metal leads, and that the strong
electron scattering quickly destroys the electron-photon co-
herence. This implies that electronic and photonic degrees
of freedom are decoupled in the leads and obey the Gibbs
distribution. Formally, the elements of the density matrix in
the leads between the states |α〉 = |i, N〉 and |α′〉 = |i′, N ′〉 are
given by

〈α′|ρ̂|α〉 = 〈i′|ρ̂e|i〉 ⊗ 〈N ′|ρ̂ph|N〉. (15)

The ordinary Gibbs distribution gives the photonic part of the
density matrix for N photons in the mode

〈N ′|ρ̂ph|N〉 = 1

Z
δNN ′ exp (−Nh̄ω/kT ), (16)

Z = [1 − e−β h̄ω]−1 ≡ nB(ω) + 1 is the statistical sum for an
individual cavity mode, where nB(ω) is the Bose function
of energy h̄ω. The electron density matrix obeys the Fermi
distribution with energy ε and chemical potential μ:

〈i′|ρ̂e|i〉 =
∫ +∞

−∞
dεAii′ (ε)nF (ε), (17)

here Aii′ (ε) is the electron’s spectral function in the leads, and
nF (ε) = [e(ε−μ)/kT + 1]−1 is the electron’s Fermi function.

The absence of electron-cavity interactions in the leads
enables us to introduce the well-defined occupation numbers
for dressed electrons with given total energy E and photon
number N :

n(E , N ) = nF (E − Nh̄ω) × e−Nh̄ω/kT

nB(ω) + 1
. (18)

Summation of n(E , N ) with respect to photon numbers N
yields nF (ε), reflecting the problem’s single-electron nature.
The Landauer-like formula can now be written down for these
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new noninteracting dressed electrons as (see Appendix B):

I = 2e

h

∑
N,M

∫
dE [ns(E , N ) − nd (E , M )]TNM (E ), (19)

where ns/d are the occupation numbers for the dressed elec-
trons in the source and drain. In the Boltzmann limit, the
occupation numbers n(E , N ) would depend only on total
energy, n(E , N ) ≈ e−(E−μ)/kT /[nB(ω) + 1]. The generalized
Landauer formula becomes especially simple

I = 2e/h

nB(ω) + 1

∫ +∞

−∞
dE [ fs(E ) − fd (E )]

+∞∑
N,M=0

TNM (E ),

(20)

where fs/d (E ) = e−(E−μs/d )/kT is the Boltzmann exponent for
the energy E . Above, TNM (E ) is the probability of electron
transmission from the source with N photons in the cavity to
the drain with M photons in the cavity. The expression for
photon-number-resolved transmittance generalizes the results
(13) and (14):

TNM = Tr[〈N |
̂S|N〉〈N |Ĝ|M〉〈M|
̂D|M〉〈M|Ĝ+|N〉]
= 4�gs(E − Nh̄ω)�gd (E − Mh̄ω)|〈N, 1|Ĝ|nat, M〉|2.

(21)

The diagonal elements TNN show the probabilities of elec-
tron transfer between source and drain without real photon
excitation. Yet, virtual photon emission along the path is fully
included into TNN . The off-diagonal elements TNM stand for
probabilities of assisted tunneling, and M − N is the number
of emitted/absorbed real photons during a single electron
passage.

The modified Landauer formula (20) is applicable
only at low fermion occupation numbers nF � 1.
This corresponds to the Fermi levels μs and μd

lying outside the conduction band. Thermally excited
carriers carry the current in such a situation with
E > {μs, μd}. Otherwise, the Pauli blocking principle
would hinder the emission of cavity photons [32].

The practically measured quantity is the conductance G =
∂I/∂VSD. To single out the contributions of photon-assisted
and elastic transport, we endow G with photon indices GNM

and define it according to

GNM = GQ

nB(ω) + 1

∫
TNM (E )e

E
kT

dE

kT
. (22)

The physical meaning of GNM is the part of total conduc-
tion, where an electron enters the cavity with N photons and
emits/absorbs M − N photons during its path. Above, we
have introduced GQ = [2e2/h]e+μ/kT , the conductance quan-
tum timed by the Boltzmann distribution at the band edge,
μ = (μs + μd )/2. The Fermi level μ in the nondegenerate
semiconductor affects the conductivity only via a multiplica-
tive factor e+μ/kT < 1.

