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A number of interesting physical phenomena have been discovered in magic-angle twisted bilayer graphene
(MATBG), such as superconductivity, correlated gapped and gapless phases, etc. The gapped phases are believed
to be symmetry-breaking states described by mean-field theories, whereas gapless phases exhibit features not
explained by mean-field theories. This work, using a combination of poor man’s scaling, numerical renormal-
ization group, and dynamic mean-field theory, demonstrates that the gapless phases are the heavy-Fermi-liquid
state, where some symmetries might be broken while the others are preserved. We adopt the recently proposed
topological heavy-fermion model for MATBG, where effective local orbitals around AA-stacking regions and
Dirac fermions surrounding them play the roles of local moments (LM’s) and itinerant electrons, respectively. At
zero temperature and most noninteger fillings, the ground states are found to be heavy Fermi liquids and exhibit
Kondo resonance peaks. The Kondo temperature TK is found at the order of 1 meV. A higher temperature than TK

will drive the system into a metallic LM phase where disordered LM’s, obeying Curie’s law, and a Fermi liquid
formed by itinerant electrons coexist. At integer fillings ±1, ±2, TK is suppressed to zero or a value weaker
than the Ruderman-Kittel-Kasuya-Yoshida interaction, leading to Mott insulators or symmetry-breaking states.
Remarkably, this theory offers a unified explanation for several experimental observations, such as zero-energy
peaks and quantum-dot-like behaviors in STM, the so-called Pomeranchuk effect, and the sawtooth feature of
inverse compressibility, etc. For future experimental verification, we predict that the Fermi surface in the gapless
phase will shrink upon heating, as a characteristic of the heavy Fermi liquid. We also conjecture that the heavy
Fermi liquid is the parent state of the observed unconventional superconductivity because the Kondo screening
reduces the overwhelming Coulomb interaction (U ∼ 60 meV) to a rather small residual effective interaction
(U ∗ ∼ 1 meV) that is comparable to possible weak attractive interactions.

DOI: 10.1103/PhysRevB.109.045419

I. INTRODUCTION

After the discovery of superconductivity [1] and corre-
lated insulators [2] in magic-angle twisted bilayer graphene
(MATBG) [3], MATBG has become a platform for studying
new correlation effects in flat-band systems and has received
extensive attention. Remarkably rich physics, including the
interplay between superconductivity [4–11] and strong cor-
relation [4,6–8,12–19], interaction-driven Chern insulators
[20–26], strange metal behaviors [27–29], and the Pomer-
anchuk effect [30,31], etc., have been observed in MATBG.
Several theoretical understandings of the correlated gapped
states have also been achieved: The strong correlation arises
from the two topological flat bands [3,32–37], and each is
fourfold degenerate due to the spin and valley degree of free-
dom. A large U(4) symmetry group [38–42] emerges in the
flat-band limit, where the bandwidth is counted as negligible.
Then the observed correlated gapped states can be understood
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as flavor-polarized states [38–40,42–58] that spontaneously
break the U(4) symmetry. The continuous U(4) degeneracy
also leads to Goldstone mode fluctuations [59,60].

Less theoretical understandings have been achieved for the
gapless states. They exhibit some exotic phenomena beyond
naive mean-field descriptions: (i) zero-energy peaks in spec-
tral density at low temperatures [11,19,21,22], (ii) a cascade
of transitions as that of a quantum dot at higher tempera-
tures [17,19], (iii) the so-called Pomeranchuk effect where
local moment (LM) develops upon heating [30,31], (iv) the
sawtooth feature of inverse compressibility [17,18,26,30,31].
These phenomena are not connected or explained on a micro-
scopic level in prior theories.

In this work, we perform systematic analytical and nu-
merical investigations to the recently developed topological
heavy-fermion (THF) model [61,62] for MATBG. The THF
model consists of localized f electrons at the AA-stacking
regions of MATBG, which form a triangular lattice of LM’s,
and plane-wave-like itinerant Dirac c electrons, which tend to
screen the LM’s due to the Kondo effect [63–80]. We derive
a phase diagram consisting of symmetry-breaking states at
zero temperature, heavy Fermi liquids at zero temperature,
and metallic LM states at finite temperature where disordered
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LM’s and itinerant electrons coexist. This phase diagram
provides natural explanations for the experiments mentioned
in the last paragraph.

For this work to be self-contained, in Sec. II A we review
the THF model and its symmetry shortly. In Sec. II B, based
on a poor man’s scaling analysis and several experimental
facts, we argue that the Kondo screening effect is irrele-
vant at the charge neutrality point (CNP) of MATBG, and
hence the ground state at CNP is the previously identified
symmetry-breaking correlated insulator [38–40,42–44]. Then
we derive a simpler effective periodic Anderson model to
describe active excitations upon the correlated ground state
at CNP (Sec. II C). In Sec. III, we systematically analyze a
single-impurity version of the periodic Anderson model de-
rived in Sec. III A. We first use poor man’s scaling to obtain
the Kondo temperature (TK) as a function of filling (Sec. III B)
and, then, by applying Wilson’s numerical renormalization
group (NRG) [81–83], obtain a phase diagram characterized
by strong coupling fixed points and various LM fixed points
(Sec. III C). The strong coupling phase consists of a Kondo
regime and a frozen impurity regime, and the gapless states
at |ν| � 1 are found to be in the Kondo regime. The spin
susceptibility and the entropy obtained in Sec. III E further ex-
plain the so-called Pomeranchuk effect observed in MATBG
[30,31]. For example, the spin susceptibility obeys Curie’s
law at high temperatures, suggesting the existence of LM,
and approaches a constant at lower temperatures, suggesting
a Fermi-liquid phase. However, in sharp contrast to the actual
Pomeranchuk effect in helium, which is a first-order liquid-to-
solid phase transition on heating, our theory predicts that the
transition from the Fermi liquid to the LM state is a continuous
crossover.

We perform a combined dynamical mean-field theory
(DMFT) and Hartree-Fock (HF) calculation to the effective
periodic Anderson model in Sec. IV, where the impurity
solver is implemented using NRG. Flavor symmetries among
the remaining active excitations are assumed in the calcu-
lation for simplicity. At noninteger fillings and |ν| = 3, the
DMFT+HF calculation predicts heavy Fermi liquid when
the f orbitals are partially filled (Sec. IV B). At the integer
fillings |ν| = 1, 2, the ground state is either a symmetric Mott
insulator or a heavy Fermi liquid with extremely low TK, de-
pending on the parameters of the Hamiltonian. The calculation
also reproduces the zero-energy peak [11,19,21,22] and the
transition cascade [17,19] seen in the STM spectrum, and the
sawtooth inverse compressibility [17,18,26,30,31]. We also
compare the DMFT+HF results to the single-impurity results
and find that the single-impurity model yields reasonable
estimations of TK and the entropy but misses the possible
Mott insulators. In Sec. IV C, we discuss the competition
between the Kondo screening and the RKKY interaction. We
show that the RKKY interaction dominates near fillings |ν| =
1, 2, leading to symmetry-breaking states at zero temperature.
In Sec. IV D, we explicitly calculate the heavy-Fermi-liquid
bands and Fermi surfaces at T � TK and T > TK. A smoking
gun signature of the heavy Fermi liquid is the expansion of
Fermi surface on cooling. This signature can be used to verify
our theory in future experimental studies. Finally, we briefly

summarize this work and discuss its possible relevance to
superconductivity in Sec. V.

II. EFFECTIVE MODEL

A. Topological heavy-fermion model

One theoretical challenge in studying correlation physics
in MATBG is the lack of a fully symmetric lattice model for
low-energy physics, which is forbidden by the band topol-
ogy protected by a C2zT symmetry [32–34] and an emergent
particle-hole symmetry P [37], even though extended Hub-
bard models [84–88] can be constructed at the sacrifice of
either symmetry or locality. The band topology was thought
as fragile [32–34] but was later shown to be a stable sym-
metry anomaly jointly protected by C2zT and P [37]. The
THF model [61,62] resolved this problem by ascribing the
strong correlation to effective f orbitals at the AA-stacking
regions, which form a triangular lattice, and leaving the re-
maining low-energy states to continuous c bands described
by a topological Dirac Hamiltonian (Fig. 1). Its free part is
given by

Ĥ0 = −μN̂ +
∑
ηs

∑
aa′

∑
|k|<�c

H (c,η)
aa′ (k)c†

kaηsckaηs

+
∑
ηsαa

∑
|k|<�c

(e− |k|2λ2

2 H (c f ,η)
aα (k)c†

kaηs fkαηs + H.c.). (1)

Here μ is the chemical potential, N̂ is the particle-number
operator, ckaηs is the fermion operator for the c electron of
the momentum k, orbital a (= 1, 2, 3, 4), valley η (= ±), and
spin s (=↑,↓), fkαηs is the corresponding fermion operator
for the f electron of the orbital α (=1,2). The momentum of
c bands is in principle limited within the cutoff �c, but the
theory yields the same low-energy physics in the �c → ∞
limit. Hence, hereafter we will drop the restriction |k| < �c.
H (c,η)(k) = v�(ησx ⊗ σ0kx − σy ⊗ σzky) + 02×2 ⊕ Mσx is the
Dirac Hamiltonian of the c bands. When M �= 0, c bands
have a quadratic band touching at the zero energy, whereas
when M = 0, c bands become linear. The 2 × 2 block of
H (c f ,η)

aα (k) for a = 1, 2 is given by γ σ0 + v′
�(ησxkx + σyky),

and the 2 × 2 block of H (c f ,η)
aα (k) for a = 3, 4 vanishes. The

parameter λ in the second line of Eq. (1) is the spread of
the Wannier functions of f electrons, and it truncates the
hybridization at |k| 
 λ−1. In this work we adopt the pa-
rameters of Ref. [61]: γ = −24.75 meV, v� = −4.303 eV Å,
v′

� = 1.623 eV Å, λ = 1.4131/kθ , kθ = 1.703 Å−1 × 2 sin θm
2

with θm = 1.05◦ being the first magic angle. The resulting
band structure with a nonzero M (3.697 meV) is shown in
Fig. 1(b). One can see that the topological flat bands result
from the hybridization between c and f bands and have a
bandwidth 2|M|.

In each valley η, the Hamiltonian Ĥ0 respects a mag-
netic space group P6′2′2 [32] (No. 177.151 in the BNS
setting [89]), generated by C3z = eiη 2π

3 σz ⊕ eiη 2π
3 σz ⊕ σ0, C2x =

13×3 ⊗ σx, and C2zT = 13×3 ⊗ σxK (with K being the com-
plex conjugation), and translations along a1,2 = 2π

3kθ
(±√

3, 1).
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FIG. 1. The THF model. (a) Top: red spheres represent the effective f electrons located at AA-stacking regions of MATBG, and blue
spheres represent the itinerant c electrons. Bottom: the moiré Brillouin zone. (b) Black bands are given by the free part of the THF model
[Ĥ0 in Eq. (1)]. Red and blue bands are the decoupled f and c bands, respectively. M is a parameter that determines the bandwidth of the flat
bands. We focus on the M → 0 limit in this work. (c) Band structure of the active electron modes upon the symmetry-breaking parent state
for ν > 0, described by Eq. (8). Red and blue bands are the decoupled f and c bands, respectively. (d) The hybridization function �(ω) in the
single-impurity model contributed by the c bands in (c).

The first (second) 2 × 2 (4 × 4) block in the operators act
on the f electrons (c electrons). The interaction Hamiltonian

given in the following paragraph also respects these crys-
talline symmetries.

