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We theoretically investigate high-order harmonic generation (HHG) in graphene under mid-infrared (MIR)
and terahertz (THz) fields based on a quantum master equation. Numerical simulations show that MIR-induced
HHG in graphene can be enhanced by a factor of 10 for fifth harmonic and a factor of 25 for seventh harmonic
under a THz field with a peak strength of 0.5 MV/cm by optimizing the relative angle between the MIR and THz
fields. To identify the origin of this enhancement, we compare the fully dynamical calculations with a simple
thermodynamic model and a nonequilibrium population model. The analysis shows that the enhancement of the
high-order harmonics mainly results from a coherent coupling between MIR- and THz-induced transitions that
goes beyond a simple THz-induced population contribution.
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I. INTRODUCTION

Recent developments in laser technologies have enabled
the generation of intense light [1–3], opening an avenue
into the investigation of light-matter interactions in nonlin-
ear regimes. High-order harmonic generation (HHG) is an
extremely nonlinear optical phenomenon involving extreme
photon upconversion. This phenomenon was first observed
in atomic gases [4,5]. A semiclassical three-step model has
provided a clear understanding of gas-phase HHG [6,7]. Gas-
phase HHG has been utilized to generate ultrashort attosecond
light pulses [2] for investigating light-induced ultrafast elec-
tron dynamics in atoms [8–10], molecules [11–13], and solids
[14–17]. HHG from a solid-state system was first observed
in 2011 [18] and has recently been attracting considerable
interest from both fundamental and technological points of
view [19–23].

Among various materials, the HHG from graphene has
been intensively investigated theoretically. It has been sug-
gested that HHG can be efficiently induced in graphene
because of the unique electronic structure of this mate-
rial, specifically the Dirac cone [24–27]. Recently, HHG
from graphene has been experimentally observed in the mid-
infrared (MIR) [28,29] and terahertz (THz) [30,31] regimes,
exhibiting unique ellipticity dependence and high efficiency.
We previously investigated HHG from graphene in both
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the MIR and THz regimes based on a quantum master
equation [32,33]. In the MIR regime, coupling between field-
induced intraband and interband transitions opens important
channels for HHG, enhancing HHG with finite ellipticity [32].
A real-time electron dynamics simulation in the THz regime
has shown that it is essential to consider the nonequilibrium
steady state resulting from the balance between field-driving
and relaxation to go beyond the equilibrium thermodynamic
picture of HHG from graphene [33].

It is important to improve the efficiency of solid-state HHG
to develop novel HHG-based light sources and spectroscopies.
In recent studies, it has been suggested that HHG from
graphene can be enhanced using two-color laser fields based
on various mechanisms [34–36]. In Ref. [34], the two-color
HHG is suggested with the combination of the electron-hole
pair creation by high-frequency pump light and the accel-
eration of the created pairs by low-frequency light. Mrudul
et al. investigated the HHG from graphene with bicircular
fields, controlling the valley polarization [35]. Furthermore,
Avetissian et al. investigated the HHG from graphene with a
linearly polarized light and its second harmonics, showing that
when the two-color fields are perpendicularly polarized, the
stronger harmonics can be emitted compared with the parallel
polarization [36].

In this study, we explore the possibility of using a THz
field to enhance MIR-induced HHG in graphene based on
the knowledge gained from previous studies. First we use a
quantum master equation to compute the electron dynamics
under MIR and THz fields and evaluate the emitted har-
monic spectra. We compare the results of the fully dynamical
calculations with a thermodynamic model considering the
equilibrium Fermi-Dirac distribution and with a nonequilib-
rium population model considering a population distribution
in a nonequilibrium steady state. As a result of the analysis,
we find that coupling via the induced coherence by THz and

2469-9950/2024/109(4)/045421(12) 045421-1 Published by the American Physical Society

https://orcid.org/0000-0002-7200-2094
https://orcid.org/0000-0003-2060-3151
https://orcid.org/0000-0001-9543-2620
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.045421&domain=pdf&date_stamp=2024-01-17
https://doi.org/10.1103/PhysRevB.109.045421
https://creativecommons.org/licenses/by/4.0/


MAO, RUBIO, AND SATO PHYSICAL REVIEW B 109, 045421 (2024)

MIR fields plays an essential role in enhancing MIR-induced
HHG, clarifying the importance of the field-induced coher-
ence beyond the simple population effect.

The paper is organized as follows. In Sec. II, we briefly de-
scribe the theoretical method for describing electron dynamics
in graphene induced by MIR and THz fields. In Sec. III, we
investigate the impact of a THz field on MIR-induced HHG
from graphene and explore the microscopic mechanism of
the enhancement by employing the thermodynamic model and
the nonequilibrium population model. Finally, our findings are
summarized in Sec. IV.

II. METHODS

A. Electron dynamics calculation based
on a quantum master equation

Here we briefly describe theoretical methods for comput-
ing light-induced electron dynamics in graphene and how
the calculated dynamics can be used to analyze HHG. These
methods have been described in detail in previous works
[33,37,38].