III. RESULTS: MODIFICATIONS OF ONE-DIMENSIONAL
CONDUCTANCE DUE TO CAVITY COUPLING

We proceed to examine the effects of cavity coupling on
the transmittance spectrum T (E ) and thermally averaged

conductance G in 1D atomic chains. These quantities
were obtained via a numerical computation of Green’s
functions (7) and subsequent evaluation of transmittance
(21) and conductance (22). The number of excited cavity
states is chosen adaptively to ensure the convergence of
transmission coefficient T00 with 1% accuracy. In the
following calculations, such convergence required from
1 to 9 excited cavity states, depending on the coupling
strength γ .

We begin the discussion of our numerical results by
considering a relatively high photon energy, h̄ω = 0.6 eV,
comparable to the bandwidth 4t = 1.6 eV and significantly
exceeding the disorder amplitude δU = 0.2 eV. The chain
length is nat = 60. The computed plots of transmittance
spectra T00(E ) (ground-state transmittance) and T01(E ) (trans-
mittance with an associated one-photon emission) are shown
in Fig. 2(a). Figures 2(b)– 2(d) display the magnified views
of the transmittance in several characteristic energy ranges.
In the absence of cavity, T00(E ) exhibits several sharp res-
onances corresponding to the electron passage along the
quasibound states Ei in the random potential. The transmit-
tance envelope drops to zero at the lower and upper band
edges due to the predominant localization of states with small
group velocities.

The main effects of the cavity on transport consist in (1)
the emergence of additional resonant structures in T00(E )
(2) the onset of electroluminescence T01(E ) at energies E >

h̄ω. Each new resonant structure appears approximately at
energies E = Ei + h̄ω. In other words, it represents a pho-
ton replica of an original resonant path. The two electron
paths, one without photon emission and the other with photon
emission and reabsorption, interfere with each other. This
interference results in the appearance of a characteristic Fano
structure in the original transmission curve T00(E ). The width
and amplitude of the new Fano resonance depend on the
position of the electron state E with respect to the midband.

In the high-energy sector, E � 4t , the Fano structures in
the transmittance T00 are broad and faint. Simultaneously, the
amplitude of electroluminescence T01 is relatively high and
may exceed the zero-photon transmission at relatively small
coupling [γ ∗ ≈ 10 meV in Fig. 2(d)]. In this situation, the
zero-photon path T00 is suppressed due to the carrier localiza-
tion at the upper band edge, and the original bound states are
weakly coupled to the leads. After cavity photon emission, the
electron energy gets closer to the midband, where both group
velocity and coupling to the leads are more significant. These
final states have relatively short lifetimes and decay quickly
by releasing the electron to the leads. In such a situation,
the electroluminescence process readily dominates the zero-
photon transmission.

At intermediate energies, E ∼ 2t , an original electron has
a relatively large group velocity and is less prone to localiza-
tion in a disorder potential. The emission of a virtual photon
now pushes the electrons closer to the band bottom, i.e.,
to the states weakly coupled to the leads. The weak coupling
of the final state to the leads results in a narrow Fano reso-
nance in the original transmission curve T00(E ) [Fig. 2(c)].
The coupling of the final state to the leads also results
in an electroluminescence peak, albeit weaker than in the
high-energy sector.

045432-5



DMITRY SVINTSOV et al. PHYSICAL REVIEW B 109, 045432 (2024)

FIG. 2. Effect of the cavity on the electron transmission through a disordered 1D chain. (a) Energy-dependent transmission coefficients
without real photon emission T00 (solid) and with single real photon emission T01 (dashed). The coupling strength varies from 0.2 to 23 meV;
photon energy is h̄ω = 0.6 eV, and the disorder amplitude is δU = 0.2 eV, disorder realization corresponds to sample No.2S described in the
Supplemental Material [40] (b)(–d) Magnified views of transmittance in selected energy sectors. (b) In the low-energy region E < h̄ω, an
electron can emit a virtual photon and travel along a bound state in the disorder potential. This results in Fano interference of the original
path and path with virtual photon emission (denoted as FV). (c) At intermediate energies, E � h̄ω, the emission of a cavity photon moves the
electron to a quasi-bound state weakly coupled to the leads, leading to a broad Fano resonance and the appearance of electroluminescence
(denoted as FE). (d) At high energies, E ∼ 4t , the emission of a cavity photon propels the electron into the state, rapidly decaying to the leads,
resulting in the dominance of electroluminescence.