The interaction Hamiltonian is given by

ĤI =U1

2

∑
R

δn f
Rδn f

R + U2

2

∑
〈RR′〉

δn f
Rδn f

R′ + 1

2NM

∑
qaa′

V (q)δnc
−qa′δnc

qa + 1

NM

∑
Rqa

Wae−iq·Rδn f
Rδnc

qa − J

2NM

∑
ηη′αα′

ss′

∑
k,k′
R

×
[

[ηη′ + (−1)α+α′
]e−i(k−k′ )·R

(
f †
Rα′η′s′ fRαηs − 1

2
δηη′δαα′δss′

)(
c†

k,α+2ηsck′,α′+2η′s′ − 1

2
δkk′δηη′δαα′δss′

)]
, (2)

where NM is the number of moiré cells, fRαηs is the real-
space fermion operator for the f electrons, R’s form the
triangular lattice shown in Fig. 1(a), 〈RR′〉 represents nearest-
neighbor pairs (ordered), δn f

R = ∑
αηs( f †

Rαηs fRαηs − 1
2 ) is the

total density operator (counted from CNP) of f electrons
at R, δnc

qa = ∑
ηsk(c†

k+qaηsckaηs − 1
2δq0) is the density op-

erator for c electrons of the orbital a. U1,2, V (q), Wa are
the density-density interaction between f f , cc, c f electrons,
respectively, and J is an exchange interaction between c f
electrons. We adopt the parameters U1 = 57.95 meV, U2 =
1.16 meV, W1 = W2 = 44.03 meV, W3 = W4 = 50.20 meV,
J = 16.38 meV, and V (q) = V0

tanh(ξ |q|/2)
ξ |q|/2 , with ξ = 10 nm

and V0 = 48.33 meV [61]. As explained in Appendix A 1, the
value of U2 is suppressed from the original value in Ref. [61].

Hereafter, we mainly focus on the flat-band limit where
M = 0, which has been shown as a good approximation us-
ing realistic parameters [41,43]. In this limit, an exact U(4)
symmetry of Ĥ0 + ĤI between the spin, valley, and orbital
flavors emerges, as previously recognized in the projected
Coulomb Hamiltonian of the continuous model [38–42]. This
U(4) symmetry is not related to the so-called chiral limit
[35,90], which leads to a distinct U(4) symmetry [39,41]. The
16 U(4) generators acting on fRαηs, ckaηs (a = 1, 2), and ckaηs

(a = 3, 4) are

� f
μν = {σ0τ0ςν, σyτxςν, σyτyςν, σ0τzςν}, (3)

�c12
μν = {σ0τ0ςν, σyτxςν, σyτyςν, σ0τzςν}, (4)

and

�c34
μν = {σ0τ0ςν,−σyτxςν,−σyτyςν, σ0τzςν}, (5)

respectively, where ςν (ν = 0, x, y, z) are Pauli matrices act-
ing in the spin subspace, τμ (μ = 0, x, y, z) are Pauli matrices
acting in the valley subspace, and σ0,x,y,z are Pauli matrices
acting in the orbital subspace. With the help of the U(4)
symmetry, the J term in Eq. (2) can be written as a fer-
romagnetic coupling between the U(4) LM of f electrons
and the U(4) LM of c electrons. [Readers may refer to the
supplementary section S2G of Ref. [61] for the discussion
of the U(4) symmetry, Eqs. (S106)–(S109) for the definition
of U(4) generators, and Eqs. (S202)–(S209) for why the J
term is a U(4) ferromagnetic coupling.] When M �= 0, only
the μ = 0, z U(4) generators commute with the Hamiltonian,
lowering the symmetry group to U(2) × U(2). The rotation
generated by μ = z, ν = 0 is referred to as the valley-U(1)
symmetry.

Consistent with previous results [38–40,42–44], a Hartree-
Fock treatment of the THF model has predicted the ground
state at CNP with M = 0 as a U(4) LM state lying in a
20-fold multiplet that corresponds to the [2,2] representation
of U(4) group [43]. Each degenerate state in the manifold
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respects a U(2) × U(2) subgroup [61]. These states can be
approximately written as

|�0〉 = e−iθμν�̂μν

∏
R

f †
R1+↑ f †

R1+↓ f †
R2+↑ f †

R2+↓|FS〉, (6)

where the |FS〉 is the Fermi-sea state with the half-filled c
bands, �̂μν’s are the U(4) generator operators defined by the
matrices in Eqs. (3) to (5), and θμν’s are the rotation param-
eters. An implicit summation over repeated μ, ν indices is
assumed. When θμν’s are zero, |�0〉 is the valley-polarized
state because all the occupied f electrons are in the η = +
valley, and the U(2) × U(2) subgroup is generated by �̂0ν

and �̂zν (ν = 0, x, y, z). For nonzero θμν’s, |�0〉 respects an
equivalent U(2) × U(2) subgroup. In particular, the Kramers
intervalley coherent states can be obtained by setting θx0

and θy0 to be nonzero and satisfy θ2
x0 + θ2

y0 = (π/4)2. When
M �= 0, the Kramers intervalley coherent states are found to
have a lower energy (∼0.1 meV) than the valley-polarized
states [43,61].

B. Irrelevance of Kondo screening at CNP

Here we argue that the Kondo screening effect is irrelevant
at CNP; hence, the U(4) LM state in Eq. (6) is valid as
an approximate ground state. We first examine the energy
scale of a fully symmetric Kondo state at CNP. Since the
f sites are almost decoupled from each other, a reasonable
approximation is to view each f site as a single Anderson
impurity coupled to a bath of c electrons. If we only consider
the onsite U1 interaction and the hybridization between f
and c electrons [H (c f ,η)(k) in Eq. (1)], then it is almost a
standard Anderson model with eight flavors. The effect of c
bath is described by the hybridization function �(ω), defined
as the imaginary part of the (retarded) self-energy of a free
f electron (in the absence of U1) coupled to the c bath,
i.e.,Im[�0

αηs,α′η′s′ (ω)] = −δα,α′δηη′δss′�(ω). The identity ma-
trix form of Im[�αηs,α′η′s′ (ω)] is guaranteed by the spin-SU(2)
(δss′ ), the valley-U(1), the time-reversal (δηη′ ), and crystalline
(δαα′ ) symmetries. In the flat-band limit (M = 0), the linear
dispersion of c bands [Fig. 1(b)] leads to a linear-in-energy
density of states as well as a linear-in-energy hybridization
function, i.e.,�(ω) ∼ |ω|. As a consequence, low-lying states
of the impurity will see vanishing bath electrons when the
energy scale is small enough. Both numerical [91–93] and
analytical [94] RG studies have shown that Anderson impurity
models with such a �(ω) ∼ |ω| hybridization function do
not have the strong coupling fixed point that exhibits Kondo
screening. Instead, the only stable fixed point is the LM phase.

With a finite M, the c bands given by H (c,η)(k) in
Eq. (1) have a quadratic band touching at the zero energy,
i.e.,±(−M/2 + √

M2/4 + v2
�k2), leading to a finite �(0).

Nevertheless, the Kondo energy scale resulting from realistic
parameters is still negligible. In Appendix B 2 we derived
an analytical expression of �(ω) for the symmetric state at
CNP. In the low-energy regime (|ω| < U1/2), we find �(ω) ≈
2�(0)|ω|/M for |ω| > M and �(ω) ≈ �(0)(1 + |ω|/M ) for
|ω| < M. To estimate the Kondo energy scale, we apply a poor
man’s scaling (detailed in Appendix B 2) that considers the ω

dependence of �(ω). There are two stages in the RG process:
(i) energy scale from U1/2, above which the perturbation

theory no more applies, falls down to M, (ii) energy scale
gets renormalized below M. RG in the first stage effectively
enhances �(0) to g1�(0) with g1 > 1 a factor determined by
M. Then, RG in the second stage gives the Kondo energy scale

DK ≈ Me1− πU1
4N g1�(0) , (7)

where the factor e1 is contributed by the linear ω dependence
of �(ω) in the second stage, and N = 8 is the number of fla-
vors. DK strongly depends on the actual bandwidth. For 2M =
5, 7.4, 10, 15, and 20 meV and fixed U1 = 57.95 meV, we ob-
tain DK ≈ 5.1 × 10−6, 3.8 × 10−4, 4.3 × 10−3, 4.9 × 10−2,
and 0.17 meV, respectively. For U1 = 60, 50, 40, and 30 meV
and fixed 2M = 10 meV we have DK ≈ 3.5 × 10−3, 1.0 ×
10−2, 2.8 × 10−2, 8.0 × 10−2 meV, respectively. Given that
the single-particle bandwidth estimated by the BM model and
the first-principle calculations are about 7.4 meV [61] and
10 meV [95,96], respectively, DK should be at most at the
order of 10−2 meV. This energy scale is still much lower
than the energy gain of the symmetry-breaking correlated
state [43,59]. The bandwidth of the Goldstone modes at CNP
from �M to MM is about 8 meV. (See Fig. 2 of Ref. [59].)
If we understand this spectrum as a tight-binding band of
the Holstein-Primakoff bosons on the f sites, which form a
triangular lattice, then the nearest-neighbor hopping is about
8 meV/8 = 1 meV. This hopping indicates an Ruderman-
Kittel-Kasuya-Yoshida (RKKY) interaction much larger than
the Kondo energy scale. (In twisted bilayer graphene at non-
magic angles, the bandwidth 2M can be much larger, and a
symmetric Kondo phase could be stabilized at CNP if the f
orbitals still remain well localized.)

In addition, as we have neglected all the interactions except
U1 in the estimation, the single-impurity model has a U(8)
symmetry. A U(8) breaking must be caused by other inter-
action terms, e.g.,J in Eq. (2), and will lead to a multiplet
splitting. When the energy scale in the RG is smaller than
the multiplet splitting, the degeneracy factor N should be
reduced accordingly, and DK will be further suppressed [97].
Therefore, we conclude that the ground state of MATBG at
CNP is a symmetry-breaking state.

The symmetry-breaking state at CNP is also supported by
various experiments. In contrast to the Kondo resonance, STM
measurements have shown strong suppression of the density
of states at the zero energy at CNP [11,12,14–17,19,21,22].
Some transport experiments [4,6,7,27] also exhibit a gap
behavior at CNP. Although there are also transport experi-
ments showing semimetal behavior, the gaplessness can be
explained if there are fluctuations of the local moments
from site to site, which is possible due to the Goldstone
mode fluctuations [59,60] and possible inhomogeneity of the
sample.

C. Effective periodic Anderson model for ν > 0 states

We aim for an effective model describing the active excita-
tions upon the ground state |�0〉 [Eq. (6)] at CNP. Let us first
assume the valley-polarized state, where θμν’s in Eq. (6) are
all zero such that all the occupied f electrons are in the η = +
valley. As detailed in the Supplemental Material of Ref. [61]
and in Ref. [59], the lowest electron and hole excitations are
in the η = − and + valleys, respectively. Thus, for a small
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electron doping, only excitations in the η = − valley will
be involved, and the electrons in the η = + valley can be
viewed as a static background. The effective Hamiltonian can
be obtained by replacing operators in the η = + valley by

their expectation values on |�0〉, which are 〈 f †
Rα+s fR′α′+s′ 〉 =

δRR′δαα′δss′ , 〈c†
ka+sck′a′+s′ 〉 ≈ 1

2δkk′δaa′δss′ , 〈c†
ka+s fRα+s′ 〉 = 0.