In this study, we use the following quantum master equa-
tion to describe electron dynamics in graphene:

d

dt
ρk(t ) = 1

ih̄
[Hk+eA(t )/h̄, ρk(t )] + D̂[ρk(t )], (1)

where ρk(t ) is the one-body reduced density matrix for the
Bloch wave vector k and Hk+eA(t )/h̄ is the one-body Hamilto-
nian. Here light-matter coupling is described by an additional
term in the Hamiltonian, a spatially uniform vector poten-
tial A(t ), which is related to the applied electric field as
A(t ) = − ∫ t

−∞ dt ′E(t ′), in the long-wavelength approxima-
tion. The relaxation operator is denoted as D̂[ρk(t )]. Based on
the previous studies [33,37], we employ the relaxation-time
approximation [39] for the relaxation operator in the Houston
basis expression [40,41]. Those Houston states |uH

bk(t )〉 are
simply the instantaneous eigenstates of the time-dependent
Hamiltonian and satisfy the following instantaneous eigen-
value problem:

Hk+eA(t )/h̄

∣∣uH
bk(t )

〉 = εb,k+eA(t )/h̄|uH
bk(t )〉, (2)

where b denotes the band index and εb,k+eA(t )/h̄ are the instan-
taneous eigenvalues of the Hamiltonian. The reduced density
matrix can be expanded in the Houston states as

ρk(t ) =
∑
bb′

ρbb′,k(t )
∣∣uH

bk(t )
〉〈

uH
b′k(t )

∣∣, (3)

where ρbb′,k(t ) are the expansion coefficients.
We introduce the relaxation operator D̂[ρk(t )] with the

following Houston basis expression [37,38] as

D̂[ρk(t )] = −
∑

b

ρbb,k(t ) − f FD
(
εb,k+eA(t )/h̄, Te, μ

)
T1

× ∣∣uH
bk(t )

〉〈
uH

bk(t )
∣∣ −

∑
b�=b′

ρbb′,k(t )

T2

∣∣uH
bk(t )

〉〈
uH

b′k(t )
∣∣.

(4)

From Refs. [33,37], the longitudinal relaxation time T1 is
set to 100 fs, and the transverse relaxation time T2 is set

to 20 fs. Here f FD(ε, Te, μ) = 1
e(ε−μ)/kBTe +1 is the Fermi-Dirac

distribution, in which we set the electron temperature Te to
300 K and the chemical potential μ to 0, unless stated oth-
erwise. We confirmed that the choice of the relaxation times,
T1 and T2, does not affect the qualitative results and conclu-
sions that will be presented in the later part of the paper (see
Appendix A).

We describe the electronic structure of graphene employ-
ing a tight-binding Hamiltonian in the atomic orbital basis
representation with nearest-neighbor hopping [42] as follows:

Hk =
[

0 t0 f (k)
t0 f (k)∗ 0

]
, (5)

where t0 is the nearest-neighbor hopping and f (k) is given by
f (k) = eik·δ1 + eik·δ2 + eik·δ3 with the nearest-neighbor vector
δ j . According to Ref. [42], the nearest-neighbor hopping t0 is
set to 2.8 eV, and the lattice constant a is set to 1.42 Å.

To describe electron dynamics, we directly solve the
quantum master equation, Eq. (1), in the time domain by em-
ploying the Runge-Kutta method. Since we do not apply any
approximation to solve the equation of motion, field-induced
modifications of electronic structures, such as the Stark effect,
Rabi splitting [43], and the band-gap opening at the Dirac
point [44], are naturally described even under dissipation [45].

By using the time-dependent density matrix ρk(t ) evolved
with Eq. (1), the total energy of the electronic system can be
evaluated as

Etot (t ) = 2

�BZ

∫
dkTr[Hk+eA(t )/h̄ρk(t )], (6)

where �BZ is the volume of the first Brillouin zone.
Similarly, the electric current density is given by

J(t ) = 2

(2π )2

∫
dkTr[Ĵk(t )ρk(t )], (7)

where the current operator Ĵk(t ) is defined as

Ĵk(t ) = − e

meh̄

∂Hk+eA(t )/h̄

∂k
. (8)

The current density J(t ) induced by an intense electric
field E(t ) is analyzed to investigate HHG. For example, the
power spectrum of the emitted harmonics can be evaluated by
applying the Fourier transform to the current density J(t ) as
follows:

IHHG(ω) ∼ ω2

∣∣∣∣
∫ ∞

−∞
dtJ(t )eiωt

∣∣∣∣
2

. (9)

III. RESULTS

A. MIR-induced HHG in graphene under THz fields and the
quasistatic approximation

We first analyze the HHG induced by a MIR laser pulse
in the presence of THz fields. For practical calculations, we
employ the following form for the MIR pulse:

AMIR(t ) = −EMIR

ωMIR
eMIR sin(ωMIRt ) cos4

(
π

TMIR
t

)
(10)

in the domain −TMIR/2 < t < TMIR/2 and zero outside this
domain. Here EMIR is the peak strength of the MIR field,
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FIG. 1. [(a) and (b)] The current J(t ) induced by THz and MIR fields, ETHz(t ) + EMIR(t ). The x component of the current is shown as the
blue line, whereas the y component is shown as the red line. (a) The time profile of the applied THz field. [(c) and (d)] The current J(t ) induced
by the static and MIR fields, Edc(t ) + EMIR(t − τMIR ). The x component of the current is shown as the orange line, whereas the y component is
shown as the green line. In (a) and (c), the polarization of all the fields is parallel to the 	-M direction (the x direction in the present setup) as
eTHz = edc = eMIR = ex . In (b) and (d), the polarization of THz and static fields is parallel to the x direction as eTHz = edc = eMIR = ex , while
that of the MIR field is perpendicular as eMIR = ey. (e) The power spectra IHHG(ω) computed using the current in (a) and (c). (f) The power
spectra IHHG(ω) computed using the current in (b) and (d).