At even lower energies E < h̄ω, an electron is incapable
of real photon emission. Nevertheless, its transmission curve
T00(E ) acquires extra Fano resonant structures due to the
emission of virtual photons [FV-peaks in Fig. 2(b)]. The dis-
ordered character of the potential enables the very possibility
of these low-energy peaks. A disordered noninteracting chain
has several energy levels truly bound in the random potential
with energies Ei < 0. An electron incident on the interact-
ing chain can gain access to these levels via emission and
reabsorption of the virtual cavity photons [process No. (1)
in Fig. 1(a)]. The linewidth of these Fano-type structures is
proportional to the virtual photon emission and re-absorption
probability, 
 ∼ γ 2/ω, and is thus very small.

Exploring cavity effects on electron transmission T (E )
across a wide energy range is primarily of academic interest.
Indeed, all electron states relevant to transport in nondegen-
erate semiconductors are located at energies E ∼ kT from
the lower band edge. Consequently, only modifications to the
low-energy transmittance T (E ) can influence the thermally-
averaged conductance G(T ).

To investigate modifications in transmittance pertinent to
the conductivity of nondegenerate semiconductors, we con-
centrate on the low-energy sector of the simulated T00(E ).
Initially, we maintain the same photon energy, h̄ω = 0.6 eV,
and present the results in Figs. 3(a) and 3(b). The first effect
of the cavity in this sector is manifested by a slight upward
spectral shift of the transmission resonances. The sign of the
shift may seem unusual because the second-order perturbative

correction to the energy of the ground state expressed as

δ(1)Ei = e2
∑

k

|Xik|2|Evac|2
Ei − (Ek + h̄ω)

(23)

should always be negative (here Xik is the matrix element of
the electron coordinate and Evac = iωAvac/c is the zero-point
electric field). The explanation of the positive shift lies in
the two facts. First, the lowest resonance in T00(E ) does not
necessarily correspond to the lowest energy level of the in-
teracting chain. As discussed above, even lower levels bound
in the random potential are present at E < 0. The interaction
of the lowest resonance with these levels may lead to positive
energy shifts.

Second, another diamagnetic correction exists apart from
the virtual photon correction to the energies given by Eq. (23).
It is also quadratic in the electron-photon coupling and ap-
pears in the first order of the perturbation theory:

δ(2)Ei = e2

2mc2
A2

vac = 2
γ 2

t
. (24)

As a result of the two perturbations mentioned above, most
resonances in T (E ) in the low-energy sector for disordered
chains are generally shifted upwards in energy with increasing
the cavity coupling γ . This reduces the thermally averaged
conductance at low temperatures as the coupling strength γ is
increased. This range of temperatures and coupling strengths
is highlighted in Fig. 3(b) with a dashed rectangle.
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FIG. 3. Cavity-induced changes in energy-resolved transmittance and thermally averaged conductance. The results are obtained for an
atomic chain with nat = 60, disorder amplitude δU = 0.2 eV, bandwidth 4t = 1.6 eV, disorder realization corresponds to sample No.1S
described in the Supplemental Material [40]. (a), (b) Simulation for a photon energy h̄ω = 0.6 eV larger than the disorder amplitude. (c),
(d) The same disorder realization for photon energy h̄ω = 0.1 eV, smaller than the disorder amplitude. The teft and right columns display the
transmittance spectra and the corresponding thermally-averaged conductance.

The second effect of cavity coupling is also related to
positive energy shifts of levels with increasing the coupling
strength γ . It lies in rising energy levels from the band of
strictly localized states E < 0 to the band of accessible en-
ergies E > 0. More precisely, a discrete level in the disorder
potential with a low binding energy −|Eb| may acquire a
positive correction (24). Its net final energy −|Eb| + δ(1)E +
δ(2)E > 0 thus becomes accessible to the carriers incident
from the leads. Such a prolumination of the energy levels
by cavity results in the emergence of a resonance in trans-
mission T00(E ) at nearly zero energy [see the red curve in
Fig. 3(a) in the vicinity of E ≈ 0]. The low-energy resonance,
in turn, implies a positive correction to the conductance at low
temperatures, ∂G/∂γ |T →0 > 0. While the low-temperature
conductance is enhanced via coupling to the cavity, the tem-
perature dependence of conductance becomes anomalously
decaying, ∂G/∂T < 0, see the negative slope of the red curve
in Fig. 3(b). The latter effect stems from an abrupt decrease in
T00(E ) with energy at the right shoulder of the transmission
resonance.