Substituting these expectation values into Ĥ0 + ĤI , we obtain
the effective free Hamiltonian

Ĥ eff
0 = −μN̂ +

∑
ksaa′

(
H (c)

aa′ (k) + J

2
δaa′ (δa3 + δa4)

)
c†

kascka′s + U1

2

∑
R

n f
R +

∑
kaαs

(e− 1
2 λ2k2

H (c f )
aα (k)c†

kas fkαs + H.c.), (8)

where nRαs = ∑
αs f †

Rαs fRαs is the density operator of f electrons at R. Here we have dropped the valley index η as they are
limited to η = −. The H (c)(k) and H (c f )(k) matrices are given by the H (c,−)(k) and H (c f ,−)(k) matrices defined after Eq. (1).
The effective interaction Hamiltonian is

Ĥ eff
I = U1

2

∑
R

: n f
Rn f

R : +U2

2

∑
〈RR′〉

n f
Rn f

R′ + 1

2NM

∑
qaa′

V (q)δnc
−q,a′δnc

q,a + 1

NM

∑
Rqa

Wae−iq·Rn f
Rδnc

qa

− J

NM

∑
Rss′

∑
kk′α

e−i(k−k′ )·R f †
Rαs′ fRαs

(
c†

k,α+2,sck′,α+2,s′ − 1

2
δkk′δss′

)
, (9)

where δnc
qa = ∑

sk(c†
k+qasckas − 1

2δq0). The U1 term in Ĥ eff
I

is normal ordered, and the bilinear term left over in normal
ordering, i.e., U1

2 n f
R, is now in Ĥ eff

0 . The bilinear term in c
operators contributed by the J interaction is also in Ĥ eff

0 . Band
structure of Ĥ eff

0 is shown in Fig. 1(c).
In the flat-band limit (M = 0), Ĥ eff

0 + Ĥ eff
I also applies

to arbitrary U(4) partners of the valley-polarized state, in-
cluding the so-called Kramers intervalley coherent state.
To be specific, for a generic |�0〉 given in Eq. (6),
we can always define rotated operators fRαs = U fRα−sU †,
ckas = Ucka−sU †, where U = e−iθμν�̂μν is the U(4) rotation
defining |�0〉, such that the effective Hamiltonian on the
rotated basis is the same as Eqs. (8) and (9). The ef-
fective Hamiltonian Ĥ eff

0 + Ĥ eff
I respects all the crystalline

symmetries discussed in Sec. II A. In the flat-band limit
(M = 0), |�0〉 respects a U(2) × U(2) subgroup of the U(4)
group, e.g.,independent spin-charge rotations in the two
valleys for the valley polarized |�0〉. However, since the
effective Hamiltonian only involves half of the degree of
freedom, e.g.,the active η = − valley for the valley polarized
|�0〉, only one U(2) factor is meaningful for Ĥ eff

0 + Ĥ eff
I .

Therefore, hereafter we will say that Ĥ eff
0 + Ĥ eff

I respects a
U(2) symmetry group.

As discussed at the end of Sec. II A, when M �= 0, the
U(4) symmetry is broken, and the ground state is the Kramers
intervalley coherent state. As a consequence, the effective
Hamiltonian should have additional terms. However, M will
not further lower the crystalline and U(2) symmetries of
Ĥ eff

0 + Ĥ eff
I and hence will only play a minor role in the

effective theory. In Appendix A 2 we treat M perturbatively in
terms of M/J , which is about 0.2 using the parameters given in
Sec. II A. We find that the leading-order correction is simply
an energy shift of the c electrons. To avoid confusion, in
Table I we summarize the continuous symmetries of different
Hamiltonians discussed in this work.

The effective model for ν < 0 states, which only involves
hole excitations, can be obtained by applying the particle-hole
operation Pc [41,61] to Ĥ eff

0 + Ĥ eff
I .

III. SOLUTION TO THE SINGLE-IMPURITY MODEL

In this section, we focus on a single-impurity version of
Ĥ eff

0 + Ĥ eff
I , where only the correlation effects at the R = 0 f

site are considered. Interactions not involving this f site will
be treated at the mean-field level. The single-impurity model
successfully explains a number of experimental features in
the metallic phases despite symmetry-breaking gaps at integer
fillings and indicates that the metallic phases are heavy Fermi
liquids. For a complete discussion including the possible sym-
metry breaking at integer fillings, we leave it to the periodic
Anderson model investigated in Sec. IV.

A. Single-impurity model for ν > 0 states

At a given filling ν, the mean fields are characterized by
only a few parameters: ν f = 〈n f

R〉, νc,a = 1
NM

〈δnc
q=0,a〉, where

νc,1 = νc,2, νc,3 = νc,4 due to the crystalline symmetries. The
considered correlated site at R = 0 is described by the Hamil-
tonian

Ĥf = ε f n f + U1

2
: n f n f :, (10)

where the lattice index R (= 0) is omitted for simplicity,
ε f = 6ν f U2 + ∑

a νc,aWa + 1
2U1 − 1

2 Jνc,3 − μ is the mean-
field level of the f site. The U2, Wa, J terms in ε f are
contributed by the Hartree mean fields of interactions in

TABLE I. Continuous symmetries of the effective models. Ĥ0 +
ĤI is the original THF model. For ν > 0 (ν < 0), Ĥ eff

0 + Ĥ eff
I is

the effective periodic Anderson model for the active particle (hole)
excitations upon the symmetry-breaking state at CNP. ĤSI is a single-
impurity version of Ĥ eff

0 + Ĥ eff
I . JH , estimated as 0.3 meV, is an

effective Hund’s coupling of f electrons resulted from the exchange
coupling (J) between c and f electrons.

Ĥ0 + ĤI Ĥ eff
0 + Ĥ eff

I ĤSI (JH = 0) ĤSI (JH > 0)

M = 0 U(4) U(2) U(4) U(2) × U(2)
M �= 0 U(2) × U(2) U(2) U(4) U(2) × U(2)
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Eq. (9). The effective Hamiltonian of c electrons is given by

Ĥc =
∑
ksaa′

[
H (c)

aa′ (k) + δaa′εc,a
]
c†

kascka′s, (11)

where H (c)(k) is the free Dirac Hamiltonian in Eq. (8),
and εc,1 = εc,2 = ν f W1 + νcV0 − μ, εc,3 = εc,4 = ν f (W3 −
J
4 ) + νcV0 + J

2 − μ are the mean-field levels of c electrons.
εc,1 is contributed by Hartree mean fields of W1 and V inter-
actions in Eq. (9) and εc,3 is contributed by the Hartree mean
fields of W3, V , and J interactions in Eq. (9). The band struc-
ture of Eq. (11) is given by (εc,1 + εc,3)/2 ± √

G2/4 + v2
�k2,

where G = εc,3 − εc,1 is the band gap. c bands with εc,1 = 0,
εc,3 = J/2 are shown in Fig. 1(c). Since the interaction V (q)
of c electrons is completely treated at the mean-field level, Ĥc

is an effective free-fermion system.
The f site is coupled to c electrons via the H (c f ) term in

Eq. (8) and HJ in Eq. (9). As detailed in Appendix A 3, these
two terms can be treated separately due to C3z symmetry. The
HJ interaction leads to, in addition to the Hartree mean fields
discussed in the last paragraph, an effective Hund’s coupling
of f electrons

ĤH = JH

∑
α

f †
α↑ fα↑ f †

α↓ fα↓ , (12)

where JH is about 0.3 meV. Since JH is much smaller than
other interactions, we mainly focus on the JH = 0 model in the
main text and leave discussions for JH > 0 to Appendix B 3.
The H (c f ) term leads to a (retarded) self-energy correction
�0

αs,α′s′ (ω) to the f electrons, whose imaginary part de-
fines the hybridization function �(ω), i.e.,Im[�0

αs,α′s′ (ω)] =
−δαα′δss′�(ω). The identity matrix structure of the self-energy
is guaranteed by SU(2) spin-rotation symmetry and crystalline
symmetries. In Appendix A 4 we derived the following analyt-
ical expression for �(ω):

�(ω) = �0

4v2
�

|ω − εc,3|
(
γ 2 + v′2

� k2
F

)
e−k2

F λ2

× [θ (ω − εc,3) + θ (εc,1 − ω)], (13)

where kF is determined by v2
�k2

F + G2/4 = [ω − (εc,1 +
εc,3)/2]2 for either ω > εc,3 or ω < εc,1. As shown in Fig. 1(d)
(with εc,1 = 0, εc,3 = J/2), �(ω) has an abnormal ω depen-
dence compared to those in usual metals.

Baths giving rise to the same �(ω) are physically equiv-
alent. We introduce the following effective single-impurity
Hamiltonian that yields the same �(ω) following [83]:

ĤSI = Ĥf +
∑
αs

∫ D

−D
dε εd†

αs(ε)dαs(ε)

+
∑
αs

∫ D

−D
dε

√
�(ε)

π
[ f †

αsdαs(ε) + H.c.], (14)

where Ĥf is given by Eq. (10), and dαs(ε), satisfying
{dα′s′ (ε′), d†

αs(ε)} = δα′αδs′sδ(ε′ − ε), are the auxiliary bath
fermions introduced to reproduce the hybridization function.
ĤSI is determined by four parameters: ε f the energy level
of f electrons, U1 the Coulomb repulsion, εc,1 and εc,3 the
energy level of a = 1, 2 and a = 3, 4 c electrons (or εc,1 and

FIG. 2. Phases and fixed points in the single-impurity model.
(a) Mean-field values of εc,1, ε f , G as functions of the total filling
ν. (b) The Kondo energy scale estimated by the poor man’s scaling
(DK ), the NRG spectral density (kBTK), the NRG spin susceptibility
(kBT s

K). (c) The RG flows of the many-body spectra of the scaled
Hamiltonian H̃N (N ∈ odd) at ν = 1.25 with mean-field parameters
εc,1 = −28.8 meV, ε f /U1 = −0.554, G = 9.92 meV. The levels are
labeled by total charge Q and the SU(4) irreducible representation.
The insets are the corresponding spectral densities that exhibit a
Kondo resonance. (d) The RG flows in the LM1 phases, where ε f =
− 1

2U1, εc,1 = −5 meV, and G = 12 meV. The quantum numbers of
the ground states are emphasized by using larger fonts. Only spectra
at N <= 5 are shown because the hopping between N = 5 and 6 bath
site in the Wilson chain is as small as 1 × 10−19 meV, which means
the bath site at N � 6 is decoupled from the impurity. The insets
are the corresponding spectral densities that exhibit local moment
features: Hubbard bands without zero-energy peaks. (e) The phase
diagram in the parameter space of εc,1, ε f for fixed G = εc,3 − εc,1

(= 12 meV). The white lines are phase boundaries between local
moment (LM) phases and the strong coupling phase. The dashed
black lines are crossover boundaries between the frozen impurity (FI)
and Kondo regimes of the strong coupling phase. The color maps TK

obtained from NRG spectral density. The solid black line indicates
the trajectory of εc,1 and ε f as ν changes from 0 to 4, where the five
arrows from left to right represent ν = 0, 1, 2, 3, 4, respectively.