ωMIR is the mean frequency, eMIR is a unit vector along the
polarization direction of light, and TMIR is the pulse duration.
In this study, the pulse duration TMIR is set to 0.4 ps, and the
mean frequency ωMIR is set to 0.35424 eV/h̄. We compute the
electron dynamics by changing the other parameters.

Similarly, we employ the following form for the THz pulse:

ATHz(t ) = −ETHz

ωTHz
eTHz sin(ωTHzt ) cos4

(
π

TTHz
t

)
(11)

in the domain −TTHz/2 < t < TTHz/2 and zero outside this
domain. Here ETHz is the peak strength of the THz field,
ωTHz is the mean frequency, eTHz is a unit vector along the
polarization direction, and TTHz is the pulse duration. In this
study, the pulse duration TTHz is set to 40 ps and the mean
frequency ωTHz is set to 1.2407 meV/h̄. The time profile of
the applied THz electric field is shown in the inset of Fig. 1(a).

To gain insight into THz-assisted MIR-induced HHG in
graphene, we perform the electron dynamics calculation in
the presence of both THz and MIR fields, ETHz(t ) + EMIR(t ).
Here we set EMIR to 6.5 MV/cm and ETHz to 0.5 MV/cm.
We note that intense THz pulses with amplitudes exceeding 1
MV/cm are available experimentally [46]. The polarization
direction of the THz field eTHz is set to the 	-M direction
(the x direction in our setup), whereas the polarization direc-

tion of the MIR field eMIR is treated as a tunable parameter.
Figures 1(a) and 1(b) show the computed current J(t ) in-
duced by ETHz(t ) + EMIR(t ) as a function of time. The result
with the parallel configuration (eMIR = ex = eTHz) is shown
in Fig. 1(a), while the result with the perpendicular configu-
ration (eMIR = ey ⊥ eTHz) is shown in Fig. 1(b). The x and y
components are shown as blue and red lines, respectively. As
seen from Figs. 1(a) and 1(b), the THz field induces a current
on the picosecond timescale, whereas the MIR field induces a
current on a much shorter timescale.

We analyze MIR-induced HHG by extracting the current
induced by the MIR field in the presence of the THz field. We
define two kinds of currents for this purpose. The first current
is induced by both the THz and MIR fields and is denoted
as JTHz+MIR(t ). The second current is induced solely by the
THz field and is denoted as JTHz(t ). We define the current
induced by the MIR field in the presence of the THz field
as Jeff (t ) = JTHz+MIR(t ) − JTHz(t ). The Fourier transform is
applied to the extracted current Jeff (t ), and the power spec-
trum of the emitted harmonics is computed using Eq. (9). The
solid line in Fig. 1(e) shows the power spectrum computed
using the current J(t ) presented in Fig. 1(a), where the po-
larization directions of the THz and MIR fields are parallel,
and the solid line in Fig. 1(f) shows the power spectrum
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computed using the current J(t ) presented in Fig. 1(b), where
the polarization directions of the two fields are perpendic-
ular. Figure 1(e) shows that second and higher even-order
harmonics are generated in addition to odd-order harmonics
because the THz field breaks the inversion symmetry of the
system locally in time. This second-harmonic generation is
known as electric-field-induced second-harmonic generation
or THz-induced second-harmonic generation [47–50]. Even-
order harmonics are similarly generated in the perpendicular
configuration (eMIR ⊥ eTHz), as can be seen from Fig. 1(f).

Explicit use of the THz pulse in the electron dynamics cal-
culation increases the propagation time (42 ps in the present
case), as can be seen Figs. 1(a) and 1(b). Hence, the electron
dynamics calculation with the explicit inclusion of THz pulses
has a large computational cost. To reduce the computational
cost of modeling MIR-induced HHG in graphene in the pres-
ence of a THz field, we replace the THz pulse with a static
field based on the quasistatic approximation [33]. For practical
analysis, we perform two simulations. In the first simula-
tion, the electron dynamics are calculated under a static field
Edc(t ) = edcEdc
(t ) that is suddenly switched on at t = 0.
Here edc is the unit vector along the polarization direction of
the static field, and Edc is the field strength. Immediately after
the static field is switched on, the driven electron dynamics
induce a current. The driven system reaches a steady state
after a sufficiently long time propagation time, and the current
becomes constant in time. We denote the current induced
solely by Edc(t ) as Jdc(t ). In the second simulation, the elec-
tron dynamics are calculated under both MIR and static fields,
Edc(t ) + EMIR(t − τMIR), where the pulse center of the MIR
field is shifted by τMIR. We denote the current induced by
Edc(t ) + EMIR(t − τMIR) as Jdc+MIR(t ). The shift τMIR can be
made sufficiently large time to investigate the MIR-induced
electron dynamics for a full nonequilibrium steady state re-
alized by the static field Edc(t ). The MIR-induced current
can be extracted as Jeff (t ) = Jdc+MIR(t ) − Jdc(t ) to analyze
MIR-induced HHG in the presence of the static field.