The modification of conductance associated with the prolu-
mination of the weakly bound states is more pronounced with
decreasing the cavity photon energy. This is best illustrated in

Figs. 3(c)–3(d), where the same disorder realization is studied
at cavity photon energy h̄ω = 0.1. The zero-energy resonance
in transmission becomes visible already at coupling strength
γ ∗ ∼ 10 meV, which is six times smaller than the correspond-
ing γ ∗ at high photon energy h̄ω = 0.6 eV. The reason for
more substantial cavity effects at low photon energies lies in
smaller energy denominators in Eq. (23), and thus in larger
perturbative energy shifts at a fixed value of γ [41]. Increasing
γ to even higher values shifts the resonance away from E ≈ 0,
reducing the conduction.

Another set of modifications in T00(E ) at the band bottom
is associated with the emergence of sharp Fano resonances.
An electron at nearly zero energy E ≈ 0 can emit the virtual
photon and jump to a discrete level in the disorder potential.
The sharp Fano structure discussed above can now appear at
the lower band edge, as illustrated in Fig. 3(c). Though the
Fano structures modify the transmission spectra, their effect
on the T -dependent conductance is nonunivocal. Indeed, a
sharp increase in T00(E ) in a narrow range of energies can
be compensated by a transmission drop at other energies.
Further examples of cavity modifications of conductance for
various disorder realizations can be found in the Supplemental
Material [40].

045432-7



DMITRY SVINTSOV et al. PHYSICAL REVIEW B 109, 045432 (2024)

FIG. 4. Effect of cavity on 1D localization in long conductors. Simulated energy-resolved transmittance T00(E ) (top row) and thermally
averaged conductance G00(T, γ ) for chain length nat = 120, photon energy h̄ω = 0.1 eV, disorder amplitude δU = 0.2 eV. (a) and (c) cor-
respond to sample #3L, while (b) and (d) correspond to sample #4L (described in detail in the Supplemental Material). The conductance
generally reaches a maximum at some γ corresponding to the passage of the bound state through the conduction band bottom.

Most cavity effects on conductance seen in the vicinity of
the band bottom are associated with the presence of bound
states in the disordered potential. It is natural to assume
that an increase in the chain length, at the same disorder
statistics, would enhance the number of bound levels. As
soon as the electron’s motion remains coherent throughout
the chain, longer chains should be more susceptible to cavity
effects. This suggestion is fully confirmed in Fig. 4, where
we present the transmission simulations for a chain of length
nat = 120, twice longer than that in Figs. 2 and 3, and at four
different realizations of disorder. The number of transmission
resonances (ordinary and Fano-type) per unit energy window
is much bigger than that for short chains. A weakly bound
state crosses the band bottom E = 0 for most disorder real-
izations as the coupling constant increases. This effect results
in non-monotonic γ dependence of the thermally averaged
conductance.

IV. DISCUSSION OF THE RESULTS

We have uncovered several effects of electron-photon cou-
pling leading to conductivity modification in the localized
regime for non-degenerate carrier statistics. The first class
of changes is associated with Fano resonances in transmis-
sion, which are associated with the emission of virtual cavity
photons and the passage of electrons along the bound levels
in the disorder potential. This effect is observable only at

small photon energies compared to the disorder amplitude
h̄ω � δU . Another prerequisite for this effect is the absence of
degeneracy within the bound states, i.e., that |μ − Ec| > δU .
Otherwise, Pauli blocking strongly constrains both real and
virtual photon emission processes.

The second class of cavity effects on the 1D conductivity
involves potentially significant shifts in bound and quasi-
bound energy levels as the coupling strength increases. The
cavity-induced diamagnetic correction to the energy levels is
always positive, while the sign of the virtual-photon correction
remains indeterminate. These energy shifts induced by the
cavity are most notable for conduction when an initially bound
state transitions to a quasibound state, becoming accessible to
electrons incident from the leads. Such an energy shift implies
cavity-enhanced conduction at low temperatures. The obser-
vation of this effect necessitates a well-defined conduction
band edge in the leads; otherwise, there would be no clear
boundary between bound and quasibound states.