G equivalently). As explained at the beginning of this subsec-
tion, the actual values of ε f , εc,a depend on the occupations
ν f , νc,a. In this section, we estimate ν f , νc,a by a symmetric
self-consistent HF calculation of Ĥ eff

0 + Ĥ eff
I . The obtained

ε f , εc,1, and G as functions of ν are shown in Fig. 2(a). A
better treatment of these parameters should be a full self-
consistent DMFT+HF calculation, which will be carried out
in Sec. IV. As explained in the following subsections, the
essential physics of the Kondo phase is already captured by
this single-impurity model with ν f , νc,a estimated by the HF
mean field.

It is worth mentioning that Eq. (14) has an emergent
U(4) symmetry because the four flavors of f electrons are
symmetric under permutations. It is not surprising that a
single-impurity model has a higher symmetry than its lattice
version. JH lowers the symmetry of the single-impurity model
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to U(2) × U(2), while since it is weak compared to other
energy scales, we will mainly focus on the U(4)-symmetric
model in the main text.

B. Poor man’s scaling

Before going to numerical calculations, we first apply a
poor man’s scaling to the single-impurity model (14) to esti-
mate the Kondo energy scale. For now, we can regard εc,a, ε f

as independent parameters.
We assume that the ground state of the detached impurity

has n f (= 1, 2, 3) occupied f electrons. One should not con-
fuse n f with ν f , the expectation value of f occupation after
the impurity is coupled to the bath. The f -electron level ε f

must be in the range −n f U1 < ε f < −(n f − 1)U1. We apply
a Schrieffer-Wolff transformation to Eq. (14) to obtain an ef-
fective Coqblin-Schrieff model where the local Hilbert space
of f electrons is restricted to n f particles. The transformation
involves virtual particle and hole excitations, the energies of
which are �E+ = ε f + n f U1 and �E− = −ε f − (n f − 1)U1,
respectively. Adding the two contributions, we have

Ĥ =
∑
αs

∫ D

−D
dε εd†

αs(ε)dαs(ε) + 4g

πU1

∑
αα′ss′

∫ D

−D
dε dε′

× [
√

�(ε)�(ε′)( f †
αs fα′s′ − xδαα′δss′ )d†

α′s′ (ε′)dαs(ε)].
(15)

The parameters g, x are given by

g = U1

4

(
1

�E+
+ 1

�E−

)
, x = �E−

U1
. (16)

g is a dimensionless parameter characterizing the antiferro-
magnetic coupling strength between the impurity and the bath.
x appears as a “charge background” of the f electrons. For
ε f = −(n f − 1

2 )U1, there is g = 1, x = 1
2 . For a generic ε f in

the range −n f U1 < ε f < −(n f − 1)U1, there are g � 1 and
0 < x < 1. Flow equations of g, x are derived in Appendixes
B 1 and B 3, where the divergence of g indicates the strong
coupling fixed point that exhibits the Kondo screening. We
notice that x always flows to n f /4, i.e.,the occupation fraction
of f electrons.

One should be careful about the cutoff D in Eq. (15). First,
it must be smaller than �E+ and �E− for the Schrieffer-Wolff
transformation to be valid. Second, for analytical conve-
nience, we only keep the positive branch of �(ω) [Eq. (13)] at
ω > εc,3 because when ν > 0 the negative branch is far away
from the Fermi level. Hence, we also require D < −εc,3. We
can choose D = min(−εc,3,�E+,�E−).

The flow equation of g(t ) as the cutoff is successively
reduced to De−t is given by

dg

dt
= 4�(0)

πU1
Ng2 + O(e−t ), (17)

and the initial condition g(0) is given by Eq. (16). Here
N = 4 is the number of flavors. The local Hilbert space for
n f = 1, 2, 3 is fourfold, sixfold, and fourfold, respectively.
The O(e−t ) terms originate from particle-hole asymmetry and
are irrelevant at small energy scales but they may affect the
coupling constant at an early stage of the RG process. As
shown in Fig. 1(d), the positive branch of �(ω) can be well

approximated by a linear function, i.e.,�(ω) ≈ �(0)(1 −
ω/εc,3). Using this linear approximation we obtain the Kondo
energy scale (Appendix B 3)

DK = D exp

(
y − πU1

4N�(0)g(0)

)
, (18)

where y ≈ ( �E+
U1

+ 1
2 − 1

2 n f ) D
εc,3

is factor contributed by the

irrelevant O(e−t ) terms at N = 4. Noticing εc,3 < 0, at
fixed �E+ a smaller n f means smaller y and suppresses
the Kondo energy scale as this means that virtual pro-
cesses contributing to the RG equation involve more hole
excitations in the bath, which has a smaller �(ω). In
Fig. 2(b) we plot the obtained DK as a function of the
filling ν using the mean-field εc,a, ε f parameters given in
Fig. 2(a). The estimated Kondo energy scale is at the order
of 1 meV.

As explained in the end of Sec. III A, if the Hund’s cou-
pling in Eq. (12) is considered, the U(4) symmetry of ĤSI will
be reduced to U(2) × U(2). Then the six-dimensional local
Hilbert space in the n f = 2 case will split: the four states
with (n f

1↑, n f
1↓; n f

2↑, n f
2↓) = (10; 10), (10;01), (01;10), (01;01)

do not feel JH and have the energy 2ε f + U1, whereas the
two states (11;00), (00;11) have the energy 2ε f + U1 + JH .
As explained in detail in Appendix B 3, this multiplet splitting
will further suppress the Kondo energy scale if DK given by
Eq. (18) is smaller than JH . However, as shown in Fig. 2(b),
DK given by Eq. (18) for n f = 2 is always larger than JH ,
which is estimated as 0.3 meV. Hence, the multiplet splitting
plays a minor role. This argument further justifies our approx-
imation of neglecting JH .

C. NRG phase diagram

We now apply the NRG approach [81–83] to study the
single-impurity model ĤSI. In this approach, the bath is al-
ternatively realized by a Wilson chain

ĤN = Ĥf +
∑
αs

t0( f †
αsd1αs + H.c.) +

N∑
n=1

∑
αs

εnd†
nαsdnαs

+
N−1∑
n=1

∑
αs

(tnd†
n+1αsdnαs + H.c.), (19)

where N is the length of the Wilson chain. The parameters
εn and tn are computed from �(ω) using a standard iterative
algorithm [83]. When n is sufficiently large, there is always
tn → 1

2 (1 + �−1)�− 1
2 (n−1) and εn ∼ �−n. Therefore, the site

index represents a logarithmic energy scale of the single-
impurity problem, and Ĥ∞ faithfully describes the low-energy
physics of ĤSI. To approach Ĥ∞, one can define the scaled
Hamiltonians as H̃N = (�)

1
2 N−1ĤN and construct them itera-

tively:

H̃N+1 = �
1
2 H̃N + �

1
2 (N−1)

∑
αs

(εN+1d†
N+1,αsdN+1,αs

+ tN d†
N+1,αsdN,αs + tN d†

N,αsdN+1,αs). (20)

The Hilbert space dimension increases exponentially with N .
The NRG algorithm truncates the Hilbert space by keeping
a fixed number (chosen to be ∼1600 in this work) of the
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lowest-lying states at each iterative step. In order to keep the
symmetry in the truncated Hilbert space, in practice we keep
all the states up to the lowest gap above the 1600th state.
Two successive transformations that take H̃N to H̃N+2 can be
thought as a renormalization group operation [81,82]. The
system is said to achieve a fixed point when H̃N and H̃N+2

have the same low-lying many-body spectrum. It is worth
mentioning that freezing the inactive electrons and deriving
the effective models [(8), (9), and (14)] with two-orbital im-
purities are crucial to apply the NRG approach; otherwise, the
impurity would have four orbitals, and the fast increase of the
Hilbert space dimension is beyond the scope of NRG.

In Figs. 2(c) and 2(d) and Fig. 8 in Appendix C we plot the
lowest many-body levels of the scaled Hamiltonian H̃N (N ∈
odd) with different parameters {ε f , εc,1, εc,3}. Due to the U(4)
symmetry of ĤSI, all the many-body levels can be classified
into symmetry sectors labeled by (Q; ρ), where Q is the total
U(1) charge and ρ = [m1, m2 . . . ] is the SU(4) representation
(Young tableau notation). Here we take the convention that
Q = 0 corresponds to a total occupation 2N + 2 (2N) for odd
(even) N . A fixed point is achieved if the spectrum remains
unchanged with N , such as the last 10 steps in Fig. 2(c). Low-
energy physics such as spin susceptibility and spectral density
are determined by the many-body levels at the fixed point.
Readers may refer to Wilson’s original papers [81,82] for a
complete discussion about the fixed points.

For our model, we find two distinct types of fixed points:
(i) the strong coupling fixed point exhibiting a Fermi-liquid
behavior, e.g.,Figs. 2(c), 8(a) and (ii) the LM fixed points ex-
hibiting nonzero U(4) moments, e.g.,Figs. 2(d), 8(b), and 8(c).
At a strong coupling fixed point, for either even or odd N , the
ground state is a singlet with Q = 4k, ρ = [0] for some order
one integer k, which in most cases equals 0. The low-lying
many-body spectrum is identical to the one of a free-fermion
chain as if the impurity was nonexistent. The strong coupling
fixed points can be further divided into the frozen-impurity
regime and the Kondo regime. In the frozen-impurity regime,
the impurity is effectively empty or full and does not enter
the low-energy physics. In the Kondo regime, the impurity
forms an LM but is screened by the bath electrons around
it, hence, the low-energy physics is dominated by the free-
fermion sites that are effectively decoupled from the screened
impurity. For example, in Fig. 2(c), the ground states at the
first few steps are not the singlet state, implying that the bath
electrons have not yet completely screened the LM. After the
seventh step, the ground states become the singlet state as
the LM is screened, and the spectrum eventually becomes
the same as a free-fermion system when the fixed point is
achieved. To be concrete, we can understand the lowest four-
fold (Q; ρ) = (−1; [111]) level (Eh) and the lowest fourfold
(1;[1]) level (Ee) as the minimal hole and particle excitations,
respectively, and other low-energy states as multiple hole and
particle excitations. For example, the fourfold (−3;[1]) level
and the sixfold (−2;[11]) level have the energies 3Eh and
2Eh, respectively, and they can be understood as noninter-
acting three- and two-hole excitations. The onefold (0;[0])
level and the 15-fold (0; [211]) level have the energy Eh + Ee,
and they can be understood as noninteracting particle-hole ex-
citations. Correspondingly, their SU(4) representations [0] ⊕

[211] are also given by the direct product [111] ⊗ [1] of the
representations of the hole and the electron. In Appendix C
we show another spectrum in the Kondo regime in Fig. 8(a).
One can verify that its low-lying states at the fixed point are
also the same as a free-fermion system.

At an LM fixed point, the low-lying many-body spectrum
is identical to a free-fermion chain plus a detached LM.
They are unstable fixed points if the hybridization function is
nonzero at the Fermi level, i.e.,�(0) > 0 [81,82]. However, as
shown in Eq. (13) and Fig. 1(d), the single-impurity model ĤSI

has �(0) = 0 if εc,3 > 0 and εc,1 < 0. In this case, the Wilson
chain will be broken into two disconnected chains. For the
parameters used in Fig. 2(d), t5 = 0 and the first five bath sites
cannot fully screen the impurity. Thus, the first six sites, in-
cluding the impurity, form an effective LM, and the remaining
bath sites form a free-fermion chain decoupled from the LM.
We only show the spectra up to N = 5 in Fig. 2(d). Depending
on the representation of the ground state, the LM fixed points
can be further classified into LMn, where n = 1, 2, 3 is the
effective impurity occupation. The LMn ground states have
the charge Q = 4k + n and form the same SU(4) representa-
tions as the ground states of Ĥf [Eq. (10)] with n impurity
electrons, which are [1], [1,1], and [1,1,1] for n = 1, 2, and 3,
respectively. As the ground states of H̃5 in Fig. 2(d), Figs. 8(b)
and 8(c) form the representations (1;[1]), (2;[1,1]), (3;[1,1,1]),
respectively, they are the LM1,2,3 states.