Figures 1(c) and 1(d) show the current Jdc+MIR(t ) induced
by both static and MIR fields. The x and y components of
the current are shown as orange and green lines, respectively.
Here the static field is polarized along the 	-M direction (the x
direction in our setup), and the field strength Edc is the same as
the peak strength of the THz field, Edc = ETHz = 0.5 MV/cm.
The MIR field used in Fig. 1(c) is the same as that used in
Fig. 1(a) and has a polarization direction parallel to that of
the static field. By contrast, the MIR field used in Fig. 1(d)
is the same as that used in Fig. 1(b) and has a polarization
direction perpendicular to that of the static field. To apply the
MIR field to the nonequilibrium steady state under the static
field, we set the time delay τMIR of the MIR field to 1 ps,
which is sufficiently longer than the relaxation timescales of
the quantum master equation, T1 and T2.

To analyze HHG in the presence of the static field Edc(t ),
we extract the current Jeff (t ) induced by the MIR field in
the presence of the static field by subtracting Jdc(t ) from
Jdc+MIR(t ): Jeff (t ) = Jdc+MIR(t ) − Jdc(t ). The dashed lines in
Figs. 1(e) and 1(f) correspond to the HHG spectra computed
using the current shown in Figs. 1(c) and 1(d), respectively.
The results of the quasistatic approximation with a static field
are identical to those computed by explicitly including the

THz pulse. Therefore, the quasistatic approximation is valid
for analyzing HHG under MIR and THz fields. We further
confirmed the validity of the quasistatic approximation for
different static field strengths (see Appendix B). Hereafter, we
employ the static field within the quasistatic approximation
instead of explicitly including the THz pulse. The agreement
between results obtained using the quasistatic approximation
and the explicit inclusion of the THz pulse indicates that
the nonequilibrium steady state under the static field plays
an important role in MIR-induced HHG in graphene in the
presence of a THz field.

B. Orientational dependence of HHG

Here we investigate HHG in graphene within the qua-
sistatic approximation by changing the relative angle between
the static and MIR fields. For practical analysis, the direction
of the static field edc is fixed to the 	-M axis (the x axis in our
setup), and the peak field strength of the MIR field EMIR is
fixed at 6.5 MV/cm. The emitted harmonics are investigated
by manipulating the polarization direction of the MIR field,
eMIR, and the strength of the static field, Edc.

To analyze the HHG efficiency, we compute the signal
intensity of the emitted harmonics at each order by integrating
the power spectrum within a finite energy range as follows:

Inth
total =

∫ (n+ 1
2 )ωMIR

(n− 1
2 )ωMIR

dωIHHG(ω). (12)

Here Inth
total is the integrated intensity of the emitted nth har-

monic.
Figures 2(a)–2(d) show the computed angular dependence

of the emitted harmonic yield Inth for different harmonic or-
ders. The angle θ denotes the relative angle between the MIR
and static fields. In Fig. 2(a), there is no second harmonic gen-
eration in the absence of a static field because graphene has
intrinsic inversion symmetry. By contrast, the second harmon-
ics are generated under the application of a static field because
of the breakdown of the inversion symmetry. For a static
field strength of 0.5 MV/cm, the emitted second-harmonic
intensity is maximized at a relative angle of approximately
45◦.

In Fig. 2(b), the third-harmonic yield is almost isotropic
(black line) in the absence of a static field, reflecting the
rotational symmetry of the Dirac cone (see also Appendix C).
By contrast, the third-harmonic intensity exhibits a strong
angular dependence under the application of a strong static
field (Edc = 1.0 MV/cm): The third-harmonic emission is
considerably enhanced when the static and MIR fields are
perpendicular to each other, while it is suppressed when these
two fields are parallel. The enhancement of the third harmonic
for the perpendicular configuration can be understood in terms
of the coupling between the intraband transition induced by
the static field and the interband transition induced by the MIR
field, as suggested in the previous study [32].

The higher-order harmonics exhibit a more complex an-
gular dependence under a static field, as shown in Figs. 2(c)
and 2(d). In particular, the fifth-order harmonic emission can
be considerably enhanced in the presence of static or THz
fields [Fig. 2(d)]. For example, the intensity of the fifth-order
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FIG. 2. The angular dependence of the harmonic yield in the nonequilibrium steady states under a static field along the 	-M direction is
shown for different static field strengths, Edc. The angle θ denotes the relative angle between the static field and the MIR field. [(a)–(d)] The
total intensity Inth

total is shown for the second, third, fourth, and fifth harmonics. [(e)–(h)] The component of the intensity parallel to eMIR is shown
for each harmonic. [(i)–(l)] The component of the intensity perpendicular to eMIR is shown for each harmonic. The results are normalized by
the maximum total intensity Inth

total for each harmonic.

harmonic is enhanced more than 10 times by applying a
static field with a strength of 0.5 MV/cm with respect to
the result solely induced by the MIR field [see the green
line in Fig. 2(d)]. This enhancement ratio is larger than that
of the third-order harmonic. Hence, a larger field-induced
enhancement is expected for higher-order harmonics. In fact,
the seventh-order harmonic is enhanced 25 times when the
static field strength is 0.5 MV/cm (see Appendix D).