Although our discussion has been confined to 1D systems,
we expect the aforementioned cavity effects to be generic and
applicable to 2D and 3D systems. The impact of the cavity
on energy levels in 2D systems is expected to be particu-
larly pronounced, given that the binding energy in disordered
2D systems is exponentially small. Consequently, placing
disordered 2D systems in cavities should lead to the delocal-
ization of weakly bound states, enabling their contribution to
transport.
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Finally, we estimate whether the coupling constant
γ ∼ 0.1 meV, for which we observe the cavity effects on the
conductance in Figs. 3 and 4, is realistic. By relating γ to
cavity parameters and assuming the cavity has volume V , we
obtain the expression

γ =
(

e2

h̄c

)1/2
h̄2

2m∗a

(
λ

V

)1/2

, (25)

where we have introduced the effective mass according to
t = h̄2/2m∗a2. Taking the minimum possible mode volume
V = λ3, we simplify Eq. (25) to

γ =
(

e2

h̄c

)1/2
h̄2

2m∗aλ
. (26)

The numerical estimate for m∗ = 0.067m0 (GaAs quantum
wire), a = 0.5 nm and λ = 10 µm provides γ = 0.1 meV.
Fortunately, this corresponds to pronounced cavity effects
on conduction at the lower band edge. Higher values of
γ may be achievable in 2D plasmonic cavities [42].
The characteristic wavelength of 2D plasmons is ∼102

times below the free-space photon wavelength. With this
compression ratio, 2D plasmonic cavities can provide
∼103-fold enhancement of the coupling constant. Another
approach toward increasing the coupling strength is placing
1D conductors into the cavities with field singularities near
metallic edges. The most prominent example of such a
cavity is a slot in a planar metallic pad [18,19]. Although the
average amplitude of fluctuations in such cavity is still given
by Avac = (2π h̄c/ωV )1/2, the local values of the field near
the slot edges can reach much higher values.

The temperature-dependent conduction of 1D chains in a
cavity G(T, γ ) can strongly differ from the respective quantity
in the uncoupled structure, G(T, γ = 0). However, the tem-
perature dependence G(T ) in an interacting chain does not
exhibit any distinctive features not already present at γ = 0.
Conduction measurements at variable coupling strength are
necessary to reveal the effect of coupling. Fortunately, corre-
sponding setups based on movable Bragg mirrors are available
[43,44].
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APPENDIX A: NUMERICAL REALIZATION
OF ELECTRON-CAVITY HAMILTONIAN

For computational purposes, obtaining the representation
of the Hamiltonians in the matrix form is necessary. Below,
we establish the structure of the respective matrices. The
photon and electron degrees of freedom are coupled in the
interacting channel. The dressed electron states in the channel
are characterized by their position in the chain and num-
ber of cavity photons. In the tight-binding representation for
electronic degrees, and occupation-number representation for
photonic degrees, this is a vector of length Nph × nat, where
nat is the number of atomic sites and Nph is the number
of photonic states. The latter is retained finite in numerical
calculations. The size of corresponding Hamiltonian matrix is
(Nph × nat ) × (Nph × nat ). In all our numerical calculations,
we arrange the Hamiltonian matrices in the block form

Ĥ =

⎛
⎜⎜⎜⎝

〈0|Ĥ|0〉 〈0|Ĥ|1〉 〈0|Ĥ|2〉 ...

〈1|Ĥ|0〉 〈1|Ĥ|1〉 〈1|Ĥ|2〉 ...

〈2|Ĥ|0〉 〈2|Ĥ|1〉 〈2|Ĥ|2〉 ...

... ... ... ...

⎞
⎟⎟⎟⎠, (A1)

where brackets 〈N |Ĥ|N ′〉 stand for taking the matrix elements
between N th and N ′th states of electromagnetic field. Each
element of the block matrix above is the matrix of size nat ×
nat; it acts already in the tight-binding subspace.

Below, we present the block representation of operators
constituting Ĥ. The field term is diagonal,

〈N |Ĥ f |N ′〉 = ÎδNN ′Nh̄ω, (A2)

where the identity operator Î acts in the tight-binding space.
The tight-binding diagonal and tight-binding off-diagonal

matrix elements of chain Hamiltonian are different. The
diagonal elements are simply the on-site energies. The off-
diagonal elements are the hopping energies modified by
electromagnetic fluctuations. Collected together, they form
the matrices

〈N |Ĥch(γ )|N ′〉 = δNN ′

⎛
⎜⎜⎜⎜⎜⎜⎝

U1 0 0 0 ...