By analyzing the fixed points, we obtain a zero-
temperature phase diagram of ĤSI [Fig. 2(e)] in the parameter
space of εc,1, ε f for a fixed G = εc,3 − εc,1 (= 12 meV). As
shown in Figs. 7(a) and 7(b), phase diagrams with other values
of G are qualitatively same as the one at G = 12 meV. For
the completeness of discussion, here we let ε f take values in
[−3.5U1, 0.5U1] and εc,1 take values in [−60 meV, 0] such
that the mean-field values of ε f , εc,1 [Fig. 2(a)], which are
represented by the black trajectory in Fig. 2(e), are covered
in this phase diagram. For −G < εc,1 < 0, there is �(0) = 0
and, according to the last paragraph, the ground state belongs
to the LM phase if the impurity is nether empty nor full,
i.e.,−3U1 < ε f < 0, and the frozen-impurity phase otherwise.
Starting from an LMn phase, lowering εc,1 to a value below
−G will drive the system into a strong coupling phase due to
the finite hybridization. Phase boundaries between LM phases
and the strong coupling phase are indicated by the white lines.
The strong coupling phase is further divided into a Kondo
regime and a frozen-impurity regime. Later we will determine
the crossover boundary between the two regimes, indicated by
the dashed lines in Fig. 2(e), using the spectral density. In the
Kondo regime, the color in the phase diagram maps the Kondo
energy scale determined from the spectral density.

As discussed in Sec. III A, if the Hund’s coupling JH

(≈0.3 meV) is considered, the U(4) symmetry of ĤSI will
be reduced to U(2) × U(2), where the first (second) U(2)
subgroup is the spin-charge rotation symmetry within the first
(second) orbital. Irreducible representations of U(2) × U(2)
are labeled by two U(1) charges Q1, Q2 and two spin moments
S1, S2. Turning on JH , although the fourfold LMn=1,3 states are
now relabeled by two spin- 1

2 doublets, i.e., (Q1, Q2; S1, S2) =
(2k + n, 2k; 1

2 , 0) and (2k, 2k + n; 0, 1
2 ), they stay degener-

ate in energy with each other due to crystalline symme-
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tries. On the contrary, the sixfold LM2 states split into a
fourfold multiplet (2k + 1, 2k + 1; 1

2 , 1
2 ), which is free

from the Hund’s coupling, and a twofold multiplet (2k +
2, 2k; 0, 0) ⊕ (2k, 2k + 2; 0, 0), whose energy is raised by JH .
Numerical results with finite JH are given in Fig. 7(c).

It is also helpful to look at the representations of the LMn

states under the global U(2) symmetry, which acts on the two
orbitals with the same spin-charge rotation. The total charge
and spin of LM1,2,3 are 1, 2, 3 (mod 4) and 1

2 , 1
2 ± 1

2 , 1
2 ,

respectively.

D. Spectral density

We calculate the spectral density of the f electrons,
Aαs(ω, T ) = − 1

π
Im[Gαs(ω, T )], with Gαs(ω, T ) being the re-

tarded Green’s function of fαs at the temperature T . Gαs(ω, T )
is given by

Gαs(ω, T ) = 1

ω − ε f − �0(ω) − �U
αs(ω, T )

, (21)

where �0(ω) = 1
π

∫
dε �(ε)

ω+i0+−ε
is the single-particle self-

energy contributed by the coupling to the bath, and �U
αs is the

correlation self-energy. As no symmetry breaking can happen
in the single-impurity model, A, G, and �U should be inde-
pendent of αs. In the following, we will omit the αs subscript
for simplicity. As mentioned in Sec. II A, f orbitals locate
in the AA-stacking regions, hence, A(ω, T ) corresponds to
the STM spectra at the AA-stacking region. We compute �U

using the equation of motion [98] within the framework of
the reduced density matrix method [99]. Many-body levels
at different RG steps are patched together using the method
described in Ref. [100].

The fixed point in Fig. 2(c) is in the Kondo regime, hence,
its spectral density exhibits sharp resonance peaks. The fixed
point in Fig. 2(d) is in the LM phase, and its spectral density
is dominated by the upper and lower Hubbard bands. One can
confirm that the fixed points and spectral densities with other
parameters in Fig. 8 in Appendix C obey the same rule.

We compute the spectral densities for all the data points
in the phase diagram in Fig. 2(e). For every parameter set
we identify a spectral peak (at ε) and measure its half-width
at half-maximum (δ). In the strong coupling phase, a state is
identified as in the Kondo regime if 0 ∈ [ε − δ, ε + δ] and in
the frozen-impurity regime otherwise. The crossover bound-
aries between the two regimes are indicated by dashed lines
in Fig. 2(e). In the Kondo regime, the Kondo temperature
can be estimated as kBTK = √

ε2 + δ2 [97]. kBTK is indicated
by the color in Fig. 2(e), and is plotted as a function of ν

(using mean-field parameters) in Fig. 2(b). kBTK matches well
with the Kondo energy scale DK estimated by the poor man’s
scaling.

E. Local moments and the Pomeranchuk effect

At a temperature exceeding the Kondo energy scale, the
LM will become effectively decoupled from the bath and
visible in experimental measurements. This mechanism ex-
plains the so-called Pomeranchuk effect [30,31] observed in
MATBG. Reference [30] observed a higher entropy (∼1kB per
moiré cell with kB being the Boltzmann’s constant) state at

ν ≈ 1 at the temperature T ≈ 10 K. As this entropy can be
quenched by an in-plane magnetic field, it is ascribed to a
free local moment. Reference [31] observed a similar effect
at ν ≈ −1 and showed that an additional resistivity peak that
is absent at T = 0 develops in the higher entropy state at
T ≈ 10 K. These observations can be naturally explained by
the transition from the Fermi-liquid phase to the LM phase as
the temperature increases.

The LM phase around ν ≈ 1 at higher temperatures already
manifests itself in the RG flow in Fig. 2(c). At the early stage
of the NRG calculation (N < 7), the ground states form the
SU(4) representation [1], which, according to discussions in
Sec. III C, form the LM1 phase. Only after N � 7 does the
Kondo singlet state [0] cross below the LM states to become
the true ground state. Since the NRG iteration can be inter-
preted as continually lowering the effective temperature, the
level crossing during the iteration implies a transition from the
strong coupling Kondo phase to the LM phase as temperature
increases.

To further demonstrate the LM phase, we calculate the
local spin susceptibilities χloc(T ) using the filling-dependent
εc,1, ε f , G parameters given in Fig. 2(a). χloc(T ) is defined as
dMloc
dBloc

[101,102] and calculated using linear response theory
[102], with Mloc being the spin moment contributed by the
impurity and Bloc a local magnetic field that only acts on the
impurity. As shown in Figs. 3(a) and 3(b), χloc(T ) approaches
a constant as T → 0, and obeys the Curie’s law χloc(T ) ∼
T −1, which indicates a free LM at high temperatures. One can
define the transition temperature (T s

K) between the two behav-
iors as an alternative estimation of the Kondo temperature.
Specifically, we find that T s

K given by χloc(T s
K ) = 1

5χloc(0),
indicated by the solid black curve in Fig. 3(a), matches very
well with TK given by the spectral density [Fig. 2(b)]. Such
determined T s

K corresponds to the Kondo temperature only
in the Kondo regime, where the f orbital is neither empty
nor full. In the frozen-impurity regime at ν close to CNP,
such determined T s

K just reflects the energy level of the empty
f orbitals and loses the meaning of Kondo temperature.
Hence, we use a dashed curve in the frozen-impurity regime
in Fig. 3(a). Also, one should not confuse this T s

K with the
TK estimated at CNP (Sec. II B). The latter is an irrelevant
quantity because the RKKY interaction will dominate at CNP
and leads to a symmetry-breaking state, based on which the
effective models [Eqs. (8), (9), and (14)] for ν > 0 states are
constructed.

We also calculate the impurity entropy Simp(T ) for compar-
ison with experiments. Simp(T ) is defined as the difference of
the entropy of H̃N and that of a reference free-fermion chain
defined by the same εn, tn parameters as in H̃N without the
impurity. As shown in Figs. 3(c) and 3(d), Simp(T ) is zero
in the Fermi-liquid phase at sufficiently low T and starts to
increase when T reaches the Kondo energy scale. For ν = 1,
Simp(T ) climbs to about ln 4kB, entropy of the fourfold LM1

state, at about kBT ≈ 0.1 meV and stays around this value
until kBT reaches 2 meV. The entropy continues to increase for
larger T as higher exicted states are involved. We also show
the temperature-dependent spectral density around ν = 1 in
Fig. 3(e). Consistent with the entropy and spin susceptibility
results, the resonance peak dies out for T > TK.
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FIG. 3. Spin susceptibility and entropy contributed by the impurity using single-impurity hybridization function (a)–(f) and DMFT
hybridization function (g)–(l). (a), (g) χloc(T )/χloc(0) as a function of filling ν and temperature T . The black curve indicates TK defined
by χloc(TK )/χloc(0) = 1

5 . Dashed lines are used in the frozen-impurity regime. (b), (h) The local spin susceptibilities χloc(T ) at fillings
ν = 0, 0.5, 1 . . . 3.5. (c), (i) The entropy contributed by the impurity as a function of ν and T . (d), (j) The entropy contributed by the
impurity Simp(T )/(kB ln 2) at fillings ν = 0, 0.5, 1 . . . 3.5. (e), (k) The spectral densities at ν = 1.2 at various temperatures. (f), (l) The entropy
contributed by the impurity as a function of ν at B = 0, 12 T and temperature kBT = 0.356 meV.

In Fig. 3(f), we plot Simp as a function of the filling at a
finite temperature under Bloc = 0 and 12 T. [See Fig. 2(e) of
Ref. [30].] The entropy with Bloc = 0 has three peaks and two
dips. Looking at the phase diagram and the εc,1, ε f trajecto-
ries in Fig. 2(e), we find that the three peaks correspond to
the three domes of LM1,2,3, respectively, where the Kondo
temperature is relatively lower, and the two dips correspond
to the mixed valence states, where the Kondo temperature is
higher due to valence fluctuation. A finite Bloc will polarize the
spin and hence suppress the entropy. According to the orbital
degeneracy, a strong Bloc can reduce the entropy at ν = 1 to
ln 2kB.

IV. SOLUTION TO THE PERIODIC ANDERSON MODEL

A. The DMFT+HF approach

To capture the lattice coherence in the effective periodic
Anderson model Ĥ eff

0 + Ĥ eff
I [Eqs. (8) and (9)], we perform

a dynamic mean-field [103–105] decomposition of the onsite
interaction U1 and a static HF mean-field decomposition of
other interactions. This method assumes that spatial correla-
tions are irrelevant in MATBG, which might be justified by
the quantum-dot behavior observed in STM.

