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Analog gravity and continuum effective theory of the graphene tight-binding lattice model
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We consider the nearest-neighbor lattice tight-binding model of graphene with slowly spatially varying
hopping functions. We develop a systematic low-energy approximation as a derivative expansion in a Dirac
spinor field that is perturbative in the strength of the hopping function deformation. The well-known leading
description in both the derivative and perturbative expansions is the Dirac equation in flat 2+1-dimensional
spacetime with magnetic (strain-)gauge field. Prior work has considered subleading corrections written as non-
trivial frame and spin connection terms. We have argued previously that such corrections cannot be considered
consistently without taking all the terms at the same order of approximation, which due to the unconventional
power counting originating from the large gauge field, involve also higher covariant derivative terms. Here we
confirm this, explicitly computing subleading terms in this approximation. To the order we explore, the theory
is elegantly determined by the nontrivial gauge field and frame, both given by the slowly varying hopping
functions, the torsion free spin connection of the frame, together with coefficients for the higher derivative
terms derived from lattice invariants. We stress the importance of the local frame and gauge symmetries that
are inherited from matching to the lattice model. For the first time we compute the metric that the Dirac field
sees—the “electrometric”—to quadratic order in the hopping function deformation. This allows us to describe the
subleading corrections to the dispersion relation for inhomogeneous deformations that originate from corrections
to the frame. Focussing on purely in-plane inhomogeneous strain, we use a simple model to relate the hopping
functions to the strain field, finding the electrometric becomes curved at this quadratic order. Thus, this lattice
model yields an effective “analog gravity” description as a curved space Dirac theory, with large magnetic
field, and Lorentz violating higher covariant derivative terms. We check our calculations by a simple numerical
diagonalization of the lattice model for a periodic arm-chair deformation, confirming that frame corrections
contribute at the same order of approximation as higher covariant derivative terms. Finally, based on our lattice
model derivation, we conjecture a form for the effective theory for monolayer graphene, written in terms of the
strain tensor, and consistent up to quadratic order in the electrometric deformation.
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I. INTRODUCTION

Monolayer graphene is well known for having a band struc-
ture with two massless Dirac cones, protected by inversion
and time reversal, and when undoped the chemical potential
sits precisely at the Dirac points, giving a low-energy spec-
trum of massless Dirac fermions [1,2] that governs transport.
It forms a flexible membrane [3,4], and thus it is natural
to think that if this monolayer membrane is deformed to be
curved there will be a corresponding curved spacetime Dirac
equation description of transport. If it is true that elastically
deformed graphene has a low-energy description in terms
of relativistic fields in curved spacetime, it would then be a
prime candidate of an “analog gravity” model and provide
an important link between physics in curved spacetimes and
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transport in graphene.1 This question can be addressed by
considering the nearest-neighbor tight-binding model, where
one assumes the conductance and valence electron wave func-
tions are localized to the carbon atoms. To model mild lattice
distortions the tight-binding model can be generalized to have
nearest-neighbor tunneling amplitudes that vary in space. This
leads to a continuum limit which at leading order is described
by massless Dirac fields in flat space coupled to an effective
magnetic field which is proportional to the lattice strain, and
is thus often referred to as the “strain gauge field”—not to
be confused with the actual Maxwell field of electromag-
netism which we will not play a role here. This was originally
noted before the discovery of graphene in the study of carbon
nanotubes [5,6] and was quickly generalized to monolayer
graphene, which is simply an unrolled nanotube (for a review
see Ref. [7]). The effect of this synthetic magnetic field on

1We are careful to emphasize that by “analog gravity” we mean a
relativistic curved spacetime description, rather than a theory with a
dynamical spacetime governed by an Einstein-like equation.
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the electronic structure of a graphene nanobubble has been
observed experimentally [8], and the interplay of the strain
gauge field and an external electromagnetic field was studied
in Ref. [9]. It was shortly afterwards seen that some sublead-
ing corrections to this description can be written as frame and
spin connection terms [10–18], which many people took to
imply precisely such an effective description in terms of a
curved space Dirac equation coupled to the strain gauge field.
Indeed a large body of literature has studied graphene using
some flavor of continuum Dirac equation in curved space as a
tool [19–27].

Unfortunately, this tempting interpretation suffers from
two flaws. First, as we argued in Ref. [28], without fine-tuning
of the lattice model there are generically higher covariant
derivative terms which contribute at the same order as those
of the frame and spin connection. This is due to the fact
that the full covariant derivative includes the strain gauge
field, which is anomalously large by a factor of the inverse
lattice spacing, ruining the expected power counting of higher
derivative terms in relativistic theories. This large gauge field
was noted in Refs. [11,29] but was interpreted as mean-
ing that while one should include the nontrivial frame, the
spin connection (and torsion) should be ignored, leading to
a so-called “Weitzenböck” geometry.2 Our interpretation in
Ref. [28] and here is very different—we find a perfectly con-
ventional torsion-free Riemannian geometry, it is simply that
the curvature of this geometry is subleading to the large mag-
netic field. This means that there is no consistent truncation
in a gradient expansion which is that of a relativistic Dirac
equation in curved spacetime coupled to a magnetic field. To
be consistent, the effective low-energy theory must include
higher covariant derivative terms as well as the term that yields
the Dirac equation and gauge field, and these additional terms
physically contribute at the same order of approximation as
effects from spatial curvature. The spatial metric that governs
this theory we term the electronic metric, or “electrometric.”

Second, there is the issue of precisely what type of lattice
distortions we wish to study. In undistorted graphene, the sp2

and pz orbitals are orthogonal and thus the tunneling ampli-
tude between them vanishes. When considering out-of-plane
deformations, this is no longer the case, and it is not clear
that the Dirac cone structure remains [20,33–39], and there-
fore not clear that the nearest-neighbor tight-binding model
describing only the pz orbitals provides a good approximation.
One can avoid this issue by restricting to the case of pure in-
plane deformations, which are still very physically interesting.
However, in this case to leading order in the elastic distortion
the electrometric geometry seen in the curved space Dirac
equation of Refs. [10,12] is also flat, and just corresponds to a
coordinate transformation.

In this paper we address both these issues. Concern-
ing the first, we show explicitly how to construct the
low-energy effective theory of Dirac points in the nearest-
neighbor tight-binding model. The leading behavior is gov-
erned by the flat space Dirac equation with strain gauge

2For another perspective on whether curved space Dirac is a good
description, see Ref. [30] and also Refs. [31,32].

field. Then subleading corrections (which are parametri-
cally smaller) involving spatial curvature of the electrometric
can be consistently included if higher covariant derivative
terms are also added. The higher the order of perturba-
tion to the flat electrometric that we wish to work to, the
more derivatives are required. This enables us to explic-
itly derive the effective theory to quadratic order in the
perturbation to the electrometric, going beyond leading order
for inhomogeneous deformations the first time. Homogeneous
but anisotropic deformations had previous been considered to
this order [17] but without spatial variation these do not lead
to magnetic strain fields and can only give a rigid coordinate
transformation of flat space for the electrometric. We find
our effective theory involves the expected nontrivial “strain”
gauge field, frame and torsion-free spin connection, and re-
quires including terms with up to three covariant derivatives,
which we give explicitly. These higher covariant derivative
terms are not Lorentz invariant (as the leading covariant Dirac
equation term is), instead inheriting index structure coming
from lattice invariants, and contribute to the physics at the
same order of approximation the curvature of the electro-
metric. Working to this subleading order allows us to study
the electrometric corrections to the dispersion relation for
inhomogeneous deformations of the hopping functions. While
corrections to the dispersion relation arise at leading linear
order in the electrometric perturbation, translation symmetry
of the undeformed system implies that they are not sensitive
to inhomogeneity, and this linear correction only responds to
the homogeneous part of the deformation.

While our derivation of this effective theory can be phrased
purely in terms of spatially varying tunneling amplitude func-
tions of the lattice model, to make contact with graphene we
discuss deriving such a lattice model from embedding the
graphene lattice as a deformed membrane in 3D space. We
use a simple bond model to relate the tunneling functions to
the length deformation of the embedded lattice links. Restrict-
ing ourselves to the case of pure in-plane deformations, the
induced geometry of the embedding is trivially flat, simply
that of a 2D plane. While to leading order in this strain de-
formation the electrometric remains flat, with the new tool of
our effective theory which is valid to quadratic order, we find
that indeed the electrometric geometry generically becomes
curved at this order. However, we again emphasize that the
effect of this curvature is subleading to the large effective
“strain” magnetic field induced by the lattice deformation, and
furthermore, it contributes at the same order as the Lorentz
violating higher covariant derivative terms.

Our effective theory is coordinate invariant—the various
tensors used to construct it are naturally phrased in lattice
coordinates, but then once one has them, one can employ any
coordinate system. Following the work of Refs. [12,40,41]
we give an explicit discussion of how, given an embedding
of the lattice, we may transform to the natural laboratory
coordinates. To make an explicit comparison of our effective
theory to the tight-binding model, we solve this continuum
description for a certain class of “armchair” distortions that
arise from a periodic in-plane strain along a lattice direction.
Given that we have the theory to quadratic order in the elec-
trometric perturbation, we are able to compute the dispersion
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FIG. 1. Left: the honeycomb lattice, with red A sites and blue B sites, related by translations by a��1,2,3. The lattice symmetry is generated
by translations �v1,2. Right: The standard hexagonal fundamental domain of the Brillouin zone and massless Dirac points at K and K ′ for the
undistorted lattice model.

relation consistently to include the subleading effects due
to electrometric curvature. We compare our effective theory
to explicit numerical diagonalization of the nearest neighbor
tight-binding model. First, we show that the leading behavior
is indeed governed by the flat space Dirac equation with gauge
field. Then we confirm that the subleading behavior, involving
the curvature of the electrometric, is correctly captured by
our effective theory at quadratic order in the deformation.
In particular, we confirm that the higher covariant derivative
terms are essential to match the subleading behavior, and can
cannot be truncated away if one wishes to see the effects of
curvature of the electrometric.

The paper is structured as follows. First, in Sec. II we re-
view the nearest-neighbor tight-binding model with spatially
varying tunneling amplitudes, and discuss its low-energy con-
tinuum limit. Since the derivation of the low-energy effective
theory is somewhat involved, we give a summary of its
structure in Sec. III showing how it is constructed in lattice
coordinates from the varying tunneling amplitudes. We then
discuss how these tunneling amplitudes may arise from em-
bedding a lattice in 3D space using a simple bond model
in Sec. IV, and further show how to transform the various
elements of the effective theory to the natural laboratory frame
coordinates. In Sec. V we then discuss the structure of the
effective theory, and give its explicit construction up to the
order which consistently includes quadratic corrections to
the electrometric. We then test this effective description in
Sec. VI by comparing its predictions to a direct numerical
diagonalization of the lattice model for a periodic armchair de-
formation. Finally, given the structure of our effective theory
for the lattice model, in Sec. VII we conjecture the structure
of the effective theory for true strained monolayer graphene,
again up to quadratic perturbations to the electrometric, before
concluding.

II. REVIEW OF THE SPATIALLY DEFORMED GRAPHENE
TIGHT-BINDING MODEL

The atoms of the graphene lattice may be described by
their positions in either 2D lattice coordinates xi = (x, y) or
3D laboratory frame coordinates (X,Y, Z ). For undistorted

graphene we will take the plane of atoms to be located at
Z = 0, and writing X I = (X,Y ), choose our lattice coordi-
nates to be xi = δi

I X
I . The lattice sites subdivide into A and

B triangular sublattices, and we label the lattice coordinate
position of these as �xA and �xB, respectively.

The lattice sites lie a distance a from their nearest neigh-
bors. The translation vectors between sites may be given in
terms of unit vectors,

��1 =
(√

3

2
,

1

2

)
, ��2 =

(
−

√
3

2
,

1

2

)
,

��3 = −��1 − ��2 = (0,−1), (1)

so that defining �v1,2 = a(��1,2 − ��3) then the lattice sites are at
lattice coordinates,

�xA,B = m �v1 + n �v2 ∓ a

2
��3, (2)

generated by (m, n) ∈ Z2, with the sign above giving the A
and B triangular sublattices; see Fig. 1.

Some important relations we will use later are

δi j = 2

3

∑
n

�i
n�

j
n, Ki jk = 4

3

∑
n

�i
n�

j
n�

k
n,

8

3

∑
n

�i
n�

j
n�

k
n�

l
n = δi jδkl + δikδ jl + δilδ jk, (3)

where Ki jk is a natural invariant traceless symmetric tensor
for the lattice, with K112 = 1 and K222 = −1. In the nearest-
neighbor tight-binding approximation, the π electrons are
described by the Hamiltonian,

Hundeformed = T
∑
n,�xA

(
a†

�xA
b�xA+a��n

+ H.c.
)
, (4)

where T gives the tunneling amplitude between pz orbitals
on adjacent lattice sites, and a†

�xA
, b†

�xB
are fermionic creation

operators on the respective sublattices A and B. The dual
lattice generators �b1,2 are defined by �bi · �v j = 2πδi j and one
finds the spectrum of this model has two inequivalent Dirac
points, labeled K and K ′, which are illustrated together with

045425-3



MATTHEW M. ROBERTS AND TOBY WISEMAN PHYSICAL REVIEW B 109, 045425 (2024)

the hexagonal fundamental domain of the Brillouin zone in
Fig. 1.

Now a natural generalization of this is to allow the tunnel-
ing amplitudes associated to each link of the lattice to vary.
Denoting the tunneling amplitude between the A site at �xA

and the B site at �xA + a�n as Tn,A, which we assume to again
be real, then yields the Hamiltonian,

Hdeformed =
∑
n,�xA

Tn,A
(
a†

�xA
b�xA+a��n

+ H.c.
)
. (5)

A special case is taking Tn,A = Tn, so they do not depend on
the lattice site location. This is an anisotropic but homoge-
neous deformation. In principle the Tn,A may vary arbitrarily
between sites. However, in this work we are interested in the
situation that:

(i) First, the Tn,A are only deformed perturbatively from
the homogeneous amplitude T . We introduce a deformation
parameter ε and take the amplitudes to be,

Tn,A = T (1 + εδ1tn,A + ε2δ2tn,A + · · · ), (6)

where we take the δktn,A ∼ O(1) so that ε controls the size of
the deformation.

(ii) Second, we are interested in the situation that the per-
turbations δktn,A vary slowly on lattice scales so that we may
consider a continuum limit where we parametrically separate
the lattice length scale, a, from the scale of the slow spatial
variation. To describe the approach to this continuum limit we
further expand the δktn,A in a,

δktn,A = δk,0tn,A + aδk,1tn,A + a2δk,2tn,A + · · · , (7)

and then write the coefficients δk,mtn,A in terms of smooth
functions, δk,mtn(�x), which we term the “hopping functions,”
as

δk,mtn,A = δk,mtn
(
�xA + 1

2 a��n
)
, (8)

so that the value δk,mtn,A associated to a link between sites �xA

and �xA + a�n is given by the function δk,mtn(�x) of the lattice
coordinates �x, evaluated at the mid point of this link. We also
require that these functions δk,mtn(�x) ∼ O(1).

In order that the δk,mtn,A slowly vary on lattice scales, we
then require that the functions δk,mtn(�x) slowly vary relative to
the lattice scale a, encoded in the condition that everywhere
|∂iδk,mtn| � 1/a. We then describe the continuum limit by
specifying the δk,mtn(�x) as functions of the lattice coordinates,
which are fixed with no ε or a dependence, and then we
consider the continuum limit by taking a → 0.

One might think that we should only be concerned with the
leading behavior in the continuum limit, δk,mtn,A = δk,0tn,A +
O(a), and subleading terms will encode irrelevant micro-
scopic detail. However, this is not the case. Remembering
that the tight-binding model is intended to be a microscopic
description of graphene, here our aim is precisely to go be-
yond the leading low-energy description, the flat space Dirac
equation coupled to the strain magnetic field, and elucidate
its subleading behavior which will include the effects of a
curved electrometric. Since these are subleading corrections
of microscopic origin, we are forced to be careful to include
these subleading details in taking the continuum limit.

We may define the characteristic minimum length scale
associated to the variations, L, by

1/L = max{|∂iδk,mtn(�x)|}. (9)

The condition of slowly varying deformations of the lattice
then implies a � L. It is then convenient to choose units
so that L = 1, and thus a � 1. From this point on we will
employ these units unless otherwise stated. Thus, noting that
δk,mtn(�x), ∂iδk,mtn(�x) ∼ O(1) in these units for all �x, then this
implies all derivatives are also of order one, so

∂i1∂i2 . . . ∂ipδk,mtn ∼ O(1) (10)

for any p � 0.
Thus, we have two expansion parameters in our model, first

the amplitude of the hopping strength deformation determined
by ε, and second in the length scale of the variation relative
to a. It is important to understand the order of limits we
consider. We will later find that in constructing the effective
theory when we fix the length scale of the variation, taking
these units L = 1, then the natural perturbative couplings are
in fact ε/a and a, meaning that we should hold ε/a fixed as we
scale towards the continuum limit a → 0. In terms of orders
of limits for perturbation expansions in ε and a, this implies
that the order of limits we take is to first expand quantities in
ε, and after this expand in a.

III. SUMMARY OF THE EFFECTIVE THEORY
FOR THE LATTICE MODEL

Since the derivation of the low-energy effective theory
for the above lattice model is somewhat technical, we will
summarize here its structure, and give results to the order that
allows the electrometric to be described at quadratic order
in the hopping function perturbation, so to O(ε2). The full
derivation of the results summarized here is given in Sec. V,
but we believe it is beneficial to have an overview of these
results before delving into the technicalities.