0 U2 0 0 ...

0 0 U3 0 ...

... ... ... ... ...

... 0 0 0 Unat

⎞
⎟⎟⎟⎟⎟⎟⎠

+ t

⎛
⎜⎜⎜⎜⎜⎜⎝

0 hNN ′
(

γ

t

)
0 0 ...

hNN ′
(− γ

t

)
0 hNN ′

(
γ

t

)
0 ...

0 hNN ′
(− γ

t

)
0 hNN ′

(
γ

t

)
...

... ... ... ... ...

... 0 0 hNN ′
(− γ

t

)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

Above, we have introduced an auxiliary function

hNM (g) = 〈N | exp(−ig[b̂ + b̂+])|M〉, (A4)

which is the matrix elements of harmonic exponent between
N th and Mth states of the oscillator, g = γ /t . Explicit calcu-
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lation of hNM factors is done with Baker-Campbell-Hausdorff
formula:

exp(−ig[b̂ + b̂+]) = e−g2/2 exp(−igb̂+) exp(−igb̂). (A5)

The exponent of annihilation operator exp(−igb̂)|M〉 pro-
duces only finite sums. Expanding the exponent in a Taylor
series can evaluate them in closed form. This results in

hNM (g) = 〈N | exp(−ig[b̂ + b̂+])|M〉

= e−g2/2
N∑

s=0

M∑
j=0

(ig)s

s!

(ig) j

j!
δN−s,M− jP( j, M )P(s, N ),

(A6)

P( j, M ) =
√

[M − ( j − 1)][M − ( j − 2)]...[M − 1]M.

(A7)

For example, some of the lowest elements are

h00(g) = e−g2/2, h11(g) = e−g2/2(1 − g2),

h01(g) = ige−g2/2, h02(g) = − 1√
2

g2e−g2/2. (A8)

APPENDIX B: PHOTON-DRESSED ELECTRONS
AND THE GENERALIZED LANDAUER FORMULA

The usual Landauer’s formula is derived for noninter-
acting electrons. Therefore, we must cast the Hamiltonian
(4) into a noninteracting form. We introduce auxiliary

creation/annihilation operators ĉiN , ĉ+
iN describing a fic-

titious fermion on a 2D lattice. Electron and photon
creation/annihilation operators can be written as

â+
i â j =

∞∑
N=0

ĉ+
iN ĉ jN , (B1)

b̂ =
nat∑
i=1

∞∑
N=0

√
N + 1ĉ+

iN ĉi,N+1. (B2)

Since only one |iN〉 state can be occupied, quartic terms in
the Hamiltonian will reduce to the quadratic ones:

ĉ+
1 ĉ2ĉ+

3 ĉ4 = ĉ+
1 ĉ4δ23 − ĉ+

1 ĉ+
3 ĉ2ĉ4 = ĉ+

1 ĉ4δ23. (B3)

Therefore, ⎛
⎝ nat∑

j=1

∞∑
N=0

√
N + 1ĉ+

jN ĉ j,N+1

⎞
⎠

k

=
nat∑
j=1

∞∑
N=0

√
(N + k)!

N!
ĉ+

jN ĉ j,N+k, (B4)

exp

⎛
⎝α

nat∑
j=1

∞∑
N=0

√
N + 1ĉ+

jN ĉ j,N+1

⎞
⎠

=
∞∑

k=0

nat∑
j=1

∞∑
N=0

αk

k!

√
(N + k)!

N!
ĉ+

jN ĉ j,N+k, (B5)

e± iγ
t (b̂+b̂+ ) = e− 1

2 ( γ

t )2

e± iγ
t b̂+

e± iγ
t b̂ = e− 1

2 ( γ

t )2

⎡
⎣exp

⎛
⎝∓ iγ

t

nat∑
j=1

∞∑
N=0

√
N + 1ĉ+

iN ĉi,N+1

⎞
⎠

⎤
⎦

+

exp

⎛
⎝± iγ

t

nat∑
j=1

∞∑
N=0

√
N + 1ĉ+

iN ĉi,N+1

⎞
⎠

= e− 1
2 ( γ

t )2
nat∑
j=1

∞∑
k,M,N=0

k!√
M!N!