We assume no symmetry breaking in the DMFT+HF cal-
culation and will discuss the effect of symmetry breaking in
Sec. IV C. As explained in Sec. III A, the static mean fields
are then characterized by ν f = 〈n f

R〉, the occupation of f
electrons, and νc,a = 〈δnc

q=0,a〉, the occupations of c electrons.
There is νc,1 = νc,2, νc,3 = νc,4 as crystalline symmetries are
assumed. Then Ĥ eff

0 + Ĥ eff
I can be approximated by

Ĥ eff ≈
∑
ksaa′

(
H (c)

aa′ (k) + δaa′εc,a
)
c†

kascka′s + ε f

∑
R

n f
R

+
∑
kaαs

(e− 1
2 λ2k2

H (c f )
aα (k)c†

kas fkαs + H.c.)

+ U1

2

∑
R

: n f
Rn f

R : . (22)

As derived in Sec. III A, εc,1 = εc,2 = V0νc + W1ν f −
μ, εc,3 = εc,4 = V0νc + W3ν f + J

2 − 1
4 Jν f − μ, ε f = U1

2 +
6U2ν f + 2W1νc,1 + 2W3νc,3 − 1

2 Jνc,3 − μ, νc = ∑
a νc,a. For

given νc,a and ν f , Eq. (22) defines a standard periodic Ander-
son model that can be addressed using DMFT.

We first calculate the (retarded) single-particle Green’s
function by diagonalizing the single-particle part of Eq. (22).
Dynamics on a single f site is described by the local
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Green’s function Gloc
αs (ω). It can be formally written as

1/[ω − ε f − �0(ω)] with �0(ω) being the single-particle
self-energy. �0(ω) and the U1 interaction define an Anderson
impurity problem with the hybridization function �(ω) =
−Im[�0(ω)], which can be solved by the NRG approach.
As discussed in Sec. III D, the NRG calculation yields a
correlation self-energy �U (ω) and an impurity Green’s func-
tion Gimp(ω) = 1/[ω − ε f − �0(ω) − �U (ω)]. We then feed
�U (ω) into the Dyson’s equation in the lattice model and
recalculate the Gloc

αs (ω) that defines a new hybridization func-
tion. The DMFT solution to Eq. (22) for given εc,a, ε f is
obtained by repeating the above iterative process until �U (ω)
converges. The occupations ν f , νc,a can also be obtained from
the lattice Green’s function and used to update ε f , εc,a. The
full self-consistency is reached when �U (ω), νc,a, and ν f all
converge.

B. Heavy Fermi liquid and Mott insulator

The converged f -electron spectral densities A(ω, ν) in the
energy-filling (ω-ν) parameter plane at temperatures kBT =
0.003, 0.243, 2.187 meV are shown in Figs. 4(a)–4(c), re-
spectively. At the low temperature kBT = 0.003 meV, which
can be considered zero, the state at ν = 0 is in the frozen-
impurity regime with an (almost) zero occupation; hence,
the spectral weight is mainly distributed at positive energy.
As ν increases, the spectral peak moves to the zero energy
and is eventually pinned at the zero energy to form a Kondo
resonance. This behavior precisely matches STM experiments
at low temperatures (T < 1 K) [11,19,21,22]. The resonance
peak is a robust feature for all fillings except when ν is close
to 1 or 2, indicating that the ground states at generic fillings
are the heavy Fermi liquid. Using the parameters given in
Sec. II A, the ground state around ν = 1 is a Mott insulator
with vanishing zero-energy peak [Figs. 4(a) and 4(e)], and
the ground state around ν = 2 is a heavy Fermi liquid with
low TK (∼0.1 meV). However, using a lightly smaller U2,
e.g.,0.70 meV, the ground states around both ν = 1, 2 are Mott
insulators [see Figs. 6(d) and 6(e) in Appendix A 1]. There-
fore, we conclude that ground states around ν = 1, 2 are either
Mott insulators or heavy Fermi liquids with low TK, depending
on the Hamiltonian parameters. The corresponding DMFT
band structures at low temperatures for the Mott insulator,
which exhibit a gap at the Fermi level, and for heavy Fermi
liquids are shown in Figs. 4(e) and 5(a) and 5(c), respectively.
We also plot kBT s

K, which is obtained from the susceptibility
as explained in Sec. III E, as a function of ν in Fig. 4(f).
One can see that T s

K drops to a vanishing value around ν = 1
and becomes rather small (∼0.1 meV) near ν = 2. (The small
deviation of minimal T s

K from ν = 1, 2 is due to numerical
errors in evaluating the occupation.)

The evolution of Hubbard bands can also be observed as
ν changes. At higher temperatures [Figs. 4(b) and 4(c)], the
Kondo resonance peaks are smeared by thermal fluctuations,
and the evolution of Hubbard bands becomes clearer. As ν

increases from 0 to 4, the Hubbard bands periodically pass
through the zero energy, matching the cascade of transitions
seen in STM experiments at higher temperatures [17,19].

We also calculate the chemical potential as a function
of the filling, as shown in Fig. 4(d). It leads to the saw-

FIG. 4. The DMFT results of spectral densities, chemical poten-
tials, correlated band for Mott insulator, and competition between
Kondo effects and RKKY. (a)–(c) The f -spectral densities at filling
[0,4.5] at kBT = 0.003, 0.243, 2.187 meV. (d) The chemical poten-
tial as a function of filling. Inset: εc,1, εc,3 as a function of fillings.
(e) The correlated band for the Mott insulator at ν = 1.1 ≈ 1 at
kBT = 0.003 meV, which exhibits a gap at the Fermi level and
pronounced Hubbard bands. The black dashed line indicates the
Fermi level. (f) Comparison of TK and |JRKKY|. Near ν = 0 the state
goes into the frozen-impurity state, and the half-width of spectral
density does not mean Kondo temperature, so a dashed line is used.
(g) The finite-temperature phase diagram. The colors indicate the
phase, where SSB means spontaneous symmetry breaking, HFL
means heavy Fermi liquid, and FL+LM means a Fermi liquid with
decoupled local moments. The color transitions smoothly since there
is no spontaneous symmetry breaking at finite temperature in two
dimensions, and the Kondo-LM transition is not a phase transition
but a smooth crossover. The black dashed line indicates the crossover
from the heavy-Fermi-liquid phase to the metallic phase with the
local moment, which vanishes gradually when ν approaches 0 and in-
creases above 4, where the ground state goes into the frozen-impurity
regime.

tooth behavior of the inverse compressibility ( dμ

dν
) seen in

Refs. [17,18,26,30,31]. Starting from an integer filling, dμ

dν

will first decrease slowly and finally drops nearly to zero
before ν approaches the next integer. Then, upon ν crossing
the next integer, the inverse compressibility jumps to a large
value. This behavior appears periodically as ν changes from
0 to 4. The inset of Fig. 4(d) shows the energy of c electrons
with respect to the chemical potential, i.e., εc,1, εc,3. It shows
a sudden energy jump of the c electrons around every inte-
ger filling, which is also referred to as the so-called “Dirac
revival.” Both the sawtooth shape of inverse compressibility
and the energy jump of c electrons can be understood through
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FIG. 5. The correlated bands and the energy surfaces. (a)–(d) The correlated bands of filling 1.5,2.5 at kBT = 0.003, 2.187 meV. Left
panel: the k-dependent spectral density A(k, ω) from DMFT along high-symmetry path. Inset: zoomed-in diagram for ω ∈ [−3 meV, 3 meV].
The zero energy is marked by black dashed lines. Right panel: the bands estimated using a Fermi-liquid argument with quasiparticle weight
from DMFT results. The color maps the total quasiparticle weight. (e), (f) The k-dependent spectral density A(k, ω) from DMFT in BZ for
ν = 1.5, 2.5 and kBT = 0.003, 2.187 meV at various fixing frequencies. The figures at ω = 0.0 meV show the Fermi surface. The color map is
the same as (a)–(d). The numbers between energy surfaces in the low-T plots indicate the number of quasiparticle bands below the associated
energy (counted from CNP).

a quantum dot picture. As the onsite Coulomb interaction
always favors an integer number of f electrons, when doping
upon an integer filling, electrons will first occupy c orbitals
before ν reaches the next integer. The inverse compressibility,
proportional to 1/ρc with ρc being the density of states of c
electrons, is large at the beginning because ρc is small at the
band edge of c. The inverse compressibility decreases with
doping because ρc increases with doping. Upon ν reaching the
next integer, one electron suddenly moves from c orbitals and
to f orbitals to save the kinetic energy, leading to the sudden
jump of εc,a towards the chemical potential. This jump resets
ρc to a small value and dμ

dν
to a large value.

The resetting of ρc to small values around ν = 1 (2) is
also consistent with the vanishing (small) TK because it will
significantly suppress the hybridization function. ρc is also
reset near ν = 3 but to a relatively larger value that still gives
rise to a finite TK. The resetting depends on the Hartree ener-
gies of the U,W,V interactions, hence, it is also possible to
obtain Mott insulators at ν = 2, 3 if another set of parameters
is used. For example, for fixed νc,a, ν f , a smaller U2 will give
a smaller ε f that is closer to the band edge of c electrons.
Thus, generally, a smaller U2 leads to a smaller ρc and favors
Mott insulator phases at integer fillings. This is consistent
with the observation of the Mott insulator at ν = 2 with a
suppressed U2 (= 0.70 meV), as discussed in the first para-

graph of this subsection and shown in Figs. 6(d) and 6(e) in
Appendix A 1.

Now we compare the DMFT results to the NRG re-
sults of the single-impurity model ĤSI discussed in Sec. III.
At a given filling ν, we obtain the hybridization function
�(ω) and f -electron energy level ε f from the converged
DMFT+HF calculation at kBT = 0.003 meV. [εc,a enter the
single-impurity model implicitly via �(ω)]. This �(ω) and
ε f are different from the bare hybridization [Eq. (13)] and the
HF self-consistent value ε f [Fig. 2(a)] used in ĤSI. We then
use this �(ω) and ε f as input for NRG calculations at various
finite temperatures, which provide quick estimations for phys-
ical observables. We show the spin susceptibility, impurity
entropy, and spectral density at various temperatures obtained
in such a way in Figs. 3(g)–3(l). Comparing Figs. 3(g)–3(l) to
3(a)–3(f), we find that ĤSI already captures features such as
Kondo energy scale and entropy. The main difference is that
ĤSI does not have Mott insulator states as DMFT results do
[Fig. 3(g)]. Therefore, we conclude that ĤSI is qualitatively
correct in the metallic phases.

We notice that most previous theories attributed the cas-
cade of transition in the STM spectrum at higher temperatures
and the sawtooth feature of the inverse compressibility
to spontaneous symmetry breaking. We emphasize that
according to the discussion in this subsection, these phe-
nomena already exist without breaking the symmetries. Yet,
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we will discuss possible symmetry breakings in the next
subsection.

C. Competition between Kondo screening
and RKKY interaction

All spatial correlations have been omitted in the
DMFT+HF calculation. However, local moments at different
sites could interact with each other through the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction and form a coher-
ent order. Thus, the competition between the Kondo effect
and RKKY interaction must be taken into account to derive
a complete phase diagram. We have calculated T s

K using the
susceptibility, as shown in Fig. 4(f).

Here we use an HF mean-field calculation to estimate
the RKKY energy scale, which is described in detail in
Appendix D. We consider a 1 × 2 supercell that contains
two adjacent LM’s, and set their spin alignment as either
ferromagnetic or antiferromagnetic. We emphasize that, due
to the U(4) symmetry of the THF model, the “spin order”
here does not necessarily correspond to the physical spin
order, but any of its U(4) partners [41]. The RKKY en-
ergy JRKKY is estimated as the energy gain at each nearest
bond of parallel spins. We show |JRKKY| in Fig. 4(f), where
ferromagnetic (JRKKY > 0) and antiferromagnetic (JRKKY <

0) couplings are represented by blue and yellow curves,
respectively.