Following the discussion above, we write the lattice tight-
binding Hamiltonian with perturbatively deformed hopping
functions that are slowly varying as

H = T
∑
n,�xA

tn

(
�xA + a

2
��n

)(
a†

�xA
b�xA+a��n

+ H.c.
)
, (11)

and we write the deformation of the hopping functions pertur-
batively in ε and a as

tn(�x) = 1 + εδ1tn(�x) + ε2δ2tn(�x) + · · · , (12)

having factored out the equilibrium hopping strength T above,
where the O(εk ) coefficient function is derived from our
smooth functions δk,mtn(�x) described above as

δktn(�x) = δk,0tn(�x) + aδk,1tn(�x) + a2δk,2tn(�x) + · · · . (13)

We reiterate that the δk,mtn(�x) which describe the continuum
limit have no explicit ε or a dependence, and are simply fixed
functions of the lattice coordinates �x as we scale towards the
continuum, taking a → 0, and deform the system with ε. The
low-energy behavior of the Dirac points of this lattice model
are captured by the continuum effective theory living in 2+1
dimensions, whose truncation to three covariant derivatives
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takes the explicit form

0 = aeμ
Aγ ADμ� ± ia2 ηABγ AeB

σ Dμ(CσμνDν� )

+ a3 ηABγ AeB
σ DσμνρDμDνDρ�

+ O(ε4, ε3a, ε2a2, εa3, a4), (14)

where � is a two-component Dirac spinor field, and the sign
represents the choice of Dirac point that the theory is to
describe. This is a free-field theory, since the tight-binding
lattice model has only hopping terms, and has no electron-
electron interactions. The spinor is normalized such that its
particle number density agrees with the microscopic electron
number density, as we discuss later in more detail. Here eμ

A
is the frame, the inverse of the coframe eA

μ, and associated
to the spacetime metric gμν as gμν = eA

μeB
νηAB with ηAB =

diag(−1,+1,+1) as usual. The covariant derivative, Dμ, en-
codes the strain gauge field and spin connection of the frame.
For example, acting on the spinor,

Dμ� = ∂μ� ∓ iAμ� − i

2
μABSAB�, (15)

with Aμ the gauge field, and the last term comprises the spin-
connection μAB and Lorentz generators SAB and makes the
theory geometric.3 The signs in Eqs. (14) and (15) should be
taken consistently, either choosing the upper or lower signs,
and again reflect the choice of Dirac point being described—
thus the two Dirac fields, corresponding to the two distinct
Dirac points, have opposite charge but couple to the same
geometry. The spin connection is simply the canonical torsion
free one associated to the frame. While one does not expect
to see torsion without dislocations [42], it is striking that
it really is the torsion free connection that enters here. We
have no rigorous mathematical understanding why, beyond
the heuristic of there being no dislocations. The tensors Cσμν

and Dσμνρ , defined explicitly below in Eq. (22), derive from
lattice invariants, and are remnants of the lattice structure. The
truncation above including these higher covariant derivative
terms allows us, for the first time, to consistently describe the
metric to quadratic order in O(ε2) which is one of our main
goals here. Working to higher order in the metric deformation
requires an increasing number of such higher covariant deriva-
tive terms. In particular, while the dispersion relation of the
Dirac points are corrected at O(ε), on general grounds they
are only sensitive to the homogeneous (but anisotropic) part
of the hopping function deformation (as for example studied
in Ref. [40]). They become sensitive to inhomogeneity in the
deformation only at O(ε2), and so our effective theory allows
us access to these effects.

The theory is fully coordinate, frame and gauge covari-
ant. However, given the origin of the theory, it is natural to
take time to be the usual laboratory time of the tight-binding
model. Then all the quantities entering above, apart from the

3Let us briefly comment on coupling the effective theory to an
external electromagnetic field. For purely transverse magnetic fields
and purely in-plane electric fields, we simply make the replacement
Astrain → Astrain + AEM for the K point field, and for K ′, Astrain →
Astrain − AEM. It would be interesting to understand precisely how
tilted fields would couple to the effective theory.

dynamical field � itself, are independent of time, so static.4

The metric takes the (ultrastatic) form,

ds2
effective = −c2

effdt2 + gi j (�σ )dσ idσ j (16)

for some 2D spatial coordinates σ i, where ceff = 3aT
2h̄ gives

the Fermi velocity for the undeformed Dirac point. Writing
the 2D metric gelectro = gi j (�σ )dσ idσ j , we term the 2D ge-
ometry given by the Riemannian manifold (R2, gelectro) the
“electronic geometry,” and gelectro the “electronic metric” or
more compactly the “electrometric.” We will use the notation
�electro = (R2, gelectro). The gauge field is also purely mag-
netic and static,

A = Ai(�σ )dσ i, (17)

and further, with this choice of frame, the tensors Cσμν and
Dσμνρ are orthogonal to the time direction, so they have
only spatial components which are static. An interesting con-
sequence of this is that the effective theory above remains
second order in time derivatives, even though it has higher
numbers of spatial derivatives. In particular, in this frame, the
canonical momenta for the spinor is unchanged from that of
the leading Dirac equation and the Hamiltonian is given as,

H =
∫

d2x
√

g
[
a�̄γ Aei

ADi� ± ia2γAeA
i Ci jkDj�̄Dk�

+ a3γAeA
i Di jk�Dj�̄DkD�ψ + · · · ]. (18)

To define these various quantities above we take the spatial
coordinates �σ to be the lattice coordinates �x. Then the electro-
metric takes the remarkably elegant form,

gi j (�x) = 3

�2

∑
n

(
δi j − 4

3
�i

n�
j
n

)
t2
n (�x) + O(ε3, ε2a, εa2),

�2 =
(∑

n

t2
n

)2

− 2

(∑
m

t4
m

)
, (19)

where this expression correctly gives the behavior at orders
O(ε), O(εa) and O(ε2) [in fact the O(εa) contribution van-
ishes] which is consistent with the order that the theory is
written to above. Since we have a local frame invariance, any
spatial frame components can be taken consistent with this
metric. An important point that will be discussed in detail
later is that the subleading correction in a at order O(ε), so
the contribution going as ∼εa, must be included to derive the
metric at order O(ε2). Full detail of the frame components
including subleading terms in a will be given later. Defining

�tn = tn − 1, (20)

then the explicit expression for the magnetic part of the gauge
field to the order in ε and a that the above truncation applies,

4One could in theory consider time-dependent elastic deformations
of graphene, like in Ref. [43], but this is outside of the scope of our
analysis.
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is

Ai(�x) = 1

a�2
εi j

∑
m

[
� j

m�tm

(
2 +

∑
n

(3δmn�tn)

+
∑
n,p

((
1

3
+ 2δmn − 3δnp

)
�tn�tp

))

+ a2

(
1

4
� j

m�k
m�l

m − 3

8
K jkl + 1

6
δ jk�l

m

)
∂k∂l�tm

]

+ O

(
ε4

a
, ε3, ε2a, εa2

)
(21)

up to a gauge transformation. This expression encompasses
the behavior at orders O(ε/a), O(ε), O(εa), O(ε2/a) and
O(ε2), as well as O(ε3/a), and as for the metric the first sub-
leading corrections in a, here at orders O(ε) and O(ε2) vanish.
Again these subleading corrections in a at orders O(ε) and
O(ε2) are required to consistently solve for the metric. Finally,
the tensors Cσμν and Dσμνρ are given by the expressions

√
|g|Ci jk (�x) = −1

3
εkl

∑
n

�i
n�

j
n�

l
n = −1

4
εklK

i jl ,

√
|g| Di jkl (�x) = 1

9

∑
n

�i
n�

j
n�

k
n�

l
n

= 1

24
(δikδ jl + δilδ jk + δi jδkl ) (22)

with all other components (i.e., those with a time index)
vanishing, and here |g| = det(gi j ) and εi j is the antisymmetric
spatial Levi-Civita symbol with 1 = ε12 = −ε21. We empha-
size that these expressions for the components gi j , Ai, Ci jk ,
and Di jkl are not tensor equations, and hold only when we
take lattice coordinates.

A key result that will be discussed in the next section is
that using a simple model to map an in-plane distortion of the
lattice to deformed hopping functions results in curvature of
this electrometric at quadratic order O(ε2) in the deformation.
Thus, even though the lattice is only deformed in-plane, the ef-
fective metric governing this Dirac theory generally becomes
curved.

Usually in such an effective theory power counting goes
with covariant derivatives, and so one may truncate to terms
with some number of derivatives, and terms with more deriva-
tives are subleading to this, and it is consistent to ignore them.
This would be seen due to the increasing powers of a in the
coefficients of the higher derivative terms, and thus naively
this makes increasingly higher derivative terms increasingly
irrelevant in the low-energy continuum limit where we take
a → 0 [in our units where the deformation scale is O(1)].
However, the key novel feature of this effective theory is that
since the gauge field goes as Ai ∼ O(ε/a), there is mixing
between covariant derivative orders in this theory due to the
inverse factor of a. We refer to this inverse scaling with a
as giving a “large magnetic field”—more precisely it is large
relative to ε, but we should tune ε such that its amplitude
actually remains small if we are to stay in a regime where we
may apply perturbation theory. Very schematically the leading

one derivative term goes as

aeμ
Aγ ADμ� ∼ a∂� + εÃ� + εa∂� + εa�, (23)

where we have suppressed all indices and written A ∼ ε
a Ã so

that Ã ∼ O(1). This contains the undeformed Dirac term, the
first term on the righthand side, and a leading correction (in
red) from the gauge field. These constitute the leading effec-
tive theory due to inhomogeneous hopping functions. While
this red term naively dominates the Dirac term in terms of the
expansion due to the gauge field have a factor of 1/a, it is
suppressed by a factor of ε. As mentioned above, the natural
coupling to hold fixed is ε/a as a → 0, rather than simply ε, as
it is ε/a that controls the relative size of the gauge field con-
tribution compared to the undeformed Dirac term. The blue
terms are subleading to the red gauge field contribution, due
to the factor of a, and come from the nontrivial frame. Now
consider the same schematic expansion for the two-derivative
term

ia2 ηABγ AeB
σ Dμ(CσμνDν� )

∼ a2∂2� + εaÃ∂� + εa(∂Ã)�

+ ε2Ã2� + εa2∂2� + εa2∂� + εa2�. (24)

The key point is that the components of this where one of the
covariant derivative contributes a gauge field (those in blue)
are of the same order as the blue contribution from the one
derivative term above in Eq. (23). Note that if both covari-
ant derivatives contribute a gauge field (the purple term) the
contribution is dominant in a, but suppressed now due to two
powers of ε. The blue contributions coming from both the one
and two covariant derivative terms in Eqs. (23) and (24) then
constitute the next correction to the effective theory at order
O(ε) after the leading red term from the gauge field. Hence,
we see the (blue) frame corrections from the one derivative
term mix with these contributions from the two derivative
terms at the same order—thus one cannot consider these frame
corrections without also including the two derivative term too.

Due to this mixing we will see later that if we wish to
consistently derive the contribution from the gauge field and
metric at some order ∼ε paq, we are required to include up
to (1 + p + q) covariant derivative terms, and we need all
contributions to the metric and gauge field going as ∼εman for
m � p and m + n � p + q, where m � 1 and for the metric
corrections have n � 0 and for the gauge field they have
n � −1. Thus, the structure of the first few truncations is as
follows:

Covariant derivatives
included

Gauge field
contributions

Metric
contributions

Dirac term only ε

a Trivial flat metric

Dirac + two derivative ε

a , ε, ε2

a ε

Dirac, two and three
derivatives

ε

a , ε, εa, ε2

a , ε2 ε, εa, ε2

For the leading truncation to one covariant derivative we see
there are no metric corrections—it is simply the flat space
Dirac equation with gauge field. Including the two derivative
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term allows the first consistent corrections to the metric, those
at order O(ε). However, as noted, this is not sufficient to
describe the corrections to the dispersion relation from inho-
mogeneous deformations. For that we require the theory given
explicitly above, with up to three derivatives, which allows the
metric deformation to be described at O(ε2).

IV. VARYING HOPPING FROM A DEFORMED LATTICE

The results above describe the low-energy physics of the
tight-binding model in terms of its lattice coordinates xi and
slowly varying hopping functions. We will derive these in
detail later in the paper. To relate them to a distortion of
graphene, we need an embedding map from the laboratory
coordinates to the graphene lattice, and further a bond model
that predicts the hopping functions based on this embedded
lattice geometry.

The simplest bond model relates the hopping functions to
bond lengths, where we think of these lengths as determining
the degree of electron orbital overlap. In our lattice coordi-
nates a bond between sites �xA and �xA + a��n is the line,

�x = �xA + λa��n, λ = [0, 1], (25)

and we denote its length Ln,A. As the lattice embedding be-
comes distorted, these bond lengths will deviate from their
unperturbed value a. A common approximation is that the
hopping functions have an exponential dependence on bond
length,

Tn,A

T
= e−β(

Ln,A
a −1), (26)

and for graphene this constant β, the Grüneisen parameter, has
been estimated to be β 
 3 [44]. However, here we will take
a more general bond model,

Tn,A

T
= F

(
Ln,A

a
− 1

)
(27)

for some function, F , although we emphasize that this still
assumes that there is no dependence on the bond angles. To
the order we will work to here, we will be sensitive to up to
two derivatives of this function F about its zero argument, the
undistorted bond length, and we denote these as

F (0) = 1, F ′(0) = −β, F ′′(0) = (τ − 1)β. (28)

To recover the exponential bond model we then simply take

τ = β + 1, (29)

but we will leave it general for now to illustrate in what
follows the sensitivity to the precise nature of the bond
model.

To compute these hopping functions we need the geometry
of the lattice embedding into the 3D Euclidean space of the
laboratory, R3

lab which we describe using the spatial “lab coor-
dinates” (X,Y, Z ). Let us denote the collection of lattice sites
�xA, and the full lattice as �. We then imagine describing the
embedding by providing a map � → R3

lab, or explicitly �xA →
(X,Y, Z ). Restricting to smooth slowly varying embeddings
so that we may view the lattice as the 2D space R2

lat described
by the lattice coordinates �x, the embedding is defined by the

smooth map,

R2
lat → R3

lab,

�x → (X (�x),Y (�x), Z (�x)), (30)

so that when it is evaluated on the lattice sites �xA it gives the
lattice embedding above, and slowly varying implies that all
derivatives ∂i1 . . . ∂im X ∼ O(1) and similarly for Y and Z . We
describe the pristine, or undeformed embedding, as x = X ,
y = Y and Z = 0, and in this case the geometry induced (i.e.,
pulled back from R3

lab) is simply the 2D Euclidean geometry
with metric ds2

(pristine) = δi jdxidx j .
We now consider embeddings which are a perturbative

deformations of this pristine embedding. We define a dis-
placement field vi(�x) and height function h(x). Note that the
displacement field is a vector field on R2

lat. Then introducing
the perturbation parameter ε, we define the embedding map
explicitly using the displacement vector field and height func-
tion as

R2
lat → R3

lab,

�x →
{

X I (�x) = δI
i (xi + εvi(�x)),

Z (�x) = √
εh(�x),

(31)

where, as above, X I = (X,Y ). We note that we consider vi(�x)
and h(�x) to be independent of the perturbation parameter ε—
thus having specified these we think of varying ε as moving us
through a one-parameter family of deformations. Then in our
lattice coordinates the induced metric on R2

lat given by pulling
back the laboratory Euclidean metric is simply

g(ind)
i j = δi j + ε

(
δik

∂vk

∂x j
+ δ jk

∂vk

∂xi
+ ∂h

∂xi

∂h

∂x j

)

+ ε2δkl
∂vk

∂xi

∂vl

∂x j
. (32)

We will denote the 2D geometry induced by this embedding
�ind = (R2

lat, g(ind)). The usual strain tensor is then defined by
comparing the induced, and the pristine metrics, so in lattice
coordinates,

σi j = 1
2

(
g(ind)

i j − δi j
)
, (33)

and at this point these expressions for the strain tensor σi j are
exact to all orders in ε.

The physical distance between lattice sites at �xA and �xA +
a��n under the distortion is then computed by integrating the
length of the line (25), so

Ln,A = a
∫ 1

0
dλ

√
g(ind)

i j (�xA + aλ��n)�i
n�

j
n. (34)

The bonds of the pristine lattice have length a. Since the
metric is slowly varying, we may Taylor expand the integrand
above in a, perform the integrals, and then working to O(a2)
at order O(ε), and to O(a) at order O(ε2), the fractional
difference in bond length due to the deformation is

Ln,A − a

a
= �i

n�
j
nσi j (�xn,A) + a2

24
�i

n�
j
n

(
�k

n∂k
)2

σi j (�xn,A)

− 1

2

(
�i

n�
j
nσi j (�xn,A)

)2 + O(εa3, ε2a2, ε3), (35)
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where we have defined the location of the mid point of the
bond, �xn,A = �xA + a

2
��n, and we emphasize that here there is

no sum over the repeated index n, and that σi j ∼ O(ε). Thus,
using that the components slowly vary, together with the rela-
tions (6) and (8), we then find the bond model (27) determines
the hopping functions as.5

tn(�x) = 1 − β

(
�i

n�
j
nσi j (�x) + a2

24
�i

n�
j
n

(
�k

n∂k
)2

σi j (�x)

)

+ βτ

2

(
�i

n�
j
nσi j (�x)

)2 + O(εa3, ε2a2, ε3). (36)

Note that while we have kept track of corrections subleading
in a, these necessarily involve precise details of the deforma-
tion on lattice scales, and from an effective field theory point
of view should be thought of as corrections from irrelevant
operators. Conversely this implies that when one is matching

subleading corrections, as we are interested in doing here,
then they are necessary.

We pause to note that in Ref. [18] some quadratic correc-
tions to the effective theory where considered. The effective
theory was given to linear order in the hopping functions, and
then these were related to strain working to quadratic order in
the strain tensor as above. However, we emphasize that it is
inconsistent to do this—one must also include the quadratic
corrections in the hopping functions as we do here if one
wishes to work to quadratic order in the deformation or else
one is clearly missing important contributions.6

Given that vi(�x) and h(�x) are independent of ε and a,
a perturbative expansion yields the coefficients defined in
Eq. (12). We may now give the expression for the (purely mag-
netic) gauge field A = Ai(�x)dxi, and electrometric ds2

electro =
gi j (�x)dxidx j , as determined from Eqs. (19) and (21) in terms
of the strain tensor as

Ai(�x) = −βεi j

2a

(
K jkl

(
σkl (�x) + (β − τ )

2
σkm(�x)σml (�x) − (3β + τ )

8
σk (�x)σl (�x)

)

+ a2

12
(9∂ j∂kσk (�x) − 3∂k∂kσ j (�x) − 7Kklm∂k∂lσ jm(�x)) + O(εa3, ε2a2, ε3)

)
(37)

gi j (�x) = δi j + 2βσi j (�x) + 4β2σik (�x)σk j (�x) + β(β + τ )

4
(δi j (σkk (�x))2 − 4σi j (�x)σkk (�x) − σi(�x)σ j (�x)) + O(εa2, ε2a, ε3),

where we have defined the covector σi given in lattice co-
ordinates as σi = Ki jkσ jk . Quadratic corrections in ε for
homogeneous strain were studied in Ref. [17], and restrict-
ing to such deformations, our gauge field and metric above
are precisely consistent with their results (when expressed in
lattice coordinates). A potentially confusing issue is that the
lattice geometry induced by the embedding, �ind, is generally
not the same as the spatial electronic geometry �electro. One
might naively have expected these would coincide, but this

5In Ref. [18] perturbation theory was carried out to second order
when considering the effective geometry in the continuum limit,
but it failed to keep track of the higher derivative terms which we
demonstrate are of the same order

6In “equations” we might say, if the physics F we are interested
in is a function of a variable δt , with an expansion F (δt ) = a1δt +
a2δt2 + · · · , and δt is expressed in terms of another variable σ

perturbatively as δt (σ ) = b1σ + b2σ
2 + · · · then to express F in

terms of σ correctly to quadratic order, F (σ ) = a1b1σ + (a1b2 +
a2(b1)2)σ 2 + · · · we must include the a2 quadratic term in the ex-
pression for F (δt ) above. If we only work with the linear truncation
F lin(δt ) = a1δt , then F lin(σ ) = a1δt (σ ) = a0 + a1b1σ + a1b2σ

2 +
· · · , and we clearly get the quadratic term we are interested in wrong
unless |a2(b1)2| � |a1b2|. In our case here, we see explicitly from
Eqs. (19) and (21) that the coefficients a1,2 are simply O(1), as are
the coefficients b1,2 from Eq. (36). Thus, neglecting the quadratic
behavior of the lattice model in the hopping functions relative to that
induced in the relation of strain cannot be justified—for example the
coefficients for the quadratic terms in the strain in the gauge field
in (37) go from (β−τ )

2 → (4β−τ )
2 and − (3β+τ )

8 → − τ

8 if we ignore the
quadratic terms in (21).

is not the case. As we shall see, interestingly even when
�ind is flat, with vanishing height function and only in-plane
displacement, the electronic geometry generally is curved at
O(ε2).