(
M
k

)(
N
k

)(
± iγ

t

)M+N−2k

ĉ+
jM ĉ jN .

Now, we can rewrite the system’s Hamiltonian as

Ĥ = h̄ωb̂+b̂ +
nat∑
i=1

Uiâ
+
i âi +

∑
±

nat∑
i=1

te± iγ
t (b̂+b̂+ )â+

i±1âi =
nat∑
i=1

∞∑
N=0

(Ui + Nh̄ω)ĉ+
iN ĉiN

+
∑
±

nat∑
i=1

te− 1
2 ( γ

t )2
∞∑

k,M,N=0

k!√
M!N!

(
M
k

)(
N
k

)(
± iγ

t

)M+N−2k

ĉ+
i±1,MĉiN , (B6)

and similarly for the lead terms. What is important is that
the Hamiltonian now has the same form as for noninteracting
electrons,

Ĥ =
∑
i jMN

hiM jN ĉ+
iM ĉ jN . (B7)

We can also rewrite the charge density operator:

ρi = −eâ+
i âi = −e

∞∑
N=0

ĉ+
iN ĉiN . (B8)

The current density operator can be deduced from the conti-
nuity equation.

Now, it is obvious that the electric current can be calculated
via the usual Landauer-Buttiker formula applied to the 2D
lattice described by Hamiltonian (B6):

I =
∑

Ns

JNd =
∑
Ns,Nd

e

h

∫
dE [ns(E ; Ns) − nd (E ; Nd )]TNsNd (E ),

where E is the energy of the dressed fermion described by
Hamiltonian (B6).

In this derivation, we initially assume the presence of a
single electron in the system, allowing us to neglect electron-
electron interactions. Now, we extend our analysis to the case
of multiple electrons while still disregarding electron-electron
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interactions. The total current in this scenario results from
the sum of currents carried by each photon-dressed electron
following the Hamiltonian (B6). While the expression (B9)
remains unaltered, it is important to note that the occupation
numbers no longer need to sum up to unity.

As electrons in the leads do not interact with photons, we
can express the occupation numbers in the leads as products
of electronic and photonic occupation numbers:

ns/d (E ; Ns/d ) = nF s/d (ε)
e− Ns/d h̄ω

kT

1 + e− h̄ω
kT + e− 2h̄ω

kT + · · ·

= nF s/d (E − Ns/d h̄ω)
e− Ns/d h̄ω

kT

nB(h̄ω) + 1
, (B9)

and get

I = 2e

h

1

nB(h̄ω) + 1

∑
Ns,Nd

∫
dE

× [
nF s(E − Nsh̄ω)e− Ns h̄ω

kT − nF d (E − Nd h̄ω)e− Nd h̄ω

kT
]

× TNsNd (E ). (B10)

Since the preceding derivation is meaningful only in
the absence of degeneracy, one may substitute the Fermi

distribution with its Boltzmann tail:

nF s(E − Nsh̄ω)e− Ns h̄ω
kT ≈ exp

{
−E − Nsh̄ω − μs

kT
− Nsh̄ω

kT

}

= exp

{
−E − μs

kT

}
≡ fs(E ). (B11)

As a result, the occupation numbers in the modified Landauer
formula become the Boltzmann exponents of the total energy
E , fs/d (E ).

It is possible to demonstrate that the modified Landauer-
type formula reduces to its original version (12) in the absence
of electron-cavity coupling. In this limit, the photon num-
ber remains unchanged during the electron passage, which
can be formally expressed as TNM = δNMTNN . Moreover, the
tunneling probability depends solely on the electron energy
ε = E − Nh̄ω and not on the state of the cavity. Formally,
this is represented by TNN (E ) = T00(E − Nh̄ω). Shifting the
variable of energy integration in each N th term of the sum
according to ε = E − Nh̄ω produces an extra multiplicative
factor f (E ) = e−Nh̄ω/kT f (ε). Summing up these multiplica-
tive factors

∑
N = 0∞e−Nh̄ω/kT = nB(ω) + 1, we realize that

all the information about the state of the cavity contained
in the nB(ω) functions has dropped out, leaving us with the
original Landauer formula (12).
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