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Quadratic nodal point in a two-dimensional noncollinear antiferromagnet
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Quadratic nodal point (QNP) in two dimensions has so far been reported only in nonmagnetic materials and
in the absence of spin-orbit coupling. Here, by first-principles calculations and symmetry analysis, we predict
stable QNP near Fermi level in a two-dimensional kagome metal-organic framework material, Cr3(HAB)2,
which features noncollinear antiferromagnetic ordering and sizable spin-orbit coupling. Effective k · p and
lattice models are constructed to capture such magnetic QNPs. Besides QNP, we find Cr3(HAB)2 also hosts
six magnetic linear nodal points protected by mirror as well as C2zT symmetry. Properties associated to these
nodal points, such as topological edge states and quantized optical absorbance, are discussed.
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I. INTRODUCTION

In the study of topological semimetals, the focus is on band
degeneracies near the Fermi level, around which the electronic
states can acquire multicomponent pseudospin structures and
may exhibit unusual physical properties [1–5]. For example,
in Weyl semimetals, the bands at Fermi level form doubly
degenerate Weyl nodal points, such that the low-energy elec-
trons resemble Weyl fermions from high-energy physics [6,7].
In most cases, the formation of band degeneracies requires
protection by crystalline symmetries [1]. For example, a stable
band degeneracy at a high-symmetry point of Brillouin zone
(BZ) corresponds to an irreducible representation for the little
cogroup at that point. It follows that the allowed types of band
degeneracies must strongly depend on factors such as dimen-
sionality of system, existence of magnetism, and spin-orbit
coupling (SOC), since they affect the symmetry groups and
their representations [8–12].

The band dispersion around a nodal point is typically of
linear type. However, it was found that some special crys-
tal symmetries may protect nodal points with higher-order
dispersions [13–21]. Particularly, in two-dimensional (2D)
systems, the existence of quadratic nodal points (QNPs),
around which the bands disperse quadratically, was noted
in several material examples, such as bilayer graphene
[22,23], blue phosphorene oxide [24], monolayer Mg2C [25],
monolayer Na2O and K2O [26], and 2D Si/Bi heterostruc-
ture [27]. It is important to note that (i) so far, QNP
has been found only in nonmagnetic materials; (ii) the re-
ported QNPs are stable only in the absence of SOC. Very
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recently, a systematic classification work indicated the pos-
sibility to have a QNP in 2D magnetic systems [28], but
no example material was identified. Therefore, it is an in-
teresting and urgent task to find a concrete magnetic QNP
material.

In this work, we accomplish this task and identify mag-
netic QNP in a 2D kagome metal organic framework (MOF)
material Cr3(HAB)2 (HAB represents the organic ligand hex-
aaminobenzene) with sizable SOC. MOFs are a huge class
of crystalline materials consisting of metal ions or clusters
connected by organic ligands [29,30]. A big advantage of
these materials is their high tunability: current techniques
can enable synthesis of various MOFs with designed com-
position and structure [31]. Magnetism can also be readily
introduced into MOFs by incorporating magnetic ions (such
as 3d elements) [32,33]. The Cr3(HAB)2 MOF proposed here
is motivated by the recent experiments which successfully
synthesized a family of 2D MOFs, including Ni3(HAB)2 [34]
and Cr3(HITP)2 [35], with the same type of kagome struc-
ture. Here, by first-principles calculations, we demonstrate
the stability of 2D monolayer Cr3(HAB)2. Our spin polar-
ized calculation shows that its ground state is a noncollinear
antiferromagnet (AFM) with an in-plane 120◦ configuration.
In this AFM state, the conduction and valence bands form
a protected QNP at � point of BZ. Moreover, this QNP is
robust under SOC. We analyze the symmetry protection of this
magnetic QNP, and construct effective k · p and lattice models
to capture its key features. We show that the magnetic QNP
can be the only Fermi point of the system, without additional
states at Fermi level. The optical absorbance of such a system
can exhibit a quantized plateau of πα/2 at low frequencies,
where α is the fine structure constant. In addition, as for mono-
layer Cr3(HAB)2, besides QNP, there also exist six linear
nodal points. Topological edge states and effects of electronic
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FIG. 1. (a) Top view of the lattice structure of 2D MOF
Cr3(HAB)2. The black box indicates the unit cell. (b) Calculated
phonon spectrum, demonstrating the dynamical stability of the struc-
ture. (c) Energy versus time in the molecular dynamics simulation for
temperature of 400 K. The inset shows the snapshot of the structure
after the 5 ps simulation period.