Suppose we are interested in the tight-binding model with
hopping functions induced from an embedding. The proce-
dure to use the effective theory is as follows:

(i) Work in lattice coordinates to supply the embedding,
via the displacement vector field vi(�x) and bending function
h(�x).

(ii) Compute the magnetic gauge field, electrometric, and
C and D tensors of the effective theory in lattice coordinates
using Eqs. (37) and (22). With this data the theory is defined,
up to choosing a convenient gauge and frame and constructing
the appropriate torsion free Levi-Civita and spin connections.

(iii) One may then choose to perform computations in any
coordinate system (and indeed with any frame choice and
gauge).

Thus, while we are required by our expressions above to
compute the data for the effective theory using lattice coordi-
nates, in the end we are free to use any coordinates we wish.
If one is interested in comparison directly to the tight-binding
model, then it is natural to remain in lattice coordinates.
As emphasized in the work of Oliva-Leyva and Naumis in
Refs. [12,40], if the lattice is to be thought of as arising from
an embedding, then to perform comparison with laboratory
measurements it is most natural to work with laboratory frame
coordinates. In the case that the embedding is purely in-plane,
so Z = 0, we may think of it as the diffeomorphism map
R2

lat → R2
lab, then it is natural to transform to the laboratory

coordinates X I = (X,Y ) to analyze the effective theory. We
note that in the case there is bending too, there is no geometric
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canonical choice of two laboratory coordinates—the simplest
choice again is X I , but one could also choose to mix these
with Z .

Recall the relation between the lattice coordinates �x =
(x, y) and laboratory coordinates �X = (X,Y ), is given as

X I (�x) = δI
i (xi + εvi(�x)), (38)

where vi(�x) define the components of a vector field v =
vi(�x)(∂/∂xi ) in the coordinate basis given by the lattice co-
ordinates. We emphasize that the above expression is exact
in ε—recall we are taking vi(�x) to be independent of ε. To
express the lattice coordinates in terms of the laboratory coor-
dinates we may invert this relation as a power series in ε,

xi( �X ) = δi
I X

I − εvi( �X ) + ε2δJ
j v

j ( �X )
∂vi( �X )

∂X J
+ O(ε3),

(39)

where we note that vi( �X ) are the coefficient functions vi(�x)
defined in Eq. (38) but now evaluated with arguments given
by the laboratory coordinates—they are not the components
of the vector field in the laboratory frame. From this we define
the Jacobian matrix,

�i
I ( �X ) = ∂xi( �X )

∂X I
. (40)

Then tensors transform in the usual manner—for example, for
the gauge field we have

Ai(�x)dxi|xi=xi ( �X ) = Ai(�x( �X ))�i
I ( �X )dX I = Alab

I ( �X )dX I .

(41)

We now illustrate deriving the hopping functions from an
embedding in two cases. First, we consider the case of
an embedding including out-of-plane bending, and working
to linear order in ε for the electrometric—for consistency
this requires including the two covariant derivative term in
the effective theory. Second, restricting to in-plane strain
only, so no bending, we work to quadratic order in ε for
the electrometric—and for consistency this requires our full
approximation discussed above, including also the three co-
variant derivative term, together with the nontrivial subleading
correction in a to the gauge field at order O(ε).

A. Leading order including bending

We preface this section by emphasizing that the status
of the tight-binding lattice model as an approximation to
graphene is unclear when out-of-plane bending is included,
due to the mixing of sp2 and pz orbitals which are thought to
play an important physical role, potentially gapping the the-
ory [36,37]. However, with this in mind, it is still interesting
to discuss this case, in part to link to previous results in the
literature.

We will work to the order ε in the electrometric, and thus
include the two covariant derivative term. From above we see
the induced hopping functions in lattice coordinates, to the

order we require them for this approximation, are

tn(�x) = 1 − βσi j (�x)�i
n�

j
n + O(ε2, εa2)

= 1 − εβ �i
n�

j
n

(
∂vi

∂x j
+ 1

2

∂h

∂xi

∂h

∂x j

)
+ O(ε2, εa2),

(42)

which determines

δ1,0tn(�x) = −β �i
n�

j
n

(
∂vi

∂x j
+ 1

2

∂h

∂xi

∂h

∂x j

)
, δ1,1tn(�x) = 0.

(43)

Now σi j encodes the perturbative in-plane deformations vi(�x)
and out of plane bending h(�x). From the perspective of the
induced metric g(ind)

i j , the vi generate infinitesimal diffeomor-
phisms of the undeformed metric δi j , and therefore do not
change the geometry from being flat, but just the coordinates
it is presented in. However, h(x) induces a real change of the
geometry and generates curvature.

At least at this linearized level, this relation is invertible.
Given a perturbation of the hopping functions, this uniquely
prescribes the induced geometry of the lattice embedding that
would generate such a deformation. Explicitly to the same
orders in ε and a we have

σi j (�x) = − 1

3β

∑
n

(
4�i

n�
j
n − δi j

)
δ1,0tn(�x) + O(ε2, εa), (44)

and then the leading order perturbative vi and h that generate
this geometry by straining and bending the pristine embedding
may be solved for. From above the gauge field and electromet-
ric take the simple form

Ai(�x) = − β

2a
εi j (K

jklσkl (�x) + O(ε2, εa2)),

gi j (�x) = δi j + 2βσi j (�x) + O(ε2, εa) (45)

to this order of approximation, in terms of the lattice co-
ordinates, with Ki jk the lattice invariant defined earlier in
Eq. (3). These expressions may be compared to those of de
Juan et al. [10]. In that work they choose to work with spinor
densities, rather than spinors as we do here, which effectively
Weyl rescales their electrometric so that gtt �= constant. As
discussed in Ref. [24], one can Weyl transform back to the
ultrastatic frame we use here, and to canonically normalized
spinors, and in doing so their metric (given in Ref. [24])
precisely agrees with the above form. Note that to the leading
order given above, the gauge field is not affected by this Weyl
scaling. However, we stress again that at this order where we
first include the nontrivial metric, the contribution of the two
derivative terms must also be included for consistency, and
this was missed in these previous analyses [10,12,18,21,45]
as we have emphasized in Ref. [28].

We clearly see that the electrometric is not equal to the
induced metric. Comparing Eq. (45) to gind

i j = δi j + 2σi j [from
Eq. (33)], we see they differ by a factor of β in the pertur-
bation, as observed in Ref. [24]. However, at this order the
in-plane displacement field vi still acts simply as a diffeo-
morphism for the electrometric (as well as for the induced
metric)—it changes the coordinates, but does not induce ac-
tual curvature. If we explicitly compute the Ricci scalar of the
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electrometric we see

R(�x) = 2β
(
∂2

x h(�x) ∂2
y h(�x) − (∂x∂yh(�x))2

) + O(ε2, εa), (46)

confirming that curvature is only generated by the out-of-
plane deformation due to h(�x). The gauge field does however
see this in-plane displacement field vi, and the (gauge-
invariant) magnetic field is

B(�x) = Fxy = εβ

2a

(−2∂x∂yv
x(�x) + (

∂2
y − ∂2

x

)
vy(�x)

− 2∂xh(�x) ∂x∂yh(�x) + ∂yh(�x)
(
∂2

y − ∂2
x

)
h(�x)

)
+ O(ε2, εa). (47)

Now suppose we wish to analyze the physics of the effec-
tive theory using the laboratory reference frame. Having the
theory in lattice coordinates we may then simply coordinate
transform to the laboratory coordinates as detailed above.
Since the gauge field is already O(ε), this coordinate trans-
formation is trivial, so that

Alab
I ( �X ) = −βε

2a
δi

Iεi j (K
jklσkl ( �X ) + O(ε2, εa2)). (48)

However, there is an effect for the electrometric, which be-
comes

glab
IJ ( �X ) = δIJ + 2(β − 1)εδi

Iδ
j
Jσi j ( �X )

+ ε
∂h( �X )

∂X I

∂h( �X )

∂X J
+ O(ε2, εa). (49)

We note that the components of the strain tensor do not trans-
form at the leading order σi j ∼ O(ε) we require here. At this
order, the Ricci scalar and magnetic field in laboratory frame
take the same form as in lattice coordinates.

Recalling that the tight-binding model likely does not give
a good approximation to physics in the case that the graphene
is bent out-of-plane, we see that geometrically this leading

geometry from purely in-plane strain is rather boring. While
the electrometric is nontrivial, it is simply flat space in dis-
torted coordinates. Hence, notwithstanding the fact that we
must also include two derivative terms which were missed in
the treatments of [10–27], it does not provide an interesting
“analog gravity” model, as there is no sense in which the
geometry is curved. We will now discuss how this becomes
much more interesting at quadratic order in the strain.

B. Quadratic order for purely in-plane strain

Now we continue our analysis of purely in-plane strain,
where we are hopeful the tight-binding lattice model may pro-
vide a good approximation, to order O(ε2) in the electrometric
perturbation. Again we note we are using our simple length
model to turn the lattice deformation to hopping function de-
formations, and this could potentially be made more realistic.
To quadratic order in ε the gauge field and metric take the
form above in Eq. (37), where for consistency we must also
include both the two and three covariant derivative terms in the
effective theory, and also include the subleading corrections
in a present in Eq. (37). We may then compute the magnetic
field and electrometric curvature in the case of in-plane strain,
so vanishing height function. These can be written nicely by
defining

V (�x) = (∂xv
x(�x), ∂yv

y(�x)), U (�x) = (∂yv
x(�x), ∂xv

y(�x))

(50)

and

V̄ (�x) = (
∂2

x vy(�x), ∂2
y vy(�x), ∂x∂yv

x(�x)
)
,

Ū (�x) = (
∂2

x vx(�x), ∂2
y vx(�x), ∂x∂yv

y(�x)
)
. (51)

Then for the magnetic field we find

B(�x) = Fxy = εβ

2a

((−∂2
x vy + ∂2

y vy − ∂x∂yv
x
) + a2

24

(
2∂4

y vy + 17∂x∂
3
y vx − 21∂2

x ∂2
y vy − 11∂3

x ∂yv
x + 5∂4

x vy
) + O(a3)

)

+ ε2β

2a

⎛
⎜⎜⎝V̄ T (�x) ·

⎛
⎜⎜⎝

3τ
4 + β

4 −1 + τ
4 − 5β

4
τ
4 + 3β

4 1 − 5τ
4 + β

4

−2 + 3τ
2 − 3β

2
τ
2 − β

2

⎞
⎟⎟⎠ · V (�x) + Ū T (�x) ·

⎛
⎜⎜⎝

−1 + 3τ
4 + β

4
3τ
4 + β

4

1 + τ
4 + 3β

4
τ
4 + 3β

4
τ
2 − β

2 −2 + τ
2 − β

2

⎞
⎟⎟⎠ · U (�x) + O(a2)

⎞
⎟⎟⎠

+ O(ε3), (52)

and the Ricci scalar of the electrometric is given by

R(�x) = ε2β

(
1

2
(∂yv

x + ∂xv
y)
(
(τ − 3β )∂3

y vx + (β + 3τ )∂2
x ∂yv

x
) + 4β(∂yv

y − ∂xv
x )∂2

y ∂xv
x

− 1

2
(∂yv

y − ∂xv
x )
(
(β + τ )∂3

y vy + (5β − 3τ )∂2
x ∂yv

y
) − 2β(∂yv

x + ∂xv
y)
(
∂3

x vy − ∂2
y ∂xv

y
)

+ V̄ T (�x) ·

⎛
⎜⎝ −2β 1 − τ

4 + 3β

4 − 3τ
4 − 3β

4

1 − τ
4 + 3β

4 − τ
2 − β

2
τ
4 + 9β

4

− 3τ
4 − 3β

4
τ
4 + 9β

4 −2 − 4β

⎞
⎟⎠ · V̄ (�x)

+Ū T (�x) ·

⎛
⎜⎝ 0 1 − 3τ

4 + β

4 − 3τ
4 + 5β

4

1 − 3τ
4 + β

4
τ
2 − 3β

2
τ
4 + β

4

− 3τ
4 + 5β

4
τ
4 + β

4 −2 + 2τ − 2β

⎞
⎟⎠ · Ū (�x)

⎞
⎟⎠ + O(εa2, ε2a, ε3). (53)
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We now see a very interesting phenomena. The geometric
deformation of the lattice is purely in-plane so the induced
metric g(ind) is flat, simply a coordinate transformation (i.e.,
a diffeomorphism) of flat space. However, since the induced
metric and electrometric explicitly differ in form, we find that
at quadratic order in ε the electrometric is indeed curved.
While it is not obvious whether the explicit form above for
gi j (�x) in Eq. (37) is flat or not, this explicit calculation of
the curvature shows it is not. It is worth emphasizing that this
curvature is dependent on the bond model we have chosen—
we see the explicit dependence on the parameter τ from the
bond model. Nonetheless, irrespective of the value of τ , we
explicitly see it will generally be curved.

If we had worked to one higher order in a, then already
at linear order in ε we would expect to compute a nontrivial
metric contribution at order εa2, and presumably this would
also lead to a nonzero curvature at O(εa2). However, to con-
sistently work to this higher order requires including the next
higher covariant derivative term, that is with four derivatives,
and this is outside of the scope of this work. Depending on
the values of ε and a, one could expect that either the O(ε2)
contribution to curvature we have computed here dominates,
or this subleading term at order O(εa2) does. We note that
if we think of keeping ε/a fixed, and scaling a → 0, then
comparing the two, ε2 = ( ε

a )2a2 and εa2 = ( ε
a )a3, and so the

O(ε2) term we have computed dominates in the continuum
limit a → 0.

In summary, an embedding of the tight-binding lattice
theory using our simple bond model does indeed have a
low-energy “analog gravity” description for inhomogeneous
in-plane strains, when it is thought to approximate monolayer
graphene. This then raises the very interesting possibility that
effects known from curved spacetime QFT may play a role
in the physics of this model, and indeed graphene, for such
inhomogeneous strains. However, we emphasize that while
the low-energy physics of the lattice model is described by
an “analog gravity” theory, by which we mean a relativis-
tic effective field with a curved spacetime geometry, it must
include the Lorentz violating higher derivative terms for con-
sistency. Thus, it is an “analog gravity” model with Lorentz
violation which contributes at the same order as the effects of
curvature.

Let us consider now writing the theory in laboratory frame.
First, we may transform the strain tensor, precisely since it is
a tensor, to laboratory coordinates σ lab

i j ( �X ). Working to this
order it is important to remember that the invariant Ki jk which
takes simple ±1, 0 values in lattice coordinates no longer
does so after a spatial coordinate transform. To write our
expressions in a convenient form we may define σ lab

i ( �X ) to be
the transform of the covector field σi(�x) = Ki jkσ jk (�x). After
doing so, we may give expressions for the gauge field and
electrometric in laboratory coordinates for our full approxi-
mation, as

Alab
I ( �X ) = −βεIJ

2a

(
σ lab

J ( �X ) + KJKL

(
(β − τ )

2
σ lab

KM ( �X )σ lab
ML( �X ) − (3β + τ−8)

8
σ lab

K ( �X )σ lab
L ( �X )

)

+ a2

12

(
9∂J∂Kσ lab

K ( �X ) − 3∂K∂Kσ lab
J ( �X ) − 7KKLM∂K∂Lσ lab

JM ( �X )
) + O(εa3, ε2a2, ε3)

)
glab

IJ ( �X ) = δIJ + 2(β−1)σ lab
IJ ( �X ) + 4β2σ lab

IK ( �X )σ lab
KJ ( �X )

+ β(β + τ )

4

(
δIJ

(
σ lab

KK ( �X )
)2 − 4σ lab

IJ ( �X )σ lab
KK ( �X ) − σ lab

I ( �X )σ lab
J ( �X )

) + O(εa2, ε2a, ε3). (54)

Here δIJ and εIJ are the usual Kronecker δ, and antisymmetric
Levi-Civita symbol, and we only require the components of
KIJK at O(ε0) in the expression above, and these do not
change with the transformation. Interestingly, written in this
form, the only differences are the change in the coefficient of
the linear term in strain for the electrometric (which derives
from the coordinate transformation of the leading Euclidean
metric δi j , and we saw at linear order) together with a similar
change in one quadratic coefficient for the gauge field—both
of these are shown in the above equations in red. However, an
important point to emphasize is that to use these quantities in
the effective theory we have to remember that the coefficients
of the higher covariant derivative terms, built from the metric
and lattice invariants, also must be consistently transformed.

V. DERIVING THE EFFECTIVE THEORY OF THE
LATTICE TIGHT-BINDING MODEL

For most of the remainder of this paper we will focus on
the Hamiltonian (11) with perturbatively deformed hopping

functions that are slowly varying, and give the derivation of
the effective theory summarized above, thinking in terms of
the intrinsic description in lattice coordinates. Rather than
work with an embedding picture, and bond model, we will
simply give results purely in terms of the hopping functions
themselves, but note that using the discussion in the previous
section, we may always translate to a laboratory picture if
we have a specific embedding and bond model. To make the
somewhat involved computations involved here more accessi-
ble, we have made available a Mathematica notebook which
performs the explicit matching of the effective theory to the
lattice model that we describe in what follows.7

A. Continuum limit of undeformed lattice model

We are interested in the band structure, given by the
one-particle states of the above Hamiltonian. A general

7This may be downloaded from [46].
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one-particle state is given by

|�(t )〉 =
⎛
⎝∑

�xA

A�xA (t )a†
�xA

+
∑
�xB

B�xB (t )b†
�xB

⎞
⎠|0〉, (55)

and then its time evolution is given by the Schrödinger equa-
tion, ih̄∂t |�〉 = H |�〉, which can be resolved as

ih̄∂t A�xA = T
∑

n

tn

(
�xA + a��n

2

)
B�xA+a��n

,

ih̄∂t B�xB = T
∑

n

tn

(
�xB − a��n

2

)
A�xB−a��n

. (56)

For the undeformed lattice, so tn(�x) = 1 then there are two
Dirac points, whose wave vectors, defined by the condition∑

n eia �K · ��n = 0, can be taken as (see Fig. 1)

�K = 1

a

(
− 4π

3
√

3
, 0

)
, �K ′ = − �K . (57)

Let us first consider the K point. Taking smooth functions
ψ1(t, �x), ψ2(t, �x) of time, and of lattice coordinates so that
they spatially vary slowly, so ∂iψ1,2 ∼ O(1), then we may
write

K : A�xA (t ) = ψ1(t, �xA)e− iπ
4 e+i �K ·�xA ,

B�xB (t ) = ψ2(t, �xB)e+ iπ
4 e+i �K ·�xB . (58)

Alternatively, near the K ′ point, we take

K ′ : A�xA (t ) = ψ2(t, �xA)e− iπ
4 e−i �K ·�xA ,

B�xB (t ) = ψ1(t, �xB)e+ iπ
4 e−i �K ·�xB . (59)

Then for both Dirac points we can recast the continuum limit
of the above Schrödinger system as

0 = ih̄∂t

(
ψ1

−ψ2

)
− iT

∑
n

(
0 +e+ia �K · ��n

−e−ia �K · ��n 0

)
a��n

·�∂
(

ψ1

ψ2

)
+ O(a2). (60)

Now we introduce spacetime coordinates xμ with index μ =
0, 1, 2, which coincide with our laboratory time and lattice
coordinates, so xμ = (t, �x). Further we introduce a frame eμ

A
(with frame index A = 0, 1, 2) as

eμ
A =

⎛
⎝ 1

ceff
0 0

0 1 0
0 0 1

⎞
⎠, (61)

which corresponds to the spacetime metric, gμν , being
Minkowski spacetime in usual coordinates,

gμν =
(−c2

eff 0
0 δi j

)
, (62)

with ceff = 3aT
2h̄ giving the effective speed of light. Then for

both K and K ′ we may write the Schrödinger system simply
in massless Dirac equation form in this flat Minkowski space-
time as

0 = eμ
Aγ A∂μ� + O(a), � =

(
ψ1

ψ2

)
, (63)

where the Dirac � matrices are

γ A = (γ 0, γ I ) = (−iσ 3, σ 1, σ 2), (64)

with σ I the Pauli matrices, where we split the frame index into
time and spatial components A = (0, I ). Note that since the K
and K ′ points are inequivalent, the full low-energy effective
theory has two flavors of massless Dirac spinors living on the
same spacetime and we have picked conventions so the local
Lorentz frame is the same for both of them. Since this tight-
binding model has no electron-electron interactions, these two
flavors are free fields and do not interaction with each other.