When kBTK 
 |JRKKY|, the Kondo effect must win over
the RKKY interaction, and hence the ground state is a sym-
metric heavy Fermi liquid. On the contrary, when kBTK �
|JRKKY|, one may expect a symmetry-breaking ground state.
The Mermin-Wagner theorem states that the correlation length
ξ will diverge (remain finite) as T → 0 if JRKKY is ferro-
magnetic (antiferromagnetic). Nevertheless, a finite ξ can also
open a charge gap if it is much larger than the moiré length
scale. We sketch a phase diagram in the temperature-filling
(T -ν) parameter space in Fig. 4(g). At T = 0, apart from the
normal Fermi liquid with frozen impurity appearing at ν close
to 0, the symmetry-breaking ground state wins out around
integer fillings ν = 1, 2 and, likely, if a smaller U2 were to be
used, as explained in the last subsection, also around ν = 3,
while the heavy Fermi liquid forms at all other noninteger
fillings. Upon heating, the symmetry-breaking states change
to correlated states with finite spin correlation length ξ , but
as long as ξ remains much larger than the moiré length scale,
the charge gap can be preserved. When T is sufficiently high,
LM’s become fully disordered, and the system enters the
metallic LM phase where LM’s and the normal Fermi liquid
formed by c electrons coexist. On the other hand, the sym-
metric heavy-Fermi-liquid states at noninteger fillings first
remain robust upon heating and then continuously evolve to
the metallic LM phases when T rises above TK.

Here we only consider the spin [or its U(4) part-
ners] RKKY interaction to demonstrate possible symmetry-
breaking states. Other types of symmetry breaking, such
as Chern insulator states at ν = 1, 2, 3 [38–40,42–44] and
stripe states at ν = 3 [38,106], are also possible. It should
also be noticed that our periodic Anderson model is based
on the assumption of the valley order at CNP, which
may become invalid at large fillings. Thus, a more com-

plete description should involve valley fluctuations and
other types of symmetry breaking; we leave this for future
studies.

D. Crossover between heavy-Fermi-liquid
and metallic LM states

To show the crossover between heavy-Fermi-liquid and
metallic LM states [Fig. 4(g)], we plot the total spectral
density A(k, ω) at kBT = 0.003, 2.187 meV and ν = 1.5,
2.5 in the left panels of Figs. 5(a)–5(d). The two tempera-
tures are, respectively, chosen as much lower and higher than
TK, which are 0.994 and 0.857 meV for ν = 1.5 and 2.5,
respectively. One can clearly see the heavy f -quasiparticle
bands at T � TK are smeared out by thermal fluctuations
at T > TK. The heavy-Fermi-liquid bands can be understood
from a simple Fermi-liquid argument. At zero temperature,
the Landau–Fermi-liquid theory implies Im�U (0) = 0; thus,
there are well-defined quasiparticles with long lifetime at low
energy. The main correction is that the f electron is renor-
malized to f ≈ √

z f ′, where f ′ is the quasiparticle fermion
operator and the quasiparticle weight z is given by z = [1 −
∂ωRe�U (ω)]−1|ω=0. Then the effective c f hybridization in
Eq. (8) in terms of f ′ is suppressed by a factor of z

1
2 . We

obtain z ≈ 0.167, 0.271 at ν = 1.5, 2.5, respectively, from
the self-energy at kBT = 0.003 meV. The estimated heavy-
Fermi-liquid bands obtained from Eq. (8) with a suppressed
H (c f ) are shown in the right panels of Figs. 5(a) and 5(c).
The suppression of hybridization results in large effective
masses. For T > TK, the correlated self-energy �U (ω) has a
large imaginary part at zero energy, which means that there
is no well-defined f quasiparticle. Thus, we have z = 0, and
the f electrons form LM’s decoupled from the conduction
electrons. The electron band structure is solely contributed
by the c electrons, as shown in the right panels of Figs. 5(b)
and 5(d). Comparing to the DMFT bands in the left panel
of Figs. 5(a)–5(d), the Fermi-liquid argument reproduces the
heavy quasiparticle bands at T � TK and their disappearance
at T > TK.

A characteristic feature of the heavy Fermi liquid is its
temperature-dependent Fermi volume [97]. Namely, in the
Kondo regime, f electrons hybridize with c electrons, hence
the area of the Fermi surface counts the total filling. Ideally,
at ν = 1.5, the total area of two Fermi-surface shells, each
spin degenerate, should be 0.75SBZ. Here SBZ is the area of
BZ. At ν = 2.5, one band is fully occupied [Fig. 5(c)] and
contribute a filling of 2. The other band has three electron
pockets around �M , KM , and K ′

M , and their total area should
be 0.25SBZ. On the other hand, at T 
 TK the f electrons
do not contribute to electron bands, and the Fermi surfaces
should enclose a total area corresponding to the filling 0.5.
In the upper and lower panels of Figs. 5(e) and 5(f), we plot
the DMFT spectral density A(k, ω) at various ω’s around the
Fermi level at T � TK and T > TK, respectively. The plots at
ω = 0 sketch the Fermi surfaces, and are consistent with the
above analysis.

The evolution of band structures with temperature be-
comes more evident as we examine the energy dependence
of A(k, ω). When T � TK, due to the heavy band, A(k, ω)
exhibits notable change with energy. For example, at ν = 1.5,
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because the Fermi level is close to the top of the heavy band
[inset of left panel of Fig. 5(a)], a hole-type surface will appear
when the energy slightly increases, as shown in the upper
panel of Fig. 5(e). For another example, at ν = 2.5, as ω

decreases, the small electron pockets of the upper band around
KM and K ′

M vanish, and then a large hole-type surface in the
lower band appears, as shown in the upper panel of Fig. 5(f).
In contrast, the energy surfaces at T > TK shown in lower
panels of Figs. 5(e) and 5(f) are almost energy independent.
Similar energy-dependent behaviors of the energy surfaces
occur at other noninteger fillings as well. The T dependence of
equal-energy surfaces, including the Fermi surface, is a smok-
ing gun signature of the heavy-Fermi-liquid phase, and could
be observed in spectral experiments such as the quasiparticle
interference.

V. SUMMARY AND DISCUSSION

Based on a poor man’s scaling analysis, we first argue that
the Kondo screening is irrelevant at CNP and the ground state
at CNP is a symmetry-breaking state. Then, by combining the
poor man’s scaling, the NRG approach, and the DMFT+HF
approach, we have shown that the ground states at ν = 1, 2 are
symmetry-breaking states or Mott insulators and the ground
states at most noninteger fillings are heavy Fermi liquids, as
summarized in Fig. 4(g). Upon heating, both of the symmetry-
breaking states and the heavy Fermi liquids will eventually
evolve into metallic LM states where disordered LM’s and a
Fermi liquid formed by c electrons coexist. In order to verify
our theory in future experimental studies, we also predict the
temperature dependence of Fermi volume in the heavy-Fermi-
liquid states at ν = 1.5 and 2.5.

This picture is able to explain several experiments such as
STM, transport, the inverse compressibility, etc., and brings
new understandings of the underlying physics. For example,
the spectral density and the Pomeranchuk effect were not
connected in previous works. Now our theory states that both
of them arise from the Kondo effect. The quantum-dot behav-
ior (zero-energy peak) in STM and the higher entropy LM
(lower entropy Fermi liquid) state in compressibility exper-
iment arise from the unscreened LM’s (heavy Fermi liquid)
at T > TK (T < TK). However, in sharp contrast to the pre-
vious understanding that the observed entropy transition is
a first-order phase transition that analogs the liquid-to-solid
transition on heating in helium (Pomeranchuk effect), our
theory predicts that the transition is instead a continuous
crossover.

The heavy-Fermi-liquid states at ν = 1.5 and 2.5 are po-
tential parent states for the observed superconductivity. In a
naive mean-field picture, the overwhelmingly strong onsite
Coulomb repulsion (U ∼ 60 meV) would kill any pairing in-
duced by weak attractive interactions, which are merely at the
order of 1 meV [11]. However, when the Kondo screening
takes place, the f quasiparticles form a heavy Fermi liquid
that is free from the strong Coulomb repulsion. Instead, the
f quasiparticles can only feel a fluctuation-induced residual
repulsion U ∗ ∼ TK [97], which is at the order of 1 meV. Then,
weak attractive interactions, e.g.,phonon-mediated [107,108]
and spin-wave-mediated interactions, may win over U ∗ and
drive a superconducting phase. Therefore, we believe the

heavy-Fermi-liquid phase is a new and useful starting point
to study the superconductivity.

Note added. Recently, a related work [109] appeared. This
work studied the symmetric Kondo state using a slave-fermion
mean field in a Kondo lattice model derived from the THF
model. We are also aware of related works on the Kondo prob-
lem in MATBG by Tsvelik’s and Bernevig’s group [110,111],
Coleman’s group [112], and a generalization of the THF
model to the magic-angle twisted trilayer graphene [113]. Our
results agree with [110] that at CNP the ordered state has
lower energy than the fully symmetric state. At noninteger
fillings, we study the partially symmetric state with the same
symmetry as CNP while [109,110] consider fully symmetric
Kondo states.
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APPENDIX A: MORE DETAILS ABOUT
THE EFFECTIVE HAMILTONIAN

1. Choice of U2 in the effective single valley model

We choose a U2 = 1.16 meV, which is smaller than the
original value U2 = 2.33 meV in [61]. This is a compensa-
tion for the approximation we made in deriving the effective
single-valley model. As an example, we assume the valley-
polarized state as the ground state at CNP. In our effective
single-valley model upon CNP, we have treated the electrons
in the η = + valley as a static background. However, once
doping away from CNP, the electron will enter or leave η = +
valley, while the composition of c, f electrons in η = + valley
will also change. This gives a correction to the mean-field
level εc,1, εc,3, and ε f in the single-valley effective model
for η = −. The relative shift between c and f electrons will
significantly change the hybridization function at the Fermi
level [see Fig. 1(d)], while the variation of G = εc,3 − εc,1

plays a minor role [see the comparison of Figs. 7(a) and 7(b)].
Therefore, we neglect the difference between the correction to
εc,1, εc,3 for simplicity and only adjust U2, which contributes
to Hartree term of f electrons but not c electrons, to mimic the
relative shift of c- and f -electron energy levels. We require
that at ν = 4, where the correction mentioned above reaches
the maximum, the conduction band bandwidth of the sym-
metric self-consistent HF result of the effective single valley is
close to the one for η = − valley in the two-valley model with
the original parameters. We plot the fully symmetric HF self-
consistent bands at ν = 4 in Fig. 6 and find that the band in the
effective single-valley model with U2 = 1.16 meV [Fig. 6(b)]
reproduce the one in the original two-valley model [Fig. 6(a)]
better than U2 = 2.33 meV [Fig. 6(c)]. From Fig. 1(d), one
can see that the hybridization increases as f electron rises
related to c-electron level, which means that reducing U2 leads
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FIG. 6. The symmetric HF band at ν = 4 and DMFT results with
U2 = 0.70 meV. (a) The symmetric HF band at ν = 4 for the original
two-valley model and original parameters. (b) The symmetric HF
band at ν = 4 for the effective single-valley model with a reduced
U2 = 1.16 meV. (c) The symmetric HF band at ν = 4 for the ef-
fective single-valley model with original U2 = 2.33 meV. The color
represents the composition of the bands, where yellow and blue cor-
respond to f and c orbitals, respectively. (d) The f -spectral density
calculated from DMFT at kBT = 0.003 meV with U2 = 0.70 meV.
(e) The chemical potential and c-electron mean-field level calculated
from DMFT at kBT = 0.003 meV with U2 = 0.70 meV.

to a smaller TK and a stronger quantum-dot-like behavior in
general, while the conclusions in Secs. III and IV are still
qualitatively right, as confirmed by Figs. 6(d) and 6(e) which
show the spectral density, chemical potential, and c-electron
level for U2 = 0.70 meV, comparing to those in Fig. 4 for
U2 = 1.16 meV.