correlations are discussed. Our work reveals concrete material
which hosts QNP under magnetism and SOC. It will help
to clarifiy properties of QNPs, to explore its interplay with
magnetic ordering, and to facilitate subsequent experimental
studies.

II. COMPUTATION METHOD

Our first-principles calculations are based on the den-
sity functional theory (DFT) and are performed by using

the Vienna ab initio simulation package [36,37]. Projector
augmented wave method is used to treat ionic poten-
tials [38]. Generalized gradient approximation with the
Perdew-Burke-Ernzerhof (PBE) parametrization is adopted to
model exchange-correlation functional [39]. To account for
the possible correlation effects of Cr-3d electrons, we employ
the GGA + U method [40]. U values ranging from 0 to 3 eV
have been tested, and we find the qualitative results regarding
magnetic ordering and QNP are not affected. Therefore, we
will focus on the U = 0 result in the following. The energy
cutoff is set to 520 eV. The 2D BZ is sampled with a �-
centered grid with a size of 5 × 5 × 1. The crystal structure is
fully relaxed with energy and force convergence criteria being
set to 10−7 eV and 10−3 eV/Å, respectively. A vacuum region
of 20 Å thickness is added to suppress interactions between
periodic images of the 2D layer. The edge spectrum is studied
by using the WannierTools package [41], with the ab initio
tight-binding Hamiltonian constructed by the WANNIER90
package [42]. The effective models are constructed with the
help of MagneticKP [43] and MagneticTB [44] packages. The
irreducible corepresentations of states are analyzed by using
the IRVSP code [45].

III. CRYSTAL STRUCTURE AND MAGNETISM

The crystal structure of monolayer Cr3(HAB)2 is illus-
trated in Fig. 1(a). It has a 2D hexagonal lattice structure,
in which the metal ions (i.e., Cr2+) form a kagome sub-
lattice. Several transition metal MOFs with the same type
of structure have been successfully synthesized in the ex-
periment, such as Ni3(HAB)2, Cu3(HAB)2, and Co3(HAB)2

[34,46]. From our calculation, the optimized lattice con-
stant is 13.70 Å [see Fig. 1(a)]. The monolayer crystal is
completely flat with single-atom thickness. The crystal lat-
tice has space group P6/mmm (No. 191), and its point
group is D6h. In Fig. 1(a), we also indicate the unit cell,
which contains three Cr sites forming an equilateral trian-
gle. The HAB ligands bridge the Cr sites through forming
Cr-N bonds.

To investigate the stability of Cr3(HAB)2, we have calcu-
lated its phonon spectrum. The result is plotted in Fig. 1(b).

FIG. 2. Magnetic configurations of Cr3(HAB)2 considered in the calculation. (a) is the noncollinear AFM configuration dubbed AFM1,
which is found to be the ground state configuration. (b), (c), and (d) are obtained from (a) by rotation, all local spins by 30◦, 60◦, and 90◦,
respectively. (e) is the configuration with opposite spin chirality compared to (d). (f)–(h) show the three FM configurations.
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TABLE I. Comparison of total energies (per unit cell) for different magnetic configurations. The values are in unit of meV, with reference
to the energy of AFM1 configuration. Here, we consider Hubbard U values from 0 to 3 eV.