Why do we call this the continuum limit? We have as-
sumed that ψ1,2 are slowly varying, so that in our units
∂i1 . . . ∂ik ψ1,2 ∼ O(1). This implies that the time dependence
in the wave functions A�xA (t ), B�xA (t ) goes as ∼O(Ta/h̄). Con-
sidering smaller wavelength variations would requires the
higher order terms in a to be accounted for, and correspond
to higher frequencies, and thus higher energies. An impor-
tant point is that this continuum limit describes only low
energies/frequencies for the wave functions A�xA (t ), B�xA (t ),
and while ψ1,2 are slowly spatially varying, the wave func-
tions themselves certainly are not. This proves to be a crucial
point in what follows, and we will return to it later.

B. Preliminaries

Before we continue to consider perturbed and spatially
varying hopping functions, it is convenient to first consider
the continuum limit of the undistorted tight-binding model to
higher order in the low-energy expansion, so given our units,
the expansion in a. We will also detail the local symmetries
that arise in identifying low-energy continuum fields with the
discrete wave functions.

1. Expansion to third order

Taking the same ansatz (58) for the wave functions as
before, and expanding the Schrödinger system to the next two
orders in a then yields

0 = eμ
Aγ A∂μ� ± ia ηABγ AeB

σCσμν∂μ∂ν�

+ a2 ηABγ AeB
σ Dσμνρ∂μ∂ν∂ρ� + O(a3), (65)

where the constants Cσμν and Dσμνα have only nonvanishing
spatial components and are given in Eq. (22) except here
we are taking the trivial flat spatial frame (61) and hence
the metric determinant factor in those expressions is sim-
ply |gi j | = 1. Then one finds C1i j = (−1/4 0

0 1/4)i j and C2i j =
( 0 1/4
1/4 0 )i j , and all other components vanish. The first term,

with two derivatives, was explored in momentum space in
Refs. [47,48]. The sign in front of the two covariant derivative
term is determined by the choice of Dirac point—the upper
sign (“+”) is for the K point, the lower sign (“−”) is for the K ′
point. We see that the corrections to the continuum limit take
the form of higher derivative terms, and retain a memory of
the lattice structure through the invariant tensor Ki jk . From the
perspective of effective field theory we may think of these as
irrelevant higher dimension operators that break the Lorentz
invariance of the leading Dirac term. However, we emphasize
here that it is precisely such subleading effects in the effective

045425-12



ANALOG GRAVITY AND CONTINUUM EFFECTIVE THEORY … PHYSICAL REVIEW B 109, 045425 (2024)

theory, such as curvature of the electrometric, that derive from
the microscopic structure of the lattice model that we are
interested in here.

2. Curved space Dirac equation

Let us now give a quick review of the curved spacetime
Dirac equation, in part to outline the conventions we will use.
Given a frame eμ

A(x) and its inverse coframe eA
μ(x), so that

eμ
AeA

ν = δμ
ν and eA

μeμ
B = δA

B at all spacetime points, then the
spacetime metric is given by the coframe and the Minkowski
metric ηAB as

gμν (x) = ηABeA
μeB

ν , ηAB =
(−1 0

0 δi j

)
. (66)

Having written the metric in terms of a frame introduces a
local Lorentz symmetry that acts as

eA
μ(x) → �A

B(x)eB
μ(x), (67)

with �A
B(x) a Lorentz matrix valued function of spacetime.

Since Lorentz matrices obey the defining matrix condition
η = �T η�, we see this transformation leaves the spacetime
metric invariant.

From the metric we have the unique torsion free metric
compatible connection, the Levi-Civita symbol, defining the
covariant derivative ∇μ on a covector field vμ as

∇μvν = ∂μvν − �ρ
μνvρ,

�ρ
μν = 1

2 gρσ (∂μgνσ + ∂νgμσ − ∂σ gμν ). (68)

Given the set of covector fields eA
μ, for A = 0, 1, 2, we define

the frame connection,

�A
μB = −eν

B∇μeA
ν , (69)

and this allows us to write a covariant derivative for a frame
valued field, vA(x), as

DμvA = ∂μvA + �A
μBvB, (70)

so that under a local Lorentz frame transformation,

DμvA → �A
BDμvB. (71)

We write this with a D rather than ∇ to emphasize that this
should be thought of as a gauge covariant derivative associated
to the local Lorentz frame symmetry, and it should not be
confused with the covariant derivative ∇ for tensor fields.
Here the object vA is simply a function from the perspective
of spacetime, carrying no spacetime tensor indices. However,
these two derivatives are intimately connected; writing vA =
vμeA

μ then,

DμvA = eA
ν ∇μvν . (72)

Now we may write this covariant derivative in the manner we
do for gauge theory, by introducing the spin connection,

μAB = ηAC�C
μB, (73)

which, following from Eq. (69), is antisymmetric in its frame
indices, μAB = μ[AB]. This allows us to write the covariant
derivative in terms of a basis for the generators of the Lorentz

group, MAB, as

DμvC = ∂μvC − i

2
μAB(MAB)C

DvD,

(MAB)C
D = i

(
ηACδB

D − ηBCδA
D

)
, (74)

where the Lorentz group valued function, �A
B(x), implement-

ing local Lorentz transformations can be written as

�(x) = e− i
2 λAB (x)MAB

, (75)

suppressing the frame indices, so that λAB(x) is a function
valued in the Lorentz algebra. From the perspective of local
Lorentz transformations forming a principle gauge bundle,
then a spinor valued function, �, is an associated bundle,
transforming as

� → �1/2(x)�,

�1/2(x) = e− i
2 λAB (x)SAB

, (76)

SAB = i

4
[γ A, γ B]

for the same local Lorentz transformation corresponding to
λAB(x) as above. Here SAB are the Lorentz generators for
the spinor representation, and �1/2(x) is a spinor Lorentz
transformation valued function. Then for a spinor function the
corresponding covariant derivative is simply given as

Dμ� = ∂μ� − i

2
μABSAB�, (77)

so that again Dμ� → �1/2(x)Dμ�. It will be useful to give
the following explicit expression for the spin connection. Let
us use the notation that ∂A = eμ

A∂μ. Then if we define JCAB =
eν

A∂CeνB a direct calculation shows that

μAB = 2gμν∂[Aeν
B] + 1

2
eC
μ

⎛
⎝ ∑

P∈Perm(A,B,C)

(−1)PJP1P2P3

⎞
⎠,

(78)

where, noting the sum over signed permutations, we explicitly
see the antisymmetry in A ↔ B.

In all that follows we shall be interested in the case that
the spacetime metric is both static and also only has nontrivial
spatial geometry. Let us first consider the restriction to having
only a nontrivial spatial geometry so that the frame and metric
can be written

gμν =
(−c2

eff 0
0 gi j (x)

)
, eμ

A =
( 1

ceff
0

0 ei
I (x)

)
, (79)

denoting the decomposition of the frame index into time and
spatial parts as A = (0, I ). To preserve this form we will
restrict our interest to local Lorentz symmetry transformations
which are spatial rotations. Taking such a rotation valued
function, RI

J (x), it generates the local symmetry,

eI
i (x) → RI

J (x)eJ
i (x). (80)

We note that in two spatial dimensions, this is a one di-
mensional subgroup of the Lorentz group. Hence, this local
symmetry is Abelian. In terms of our algebra valued function
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λAB(x) above that specifies the local Lorentz transformation,
these local rotations are generated by taking

λ12(x) = −λ21(x) = θ (x), (81)

with all other components vanishing. Then RI
J (x) is given in

terms of the function θ (x) as

R(x) = e−iθ (x)J =
(

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)
, JI

J = iεIJ , (82)

where, as above, εIJ has nonvanishing components 1 = ε12 =
−ε12. The spinor generator associated to rotations is

S12 = i

4
[γ 1, γ 2] = −1

2
σ 3, (83)

so that its action on a spinor is

�1/2(x) = e− i
2 θ (x)σ 3 =

(
e

iθ
2 0

0 e− iθ
2

)
. (84)

Let us now further restrict our attention to the case that the
metric is also static, so time independent. Then we may take
the frame to be static, ei

I = ei
I (�x), and the metric then has the

above form with static spatial geometry gi j = gi j (�x), and is
referred to as an “ultrastatic” geometry (i.e., one that is static
with constant gtt and gti = 0). To preserve this form further
restricts our local rotation symmetry to only depend on space,
and not time.

Now looking at the above explicit expression for the spin
connection in Eq. (78), we notice that the object JCAB =
eν

A∂CeνB only has spatial components for such a frame. Since
we are in two spatial dimensions the term that sums over
signed permutations of JCAB then must vanish simply leaving
μAB = 2gμν∂[Aeν

B]. The only nonvanishing components of
the spin connection can be written as

μ12 = −μ21 = gμνω
ν, ωt = 0, ωi = εAB∂Aei

B,

(85)

and so we may write the spinor connection in the simple form,

Dμ� = ∂μ� + i

2
ωμσ 3�. (86)

3. Gauge and frame symmetry

In writing Eqs. (58) and (59) we have separated the spa-
tial dependence of the wave functions into “slow” variations
encoded by (ψ1, ψ2) and “fast” ones, governed by the phase
factors e±i �K ·�xA . Since the Dirac point wave vector �K ∼ O(1/a)
these are rapidly varying phases, whose scale of variation is
the lattice scale itself by design. As a consequence of this,
there is a local freedom in making the separation into fast and
slow spatial variations for both wave functions, that should
not affect the physics of the system. More concretely taking
for the K and K ′ points

A�xA (t ) = ψ1(t, �xA)e
i
2 (− π

2 ±φ(�xA ))e±i( �K ·�xA−λ(�xA )),

B�xB (t ) = ψ2(t, �xB)e− i
2 (− π

2 ±φ(�xB ))e±i( �K ·�xB−λ(�xB )), (87)

the upper signs (“+”) as well as the first subscript 1, then 2 are
for the K point, and the lower signs (“–”) and second subscript
2, 1 are for the K ′ point and where the time independent

functions we have introduced φ(�x), λ(�x) ∼ O(1), and are both
slowly varying, so that ∂i1 . . . ∂ik φ(�x) ∼ O(1) and likewise for
λ, then parameterizes the freedom in making this split into fast
and slow spatial variation. Different choices for these slowly
spatially varying functions φ(�x) and λ(�x) are then different
parametrizations, and physics should be independent of this.

This local invariance manifests elegantly in the continuum
Dirac limit as local gauge symmetry and frame rotation sym-
metry. We introduce a U (1) gauge field Aμ which the spinor
field � is charged under, and define the gauged covariant
derivative on a spinor field as

Dμ� = ∂μ� ∓ iAμ� − i

2
μABSAB�, (88)

where again the upper (“–”) sign for the K point, and the lower
(“+”) sign is for the K ′ point. Thus, we see that we assign
the Dirac field opposite charges at the two Dirac points. We
also require the action of more covariant derivatives acting
on �. Letting �;ν1...νn = Dν1 . . . Dνn�, then these are defined
recursively by

Dμ

(
�;μ1...μn−1

) = ∇μ

(
�;μ1...μn−1

) ∓ iAμ

(
�;μ1...μn−1

)
− i

2
μBCSBC

(
�;μ1...μn−1

)
, (89)

where ∇μ is the usual spacetime covariant derivative acting
on a tensor field, and as above we are suppressing the spinor
indices.

Now using these gauged covariant derivatives, writing the
wave functions as above, then the previous continuum limit of
undeformed graphene (65) can be written as

0 = eμ
Aγ ADμ� ± ia ηABγ AeB

σCσμνDμDν�

+ a2 ηABγ AeB
σ DσμνρDμDνDρ� + O(a3), (90)

where the upper (“+”) sign is for the K point, and the lower
(“–”) sign is for the K ′ point, and the gauge field, coframe,
and torsion-free spin connection are given by

eA
μ =

⎛
⎝ceff 0 0

0 cos φ − sin φ

0 + sin φ cos φ

⎞
⎠, Ai = ∂iλ, ωi = ∂iφ,

(91)

and given the ultrastatic form of the frame, and that φ is only
a function of the spatial coordinates, the covariant derivative
takes the form

Dt� = ∂t�, Di� = ∂i� ∓ iAi� + i

2
ωiσ

3�, (92)

and we have analogous results for DμDν� and DμDνDρ�.
We see the simple structure of the spin connection term arising
from the Abelian local frame rotations, but note the important
point that the gauge connection and spin connection have a
distinct spinor structure from each other.

We see the gauge field is pure gauge, so is unphysical and
can be removed by simply setting λ = 0 as we had previously.
Further the freedom in φ simply results in a spatial rotation of
the frame field, and correspondingly a nontrivial spin connec-
tion. However, we emphasize here that this rotation is purely a
local freedom in rotating the frame bundle, and does not affect

045425-14



ANALOG GRAVITY AND CONTINUUM EFFECTIVE THEORY … PHYSICAL REVIEW B 109, 045425 (2024)

the spacetime metric at all, which remains as in Eq. (62), so in
fact the connection �ρ

μν = 0 so that ∇μ = ∂μ here.

C. Continuum of the spatially deformed lattice model

Now we turn to the continuum limit when the hopping
functions are deformed to be slowly spatially varying as in
the Hamiltonian in Eq. (11). We may write the resulting
Schrödinger system (56) for one-particle states as an expan-
sion in the parameters ε and a,

ϒ = ih̄

T
∂t A�xA −

∑
n

tn

(
�xA + a��n

2

)
B�xA+a��n

= 0, (93)

ϒ ′ = ih̄

T
∂t B�xB −

∑
n

tn

(
�xB − a��n

2

)
A�xB−a��n

= 0, (94)

noting the expansion of the hopping functions introduced
earlier in Eq. (12). We expand the ϒ equation as

ϒ =
∞∑

n=0

εnϒn, ϒn =
∞∑

m=0

amϒn,m, (95)

and then the solution ϒ = 0 implies that order by order
ϒn,m = 0, and we do similarly for ϒ ′. As above we intro-
duce slowly spatially varying wave functions, ψ1,2(t, �x), and
now also a slowly varying phase modulation function �(�x)
and wave-function rescaling f (�x), so ∂i1 . . . ∂ik � ∼ O(1) and
likewise for f (�x), and use these to write

A�xA (t ) = ψ1,2(t, �xA) f (�x)e
i
2 (− π

2 ±φ(�xA ))e± i�(�xA )
a ,

B�xB (t ) = ψ2,1(t, �xB) f (�x)e− i
2 (− π

2 ±φ(�xB ))e± i�(�xB )
a , (96)

and as above, the upper signs (“+”) as well as the first sub-
script 1, then 2 are for the K point, and the lower signs (“–”)
and second subscript 2, 1 are for the K ′ point.

While � slowly varies, the inverse factor of a multiplying
it in the exponential means that the phase rapidly varies,
changing on lattice scales. Note that a natural choice of f
is f = (det gi j )1/4, which will ensure that as we mentioned
previously, the number density of the continuum Dirac field is
the same as the microscopic electron density,

√|gi j |�̄γ t� =
|A|2 + |B|2. In fact we will find that such a choice is also
necessary to recover the torsion-free spin connection. We note
that the earlier work [10,12] specifically worked with the
Weyl rescaled field �̂ = (det gi j )−1/4�, which as discussed
before can be thought of as working in a different Weyl frame
with only nontrivial gtt [24]. However, the higher derivative
terms are not Weyl invariant, and so we can only think of
this as working with a spinor density instead of a canonically
normalized spinor.

We perturbatively expand about ε = 0, the undeformed
model as

�(�x) = − 4π

3
√

3
x +

∞∑
n=1

εnδn�(�x),

φ(�x) =
∞∑

n=1

εnδnφ(�x), f (�x) = 1 +
∞∑

n=1

εnδn f (�x), (97)

so that for ε = 0 then 1
a�(�x) = �K · �x, and further expand the

perturbative functions δn� in a as

δn� =
∞∑

m=0

amδn,m�, (98)

and likewise for δnφ and δn f . Since we are first expanding in
the deformation parameter ε, and only afterwards we expand
in a, we may expand the exponential factor above as

e
i�(�x)

a 
 ei �K ·�x
(

1 + iε

a
δ1�+ iε2

a
δ2�− ε2

2a2
(δ1�)2 + O(ε3)

)
,

(99)

and then for each term in this expansion, we expand the δn�

in powers of a. Having performed this expansion also in a, so
we have a double expansion in both ε and a, it is convenient
to introduce a new expansion parameter,

λ = ε

a
, (100)

so that we may write

e
i�(�x)

a 
 ei �K ·�x(1 + iλ(δ1,0� + aδ1,1� + a2δ1,2� + O(a3))

− λ2
(

1
2 (δ1,0�)2 + aδ1,0�δ1,1� − 2iaδ2,0� + O(a2)

)
+ O(λ3)

)
. (101)

While written in ε and a the two limits ε → 0 and a → 0
do not commute—taking ε → 0 with a finite allows the ex-
pansion of the exponential above, but the reverse, a → 0 with
finite ε, gives a diverging phase and the exponential cannot
be expanded. Thus, we justify our earlier statements, that the
expansion in ε should be performed first, and then afterwards
the one in a, so that this exponential can be expanded. Alter-
natively, we may view the condition that we may expand the
exponential in ε and a as being that both λ and a are small.
Thus, ε/a must be held small as we take the continuum limit
a → 0 as stated earlier.