To further elucidate the angular dependence of HHG in
graphene, we decompose the harmonic intensity IHHG(ω) into
parallel and perpendicular components with respect to the
polarization of the driving MIR field. The parallel component
of the HHG intensity is defined as

Ipara
HHG(ω) ∼ ω2

∣∣∣∣
∫ ∞

−∞
dteMIR · J(t )eiωt

∣∣∣∣
2

, (13)

where eMIR is the unit vector along the polarization direction
of the MIR field. Likewise, the perpendicular component is

defined as

Iperp
HHG(ω) ∼ ω2

∣∣∣∣
∫ ∞

−∞
dt ēMIR · J(t )eiωt

∣∣∣∣
2

, (14)

where ēMIR is a unit vector perpendicular to eMIR, i.e., ēMIR ·
eMIR = 0. The total intensity IHHG in Eq. (9) is reproduced
by the sum of Ipara

HHG(ω) and Iperp
HHG(ω) as IHHG(ω) = Ipara

HHG(ω) +
Iperp
HHG(ω).

Equations (13) and (14) are employed to decompose the
emitted harmonic intensity into parallel and perpendicular
components. Figures 2(e)–2(h) and 2(i)–2(l) show the angular
dependence of the parallel and perpendicular components the
harmonic intensity for orders, respectively.

In Figs. 2(a), 2(e) and 2(i), the parallel component of the
second harmonic under the static field reaches a maximum at
approximately 45◦ and dominates the total second-harmonic
intensity at this angle. By contrast, the maximum perpen-
dicular component is always obtained when the MIR and
static fields are perpendicular to each other. In Figs. 2(b),
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2(f) and 2(j), the third harmonic is dominated by the par-
allel component for any angle and static field strength over
the investigated range. For both second- and third-harmonic
generation, the parallel components are dominant when the
emitted harmonic intensity is maximized.

There are qualitative differences between the lower-order
harmonics (the second- and third-order harmonics) and the
higher-order harmonics (the fourth- and fifth-order harmon-
ics). In Fig. 2(c), the fourth harmonic yield reaches a
maximum at an angle θ of 90◦ under the strongest applied
static field, Edc = 1.0 MV/cm. A comparison of Figs. 2(g)
and 2(k) shows that the perpendicular component dominates
the emitted harmonic intensity in this case. As seen from
Figs. 2(d), 2(h), and 2(l), the emitted fifth harmonic at the most
efficient angle is dominated by the perpendicular component,
in spite of the fact that the parallel component is dominant at
all angles in the absence of a static field. Hence, the emission
paths of the perpendicular components are expected to be im-
portant for the enhancement of MIR-induced HHG by a THz
field. We observe the same trend for higher-order harmonics
(see Appendix D).

C. Comparison of the nonequilibrium steady state
and the thermodynamic model

Here we investigate the role of a nonequilibrium steady
state in HHG by comparing the results of the quasistatic
approximation with those of the thermodynamic model [51],
which has been employed to investigate the HHG in graphene
in the THz regime [30,31]. As introduced in Sec. III A, the
quasistatic approximation consists of replacing the THz pulse
with the corresponding static field to describe the electronic
system under a THz field. By contrast, the thermodynamic
model consists of approximating the electronic system under a
THz pulse by a thermal state with a high electron temperature
[51]. The difference between the quasistatic approximation
and the thermodynamic model reflects the difference between
the nonequilibrium and equilibrium distributions, clarifying
the role of the nonequilibrium steady state in HHG.

The quasistatic approximation is characterized by the
strength of the static field, Edc, whereas the thermodynamic
model is characterized by the electron temperature Te. To
compare these two models that are formulated using different
parameters, we introduce the excess energy [33] as a common
measure of the excitation intensity. The excess energy corre-
sponding to the quasistatic approximation is computed as the
change in the total energy given in Eq. (6) of the nonequilib-
rium steady state caused by the application of the static field
Edc(t ). Hence, the excess energy of the nonequilibrium steady
state depends on the static field strength as �Enon−eq

excess (Edc).
The excess energy of the thermodynamic model is computed
as the change in the total energy caused by increasing the
temperature from room temperature (Te = 300 K) and hence
depends on the electron temperature as �E thermo

excess (Te). Thus,
converting both the static field strength Edc in the quasistatic
approximation and the electron temperature Te in the thermo-
dynamic model to common excess energy enables the two
models to be objectively and quantitatively compared [33].

Figure 3 shows the comparison of the results obtained us-
ing quasistatic approximation and the thermodynamic model.

FIG. 3. The emitted light intensity, Inth, is shown as a function of
the excess energy for (a) third (b) fifth, and (c) seventh harmonics.
The results for the nonequilibrium steady states induced by a static
field parallel (red solid line) and perpendicular (blue dashed line) to
the MIR field are compared with the thermodynamic model (green
dotted line). In each panel, the field strength of the static field parallel
to the MIR field is shown as the secondary axis.

The MIR field strength is set to 6.5 MV/cm, and the MIR field
polarization direction is set to the 	-M direction (the x axis
of the present setup). The thermodynamic model preserves
the intrinsic inversion symmetry of graphene and therefore

045421-6



ENHANCEMENT OF HIGH-ORDER HARMONIC GENERATION … PHYSICAL REVIEW B 109, 045421 (2024)

does not produce even-order harmonics. Hence, we only
analyze the odd-order harmonics generated by this model.
Figure 3(a) shows that the MIR-induced third harmonic within
the quasistatic approximation is considerably enhanced and
suppressed for parallel and perpendicular configurations, re-
spectively. By contrast, the result within the thermodynamic
model remains almost constant. Figures 3(b) and 3(c) show
that the fifth- and seventh-harmonic yields are significantly
enhanced under a static field within the quasistatic approx-
imation, while those harmonic yields decrease slightly as
the electron temperature increases within the thermodynamic
model. Hence, the enhancement of HHG cannot be described
by simple heating of electronic systems within the thermody-
namic model and originates from the nonequilibrium nature
of field-induced electronic dynamics. The small change in the
harmonic yields within the thermodynamic model relative to
that predicted by the nonequilibrium steady-state picture indi-
cates that modification of the population distribution around
the Fermi level has little effect on the spectra of HHG.