U AFM1 AFM2 AFM3 AFM4 AFM5 FMx FMy FMz

0 0 0.105 0.319 0.426 3.473 224.352 224.357 223.251
1 0 0.130 0.391 0.523 4.172 246.198 246.206 244.806
2 0 0.160 0.473 0.627 4.477 260.714 260.707 259.469
3 0 0.168 0.504 0.672 4.278 244.254 244.248 243.076

One observes that there is no imaginary frequency mode,
which verifies the dynamic stability of monolayer Cr3(HAB)2.
We also perform ab initio molecular dynamics simulations to
check its thermal stability. The simulated time duration is 5
ps (5000 steps), and the ambient temperature is set to 400 K.
The obtained free energy evolution and the snapshot for the
final structure are displayed in Fig. 1(c). The result indicates
that monolayer Cr3(HAB)2 has good thermal stability and
maintains its overall structure at 400 K.

Next, we investigate the magnetic properties of monolayer
Cr3(HAB)2. Cr typically carries magnetic moment due to its
partially filled 3d shell. This is also the case in Cr3(HAB)2.
To find its ground state magnetic ordering, we compare cal-
culated energies for various magnetic configurations that are
typically tested on a kagome lattice [47], as schematically
shown in Fig. 2. Besides ferromagnetic (FM) configuration,
due to geometric frustration of kagome lattice, the typi-
cal AFM configurations are of noncollinear type, where the
neighboring local spins make a 120◦ angle with each other.
SOC is fully considered in our calculation to capture magnetic
anisotropy. The calculation result is shown in Table I. One
observes that for all the U values considered, the noncollinear
AFM1 configuration [Fig. 2(a)] always has the lowest energy.
Thus, the ground state of monolayer Cr3(HAB)2 has magnetic
ordering of AFM1 type. Our calculation also shows that the
magnetic moment is mainly on the Cr site, as expected, and
has a magnitude ∼2.8µB. With the AFM1 configuration, the
magnetic space group of the system is P6′/m′mm′, which is a
type-III magnetic space group.

IV. MAGNETIC QNP

As mentioned above, the previously reported QNPs all ap-
pear in nonmagnetic materials and in the absence of SOC. In
this section, we show that a QNP appears in AFM Cr3(HAB)2

in the presence of SOC.
In Fig. 3(a), we plot the calculated electronic band struc-

ture (with the ground state AFM1 configuration) along with
the projected density of states (PDOS). One observes that
the low-energy bands are mainly from Cr-3d , C-p, and N-p
orbits, and the system shows a typical semimetal character. By
zooming in the band structure around � and Fermi level [see
Fig. 3(b)], we find that the conduction and valence bands in
fact touch each other at �. We will label this degeneracy point
as Q. (There is also a crossing point L marked in the figure,
which we shall discuss in a while.) The bands in Fig. 3(a) are
nondegenerate, so point Q is twofold degenerate. Importantly,
the dispersion for both conduction and valence bands around
Q appears to be of nonlinear type, which indicates the possible
existence of a higher-order nodal point.

To investigate the order of dispersion, in Fig. 3(c), we
plot the band splitting, i.e., the energy difference between
conduction and valence bands versus momentum k near the Q
point. The result clearly shows a quadratic scaling, suggesting
that Q is a QNP. To pin down its QNP character, we construct
the k · p model expanded at Q based on symmetry. The little
cogroup at � is 6′/m′mm′, which is generated by inversion
P, twofold rotation C2y, and magnetic operation C6zT , where
T is the time reversal operator . The twofold band degener-
acy at Q corresponds to the �−

4 irreducible corepresentation
of 6′/m′mm′. In the basis of the two degenerate states at
Q, the above three generators take the following matrix
representations:

P = −σ0, C2y = iσz, C6zT = −eiπσy/3, (1)

where the Pauli matrices σi’s are acting on the space spanned
by the two basis states. Constrained by these symmetries, we
obtain the following k · p effective Hamiltonian expanded to

FIG. 3. (a) Calculated band structure and projected density of
states of Cr3(HAB)2 for the ground state (AFM1) configuration.
(b) Enlarged view of band structure around QNP (point Q). L in-
dicates a linear nodal point. (c) Band splitting versus k around QNP
in log-log plot, which has a slope of two, confirming the quadratic
dispersion.
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FIG. 4. (a) Schematic of the minimal lattice model. In a unit cell,
we put three spin polarized basis. See the main text for description.
(b) Band structure of the lattice model with parameter values ε0 =
−0.15, t1 = 0.155, and t2 = −0.23. (c) shows the band dispersion
around the QNP at � point in (b).