It is interesting to consider the magnitude of ε in rippling
suspended graphene, even though this involves out of plane
displacement, which, as discussed above, may not be well
captured by the simple tight-binding model. For such ripples
the height is approximately ∼0.5 nm and the wavelength is
∼ 5 nm and these configurations are frozen in time, as de-
duced from STM microscopy [49]. Thus, in our units L = 1
corresponds to 5 nm, and so the graphene lattice spacing,
which is ∼0.25 nm gives approximately a ∼ 0.05. However,
the height function h can be written as h ∼ √

ε cos( x
2π

), where√
ε ∼ 0.1 to give a ripple height of 0.5 nm. Hence, ε ∼ 0.01,

leading to a ratio λ = ε/a ∼ 0.2, which is small, but not very
small. Thus, even for these seemingly low amplitude ripples,
corrections in λ will likely be important.

Finally, the Schrödinger system can then be written in the
form

0 =
∞∑

p=0

∞∑
q=0

apλqOp,q(�x)

(
ψ1(�x)
ψ2(�x)

)
(102)

for spatial differential operators Op,q which depend only on
�x (with the single exception of O1,0, which contains the one
time derivative), and on the various functions δmtn, δn,m�,
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δn,m�, δn,m f and their derivatives, but not on ε or a. The terms
Op,0 are those of the undeformed model, giving, in lattice
coordinates,

O1,0 = 1

ceff
γ 0∂t + δi

Iγ
I∂i,

O2,0 = ±i ηABγ AδB
σCσμν∂μ∂ν, (103)

O3,0 = ηABγ AδB
σ Dσμνρ∂μ∂ν∂ρ,

as we saw above. Now we must match this to a continuum
description.

1. Structure of the effective theory

A key requirement of the continuum description is that it
should have local frame rotation and gauge symmetry. The
effective theory therefore contains a gauge field and frame,
with its associated spin connection, and all derivatives must be
covariant with respect to these. Anticipating the correct form,
we perform the double expansion of the frame and gauge field
first in ε and then a as

Aμ = (0, Ai ), Ai =
∞∑

n=1

εnδnAi, δnAi = 1

a

∞∑
m=0

amδn,mAi,

(104)

where we emphasize that the expansion in a above starts with
the power a−1, and for the frame,

eμ
A =

( 1
ceff

0
0 ei

I

)
,

ei
I = δi

I +
∞∑

n=1

εnδnei
I , (105)

δnei
I =

∞∑
m=0

amδn,mei
I .

This frame determines the metric which then has gtt = −c2
eff,

gti = 0 and an analogous expansion for its spatial compo-
nents,

gi j = eI
i e

I
j = δi j +

∞∑
n=1

εnδngi j, δngi j =
∞∑

m=0

amδn,mgi j,

(106)

and likewise for the Christoffel symbols and torsion free spin
connection, ωμ, as in Eq. (85), which have only nonvanishing
spatial components, again with expansions as above,

�k
i j =

∞∑
n=1

εn

( ∞∑
m=0

amδn,m�k
i j

)
, ωi =

∞∑
n=1

εn

( ∞∑
m=0

amδn,mωi

)
.

(107)

The key feature of this expansion is that the leading behavior
of the magnetic gauge field goes inversely with a, so Ai ∼ ε/a.
As we have emphasized earlier, first expanding in infinites-
imal ε, and then in a, this leading behavior Ai 
 εδ1Ai is
perturbatively small. However, formally the function δ1Ai ∼
1/a itself diverges in the continuum limit a → 0 and hence
we term this the large magnetic field, understanding that we
should ensure ε/a is finite and small as we take the continuum
limit a → 0 to ensure we can perform a perturbative expan-
sion.

Terms in the effective continuum description will in-
volve quantities constructed from lattice invariants and their
derivatives, and covariant derivatives of the spinor field � =
(ψ1, ψ2). Let us consider a term which we schematically
write as

aMQμ1...μM Dμ1 · · · DμM �, (108)

where we have suppressed all spinor indices and � matrices.
Here the tensor Q is constructed from the lattice data, so from
the coupling functions tn and the lattice vectors ��n. Since the
tn have an expansion in ε and a, then we may write

Qμ1...μM (�x) = Qμ1...μM
0,0 +

∞∑
n=1

∞∑
m=0

εnamQμ1...μM
n,m (�x), (109)

where the leading term, Qμ1...μM
0,0 will comprise constants that are independent of �x, but the subleading terms Qμ1...μM

n,m (�x) for n � 1
will be slowly varying functions of position via the couplings that slowly spatially vary. The covariant derivative for the K point
may be expanded as

D = ∇ − iA − i

2
ωσ3 (110)

= ∂ − iε

((
1

a
δ1,0A + (iδ1,0� + δ1,1A) + O(a)

)
+ 1

2
(δ1,0ω + O(a))σ3

)
− iε2

(
1

a
δ2,0A + O(a0)

)
+ O(ε3), (111)

where we have suppressed all indices, and we have a similar expansion for the derivative at the K ′ point (which differs by signs).
The presence of the gauge field contributing terms going as 1/a changes the structure of the effective field theory from the more
usual case in relativistic QFT, and implies that higher covariant derivative terms may contribute at lower orders in the derivative
expansion due to these gauge terms. Thus, the terms above can be expanded as

aMQμ1...μM Dμ1 · · · DμM � = aMTM,0 +
∞∑

p=0

∞∑
q=1

apλqTp,q (112)
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for an Mth derivative term, where we have

Tp,q = 0 ∀ p < M (113)

but are otherwise nontrivial. If A did not have large leading behavior, so δn,0A = 0, then one would have Tp,q = 0 for p − q < M.
However, due to the presence of the large magnetic field, gauge field terms such as

aMQμ1...μM Aμ1∂μ2 · · · ∂μM �, aMQμ1...μM ∂μ1 Aμ2∂μ3 · · · ∂μM �, aMQμ1...μM Aμ1 Aμ2∂μ3 · · · ∂μM � (114)

contribute to lower orders in the a expansion. While each gauge field contributes an inverse a, it also comes with an additional
factor ε. Thus, this term has zero contributions for p � M but will generally have nontrivial contributions Tp,q otherwise.
Pictorially, we have

a0 a1 . . . aM−1 aM aM+1 aM+2 . . .

ε0 0 0 . . . 0 TM,0 0 0 . . .

ε1 0 0 . . . TM,1 TM+1,1 TM+2,1 TM+3,1 . . .
...

...
... . .

. ...
...

...
...

εM−1 0 TM,M−1 . . . T2M−2,M−1 T2M−1,M−1 T2M,M−1 T2M+1,M−1 . . .

εM TM,M TM+1,M . . . T2M−1,M T2M,M T2M+1,M T2M+2,M . . .

εM+1 TM+1,M+1 TM+2,M+1 . . . T2M,M+1 T2M+1,M+1 T2M+2,M+1 T2M+3,M+1 . . .
...

...
...

...
...

...

A corollary of this discussion is that if we consider a term with M derivatives of the above form, then

aMQμ1...μM Dμ1 · · · DμM � contributes to Op,q for p � M, (115)

unlike in usual effective field theory where these terms would
only contribute to Op,q with p − q � M. Alternatively, we
may say that the equations Op,q with p � M only involve
contributions from terms in the equation of motion with M
derivatives or less. Let us now see how this works in practice.

2. Leading order—Op,q for p � 1—flat Dirac with large
magnetic field

Considering all the lattice equations Op,q for p � 1, yields
the nontrivial equations O1,0 and O1,1, and these involve only
the one covariant derivative term, i.e., the leading Dirac equa-
tion term. We find that to this leading order the continuum
theory matching the lattice model is

0 = aeμ
Aγ ADμ� + O(ε2, εa, a2), (116)

where we have a flat undeformed frame and nontrivial mag-
netic gauge field, found from solving O1,0 and O1,1,

eμ
A =

⎛
⎝ 1

ceff
0 0

0 1 0
0 0 1

⎞
⎠ + O(ε),

Ai = ε

a
(δ1,0Ai + O(a)) + O

(
ε2

a

)
, (117)

f = 1 + O(ε),

where

δ1,0Ai = 1

3

(
δ1,0t1 + δ1,0t2 − 2δ1,0t3

−√
3(δ1,0t1 − δ1,0t2)

)
− ∂i(δ1,0�), (118)

and we see the gauge transformation enter, with gauge pa-
rameter δ1,0�. Subleading corrections in powers of ε or a to

the frame and gauge field then only affect the higher order
equations Op,q for p > 1, and these also contain contributions
from higher covariant derivative terms—thus these subleading
corrections cannot be considered consistently without also
including these higher covariant derivative terms too.

This was a key conclusion of our paper [28], namely
that for the leading order effective theory—the Dirac equa-
tion coupled to the strain gauge field—whilst the gauge field
is nontrivial in general, the frame, and thus the metric, is
undeformed.

3. Second order—Op,q for p � 2—curved space Dirac and higher
covariant derivative term with large magnetic field

Now we take the lattice equations Op,q for p � 2, which
give the previous equations O1,0 and O1,1, and at next order
also O2,0, O2,1 and O2,2. The equation O2,0 is solved by
adding the two derivative term for the undeformed case given
above in Eq. (65), and so the full effective description up to
two derivatives is

0 = aeμ
Aγ ADμ� ± ia2 ηABγ AeB

σCσμνDμDν�

+ O(ε3, ε2a, εa2, a3), (119)

with the upper sign for the K point, and the lower for the K ′
point. We note that the coefficient Cσμν , given in Eq. (22) has
a factor involving det(gi j ), but this does not contribute here—
at this order we could consistently simply take the nonzero
components Ci jk = −εkl Ki jl/4, so they are just given by the
lattice invariants.
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To solve the remaining equations, O2,1 and O2,2, we must introduce a linear deformation to the spatial frame, corrections to
the gauge field, and also to the rescaling function f ,

ei
I = δi

I + ε
(
δ1,0ei

I + O(a)
) + O(ε2), f = 1 + ε(δ1,0 f + O(a)) + O(ε2),

Ai = ε

a
(δ1,0Ai + aδ1,1Ai + O(a2)) + ε2

a
(δ2,0Ai + O(a)) + O

(
ε3

a

)
. (120)

The terms in these expansions determined from the leading order equations, here just δ1,0Ai, are as above. The new subleading
corrections are then determined by examining the new equations at this order, i.e., Op,q with p = 2. The equation O2,0 is the
one from the undeformed theory and is satisfied by the choice for the two derivative term. Next we consider O2,1 where the one
derivative terms on � fix the frame correction as

δ1,0ei
I =

(
2
3δ1,0t1 + 2

3δ1,0t2 − 1
3δ1,0t3

1√
3
δ1,0t1 − 1√

3
δ1,0t2

1√
3
δ1,0t1 − 1√

3
δ1,0t2 δ1,0t3

)
+

(
0 δ1,0φ

−δ1,0φ 0

)
, (121)

and we recognize the term involving δ1,0φ as a perturbative frame rotation. The terms in O2,1 with no derivatives on � determine
the rescaling function to be

δ1,0 f = − 1
3 (δ1,0t1 + δ1,0t2 + δ1,0t3), (122)

which is the leading correction in the expansion of f = (det gi j )1/4. Continuing, we determine the correction δ1,1Ai to the gauge
field from O1,1, obtaining

δ1,1Ai = 1

3

(
δ1,1t1 + δ1,1t2 − 2δ1,1t3

−√
3(δ1,1t1 − δ1,1t2)

)
− ∂i(δ1,1�). (123)

Finally, the remaining equations O2,2 determine the ε2 correction to the gauge field,

δ2,0Ai = 1

3

(
δ2,0t1 + δ2,0t2 − 2δ2,0t3

−√
3(δ2,0t1 − δ2,0t2)

)
+ 1

18

(
δ1,0t2

1 + δ1,0t2
2 − 2δ1,0t2

3 + 8δ1,0t1δ1,0t3 + 8δ1,0t2δ1,0t3 − 16δ1,0t1δ1t2

−√
3
(
δ1,0t2

1 − δ1,0t2
2 + 8δ1,0t2δ1,0t3 − 8δ1,0t1δ1,0t3

)
)

− ∂i(δ2,0�),

(124)

where again we see the gauge freedom associated to the choice δ2,0�, and now we see this quadratic correction to the gauge field
has contributions from the quadratic deformation of the couplings, δ2,0tn, but also nonlinear terms in the leading deformations
δ1,0tn.

We explicitly see another key conclusion of our paper [28], namely that while the frame becomes perturbed from being trivial,
so that we may consider the Dirac term to live in a curved space, at the same time one must also introduce a second covariant
derivative term for consistency. One cannot truncate to a curved space Dirac equation (plus strain gauge field), since the higher
derivative term must be included to match to the microscopic lattice theory at the subleading order where the frame becomes
nontrivial.

4. Third order—Op,q for p � 3—O(ε2 ) corrections to the metric

We now give the theory to third order. It takes the form above, with additional corrections to the metric, gauge field, rescaling
function f , and to the higher covariant derivative terms. To this third order the equations Op,q for p � 3 are solved by the
continuum theory,

0 = aeμ
Aγ ADμ� ± ia2 ηABγ AeB

σ Dμ(CσμνDν�) + a3 ηABγ AeB
σ DσμνρDμDνDρ� + O(ε4, ε3a, ε2a2, εa3, a4), (125)

where now we have added a three covariant derivative term with coefficient given by the invariant Dσμνρ as defined in Eq. (22),
and again the upper sign is for the K point and the lower one is for the K ′ point. The spatial frame, gauge field and rescaling
function now must have expansions as

ei
I = δi

I + ε
(
δ1,0ei

I + aδ1,1ei
I + O(a2)

) + ε2(δ2,0ei
I + O(a)

) + O(ε3),

Ai = ε

a
(δ1,0Ai + aδ1,1Ai + a2δ1,2Ai + O(a3)) + ε2

a
(δ2,0Ai + aδ2,1Ai + O(a2)) + ε3

a
(δ3,0Ai + O(a)) + O

(
ε4

a

)
, (126)

f = 1 + ε(δ1,0 f + aδ1,1 f + O(a2)) + ε2(δ2,0 f + O(a)) + O(ε3),

where the terms δ1,0ei
I , δ1,0Ai, δ1,1Ai, δ2,0Ai, and δ1,0 f are as for the previous order. The new terms are then determined by the

equations Op,q where p = 3, namely O3,0, O3,1, O3,2, and O3,3.
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Now the
√

det(gi j ) factor in the expression for Ci jk in Eq. (22) plays an important role at this order—the derivatives acting
on this factor give contributions to the equations O3,1 and O3,2 that are crucial to allow the equations to be satisfied consistently.
We note that at this order, the same factor in the coefficient tensor Di jkl does not play a role.

At order O3,1 we find the frame and rescaling function f are

δ1,1ei
I =

(
2
3δ1,1t1 + 2

3δ1,1t2 − 1
3δ1,1t3

1√
3
δ1,1t1 − 1√

3
δ1,1t2

1√
3
δ1,1t1 − 1√

3
δ1,1t2 δ1,1t3

)
+

(
0 +δ1,1φ

−δ1,1φ 0

)
, (127)

δ1,1 f = −1

3
(δ1,1t1 + δ1,1t2 + δ1,1t3), (128)

and again we see δ1,1φ parameterizes the infinitesimal frame rotation freedom at this order. The gauge field receives a correction
from O3,1, giving

δ1,2Ai = 1

288

(
∂2

x (−27δ1t1 − 27δ1t2 − 36δ1t3) + ∂2
y (47δ1t1 + 47δ1t2 − 3δ1t3) − 14

√
3∂x∂y(δ1t1 − δ1t2)

17
√

3∂2
x (−δ1t1 + δ1t2) + 3

√
3∂2

y (−δ1t1 + δ1t2) + ∂x∂y(46δ1t1 + 46δ1t2 + 88δ1t3)

)

+ 1

3

(
δ1,2t1 + δ1,2t2 − 2δ1,2t3

−√
3(δ1,2t1 − δ1,2t2)

)
− ∂i(δ1,1�) − ∂i(δ1,2�). (129)

Now the equations O3,2 determine the interesting ε2 correction to the spatial frame components, δ2,0ei
I and rescaling function

δ2,0 f . These are

δ2,0ei
I =

( 2
3δ2,0t1 + 2

3δ2,0t2 − 1
3δ2,0t3

1√
3
δ2,0t1 − 1√

3
δ2,0t2

1√
3
δ2,0t1 − 1√

3
δ2,0t2 δ2,0t3

)

+
( − 1

18 (δ1,0t1 + δ1,0t2 − 2δ1,0t3)2 1
6
√

3
(δ1,0t1 − δ1,0t2)(δ1,0t1 + δ1,0t2 − 2δ1,0t3)

1
6
√

3
(δ1,0t1 − δ1,0t2)(δ1,0t1 + δ1,0t2 − 2δ1,0t3) − 1

6 (δ1,0t1 − δ1,0t2)2

)

+
( 2

3δ1,0t1 + 2
3δ1,0t2 − 1

3δ1,0t3
1√
3
δ1,0t1 − 1√

3
δ1,0t2

1√
3
δ1,0t1 − 1√

3
δ1,0t2 δ1,0t3

)
·
(

0 δ1,0φ

−δ1,0φ 0

)
+

(− 1
2 (δ1,0φ)2 δ2,0φ

−δ2,0φ − 1
2 (δ1,0φ)2

)
(130)

and

δ2,0 f =− 1
3 (δ2,0t1 + δ2,0t2 + δ2,0t3) + 4

9 ((δ1,0t1)2 + (δ1,0t2)2 + (δ1,0t3)2) − 1
9 ((δ1,0t1)(δ1,0t2) + (δ1,0t1)(δ1,0t3) + (δ1,0t2)(δ1,0t3)).

(131)

They also determine the gauge field as

δ2,1Ai = 1

3

(
δ2,1t1 + δ2,1t2 − 2δ2,1t3

−√
3(δ2,1t1 − δ2,1t2)

)
+ 1

9

(
(δ1,0t1)(δ1,1t1) + (δ1,0t2)(δ1,1t2) − 2(δ1,0t3)(δ1,1t3)

−√
3((δ1,0t1)(δ1,1t1) − (δ1,0t2)(δ1,1t2))

)
− ∂i(δ2,1�)

+1

9

(
4((δ1,0t1)(δ1,1t3) + (δ1,0t3)(δ1,1t1)) + 4((δ1,0t2)(δ1,1t3) + (δ1,0t3)(δ1,1t2)) − 8((δ1,0t1)(δ1,1t2) + (δ1,0t2)(δ1,1t1))

−√
3(4((δ1,0t2)(δ1,1t3) + (δ1,0t3)(δ1,1t2)) − 4((δ1,0t1)(δ1,1t3) + (δ1,0t3)(δ1,1t2)))

)
.