D. Contribution of the nonequilibrium population

Having demonstrated the importance of the nonequilib-
rium steady state under a THz field, we elucidate the role
of a coherent coupling between the MIR and THz fields
beyond the simple population contribution induced by the
THz field. To highlight the coherent coupling contribution, we
evaluate the contribution from incoherent coupling by intro-
ducing a nonequilibrium population distribution model as an
extension of the thermodynamic model. Within the thermody-
namic model, the contribution from the THz field is described
by modifying the population distribution by increasing the
electronic temperature of the reference Fermi-Dirac distri-
bution. Hence, the thermodynamic population only captures
the population contribution (the diagonal element of the den-
sity matrix) of the THz-induced effect based on the thermal
distribution. Here we extend the thermodynamic model by
replacing the reference Fermi-Dirac distribution in the relax-
ation operator in Eq. (4) with the population distribution of the
nonequilibrium steady state under a static field. The extended
model includes the population contribution (given by diagonal
elements of the density matrix), but it does not include THz-
induced coherence (given by the off-diagonal elements of the
density matrix). Hence, a comparison of the nonequilibrium
population model and the fully dynamical model can reveal
the contribution from the coherent coupling between the THz
and MIR fields.

To formulate the nonequilibrium population model, we
first analyze the population distribution in the nonequilibrium
steady state under a static field. The population distribution in
the Brillouin zone can be expressed as

nbk(t ) =
∫

dk′δ[k − K ′(t )]Tr
[∣∣uH

bk′ (t )
〉〈

uH
bk′ (t )

∣∣ρk′ (t )
]

= 〈
uH

b,k−eA(t )(t )
∣∣ρk−eA(t )(t )

∣∣uH
b,k−eA(t )(t )

〉
, (15)

where K ′(t ) is the accelerated wave vector in accordance
with the acceleration theorem, K ′(t ) = k′ + eA(t ). The pop-
ulation distribution in the nonequilibrium steady state can be
evaluated in the long-time propagation limit under a static

FIG. 4. (a) The calculated conduction population distribution,
nneq−steady

ck for the nonequilibrium steady state is shown. Here the
Dirac point is indicated by the blue circle. [(b)–(e)] The angular
dependence of the emitted harmonic intensity is shown for the
(b) second, (c) third, (d) fourth, and (e) fifth harmonics. The re-
sults obtained using the nonequilibrium population model and the
nonequilibrium steady state are shown by the blue and green solid
lines, respectively.

field A(t ) = −Edct ,

nneq−steady
bk = lim

t→∞ nbk(t ). (16)

Figure 4(a) shows the population distribution in the con-
duction band for the nonequilibrium steady state under a static
field with a strength of Edc = 0.5 MV/cm. The static field is
polarized along the 	-M direction (x axis). The Dirac point
(K point) is depicted by the blue circle. In Fig. 4(a), the
region to the left of the Dirac point is largely occupied by the
field-induced population in the nonequilibrium steady state,
whereas the region to the right of the Dirac point is almost
empty, breaking the inversion symmetry of the system. We
employ this nonequilibrium population distribution as the ref-
erence distribution of the relaxation operator in Eq. (4) instead
of the Fermi-Dirac distribution to construct the nonequilib-
rium population model.

Figure 4(b) shows the angular dependence of the second-
harmonic yield in the presence of a static field with a
strength of Edc = 0.5 MV/cm. The corresponding angular
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dependencies of the third, fourth, and fifth harmonics are
shown in Figs. 4(c)–4(e), respectively. In each panel, the
results obtained using the nonequilibrium population model
are shown as the blue solid line, and the results obtained
using the quasistatic approximation are shown as the green
solid line, which is identical to the result shown in Fig. 2. In
Figs. 4(b) and 4(d), the even-order harmonics computed with
the nonequilibrium population model are negligibly weak
compared with those computed using the fully dynamical
calculation based on the quasistatic approximation. This re-
sult indicates that under the charge-neutral condition (μ = 0)
investigated here, the two- and four-photon resonances of the
MIR field are far from the Fermi level and cannot be modified
by the population changes around the Fermi surface, resulting
in small contributions to even-order harmonic generations.
By contrast, within the fully dynamic calculation, the THz
field can coherently couple with the MIR field via the off-
diagonal elements of the density matrix. Thus, the coherent
coupling can be realized both around the Fermi level and
anywhere in the Brillouin zone, as long as the dipole transition
is allowed. Hence, the coherent coupling contribution may
enhance the contribution from the resonant quantum pass,
inducing stronger even-order harmonic generation.