k2 order at Q:

HQ = a1k2σ0 + a2
(
k2

y − k2
x

)
σz + 2a2kxkyσx, (2)

where a1 and a2 are two real model parameters, and the energy
is measured from Q. One can see that the k-linear terms are
forbidden by symmetry, and the leading order is of k2. This
confirms that the point Q here is a QNP. We further employ
this model to fit the DFT band structure, which properly
reproduces the quadratic dispersion around the QNP (see the
Supplemental Material [48]).

It usually requires high symmetry to stabilize band degen-
eracies with higher-order dispersions [20,49]. In this regard,
the noncollinear magnetic ordering is in fact essential for the
emergence of QNP here, since it, to a large extent, preserves
the symmetry of the lattice. SOC is also essential here. The
QNP will disappear if SOC is removed. In fact, the systematic
classification in Ref. [28] showed that QNP cannot exist in
magnetic systems without SOC.

Our next question is: Can such magnetic QNP be the only
Fermi point of a system? In other words, is it possible to have
a QNP semimetal in which the Fermi level cut through only
the QNP but no other electronic states? This is not apparent
from the band structure of Cr3(HAB)2 in Fig. 3(a), since there
clearly exists another crossing L.

To address this question and also to facilitate future stud-
ies of magnetic QNPs, we attempt to construct a minimal
lattice model here. We take a 2D kagome lattice, with three
active sites in a unit cell, as shown in Fig. 4(a). On each
site, we put an s-like orbital. To incorporate the AFM1 or-
dering, we assume each basis orbital is spin polarized and
has polarization along the local moment direction. Labelling
the three basis orbitals as |i〉 (i = 1, 2, 3) [see Fig. 4(a)],

we have

|1〉 = C4x|↑〉 = e
iπσx

4 |↑〉,
|2〉 = C3z|1〉 = e

iπσz
3 |1〉,

|3〉 = C3z|2〉 = e
iπσz

3 |2〉, (3)

where |↑〉 is the usual spin up state polarized along the z di-
rection. In this basis, the symmetry generators of the magnetic
space group take the following representations:

P =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, C2y =

⎛
⎝ i 0 0

0 0 −i
0 −i 0

⎞
⎠,

C6zT =
⎛
⎝ 0 0 i

−i 0 0
0 −i 0

⎞
⎠. (4)

Constrained by these symmetries, we obtain the following
lattice model including hopping terms up to the second
neighbor:

Hlatt = ε0 +
(

t1 cos

√
3kx − ky

4
+ t2 cos

√
3kx + 3ky

4

)
�1

+
(

t1 cos

√
3kx + ky

4
+ t2 cos

√
3kx − 3ky

4

)
�4

+
(

t1 cos
ky

2
+ t2 cos

√
3kx

2

)
�6, (5)

where ε0 is an overall energy shift, t1 and t2 represent the first
and the second neighbor hopping, respectively, k is in units of
a−1 (a is the lattice constant of the lattice model), and �i’s are
the 3 × 3 Gell-Mann matrices with

�1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠. (6)

A typical band structure of our minimal lattice model Hlatt is
shown in Fig. 4(b). It indeed reproduces the magnetic QNP
and the qualitative features of the low-energy bands (the con-
duction band and the top two valence bands) in monolayer
Cr3(HAB)2. Notably, the result shows that it is indeed possible
to have QNP as the only Fermi point, without any additional
states at Fermi energy, as displayed in Fig. 4(b). Thus, one can
have a well defined magnetic QNP semimetal state.