(132)

Finally, at the last order O3,3 we determine the ε3 correction to the gauge field,

δ3,0Ai = 1

3

(
δ3,0t1 + δ3,0t2 − 2δ3,0t3

−√
3(δ3,0t1 − δ3,0t2)

)
+ 1

9

(
(δ1,0t1)(δ2,0t1) + (δ1,0t2)(δ2,0t2) − 2(δ1,0t3)(δ2,0t3)

−√
3((δ1,0t1)(δ2,0t1) − (δ1,0t2)(δ2,0t2))

)
− ∂i(δ3,0�)

+1

9

(
4((δ1,0t1)(δ2,0t3) + (δ1,0t3)(δ2,0t1)) + 4((δ1,0t2)(δ2,0t3) + (δ1,0t3)(δ2,0t2)) − 8((δ1,0t1)(δ2,0t2) + (δ1,0t2)(δ2,0t1))

−√
3(4((δ1,0t2)(δ2,0t3) + (δ1,0t3)(δ2,0t2)) − 4((δ1,0t1)(δ2,0t3) + (δ1,0t3)(δ2,0t2)))

)

+ 1

27

(
(δ1,0t1)3 + (δ1,0t2)3 − 2(δ1,0t3)3

−√
3((δ1,0t1)3 − (δ3,0t2)3)

)

+ 1

27

(
12((δ1,0t1)2(δ1,0t2) + (δ1,0t1)(δ1,0t2)2) − 18((δ1,0t1)2 + (δ1,0t2)2)δ1,0t3 + 6(δ1,0t1 + δ1,0t2)(δ1,0t3)2

−√
3(−8((δ1,0t1)2(δ1,0t2) − (δ1,0t1)(δ1,0t2)2) + 2((δ1,0t1)2 − (δ1,0t2)2)δ1,0t3 + 10(δ1,0t1 − δ1,0t2)(δ1,0t3)2)

)
.

(133)
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As described in the summary Sec. III, we may give compact and elegant expressions for the electrometric and gauge field that
encompass all the subleading corrections detailed above. We begin by defining the quantity,

�2 =
(∑

n

t2
n

)2

− 2

(∑
m

t4
m

)
, (134)

and then to this order we find that the determinant of the metric is given by the expansion of the expression

det(gi j ) = 3

�2
+ O(ε3, ε2a, εa2). (135)

As mentioned previously, the rescaling function is given by the quarter power of this determinant of the metric,

f = (det gi j )
1/4 + O(ε3, ε2a, εa2), (136)

and the electrometric is given by the remarkably simple expression (as claimed above in Eq. (19) in the summary)

gi j = 3

�2

∑
n

(
δi j − 4

3
�i

n�
j
n

)
t2
n + O(ε3, ε2a, εa2) (137)

to this order, by which we mean that if we write the metric as, gi j = δi j + ε(δ1,0gi j + aδ1,1gi j + O(a2)) + ε2(δ2,0gi j + O(a)) +
O(ε3), then this expression correctly encodes the subleading behaviours from δ1,0gi j , δ1,1gi j , and δ2,0gi j . Remarkably, this is
precisely the same expression for the electrometric as in our paper [28] which we derived when the hopping functions were fine
tuned to ensure the gauge field vanished. In that case one can compute the metric fully nonperturbatively in ε, and we obtained
the above expression with no corrections. It is then a very interesting question here whether, in the presence of a large gauge
field, the form (137) still holds to all orders in ε and a. We similarly find a compact expression for the strain gauge field. First,
we define

�tn = tn − 1, (138)

and then we find that [as we claimed in Eq. (21)]

Ai = 1

a�2
εi j

∑
m

⎡
⎣� j

m�tm

⎛
⎝2 +

∑
n

(3δmn�tn) +
∑
n,p

((
1

3
+ 2δmn − 3δnp

)
�tn�tp

)⎞⎠

+ a2

(
1

4
� j

m�k
m�l

m − 3

8
K jkl + 1

6
δ jk�l

m

)
∂k∂l�tm

⎤
⎦ + O

(
ε4

a
, ε3, ε2a, εa2

)
(139)

elegantly encodes all the gauge field contributions detailed above, namely δ1,0Ai, δ1,1Ai, δ1,2Ai, δ2,0Ai, δ2,1Ai, and δ3,0Ai.

VI. EXAMPLE: ARMCHAIR DEFORMATION AND COMPARISON TO EXACT DIAGONALIZATION

As a check of our continuum effective theory we compare its solution to the low-energy spectrum of the distorted tight-binding
model found by numerical diagonalization. For the moment we will work in terms of the lattice model hopping functions in the
lattice coordinates �x = (x, y). We consider an “Armchair” deformation, so one that varies only in the y direction and preserves
the reflection symmetry in x → −x. Then the hopping functions have the functional form

t1(�x) = t2(�x) = t (y), t3(�x) = τ (y). (140)

Already one may consider a homogeneous deformation, taking t (y) and τ (y) constant and not equal to one. However, here we are
not so interested in the physics of homogeneous anisotropic deformations—which cannot lead to nontrivial strain magnetic fields
or electrometric curvature—but rather that of inhomogeneity, and thus we choose the functions t (y) and τ (y) to be nonconstant
and periodic, and slowly varying so that t (n)(y), τ (n)(y) ∼ O(1). We are then interested in the low lying energy spectrum as we
approach the limit a → 0, corresponding to periodic distortions that slowly vary over many unit cells. In lattice coordinates, the
y periodicity of the A or B sublattices is 3a/2, and so we require the periodicities t (y) = t (y + 3aM/2), τ (y) = τ (y + 3aM/2)
for some integer M which must be taken so that M � 1 to ensure a slow variation.

For this case there is a different lattice basis that is more natural,

�w1 = a(��1 − ��2) = �v1 − �v2, �w2 = a(��1 − ��3) = �v1, �c1 = −�b2, �c2 = �b1 + �b2, �wi · �c j = 2πδi j . (141)

It is then natural to take a supercell generated by �w1 and M �w2, with M A and B sites within the supercell. We proceed with the
standard Bloch wave decomposition. We define our lattice positions as

�xA,B = n1 �w1 + n2M �w2 + m �w2 ∓ a

2
��3, m = 0, . . . M − 1. (142)
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FIG. 2. Left: the honeycomb lattice, with red A and blue B sites, related by translations a��1,2,3. We show the standard unit cell generated
by �wi and the supercell generated by �w1, M �w2 for M = 5. Right: the Brillouin zone for a single unit cell generated by the dual basis �ci and its
coverings by the dual lattice and folded Brillouin zone of the supercell.

This leads to the usual folding of the Brillouin zone, with dual generators (�c1,
1
M �c2). In Fig. 2 we demonstrate this supercell

and Brillouin zone folding for M = 5. We then have crystal momentum,

�k =
(

λ1�c1 + λ2

M
�c2

)
, (143)

where the periodicity of the Brillouin zone is given by λi ∼ λi + 1. We will focus on the K point, taking

A(�x) = ei( �K+�k)·�xu(�x), B(�x) = ei( �K+�k)·�xv(�x), (144)

where u, v are periodic on the supercell, so that �k gives the crystal momentum relative to the K Dirac point. One could
equivalently choose to look at the momentum relative to the K ′ point. We then find the discrete equations

h̄ωum = 2e+ iaky
2 cos

[√
3a

2
(Kx + kx )

]
t

(
3a

4
(2m + 1)

)
vm+1 + e−iakyτ

(
3am

2

)
vm,

h̄ωvm = 2e− iaky
2 cos

[√
3a

2
(Kx + kx )

]
t

(
3a

4
(2m − 1)

)
um−1 + e+iakyτ

(
3am

2

)
um, (145)

where the um, vm are periodic in M, i.e., uM+1 = u1,8 and Kx = − 1
a

4π

3
√

3
.

A. Hopping functions from an armchair distortion

We could now simply choose some functional form for the hopping functions t (y) and T (y), numerically diagonalize and
compare to our effective theory. However, to illustrate our earlier discussion relating to deriving hopping functions from an
embedding, we now consider a specific in-plane displacement field which, following our previous discussion in Sec. IV,
gives a particular instance of the armchair hopping functions. In terms of Eq. (31) we consider the following in-plane
displacement:9

vx(�x) = 0, vy(�x) = − 1

K sin(Ky), K = 4π

3aM
. (146)

Then the lattice and laboratory frame coordinates x and X are trivially related as x = X , and the y and Y coordinates are related
(exactly) as Y = y − ε

K sinKy, or inverting, y = Y + ε
K sin(KY ) + ε2

2K sin(2KY ) + O(ε3). We assume an exactly exponential
bond model (26) depending only on the bond length (34) and this in-plane displacement field leads to hopping functions given

8One can of course then do a discrete Fourier transform on the um and vm, however this position space formulation leads to very sparse arrays
and so is preferable for numerical diagonalization.

9One can consider shifting this distortion by an arbitrary phase, e.g., sin(Ky + ϕa), but this will only give corrections subleading in a and
not affect the leading behavior.
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in lattice coordinates as

t

(
y + a

4

)
= e−β( 1

2

∫ 1
0 dλ

√
3+(1−ε cos(K(y+ aλ

2 )))2−1), τ

(
y − a

2

)
= e−β(

∫ 1
0 dλ(1−ε cos(K(y−aλ)))−1). (147)

The integral in the second expression is simple to compute, and in fact the one in the first can be found in terms of elliptic
functions. Now to make contact with our continuum description we expand these in ε and a which yields

t (y) = 1 + εβ

4

(
cos(Ky) − a2K2

96
cos(Ky) + O(a3)

)
+ ε2β(β − 3)

64
(1 + cos(2Ky) + O(a2)) + O(ε3),

τ (y) = 1 + εβ

(
cos(Ky) − a2K2

24
cos(Ky) + O(a3)

)
+ ε2 β2

4
(1 + cos(2Ky) + O(a2)) + O(ε3). (148)

In the comparison we detail shortly, we will take the phenomenological value β = 3. While we have included the cor-
rections in a to these hopping functions, we emphasize that these corrections are dependent on the bond model, as we
have discussed earlier. This embedding yields the following gauge field and electrometric for the effective theory in lattice
coordinates,

Ai =
(

−εβ

2a

(
cos(Ky) + a2K2

12
cos(Ky) + O(a3)

)
− ε2β(1 + 4β )

16a
(cos2(Ky) + O(a2)) + O

(
ε3

a

)
, 0

)
,

gi j =
(

1 + ε2β(1+2β )
4 cos2(Ky) 0

0 1 − 2εβ cos(Ky) + 2ε2β2 cos2(Ky)

)
+ O(ε3, ε2a, εa2), (149)

and corresponds to the following magnetic field and electrometric Ricci scalar curvature, again in lattice coordinates,

B(y) = εKβ

2a

(
sin(Ky) + a2K2

12
sin(Ky) + O(a3)

)
+ ε2Kβ(1 + 4β )

16a
(sin(2Ky) + O(a2)) + O

(
ε3

a

)
,

R(y) = ε2K2β(1 + 2β )

2
cos(2Ky) + O(ε3, ε2a, εa2). (150)

Transforming the gauge field and electrometric to the laboratory frame gives

AI
lab =

(
−εβ

2a

(
cos(Ky) + a2K2

12
cos(Ky)

)
+ ε2β((7 − 4β ) − (9 + 4β ) cos(2KY ))

32a
, 0

)
+ O

(
ε3

a
, ε2a, εa2

)
,

glab
IJ =

(
1 + ε2β(1+2β )

4 cos2(KY ) 0
0 1 + 2ε(β − 1) cos(KY ) + ε2

2 ((1 − 2 + 2β2) + (5 − 6β + 2β2) cos(2KY ))

)

+O(ε3, ε2a, εa2), (151)

which we note can be derived as a special case of the expressions given in Eq. (54). Then the strain magnetic field and Ricci
curvature in laboratory coordinates are

Blab(Y ) = εKβ

2a

(
sin(KY ) + a2K2

12
sin(KY ) + O(a3)

)
+ ε2Kβ(9 + 4β )

16a
(sin(2KY ) + O(a2)) + O

(
ε3

a

)
,

Rlab(Y ) = ε2K2β(1 + 2β )

2
cos(2KY ) + O(ε3, ε2a, εa2). (152)

We again emphasize that while the deformation of the lattice is purely in-plane, and so its embedding remains flat, the
electrometric that governs the effective theory nonetheless becomes curved at quadratic order O(ε2) in the deformation.
Furthermore, this curvature is sensitive to the bond model taken.

Before we turn to the numerical comparison we briefly take an aside to discuss another simple deformation—the zigzag,
where again we have t1 = t2 = t and t3 = τ but these are now functions of x rather than y. The zigzag deformation can also
be generated by an in-plane displacement by taking, vx = vx(x) and vy = 0. However, the crucial difference with the armchair
case is that for this deformation the gauge field is pure gauge, and the electrometric is simply a coordinate transform of flat
space, although interestingly not the diffeomorphism generated by the vector vi = (vx, vy), but nonetheless the geometry that
the effective description sees is simply flat. Thus, there is not the interesting physics that arises in the armchair case, and hence
we do not discuss the zigzag case further.
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B. Comparison to effective theory

We wish to compare numerical diagonalization with our continuum effective theory. To do so we focus on certain low-energy
states in the lattice theory and follow them as the above armchair strain perturbation is applied, and compare to an analytic
solution in the effective theory. For simplicity we restrict to energy eigenstates with definite momentum kx in the x direction and
zero momentum in the y direction. Clearly this is simpler than including also ky momentum. However, also since the lattice is
undistorted in the x direction, and the distortion only depends on y, the lattice and laboratory frame X coordinate are the same
x = X , and hence the lattice momentum kx is the same as that measured in the X direction in laboratory frame. Thus, kx is easy
to physically interpret.

For the undeformed continuum Dirac theory to leading order in a the low-energy eigenstates forming the Dirac cone at the K
point, with ky = 0, are

�(t, �x) = e−iωt e+ikxx

(
1
±i

)
,

h̄ω

T
= ±3

2
akx, (153)

which solves the continuum leading order Dirac equation. In this undeformed case there are then subleading corrections in a due
to the higher derivative terms, which up to and including the three derivative term, go as

h̄ω

T
= ±

(
3

2
akx + 3

8
(akx )2 − 3

16
(akx )3 + O(a3)

)
. (154)

Now consider turning on the specific armchair strain deformation (148) above. We write an ansatz for the deformed eigenstate
wave function as

�(t, �x) = e−iωt e+ikxx

(
ψ1(y)
ψ2(y)

)
, (155)

where ψ1,2 are periodic functions, and consider the flow of the solution (153) above, taking,

ω =
∑
m=0

∑
n=0

εmanδm,nω, (156)

ψ1,2 =
∑
m=0

∑
n=−m

εmanδm,nψ1,2. (157)

We may then straightforwardly solve the continuum theory for all Op,q for p � 3, finding that the energy up to order O(ε2) goes
as

± h̄ω

T
= 3

2
kx + 3

8
ak2

x − 3

16
a2k3

x + O(a3) + ε2

K2

(
−

3β2

8 kx

a
+

(
3β

64
K2 − 33β2

32
k2

x

)

+
(

−β(9 + 16β )

128
kxK2 − 123β2

64
(kx )3

)
a + O(a2)

)
+ O(ε3). (158)

We note that this correction to the energy due to this armchair deformation is quadratic in deformation parameter ε, since
at leading ε order the hopping functions are purely harmonic, with no constant component—a constant shift in the hopping
functions would have shifted the energy at O(ε). This is an explicit manifestation of the fact that, due to translation symmetry,
the dispersion relation only responds to inhomogeneity at O(ε2). We find that the leading correction on the righthand side going
as ∼ ε2

a is solely due to the leading gauge field, δ1,0Ai and is proportional to kx. The subleading correction, ∼ε2a0 is composed
from three contributions, including from the frame being nontrivial,

3β(1 + 4β )

64
ε2︸ ︷︷ ︸, −3β2

8
ε2︸ ︷︷ ︸,

(
3

16
− 33k2

x

32K2

)
β2ε2

︸ ︷︷ ︸
δ1,0Ai frame two derivative

.

We may separate all the contributions from the leading gauge field, two derivative term, three derivative term and frame
corrections by defining

λ̃ = βλ

K = εβ

aK , ã = aK, (159)

and then writing ω as

± h̄ω

T
= λ̃2c0(ã) +

(
3

2
+ λ̃2c1(ã)

)
(akx ) +

(
3

8
+ λ̃2c2(ã)

)
(akx )2 +

(
− 3

16
+ λ̃2c3(ã)

)
(akx )3 + O(ε3), (160)
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and then we find the various terms give contributions as

c0(ã) = 3(1+4β )
64β

ã2 − 3
8 ã2 + 3

16 ã2 +O(ã3)

c1(ã) = − 3
8 − 1

16 ã2 − 3(1+2β )
32β

ã2 + 3(1+32β )
128β

ã2 − 1
16 ã2 − 9

16 ã2 +O(ã3)
c2(ã) = − 33

32 +O(ã)
c3(ã) = − 33

16 + 9
64 +O(ã)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

δ1,0Ai frame two derivative three derivative mixed

, (161)

where we have separated the contributions from different
terms in the expansion, and in particular distinguish the lead-
ing part of the strain gauge field from the leading correction to
the frame, as well as contributions from the higher derivative
terms. More precisely we distinguish these contributions by
writing the effective theory as

0 = aeμ
Aγ ADμ� ± iq2a2 ηABγ AeB

σ Dμ(CσμνDν�)

+ q3a3 ηABγ AeB
σ DσμνρDμDνDρ�

+ O(ε4, ε3a, ε2a2, εa3, a4), (162)

where we have artificially added coefficients q2,3 to the two
and three covariant derivative terms, and then we modify the
frame and gauge field expansions as

Ai = εqgauge

a
δ1,0Ai

+ qsubleading(remaining δn,m Ai contributions),

ei
I = δi

I + qframe

∞∑
n=1

εnδnei
I , (163)

so that for q2,3 = qgauge = qsubleading = qframe = 1 then we
recover our full effective theory. We solve this modified ef-
fective theory with the hopping function deformation above,
computing the dispersion relation ω(akx ), and computing
the c0,1,2,3(ã) which now depend on these constants. Setting
qsubleading = qframe = q2,3 = 0 gives the leading consistent ef-
fective theory approximation, that from truncating only to one
covariant derivative, i.e., the flat Dirac equation with O(ε/a)
magnetic strain field, denoted “δ1,0Ai” in the table above.
Setting qsubleading = qgauge = q2,3 = 0 yields the contribution
from curved frame corrections, denoted “frame” above. Keep-
ing only q2 or q3 nonzero isolates the two or three derivative
terms shown above. Finally, the “mixed” corrections are ones
that involves more than one source. For example, for c1 the
mixed contribution comes from frame corrections originating
from the two derivative term, and so is proportional to both q2

and qframe.
Quite interestingly c2(ã) receives no correction from the

frame—in fact this is due to the specific choice of leading hop-
ping deformation; more generally for t = 1+εα cos(Ky)+ . . .

and τ = 1 + εβ cos(Ky) + . . . one finds

c2(ã) = −11(β − α)2

6β2︸ ︷︷ ︸+ 2(β − α)(β − 4α)

3β2︸ ︷︷ ︸
two derivative frame, (164)

but for our in-plane strain, we have α = β/4 so the frame con-
tribution vanishes. Precisely the same is true also for c3 where

again more generally we would obtain a frame correction and
a mixed correction along with the two and three derivative
contributions, but precisely for the in-plain embedding case
where α = β/4 the frame correction vanishes.