Figure 4(c) shows that the third-harmonic yield calculated
using the fully dynamical model is 1.57 times stronger than
that computed using the nonequilibrium population model
when the two fields are perpendicular. This result indicates
that the THz field enhances third-harmonic generation for
the perpendicular configuration and that both coherent cou-
pling and the incoherent population play important roles in
the THz-assisted enhancement mechanism. By contrast, the
third-harmonic yield computed using the fully dynamical
calculation is 0.57 times smaller than that computed using
the nonequilibrium population model when the two fields
are parallel. This result indicates that the contributions from
the coherent coupling and the incoherent population cancel
each other, weakening the total signal. Therefore, both coher-
ent coupling and incoherent population affect third-harmonic
generation under the investigated condition but play different
roles depending on the relative angle θ between the THz and
MIR fields.

Figure 4(e) shows that the fifth-order harmonic yield com-
puted using the fully dynamical calculation is considerably
larger than that computed using the nonequilibrium popula-
tion model, except in the range where the THz and MIR fields
are parallel. Hence, the coherent coupling is the dominant
contribution to the enhancement of fifth-harmonic generation
for most angles but the effects of coherent coupling and the
incoherent population are both important when the MIR and
THz fields are parallel. The consistent results are obtained
for higher-order harmonics (see Appendix D). When a MIR
field is solely applied to graphene, the induced HHG can
be attributed to the interference between multiple excitation
pathways involving nonlinear coupling between MIR-induced
intraband and interband transitions [32]. In contrast, the
substantial enhancement of HHG observed in the presence
of THz fields suggests the activation of an additional non-
linear coupling mechanism. This mechanism, which arises
through coherent coupling between MIR- and THz-induced

transitions, appears to predominate over other processes in
contributing to the overall harmonic yield.

IV. SUMMARY

We used a quantum master equation to model MIR-induced
HHG in graphene in the presence of a strong THz field.
We first computed the electron dynamics in graphene by ex-
plicitly employing MIR and THz pulses and evaluated the
emitted high-harmonic spectra. Next, we developed a qua-
sistatic approximation by analyzing MIR-induced HHG under
a static field to replace the THz pulses. The THz-assisted
MIR-induced HHG spectra were accurately reproduced by a
static field within the quasistatic approximation, thus validat-
ing the application of this approximation for describing the
induced dynamics generated by an applied strong THz field.

We then investigated the intensity of the emitted harmonics
for different relative angles between the MIR and THz fields.
In the absence of a THz field, the emitted odd-order harmonics
exhibit an almost circular angular dependence, reflecting the
circular symmetry of Dirac cones, whereas no even-order
harmonics are emitted because of the intrinsic inversion sym-
metry of graphene. Under an intense THz field, the emitted
harmonics exhibit a strong angular dependence along with
enhancement and suppression of the harmonic yield. For ex-
ample, the emitted fifth harmonic can be enhanced 10 times
under a THz field with a strength of 0.5 MV/cm with respect
to the result without the THz field, as shown in Fig. 2(d).

To elucidate the mechanism by which a THz field enhances
MIR-induced HHG, we compared the results obtained using
the quasistatic approximation and the thermodynamic model,
which treats the effect of the THz field as a simple increase in
the electron temperature of the Fermi-Dirac model [51]. The
thermodynamic model does not reproduce the enhancement
of MIR-induced HHG, indicating that nonequilibrium THz-
induced dynamics play an essential role in the enhancement.

To gain further insight into the enhancement of MIR-
induced HHG by a THz field, we developed a nonequilibrium
population distribution model. Within this model, THz-
induced effects are treated as a change in the population
distribution in the nonequilibrium steady state. The re-
sults obtained using the fully dynamical calculation and the
nonequilibrium population distribution model were compared
to elucidate the roles of coherent coupling between the MIR
and THz fields. The THz-induced even-order harmonics and
the THz-enhanced high-order harmonics are dominated by the
coherent coupling contribution, whereas the enhancement of
the third harmonics under a THz field is affected by both
the coherent coupling and the nonequilibrium population.
Furthermore, the enhancement of the higher-order harmonics
is dominated by the coherent coupling contribution. These
enhancement mechanisms are not rigidly limited by the condi-
tions of the laser parameters investigated in this work but can
be induced in rather general conditions. Therefore, it is key
to control both the coherent coupling and the population for
enhancing HHG from solids by employing multicolor laser
fields. Moreover, the coherent coupling mechanism holds
pivotal significance across various orders of harmonic gener-
ation, including low-order harmonic phenomena (see Fig. 4).
This implies the indispensability of field-induced coherence
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FIG. 5. The harmonic yields are shown as a function of the
static field strength Edc. In each panel, the results obtained using the
different relaxation times, T1 and T2, are compared. The results of
the third harmonics are shown in (a) and (b), whereas those of the
fifth harmonics are shown in (c) and (d). The results obtained using
the parallel configuration (eMIR = ex = eTHz) are shown in (a) and
(c), whereas those obtained using the perpendicular configuration
(eMIR = ey ⊥ eTHz) are shown in (b) and (d).

in general nonlinear optical effects. Consequently, these find-
ings suggest the prospect of efficient control of electron and
spin dynamics through coherent coupling, utilizing multicolor
lasers. This capability would extend beyond mere frequency
conversion of light, paving the way toward the development
of ultrafast optoelectronics and optospintronics.
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APPENDIX A: RELAXATION-TIME,
T1 AND T2, DEPENDENCE

Here we explore the effect of the relaxation times, T1 and
T2, on the HHG in the presence of THz and MIR fields.
Employing the methods described in Sec. II, we calculate the
third- and fifth-order harmonic yields with different relaxation
times. The results are shown in Fig. 5. The computed results
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FIG. 6. The power spectra of emitted harmonics, IHHG(ω), are
shown. The results obtained using a weak THz field (ETHz = 0.1
MV/cm) are shown in (a) and (b), while those obtained using a
strong THz field (ETHz = 1.0 MV/cm) are shown in (c) and (d). The
results obtained using the parallel configuration (eMIR = ex = eTHz)
are shown in (a) and (c), whereas those obtained using the perpen-
dicular configuration (eMIR = ey ⊥ eTHz) are shown in (b) and (d).

demonstrate that the qualitative trends in the enhancement
of the HHG by the THz field irradiation remain consistent
for different relaxation times. Hence, the choice of the re-
laxation times does not have a significant impact on the
enhancement.