V. LINEAR NODAL POINTS

Now, let us turn to the crossing point L on the �-M path.
Due to C6zT symmetry, there are actually six such linear
nodal points in BZ, as illustrated in Fig. 5(a). The linear band
dispersion around the L point is shown in Fig. 5(b). We can
also construct a k · p model for its description. The magnetic
little cogroup on the �-M path (kx axis) is m′m2′, generated
by vertical mirror My and magnetic symmetry C2zT . The two
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FIG. 5. (a) Distribution of the six linear nodal points (indicated
by the blue dots) in Brillouin zone. L and L′ are located on the mirror
line (My). The other four points are related to L and L′ by MT or
M ′T operations. (b) Band dispersion around L point, demonstrating
the linear type dispersion.

crossing bands on this path correspond to the one-dimensional
irreducible corepresentations �3 and �4. Following a similar
approach as in the last section, we obtain the following effec-
tive model expanded at the L point

HL = b1qxσ0 + b2qxσz + b3qyσx, (7)

where the energy and the momentum q = (qx, qy) are mea-
sured from L. This is a typical tilted linear Weyl point model,
with the b1 term describing the tilt along the mirror line.

It is worth noting that point L enjoys a double protec-
tion, by C2zT and by the mirror line. The mirror protection
is straightforward, as the two crossing bands have opposite
mirror eigenvalues, and this constrains the nodal points to be
located on �-M. Meanwhile, the C2zT symmetry alone can
also protect the points. This is because as an antiunitary oper-
ator, (C2zT )2 = 1, and this ensures quantization of the Berry
phase (in unit of π ) along any closed path. Each linear point
here features a π Berry phase, so it cannot be gapped by itself
under perturbations that respect C2zT (only pair annihilation
is allowed). One can imagine that if some perturbation breaks
the mirror lines but preserves C2zT , then these linear Weyl
points can still exist and become fully unpinned in BZ (i.e.,
they may move to generic k points) [50,51].

VI. EDGE STATES

In this section, we investigate the edge spectrum of a
magnetic QNP semimetal state. We first consider the minimal
lattice model in Eq. (5). In Fig. 6(b), we plot the calculated
edge spectrum for an edge along the x direction. One observes
an edge band, which appears throughout the whole edge BZ
and connects to the edge projection of QNP. The existence of
this edge band is not directly related to QNP. Instead, it cor-
responds to the quantized π Berry phase (Zak phase) for the
straight path at each fixed kx traversing the bulk BZ. (Again,
the quantization is due to C2zT ). Nevertheless, it should be
pointed out that it is because QNP features a 2π (or zero)
Berry phase that edge states can appear over the whole edge
BZ, as illustrated in Fig. 6(a). Similar boundary states that
occupy the whole surface BZ for a 3D system were previously
reported for states with higher-order nodal lines [49,52]. In
Ref. [52], such boundary states are called torus surface states,
since the surface BZ has the topology of a torus.

Next, we consider the edge spectrum of Cr3(HAB)2. The
result is plotted in Fig. 6(d). At first glance, the qualitative

FIG. 6. (a) Bulk and edge Brillouin zones of the minimal lattice
model in Eq. (5). QNP is marked by a red dot at the � point. (b) Edge
spectrum for the minimal lattice model. One observes edge bands
across the whole edge Brillouin zone, resulting from the π Zak phase
in the bulk. (c) For 2D Cr3(HAB)2, besides QNP, there also exist
six linear nodal points. The Zak phase is 0 in the central region
between L̄ and L̄′ and is π outside. This leads to the edge spectrum
shown in (d).

features of Fig. 6(d) seem to be unchanged from Fig. 6(b).
However, there is difference due to the presence of linear
nodal points. As indicated in Fig. 6(c), edge projections of
the two outer linear points, marked as L̄ and L̄′, divide the
edge BZ into two regions: the inner region including the �̄

point and the outer region including the M̄ point. Since each
linear point has a π Berry phase, the Zak phases for the two
regions must differ by π . In the current case, the π Zak phase
appears for the outer region, which dictates the edge states
there. This physics is similar to what happens in graphene on
the zigzag edge [22,53]. Nevertheless, one should note that
for graphene, the edge states are spin degenerate (if we do
not consider possible edge magnetism due to correlations),
whereas for Cr3(HAB)2, the edge band is spin polarized.