The k0
x terms shift the energy and result in the Dirac point

K moving from kx = 0 to

kx = ε2KD = −2λ̃2

3a
c0(ã) = −ε2β

32a
+ O

(
ε3

a
, ε2a

)
(165)

and receive contributions from the frame and the two deriva-
tive term, as well as from the gauge field δ1,0Ai. Shifting to the
deformed K Dirac point by taking kx = ε2KD + k̃x, and then
considering the linear terms in k̃x yields an effective speed of
light in the x direction at order O(ε2) going as,

ceff,x = 3aT

2h̄

(
1 − ε2β2

4a2K2
− ε2β(3 + 4β )

48
+ O

(
ε3

a
, ε2a

))
,

(166)

where the first subleading term is due only to the gauge field
correction, δ1,0Ai, and the second subsubleading term has con-
tributions from the frame and higher derivative terms. Thus,
we see very explicitly that if we are interested only in the
Dirac cone itself, then the leading correction is simply due
to the flat space Dirac theory coupling to the large gauge field.
The frame correction is subleading to this and comes along
at the same order as the higher derivative terms. One the other
hand, if we are interested in the band structure more generally,
not simply the very low-energy Dirac cone behavior going
as k̃x but also k̃2

x and higher powers, then the gauge field is
just one contributing correction, and is not the leading one. In
particular, as we see above, it contributes to the shift of the
Dirac point at the same order as everything else.

C. Numerical diagonalization

We now compare our low-energy effective theory to a
direct computation of ω. We take the full hopping functions
in Eq. (147) with the phenomenological value β = 3, and
compute ω by numerically diagonalizing the tight-binding
lattice model (we will term this ωnum) in Eq. (145). We ex-
tract the appropriate lowest (absolute value) eigenvalues as a
function of kx (with ky = 0) and the deformation amplitude ε

and period given by K . From this we compute the derivatives,

cnum
n (ã) = 1

n!

h̄

T λ̃2

∂n(ωnum(akx ) − ω0(akx ))

an∂kn
x

∣∣∣∣
kx=0,λ̃

,

h̄ω0(akx )

T
= 3

2
akx + 3

8
(akx )2 − 3

16
(akx )3 + · · · , (167)
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FIG. 3. Plot showing the quantities �c0,1,2,3 against our deformation parameters, λ̃ and M = 4π/(3ã). This compares the numerical
diagonalization of the tight-binding model to the approximation from the low-energy effective theory. We clearly see that as we decrease
the perturbation parameters, λ̃ and ã (so increase M) these quantities �c0,1,2,3 decrease indicating our effective theory is better approximating
the full tight-binding model. The markers show the actual numerically computed data points. We note that the sudden “dips” in some of these
plots are due to the derivatives of ωnum and the undeformed ω0 coinciding for specific values of λ̃, leading to an accidentally zero of the
fractional differences �c0,1,2,3.

where ω0(akx ) is the dispersion relation for the undeformed
theory (in the kx direction). We then obtain the analog expres-
sion to the analytic approximation (160) above,

h̄ ωnum(akx )

T
= λ̃2cnum

0 (ã) +
(

3

2
+ λ̃2cnum

1 (ã)

)
(akx )

+
(

3

8
+ λ̃2cnum

2 (ã)

)
(akx )2

+
(

− 3

16
+ λ̃2cnum

3 (ã)

)
(akx )3 + · · · ,

(168)
as an expansion about kx = 0 whose coefficients must be com-
puted numerically. We may then compare our approximation
at order O(λ̃2) above to the full numerical diagonalization at
each order in powers of kx expanded about kx = 0 by simply
comparing the numerical cnum

n (ã) to the analytic approxima-
tions cn(ã) truncated up to the powers of ã indicated above.

For this numerical diagonalization it is convenient to
choose units so that the lattice scale a = 1, and T = 1, and
vary the periodicity M (and hence ã = aK = 4π

3M ), and the
dimensionless deformation ε (and hence coupling λ̃). We nu-
merically compute the derivatives above using standard finite
differencing stencils. For example, for the first derivative we
approximate

1

a

∂ωnum(akx )

∂kx

∣∣∣∣
kx=0

= ωnum(δ) − ωnum(−δ)

2δ
, (169)

taking a small δ = 10−10. To ensure accurate results we find
we must use higher precision arithmetic in determining the
matrix eigenvalues, and hence ωnum(akx ).

In Fig. 3 we show the results of comparing our approxi-
mations for c0,1,2,3 to the numerical results cnum

0,1,2,3 for various
values of M (and hence ã), and as a function of λ̃. We plot the
fractional error between the approximation and the numerical
result,

�cn =
∣∣∣∣cn − cnum

n

cnum
n

∣∣∣∣. (170)

We expect that this fractional error goes to zero as we take
both λ̃ and ã to zero, and indeed this is what we see. We see
in Fig. 3 that for fixed M, and hence fixed ã, that for c1,2,3 the
error in the approximation initially decreases as a small λ̃ is
further decreased. However, for sufficiently small λ̃ this error
saturates due to the error from higher terms in ã beyond our
approximation. However, we see that the saturation value is
consistent with correctly scaling to zero as M is increased (or
equivalently ã is decreased). The only difference is c0 which
does not appear to receive corrections in ã [at least at order
O(λ̃2)] and so the error simply scales to zero with decreasing
λ̃, independent of M (or equivalently ã). We emphasize again
that contributions from the gauge field, frame corrections, the
two covariant derivative term, are all required to obtain this
approximation for c0, Leaving out any one of them destroys
the convergence of the approximation seen above. Likewise,
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FIG. 4. This plot illustrates many of the ideas in this paper. It shows the quantity �c1 which compares the numerical computation of the
first derivative in kx of the band structure near the Dirac point to that predicted by our effective theory approximation. The orange data points
are computed using only the leading effective description, the Dirac equation in flat space with strain gauge field. The blue data points are for
our full approximation. The green ones are an approximation which ignores the two and three covariant derivative terms, so the (inconsistent)
truncation to the curved space Dirac equation and strain field. We show data for two deformation periodicities, M = 12 (open markers) and
M = 48 (closed markers). First, we see the leading flat space Dirac plus gauge field gives a good approximation that improves as we take λ̃

and ã to zero (or increase M). Second, taking the curved space Dirac equation plus gauge field, but ignoring higher derivative terms does not
improve the approximation—in fact here it makes it worse. Third, the full approximation is superior to the leading one, since it correctly and
consistently includes the subleading corrections—those from the curved frame but also those from higher covariant derivative terms, whose
contributions we see are equally important.

the two and three derivative terms are crucial for obtaining the
correct behavior for c2 and c3.

The case of c1 is interesting as we see from Eq. (161)
that the gauge field gives the leading contribution, with c1 

−3/8, and then the frame, two and three derivative terms
contribute the subleading ∼O(ã2) behavior. We may ask how
good an approximation this leading gauge field alone is. In
Fig. 4 we plot �c1 for two values of the periodicity M, taking
M = 12 and 48 but only taking the leading correction in c1

from the gauge field (the curves labeled “Gauge”). This would
correspond to artificially setting to zero the coefficients of the
higher covariant derivative terms, and also artificially forcing
the frame to be undeformed, before solving the effective the-
ory for ω(akx ). We also show �c1 for our full approximation,
including the frame and two and three covariant derivative
terms (the curves labeled “All”). Finally, we plot �c1 for
an approximation where the two and three covariant deriva-
tive contributions are ignored, so we only take the first two
columns of Eq. (161) (the curves labeled “Gauge and Frame”).
We again see the fractional error decrease as we scale λ and ã
to zero using only the leading gauge field approximation—this
is precisely the statement that the leading effective description
is the flat Dirac equation plus magnetic strain gauge field.
However, importantly we see no improvement in the level
of approximation if we include the frame corrections, but ig-
nore the higher covariant derivative terms. However, including
these terms too, we indeed see a much better approximation,
as we are correctly accounting for the subleading behavior.
This clearly illustrates our main assertions, first that the cor-
rections from the curved frame are subleading to those of the

gauge field, and further that they come at the same order as
corrections from the higher covariant derivative terms, and
thus if you wish to consider these subleading corrections you
must include them all.

Finally, it is interesting to consider how good the full ap-
proximation including gauge fields, curved frame and two and
three covariant derivative terms is, compared to simply trun-
cating to the flat space Dirac theory and leading gauge field
contribution. The answer is that it depends on what quantity
one computes. We see above that the leading correction to
c1, and hence to the wavespeed, is from the gauge field. In
Fig. 5 we show this by plotting h̄

T ωnum′(akx ) at kx = 0 as a
function of the deformation ε and the periodicity of the defor-
mation, M, computed numerically and shown as data points.
We compare these values from numerical diagonalization to
our full analytic approximation, drawn as solid curves, and
also to the approximation coming only from the leading gauge
contribution, drawn as dashed curves. They are very close by
eye, although interestingly for small M, where subleading ã
corrections are relatively more important, one can see by eye
the improvement in taking the full approximation. Perhaps
the most interesting point to note is that for the quite large
deformations of the theory shown, where we see a ∼20%
change in this quantity compared to the undeformed theory,
these analytic approximations still give a reasonable result.

If we look at the shift in the Dirac point, which to leading
order in λ̃ is determined simply by the value of ωnum(0), then
the gauge field, frame and two derivative terms all contribute
at leading order as we have discussed above. Plotting this
value from the numerical diagonalization in Fig. 6 as data
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FIG. 5. This plot shows the first derivative of the dispersion relation, h̄
T ωnum ′(0), near the Dirac point (recall the Dirac point is slightly

shifted to nonzero kx), against the deformation amplitude ε, as computed numerically from the tight-binding model (data points), and for various
deformation periodicities M. We also plot the effective theory approximations—both the leading one from the flat space Dirac equation with
magnetic gauge field (dashed curves), and our full one consistently including spatial curvature and higher two and three covariant derivative
terms. We see for this first derivative the leading flat space Dirac description gives a good approximation, even when the theory is deformed so
that this quantity changes considerably—for example the curves do well even when the value has changed by ∼20%. The full approximation
is better for smaller M, as we would expect, but both work well.

points, again we can compare to our full analytic approxima-
tion (solid curve), and also to the approximation truncating
to the curved space Dirac equation, so including gauge field
and frame corrections but ignoring the higher two covariant
derivative term (dashed curve). Note that these are single
curves, as it happens there is no M (or ã) dependence in the
approximations for this quantity. We see that the full approxi-
mation gives good agreement for suitably small ε (which must
be smaller for larger M, as really the perturbation parameter is

λ̃), while the approximation ignoring the two derivative term
does not agree at all.

Last, suppose we are interested in the subleading behavior
at the Dirac point, going as k2

x . This is irrelevant on large
scales compared to the leading Dirac behavior, but is certainly
of key interest if we are considering the full band structure.
This is determined from the second derivative of ωnum. In
Fig. 7 we plot h̄

T ωnum′′(0) and compare to our analytic ap-
proximation. The leading contribution at O(λ̃2) comes from

FIG. 6. This is a similar plot to the previous one, but now looking at the value of h̄
T ωnum(0) which determines the leading shift in the Dirac

point. For this quantity there is no leading gauge field contribution, and instead the gauge field, curved frame and higher derivative corrections
all contribute to the leading behavior. The dashed curve shows the contribution ignoring the higher derivative terms (so a truncation to the
curved space Dirac equation plus gauge field) and we see there is no agreement with the numerical results. Including these higher covariant
derivative terms yields the full approximation, the solid curve, which well approximates the numerical results when ε becomes small (for larger
M then ε must be smaller, since the real perturbation parameter is λ̃ ∼ ε/ã).
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FIG. 7. A similar plot to the previous two, now for the second derivative h̄
T ωnum ′′(0). The full approximation is the solid curve, with the

two and three covariant derivative terms giving this leading behavior. Again it is interesting that the approximation is rather good even when
the quantity is deformed far from its undistorted value.

the two covariant derivative term. Here we see again that,
somewhat surprisingly, even for quite small ε there is a very
large deviation of this second derivative from its undeformed
value—for example for ε > 0.1 and M < 8 we see that it actu-
ally becomes negative, as compared to its undeformed positive
value of 3/8. While this deviation is very large, certainly being
∼O(1), the leading analytic approximation does a remarkably
good job of reproducing the behavior.

Thus, to summarize, the leading effective theory taking
the flat space Dirac equation coupled to the gauge field can
correctly reproduce some features of the dispersion relation
for in-plane inhomogeneous deformations. In particular, it
gives the leading correction to the wavespeed. However, it
cannot account for more detailed phenomena, such as the
shift in the Dirac point, or the subleading k2

x deformation to
the Dirac cone. Taking our effective theory with nontrivial
frame and large strain gauge field, and including up to three
covariant derivatives, allows a consistent derivation of the
shift in the Dirac point, the leading k2

x and k3
x corrections to the

dispersion relation, as well as the subleading (and thus small)
correction to the wavespeed. However, it is crucial to empha-
size again that one cannot pick and choose between these
contributions—the frame, two and three covariant derivative
terms, and subleading gauge field corrections all enter with
the same parametric dependence. Taking only a subset of these
contributions will simply yield the wrong results.

VII. GENERAL EFFECTIVE THEORY

So far our discussion has been centered on deriving the
low-energy effective theory from the (nearest neighbor) mi-
croscopic tight-binding model. However, this lattice model
cannot capture the full detail of monolayer graphene. It is
then natural to wonder what would be the appropriate effective
theory of actual monolayer graphene in the presence of an in-
plane strain, where, at least for reasonably small deformations
we might expect Dirac points to persist.

The main lessons we have learned from the tight-binding
lattice model are that its low-energy effective theory, given
above in Eqs. (14), (19), and (21), is gauge and frame co-
variant, that the power counting is modified from the usual
structure of a relativistic effective theory, due to the large
gauge field, and that it is entirely determined by the frame
and gauge field, with the remaining necessary higher covariant
derivative terms being controlled by lattice invariants with
the geometric connection being the torsion free one. Then
using a bond model where hopping functions are determined
purely by bond lengths under a deformed embedding, we have
written the gauge field and metric purely in terms of the strain
tensor in Eq. (37).

It is then natural to postulate that the effective theory of
a Dirac point for monolayer graphene, deformed by in-plane
inhomogeneous strain, has the same features and again can be
written in terms of the strain tensor σi j . We conjecture that
this effective description takes the same form as for that of
the tight-binding model, since it is determined by the lattice
structure, but the numerical coefficients will differ from those
in the case of the nearest-neighbor lattice model. Thus, we
expect the theory describing deformations up to linear order
O(ε), and to leading order in the lattice scale O(a), to simply
be the flat space Dirac equation with large magnetic gauge
field, which in lattice coordinates is

0 = aeμ
Aγ ADμ� + O(ε2, εa),

Ai(�x) = − β

2a
εi jK

i jkσ jk (�x) + O

(
ε2

a
, ε

)
, (171)

so that eμ
A is a flat frame, giving the flat electrometric

ds2
effective = −c2

effdt2 + δi jdxidx j , and Dμ� is the covariant
derivative of Eq. (15). Here the constants ceff and β must
be measured from the monolayer graphene system; the speed
ceff may be measured from the undeformed Dirac cone, and
β from some particular deformation, for example a homo-
geneous strain. The scale a represents the lattice scale, but
its actual value can be rescaled by appropriate scaling of the
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purely numerical constant β, as well as the wave function
�. Naturalness then implies that choosing a again to be the
lattice bond length, the numerical constant β should be of
order O(1). Once these constants are determined, then the
theory should describe the leading order low-energy behavior
at leading order in the deformation, O(ε), for any inhomoge-
neous strain field. As mentioned earlier, we expect in-plane
inhomogeneous strain have low-energy Dirac points, but for
out-of-plane bending this is less clear due to the interaction of
σ orbitals.

This leading theory is a flat space theory, and as we have
discussed, to consistently include curvature we must work to
higher order in covariant derivatives. The structure of these
again will be determined by the underlying lattice symmetry,
and so should take the same form as for the tight-binding
model, but with different numerical coefficients. An important
point is that for realistic graphene, even for a pristene mono-
layer, when going beyond linear dispersion near the Dirac
points the conductance and valence bands are not symmetric
around the Fermi energy, in contrast to the behavior of the
simple lattice tight-binding model [50,51]. Thus, our effective
theory should refer to a specific band, and the coefficients of
the higher order corrections will be specific to this band. Here
we will consider the effective theory of the valance band. Then
from our discussions above, we expect the effective theory
governing a Dirac point, working to order O(ε2) and leading
order in a in the metric deformation, is

0 = aeμ
Aγ ADμ� ± c2ia2 ηABγ AeB

σ Dμ(CσμνDν�)

+ c3a3 ηABγ AeB
σ DσμνρDμDνDρ�

+ O(ε4, ε3a, ε2a2, εa3, a4), (172)

with the magnetic gauge field and electrometric in lattice
coordinates being

Ai(�x) =− β

2a
εi j (K

jkl (σkl (�x) + ξ1σkm(�x)σml (�x)

+ξ2σk (�x)σl (�x)) + a2(α1∂ j∂kσk (�x) + α2∂k∂kσ j (�x)

+α3Kklm∂k∂lσ jm(�x)) + O(ε3, ε2a, εa2)),

gi j (�x) = δi j + β(χ1σi j (�x) + χ2σik (�x)σk j (�x) +χ3δi j (σkk (�x))2

+χ4σi j (�x)σkk (�x) +χ5σi(�x)σ j (�x)) +O(ε3, ε2a, εa2),

(173)

where again σi = Ki jkσ jk , and these expressions are consis-
tent to the O(ε2) in the electrometric. We emphasize again
that to work consistently to O(ε2) in the metric perturbation,
we must include the two higher covariant derivatives in the
effective theory and also the subleading O(a2) corrections at
O(ε) in the gauge field (noting that O(a) corrections to both
the metric and gauge field vanish). Here β, ceff are as for the
leading theory, and now c2,3, ξ1,2, α1,2,3, and χ1,...,5 are more
numerical constants that should be fixed by matching to the
valence band of the monolayer graphene theory. Again it is
natural to choose the scale a to be the lattice bond length, but
its precise value can be adjusted by rescaling these numerical
constants. We reiterate that the effective theory for the con-

duction band will take the same form, but we should expect
the numerical constants will have different values.

For the nearest neighbor tight-binding model with our
bond-model (27) we see that they take the values

c2 = 1, c3 = 1, ξ1 = (β − τ )

2
, ξ2 = − (3β + τ )

8
,

α1 = 3

4
, α2 = −1

4
, α3 = − 7

12
, χ1 = 2, χ2 = 4β,

χ3 = (β + τ )

4
, χ4 = −(β + τ ), χ5 = − (β + τ )

4
,

(174)

and further have τ = β + 1 for an exponential bond model.
One may then adjust the constants c2 and c3 by fitting the band
structure to the undeformed model. Then ξ1,2, α1,2,3 and χ1,...,5

would be fixed by comparing to specific deformations.
Specifically we may determine ξ1,2 and χ1,...,5 from homo-

geneous, anisotropic strains as we now demonstrate. Suppose
we perform a strain induced by

X = x + ε(v1x + v3y), Y = y + εv2y (175)

for constants v1,2,3, which corresponds to the constant strain
tensor (in lattice coordinates),

σi j =
(

εv1 + ε2

2 v2
1 εv3 + ε2

2 v1v3

εv3 + ε2

2 v1v3 εv2 + ε2

2

(
v2

2 + v2
3

)
)

. (176)

The terms with coefficients given by the α1,2,3 in the gauge
field all drop out as they involve derivative of this constant
strain tensor. Thus, we will be insensitive to these constants.
However, as we now show, we will be able to fix the other
constants.