The relaxation time is determined by various scattering
mechanisms including electron-electron scattering, electron-
phonon scattering, and electron-impurity scattering. Hence,
the actual relaxation times in a realistic setup depends on the
experimental conditions. Nevertheless, the results shown in
Fig. 5 indicates that the enhancement of the HHG by the THz
field irradiation can be realized as a robust phenomenon in a
wide range of the experimental conditions.

APPENDIX B: QUASISTATIC APPROXIMATION WITH
DIFFERENT THZ FIELD STRENGTHS

Here we extend our investigation to establish the validity of
the quasistatic approximation for different THz field strength.
Here we repeated the analysis of Figs. 1(e) and 1(f) by chang-
ing the THz field strength. The results obtained using a weak
THz field (ETHz = 0.1 MV/cm) are shown in in Figs. 6(a)
and 6(b), whereas those obtained using a strong THz field
(ETHz = 1.0 MV/cm) are shown in Figs. 6(c) and 6(d). As
seen from the figure, the results of the quasistatic approxima-
tion accurately reproduce those of the calculations with the
THz laser pulses for all the investigated field strengths and
polarization directions. Hence, we confirm that the quasistatic
approximation can well describe the electron dynamics in
graphene under THz and MIR fields in both the weak- and
the strong-field regimes.
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FIG. 7. The angular dependence of the harmonic yield obtained
from the electron dynamics calculations in the presence of the MIR
field. The numerical conditions are the same as those of the calcu-
lations in Fig. 2. The third, fifth, and seventh harmonic yields are
scaled by factors of 60, 800, and 1000, respectively.

APPENDIX C: ANGULAR DEPENDENCE OF
HIGH-ORDER HARMONIC GENERATION

WITHOUT THZ FIELDS

Here we evaluate the angular dependence of the emitted
harmonic yield Inth without THz fields, analyzing the intrinsic
symmetry of graphene. Figure 7 show the computed angu-
lar dependence of the emitted harmonic yield Inth obtained
using only the MIR field in the same conditions as Fig. 2.
Reflecting the sixfold symmetry of the hexagonal lattice of
graphene, the emitted harmonics also show the sixfold sym-
metry in the angular dependence. As seen from Fig. 7, the
lower-order harmonics exhibit an almost circular angular de-
pendence, reflecting the circular symmetry of Dirac cones.
By contrast, the higher-order harmonics exhibit more com-
plex sixfold symmetry in the angular dependence since the
electronic structure of graphene deviates from a simple Dirac
cone when a single-particle energy is far from the Dirac
point.

APPENDIX D: ANGULAR DEPENDENCE
OF HIGH-ORDER HARMONICS

Here we analyze the angular dependence of the high-order
harmonics in the same way as that used to analyze Fig. 2.
Figures 8(a) and 8(b) show the angular dependence of the
sixth and seventh harmonics, respectively. Figures 8(c)
and 8(e) show the sixth-harmonic signal decomposed into
parallel and perpendicular components, respectively. The
same decomposition is shown for the seventh-order harmonic
in Figs. 8(d) and 8(f).

Consistent with the results for the fourth and fifth harmon-
ics shown in Fig. 2, the perpendicular components make a

FIG. 8. The angular dependence of the harmonic yields in the
nonequilibrium steady state under a static field along the 	-M di-
rection is shown. The angle θ denotes the relative angle between the
static field and the MIR field. [(a) and (b)] The total intensity Inth

total

for the sixth and seventh harmonics is shown, respectively. [(c) and
(d)] The component of the intensity parallel to eMIR is shown for each
harmonic. [(e) and (h)] Th component of the intensity perpendicular
to eMIR is shown for each harmonic. The results are normalized by
the maximum total intensity Inth

total of each harmonic.

FIG. 9. The angular dependence of the emitted harmonic inten-
sity for the (a) sixth and (b) seventh harmonics are shown. The
results obtained using the nonequilibrium population model and the
nonequilibrium steady state are shown by the blue and green solid
lines, respectively.
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large contribution to the enhancement of MIR-induced HHG
by a THz field, as shown in Fig. 8.

Furthermore, we compare the results for the sixth and
seventh harmonics obtained using the nonequilibrium popula-
tion model and the nonequilibrium steady state. Figures 9(a)
and 9(b) show the angular dependence of the sixth- and

seventh-harmonic yields in the presence of a static field with
a strength of Edc = 0.5 MV/cm, respectively

Consistent with the analysis results shown in Fig. 4, the
coherent coupling between the MIR and THz fields plays
an essential role in the enhancement of the HHG and goes
beyond the simple field-induced population contribution.
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