VII. DISCUSSION AND CONCLUSION

A QNP semimetal state can possess interesting physical
properties. For example, it may exhibit a quantized plateau
in low-frequency optical absorbance. Optical absorbance
A(ω) = Wa/Wi is the ratio between the absorbed energy flux
Wa and the incident flux Wi of light [54]. At low frequen-
cies where the band dispersion is dominated by quadratic
terms, assuming the optical transition involves only the two
low-energy bands as described by HQ in Eq. (2), then A(ω)
can be readily evaluated from Fermi’s golden rule. In this
case, one finds a quantized value A(ω) = πα/2 ≈ 1.15%,
where α = e2/h̄c ≈ 1/137 is the fine structure constant. Such
quantized absorbance was previously reported in graphene
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[54], blue phosphorene oxide [24], and other 2D nodal-point
semimetals [20] in the absence of SOC. For graphene and
blue phosphorene oxide, the quantized value is πα. The spin-
ful QNP here is like half of the spin-degenerate QNP in
blue phosphorene oxide, which explains the difference of 1/2
factor.

For the QNP in monolayer Cr3(HAB)2, we have mentioned
that it is quite robust against the variation of U values [48]. We
have tested U values ranging from 0 to 3 eV, and the QNP is
always maintained, just its energy slightly shifted down with
increasing U . Meanwhile, when U increases, the linear Weyl
points will shift outward along the �-M path, and at U > 2 eV,
two points will collide into each other and then annihilate (see
the Supplemental Material [48]).

In previous studies [20], it was shown that for spinless
QNP (i.e., in the absence of SOC) in nonmagnetic materials,
the minimal symmetry requirement is n-fold rotation Cnz with
n > 2 and time reversal symmetry T . As for magnetic QNP,
considering type-III magnetic space groups, we find the min-
imal symmetry group is P6̄′, which can be generated by C3z

and MzT (Mz is the horizontal mirror plane). One notes that
the symmetry of Cr3(HAB)2 with AFM1 ordering is larger
than this. Hence, some symmetry (e.g., C2y) of Cr3(HAB)2

may be broken without affecting the stability of QNP. For
example, we may consider rotating the local spins all by
the same angle θ [see for example Fig. 2(b)]. Clearly, this
preserves both C3z and MzT , thus the QNP should still be
maintained. In the Supplemental Material [48], we present
a calculation result, which confirms this point. Furthermore,
based on the previous work [28], all magnetic space groups
hosting such magnetic spinful QNPs are obtained and listed
in the Supplemental Material [48].

Finally, we discuss some experimental aspects. As we
have mentioned, although Cr3(HAB)2 has not been realized
yet, the chance to synthesize it in the near future is quite
promising. Experimental techniques have been developed to

fabricate a rich variety of MOFs with designed composi-
tions [29,30]. The closely related 2D MOFs, especially the
transition metal MOFs M3(HAB)2 with M = Ni, Cu, Co
[46], and also Cr3(HITP)2 [35], have already been success-
fully synthesized. Our work here will offer an impetus for
experiments on this material. Once achieved, the QNP in
the band structure can be imaged by angle resolved pho-
toemission spectroscopy (ARPES) [5,55]. The topological
edge states can be probed by ARPES or scanning tunnel-
ing spectroscopy (STS) [56]. The spin polarization of bulk
bands and edge states may also be probed by STS by using
magnetic tips.

In conclusion, we propose the first material realization of
a magnetic spinful QNP in the 2D MOF Cr3(HAB)2. Interest-
ingly, such a higher-order nodal point occurs in the presence
of a noncollinear magnetic ordering and sizable SOC, which
is quite unusual. The constructed effective k · p and lattice
models capture the essential features of magnetic QNP, and
they form a good starting point for subsequent studies on
QNP fermions. Features of coexisting linear Weyl points,
topological edge states, quantized optical absorbance, and
robustness of these nodal points are discussed. Our findings
will facilitate the exploration of novel 2D emergent fermions
and their interplay with magnetism.
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