We may then solve the continuum theory in a similar man-
ner to that in Sec. VI. We write a similar ansatz for the wave
function as in Eq. (155), taking

�(t, �x) = e−iωt e+i(kxx+kyy)

(
ψ1

ψ2

)
(177)

for constant components ψ1,2. For the undeformed theory the
Dirac point is simply at ki = 0—when uniform strain is turned
on we define the location of the Dirac point, where ω = 0,
to be at ki = kD

i . Since the strain is constant, the magnetic
gauge field is constant, and hence pure gauge, and directly
corresponds to a shifting of the Dirac point, so that kD

i = Ai.
Thus, we consider the momentum shift from the Dirac point
by writing

ki = kD
i + �ki, (178)

so that (�kx,�ky) = (0, 0) is the Dirac point. Further we may
transform these lattice momenta to the laboratory frame via

�kx = �klab
x + εv1�klab

x ,

�ky = �klab
y + ε

(
v2�klab

y + v3�klab
x

)
, (179)

and likewise for the shift of the Dirac point, given by kD,lab
i ,

the transform of kD
i (which is simply given by the gauge field).

First, we see that this shift, given simply by the transform of
the (constant) gauge vector to laboratory frame, is

045425-29



MATTHEW M. ROBERTS AND TOBY WISEMAN PHYSICAL REVIEW B 109, 045425 (2024)

kD,lab
x = β

a

(
ε

2
(v2 − v1) + ε2

4

(
(v1 − v2)2 + v2

3 − 2ξ1
(
v2

1 − v2
2

) + 2ξ2
(
(v1 − 2v2)2 − v2

3

)))
, (180)

kD,lab
y = β

a

(
ε

2
v3 + ε2

2
v3(2(v1 − v2) + ξ1(v1 + v2) + 2ξ2(v1 − v2))

)
. (181)

Thus, measuring this shift of the valence band Dirac point (in laboratory frame) as the homogeneous strain is turned on, at
leading order O(ε) we may deduce the constant β, and at order O(ε2) we find ξ1,2. Note that we can extract these coefficients
from some specific strain configuration, say v1 = v2 = 2v3. Assuming the effective theory is a consistent description it will then
predict the dependence of kD,lab

i for any other values of v1,2,3, so it may already be tested in this homogeneous setting.
To determine the remaining constants, χ1,...,5 we compute the dispersion relation purely as a function of �klab

x , assumed to be
positive for notational simplicity, and setting �klab

y = 0. For this we find

± aω

ceff
=

(
1 + ε

v1(2 − βχ1)

2
+ ε2

(
(2 − βχ1)

(
v2

3 (2 − βχ1) − 3v2
1βχ1

)
8

− β

2

(
4v2

1 + v2
3

4
χ2 + (v1 + v2)2χ3 + v1(v1 + v2)χ4 + v2

3χ5

)))
a�klab

x

+ c2

(
1

4
+ (4v1 − v2βχ1)

8

)(
a�klab

x

)2 − 1

8
c3
(
a�klab

x

)3 + O(a4, εa3, ε2a2, ε3). (182)

Note that when restricting to the tight-binding model (174) we
find agreement with Refs. [12,40] at leading order. This result
is slightly different than the expressions given in Ref. [10],
because we have explicitly translated back to laboratory frame
coordinates when defining momentum.

The energy ω as a function of the momentum klab
x for the

undeformed theory determines the constants ceff, c2 and c3

through its second and third derivatives at the Dirac point
�klab

x = 0, as discussed above. At order O(ε) measuring the
linear �klab

x behavior should then determine the constant χ1.
Then the (�klab

x )2 behavior should be predicted by the ef-
fective theory. Finally, at order O(ε2) we may determine the
remaining constants χ2,3,4,5 by measuring the linear �klab

x
behavior for various deformations. For example, setting v1 =
v3 = 0 and having only v2 will yield χ3. Taking v1 = −v2,
v3 = 0 will yield χ2, and so on. Once these are determined,
the general dependence on v1,2,3 should be predicted if the
effective theory works, and thus it can again be tested already
for these homogeneous strains.

Once all these constants have been fixed, and the the-
ory tested for consistency with homogeneous deformations,
it then remains to fix the three remaining constants α1,2,3

at this order of approximation. This should be done using
measurements made on the valence band for a particular
inhomogeneous strain field, such as the periodic armchair
deformation in the previous section. Once these too are fixed,
we expect this effective theory of the valence band will deter-
mine its low-energy behavior for any inhomogeneous in-plane
strain field up to the order of approximation we are truncating
the theory to. As discussed above, one may use the same
procedure to find the effective theory for the conduction band,
and we expect the constants controlling the higher order cor-
rections to be different to those of the valence band. It would
be very interesting to test these ideas using DFT calculations
of monolayer graphene with inhomogeneous in-plane defor-
mations.

VIII. CONCLUSION

In this paper we have demonstrated that due to the lattice
scale magnetic field resulting from lattice strain, the standard
power counting of a derivative expansion does not apply to
the continuum effective field theory of the graphene nearest-
neighbor tight-binding lattice model. An important result of
this is that while the continuum effective theory of this lattice
model couples to a nontrivial curved electrometric, this curva-
ture is subleading to the gauge field and appears at the same
order in the effective theory as a higher covariant derivative
correction, and so there is no consistent truncation to simply
the curved space Dirac equation coupled to the strain gauge
field. However, when considering perturbative elastic strain,
it is possible to follow a double series expansion, in both the
distortion and lattice spacing, which allows us to consistently
organize an effective description. The leading truncation is the
flat space Dirac equation coupled to the gauge field, where
there is no correction to the frame, and thus metric, and this
applies only to linear order in the deformation amplitude. If
we wish to go beyond linear order, or incorporate the inter-
esting subleading effects of a curved “electrometric,” we must
include these higher covariant derivative terms, and also be
careful to include the appropriate corrections in the gauge
field and electrometric which are subleading in the lattice
spacing.

In this work we have carried out this expansion explicitly
to quadratic order in the electrometric deformation, which
requires including two higher covariant derivative terms. This
is the order where we first see corrections to the low-energy
dispersion relation due to spatial variation of the hopping
functions. We have performed explicit numerical comparison
with the lattice model to show that our effective theory cor-
rectly reproduces this low-energy band structure. We see the
effect of the subleading electrometric curvature corrections in
the dispersion relation, and confirm that these contribute at the
same order as corrections from higher derivative terms.
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An interesting feature of the effective theory is that the
electrometric, which the Dirac field propagates on, is not
simply the induced metric of the graphene membrane. In
particular, even for the case of pure in-plane distortions,
which give a flat induced metric, going to quadratic order in
the deformation one obtains an electrometric with nonzero
curvature. This curvature is a subleading correction to the
large magnetic field, and contributes at the same order as
the Lorentz violating higher derivative terms, but still may
provide an interesting testbed for “analog gravity.”

One of the most interesting results we find is that, at
least to the order we have explored, torsion vanishes for the
electrometric geometry—this geometry is simply derived
from the curved metric with the torsion-free Levi-Civita con-
nection. This is perhaps not surprising, as we are not changing
the lattice topology, and so are not adding lattice dislocations,
but given that we can generate curvature without adding lattice
disclinations, it is not immediately apparent why we must
couple to the torsion-free connection only. In particular, using
the lattice invariants and strain tensor one can define an object,
ε jkKilmσlm with the same index structure as spatial torsion,
T i

jk . This tensor has a trace proportional to the leading strain
gauge field, but minimal coupling to torsion has a different
structure than to the strain gauge field - in particular, both
components of � have the same charge under the local strain
gauge symmetry, but opposite charge under frame rotations.
It would be very nice if there were a symmetry argument
for vanishing torsion, which we leave to future work. On
a related note, it is interesting to follow what happened to
the microscopic time reversal symmetry. Since this symmetry
exchanges the K and K ′ points, it is clear that it appears in
the continuum theory as the action of standard time reversal
acting on a Dirac fermion combined with an exchange of the
two Dirac fields. It is crucially only by considering the total
theory of both Dirac cones that we recover a theory that is
time reversal invariant, as it must be as elastic strain does not
break time reversal.

In the special case that the hopping functions are tuned so
that the gauge field vanishes, at least at leading order O(ε/a),
then conventional relativistic power counting is restored. In
this case the leading effective theory is simply the curved
spacetime Dirac equation as shown in Ref. [28]. However, as
discussed there, this tuning appears very unnatural—we may
think of it as having to fine tune away a relevant operator.

Further, one can consider a simple model of elasticity for the
graphene membrane and one finds that energetics do not pre-
fer vanishing strain gauge field when distorted. Interestingly
the metric above (19) is the one derived in Ref. [28] to all
orders in ε for such fine tuning. Here we only derive it up to
the quadratic order in the metric deformation—however it is
natural to wonder whether it holds to all orders in the presence
of the gauge field.

Here we have explicitly derived the effective theory for the
tight-binding lattice model. Having seen its elegant structure,
and in particular its local gauge and frame symmetry, and
how it is constructed from lattice invariants, it is natural to
conjecture that the effective theory for the valence and con-
duction bands of monolayer elastically strained graphene take
a similar form, albeit with different numerical coefficients
that would have to be determined through comparison to
measurements. Clearly it would be very difficult to measure
the subleading effects of nontrivial curvature using current
graphene experiments [8], though one could hope for im-
provements in the future, or comparison to optical honeycomb
lattices [52]. It would also be very interesting to compare
our effective theory to ab initio numerical approaches used to
study elastically deformed graphene. In particular, it would be
interesting to try to numerically extract these effective field
theory parameters. One might also use numerical methods
to study the validity of the tight-binding lattice model to
bent graphene. It would be very interesting to understand
how much of the effective theory remains valid, and what
the effects of mixing between pz and sp2 orbitals are on the
continuum theory. One can also hope to make contact with ex-
perimental constructions of optical honeycomb lattices [52],
which should have a similar tight-binding lattice model.

ACKNOWLEDGMENTS

We thank Arash Mostofi for providing valuable insights.
We also thank Johan Jönsson, Pablo Morales, and Gerado
Naumis for useful discussion. This work was supported by
STFC Consolidated Grant No. ST/T000791/1, the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (Grant No. 2023R1A2C1006975),
and an appointment to the JRG Program at the APCTP
through the Science and Technology Promotion Fund and
Lottery Fund of the Korean Government.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-
dimensional gas of massless dirac fermions in graphene, Nature
(London) 438, 197 (2005).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental
observation of the quantum Hall effect and and Berry’s phase in
graphene, Nature (London) 438, 201 (2005).

[3] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the
elastic properties and intrinsic strength of monolayer graphene,
Science 321, 385 (2008).

[4] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H.
Terrones, Electronic and optical properties of strained graphene
and other strained 2D materials: A review, Rep. Prog. Phys. 80,
096501 (2017).

[5] K.-i. Sasaki, Y. Kawazoe, and R. Saito, Local energy gap in de-
formed carbon nanotubes, Prog. Theor. Phys. 113, 463 (2005).

[6] H. Suzuura and T. Ando, Phonons and electron-phonon scatter-
ing in carbon nanotubes, Phys. Rev. B 65, 235412 (2002).

[7] M. Vozmediano, M. Katsnelson, and F. Guinea, Gauge fields in
graphene, Phys. Rep. 496, 109 (2010).

045425-31

https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1126/science.1157996
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1143/PTP.113.463
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1016/j.physrep.2010.07.003


MATTHEW M. ROBERTS AND TOBY WISEMAN PHYSICAL REVIEW B 109, 045425 (2024)

[8] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F.
Guinea, A. C. Neto, and M. F. Crommie, Strain-induced
pseudo–magnetic fields greater than 300 Tesla in graphene
nanobubbles, Science 329, 544 (2010).

[9] E. Muñoz and R. Soto-Garrido, Analytic approach to magneto-
strain tuning of electronic transport through a graphene
nanobubble: Perspectives for a strain sensor, J. Phys.: Condens.
Matter 29, 445302 (2017).

[10] F. de Juan, M. Sturla, and M. A. H. Vozmediano, Space depen-
dent Fermi velocity in strained graphene, Phys. Rev. Lett. 108,
227205 (2012).

[11] M. A. Zubkov and G. E. Volovik, Emergent gravity in graphene,
J. Phys.: Conf. Ser. 607, 012020 (2015).

[12] M. Oliva-Leyva and G. G. Naumis, Generalizing the Fermi ve-
locity of strained graphene from uniform to nonuniform strain,
Phys. Lett. A 379, 2645 (2015).

[13] B. Yang, Dirac cone metric and the origin of the spin con-
nections in monolayer graphene, Phys. Rev. B 91, 241403(R)
(2015).

[14] G. Volovik and M. Zubkov, Emergent geometry experienced by
fermions in graphene in the presence of dislocations, Ann. Phys.
356, 255 (2015).

[15] C. Si, Z. Sun, and F. Liu, Strain engineering of graphene: A
review, Nanoscale 8, 3207 (2016).

[16] Z. V. Khaidukov and M. A. Zubkov, Landau levels in graphene
in the presence of emergent gravity, Eur. Phys. J. B 89, 213
(2016).

[17] M. Oliva-Leyva and C. Wang, Low-energy theory for strained
graphene: An approach up to second-order in the strain tensor,
J. Phys.: Condens. Matter 29, 165301 (2017).

[18] G. Wagner, F. de Juan, and D. X. Nguyen, Landau levels in
curved space realized in strained graphene, SciPost Phys. Core
5, 029 (2022).

[19] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Charge in-
homogeneities due to smooth ripples in graphene sheets, Phys.
Rev. B 76, 165409 (2007).

[20] F. Guinea, B. Horovitz, and P. Le Doussal, Gauge field in-
duced by ripples in graphene, Phys. Rev. B 77, 205421
(2008).

[21] M. A. Vozmediano, F. de Juan, and A. Cortijo, Gauge fields and
curvature in graphene, in Journal of Physics: Conference Series
(IOP Publishing, Bristol, UK, 2008), Vol. 129, p. 012001.

[22] F. de Juan, J. L. Manes, and M. A. H. Vozmediano, Gauge
fields from strain in graphene, Phys. Rev. B 87, 165131
(2013).

[23] E. Arias, A. R. Hernández, and C. Lewenkopf, Gauge
fields in graphene with nonuniform elastic deformations: A
quantum field theory approach, Phys. Rev. B 92, 245110
(2015).

[24] T. Stegmann and N. Szpak, Current flow paths in deformed
graphene: From quantum transport to classical trajectories in
curved space, New J. Phys. 18, 053016 (2016).

[25] P. Castro-Villarreal and R. Ruiz-Sánchez, Pseudomagnetic field
in curved graphene, Phys. Rev. B 95, 125432 (2017).

[26] S. Golkar, M. M. Roberts, and D. T. Son, The Euler current and
relativistic parity odd transport, J. High Energy Phys. 04 (2015)
110.

[27] S. Golkar, M. M. Roberts, and D. T. Son, Effective field theory
of relativistic quantum Hall systems, J. High Energy Phys. 12
(2014) 138.

[28] M. M. Roberts and T. Wiseman, Curved-space Dirac descrip-
tion of elastically deformed monolayer graphene is generally
incorrect, Phys. Rev. B 105, 195412 (2022).

[29] G. Volovik and M. Zubkov, Emergent Horava gravity in
graphene, Ann. Phys. 340, 352 (2014).

[30] A. Iorio and P. Pais, Revisiting the gauge fields of strained
graphene, Phys. Rev. D 92, 125005 (2015).

[31] A. Iorio and P. Pais, Comment on “Curved-space dirac descrip-
tion of elastically deformed monolayer graphene is generally
incorrect,” Phys. Rev. B 106, 157401 (2022).

[32] M. M. Roberts and T. Wiseman, Reply to “Comment on
‘Curved-space dirac description of elastically deformed mono-
layer graphene is generally incorrect’ ”, Phys. Rev. B 106,
157402 (2022).

[33] E.-A. Kim and A. C. Neto, Graphene as an electronic mem-
brane, Europhys. Lett. 84, 57007 (2008).

[34] F. Guinea, M. I. Katsnelson, and M. A. H. Vozmediano, Midgap
states and charge inhomogeneities in corrugated graphene,
Phys. Rev. B 77, 075422 (2008).

[35] T. Wehling, A. Balatsky, A. Tsvelik, M. Katsnelson, and A.
Lichtenstein, Midgap states in corrugated graphene: Ab ini-
tio calculations and effective field theory, Europhys. Lett. 84,
17003 (2008).

[36] I. I. Naumov and A. M. Bratkovsky, Gap opening in graphene
by simple periodic inhomogeneous strain, Phys. Rev. B 84,
245444 (2011).

[37] S.-Y. Lin, S.-L. Chang, F.-L. Shyu, J.-M. Lu, and M.-F. Lin,
Feature-rich electronic properties in graphene ripples, Carbon
86, 207 (2015).

[38] M. P. López-Sancho and L. Brey, Magnetic phases in periodi-
cally rippled graphene, Phys. Rev. B 94, 165430 (2016).

[39] J. A. Talla and M. S. Ahmad, Structural and electronic proper-
ties of rippled graphene monolayer: Density functional theory,
J. Electron. Mater. 51, 2464 (2022).

[40] M. Oliva-Leyva and G. G. Naumis, Understanding electron
behavior in strained graphene as a reciprocal space distortion,
Phys. Rev. B 88, 085430 (2013).

[41] L. Balents, General continuum model for twisted bilayer
graphene and arbitrary smooth deformations, SciPost Phys. 7,
048 (2019).

[42] A. Cortijo and M. A. Vozmediano, Effects of topological de-
fects and local curvature on the electronic properties of planar
graphene, Nucl. Phys. B 763, 293 (2007).

[43] P. A. Morales and P. Copinger, Curvature-induced pseudogauge
fields from time-dependent geometries in graphene, Phys. Rev.
B 107, 075432 (2023).

[44] R. Ribeiro, V. M. Pereira, N. Peres, P. Briddon, and A. C.
Neto, Strained graphene: Tight-binding and density functional
calculations, New J. Phys. 11, 115002 (2009).

[45] J. L. Manes, F. de Juan, M. Sturla, and M. A. H. Vozmediano,
Generalized effective Hamiltonian for graphene under nonuni-
form strain, Phys. Rev. B 88, 155405 (2013).

[46] https://sites.google.com/view/graphene-

effective-theory.
[47] A. Iorio, P. Pais, I. A. Elmashad, A. F. Ali, M. Faizal, and

L. I. Abou-Salem, Generalized Dirac structure beyond the linear
regime in graphene, Int. J. Mod. Phys. D 27, 1850080 (2018);
Erratum: 32, 2392002 (2023).
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