2. Nonzero M term

A generic trial ground state at CNP is given by [Eq. (6)]

|�0〉 = U
∏

R

f †
R1+↑ f †

R1+↓ f †
R2+↑ f †

R2+↓|FS〉, (A1)

where U = exp(−iθμν�̂μν ) is a U(4) rotation operator and
an implicit summation over repeated μ, ν indices is assumed.
We can always define the rotated fermion operators c̃kaηs =
UckaηsU †, f̃Raηs = U fRaηsU † such that f̃Rα+s’s are occupied
in |�0〉 and f̃Rα−s’s are empty in |�0〉. According to the
discussions in the Supplemental Material section S4B of
Ref. [61], in the flat-band limit (M = 0), the lowest particle
(hole) excitations only involve c̃ka−s and f̃Ra−s (̃cka+s and
f̃Ra+s). Thus, the effective periodic Anderson model for ν > 0
derived in Sec. II C is written in terms of ckas = c̃ka−s and
fRαs = f̃Rα−s. Here we give the explicit forms of the rotated

operators:

f̃Rαηs =
∑
α′η′s′

[eiθμν�
f
μν ]αηs,α′η′s′ fRα′η′s′ , (A2)

and

c̃kaηs =
∑

a′=1,2
η′s′

[eiθμν�
c12
μν ]aηs,a′η′s′cka′η′s′ (a = 1, 2), (A3)

c̃kaηs =
∑

a′=3,4
η′s′

[eiθμν�
c34
μν ]aηs,a′η′s′cka′η′s′ (a = 3, 4), (A4)

where the 8 × 8 matrices �
f
μν , �c12

μν , �c34
μν are defined in Eqs.

(3) to (5).
The M term in the original basis of the THF model

[Eq. (1)] is

M
∑

aa′=3,4

∑
k

∑
ηs

[σx]aa′c†
kaηscka′ηs. (A5)

It favors the Kramers intervalley coherent state discussed at
the end of Sec. II A, where θx0 and θy0 are nonzero and satisfy
θ2

x0 + θ2
y0 = (π/4)2. Without loss of generality, we assume

U = exp(−i π
4 �̂x0) for the Kramers intervalley coherent state.

Writing this M term in terms of the rotated operators, we
obtain

M
∑

k

∑
a,a′=3,4

∑
ηη′ss′

c̃†
kaηsOaηs,a′η′s′ c̃ka′η′s′ , (A6)

where O = ei π
4 �c34

x0 σxτ0ς0e−i π
4 �c34

x0 = −σzτxς0. The τx matrix
in O represents couplings between the empty and occupied
single-particle states. If we simply project this M term onto
the empty states, it vanishes, i.e.,[Oa−s,a′−s′ ] = 0. A better
approximation is applying a Schrieffer-Wolff transformation
to decouple the η = ± states, leading to a second-order cor-
rection to the effective Hamiltonian. As 〈�0| f̃ †

αηs f̃αηs|�0〉 =
(1 + η)/2, the J term in Eq. (2) yields the following mean-
field term (see also the Supplemental Material section S4B of
Ref. [61])

−J

2

∑
a=3,4

∑
ηs

ηc̃†
aηsc̃aηs. (A7)

Then, regarding the J
2 term as the zeroth-order Hamiltonian

and M as a perturbation, a Schrieffer-Wolff transformation
leads to the correction

−M2

J

∑
|k|<�c

∑
a=3,4

∑
ηs

ηc̃†
kaηsc̃kaηs + O(M4). (A8)

The resulting energy levels ±(J/2 + M/J2) at k = 0 is fully
consistent with a Taylor expansion of the one-shot energy
levels ±

√
J2/4 + M2 derived in Ref. [61]. Projecting the cor-

rection to the active density of states, i.e.,ckas = c̃ka−s, we
obtain the correction to the effective Hamiltonian

M2

J

∑
|k|<�c

∑
a=3,4

∑
s

c†
kasckas + O(M4). (A9)
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3. Hund’s coupling

In this section, we discuss the effect of ferromagnetic cou-
pling ĤJ between c, f electrons. We show that aside from the
Hartree mean field in Eqs. (10) and (11), it only brings a rather
small Hund coupling JH of f electron; thus, we choose JH = 0
and only treat ĤJ by mean field in the main text.

Both Ĥ (c f ) and ĤJ couple the f electrons to c electrons,
but thanks to the C3z symmetry, the baths they coupled belong
to different angular momenta and are independent, for which
we can treat them separately. In a polar coordinate, Ĥc f only
couples f electrons to

c̃kαs = 1

A
∑

a

∫
dφ H (c f )

αa (k)ckas (α = 1, 2), (A10)

where k = k(cos φ, sin φ), and A is a normalization fac-
tor. Explicitly, there are c̃k1s ∼ ∫

dφ(γ ck1s − v′
�keiφck2s) and

c̃k2s ∼ ∫
dφ(γ ck2s − v′

�ke−iφck1s). Under the C3z operation
(defined in Sec. II A), c̃k1s and c̃k2s have effective angular
momenta 1, −1, respectively. On the other hand, ĤJ only
couples f electrons to

c̃kas = 1

A′

∫
dφ ckas (a = 3, 4), (A11)

where A′ is a normalization factor. Both ckas (a = 3, 4) have
the effective angular momentum 0 under C3z. Because c̃kas

(a = 1, 2) and c̃kas (a = 3, 4) form different representations
of C3z, they do not couple to each other by Ĥc, hence the Ĥhyb

bath and the ĤJ bath are indeed independent.
As a ferromagnetic coupling always flows to zero and

becomes irrelevant in low-energy physics, we can integrate
out the ĤJ bath in a single attempt.

ĤH = JH

∑
α

nα↑nα↓ , (A12)

where JH , estimated as 0.34 meV as shown later, is the addi-
tional energy that two electrons will acquire if they occupy the
same orbital. A nonzero M does not change the form of ĤH . If
J = 0, there would be no Hund’s coupling JH , and ĤSI would

have a U(4) symmetry, as expected in a four-flavor Anderson
impurity model without multiplet splitting.

We now derive the effective Hund’s coupling ĤH

[Eq. (A12)] in detail. We start from the free c-electron
Hamiltonian. The 4 × 4 Hamiltonian matrix H (c)(k) + �H (c)

in Eq. (11), i.e.,−v�(σx ⊗ σ0kx + σy ⊗ σzky) + 02×2 ⊕ Gσ0 +
εc,1σ0 ⊗ σ0, can be diagonalized analytically. As discussed at
the end of the last subsection, to O(M2), the M term simply
shifts the energy of a = 3, 4 electrons by M2/J . Thus, all the
analysis below applies to the M �= 0 after G is replaced by
G + M2/J . We find the energy eigenvalues and wave func-
tions of the H (c)(k) + �H (c) as

ε1(k) = ε+(k) = εc,1 + εc,3

2
+

√
G2

4
+ v2

�k2,

u1(k) =
(

sin
θk

2
e−iφk 0 − cos

θk

2
0

)T

, (A13)

ε2(k) = ε+(k) = εc,1 + εc,3

2
+

√
G2

4
+ v2

�k2,

u2(k) =
(

0 sin
θk

2
eiφk 0 − cos

θk

2

)T

, (A14)

ε3(k) = ε−(k) = εc,1 + εc,3

2
−

√
G2

4
+ v2

�k2,

u3(k) =
(

cos
θk

2
e−iφk 0 sin

θk

2
0

)T

, (A15)

ε4(k) = ε−(k) = εc,1 + εc,3

2
−

√
G2

4
+ v2

�k2,

u4(k) =
(

0 cos
θk

2
eiφk 0 sin

θk

2

)T

, (A16)

where

θk = arccos
G/2√

G2/4 + v2
�k2

(A17)

and φk = arg(kx + iky).
Applying a second-order perturbation in terms of ĤJ , we

obtained the correction to the Hamiltonian

�Ĥ = − J2

N2
M

∑
I

∑
α1α2

s1s′
1s2s′

2

∑
k1,k′

1
k2,k′

2

(
f †
α1s1

fα1s′
1
− ν f

4
δs1s′

1

)(
f †
α2s′

2
fα2s2 − ν f

4
δs2s′

2

)
e− λ2

2 (k2
1+k′2

1 +k2
2+k′2

2 )

×
〈�0|c†

k′
1α1+2s′

1
ck1α1+2s1 |�I〉〈�I |c†

k2α2+2s2
ck′

2α2+2s′
2
|�0〉

EI − E0
, (A18)

where |�I〉 are excited states with a single particle-hole pair
and EI are the energies of the excited states. k1,2, k′

1,2 are
limited up to the cutoff �c. The ĤJ here contains a damping

factor e− λ2

2 (k2+k′2 ) for c†
k′ck term since the localized f electron

with spread λ does not interact with high-energy c electron
with |k| 
 λ−1 via ĤJ . Due to the momentum and spin con-
servation, for the matrix element to be nonzero, there must be
k1 = k2, s1 = s2, k′

1 = k′
2, s′

1 = s′
2. For simplicity, we rewrite

k1, k′
1, s1, and s′

1 as k, k′, s, and s′, respectively. (k, s) and

(k′, s′) label the particle and the hole excitations, respectively.
Then the matrix element in the third line of Eq. (A18) can be
written as

(A19)

According to the wave functions given in Eqs. (A13)–
(A16), there are 〈�0|c†

k′α1+2s′ck′α2+2s′ |�0〉 = δα1α2 sin2 θk′
2 ,
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FIG. 7. The phase diagram in the parameter space of εc,1, ε f

for different εc,3 − εc,1 = G and JH . (a) G = 12 meV, JH = 0
[same as Fig. 2(e) in main text], (b) G = 8 meV, JH = 0, (c) G =
12 meV, JH = 0.34 meV. The legend is the same as Fig. 2(e).

〈�0|ckα1+2sc
†
kα2+2s|�0〉 = δα1α2 cos2 θk

2 . The excitation energy
EI − E0 is given by ε+(k) − ε−(k′). Thus, �Ĥ is simplified
to

�Ĥ = − J2

N2
M

∑
αss′
kk′

(
f †
αs fαs′ − ν f

4
δss′

)(
f †
αs′ fαs − ν f

4
δss′

)

× nF [ε−(k′)][1 − nF (ε+(k)] sin2 θk′
2 cos2 θk

2

ε+(k) − ε−(k′)

× e−λ2(k2+k′2 ). (A20)

The s = s′ contribution is an effective chemical potential shift,
estimated as 0.17 meV at CNP, of the f electrons. As it is
much smaller than U1, we will omit the s = s′ contribution.
The s �= s′ contribution can be written as

ĤH = JH

∑
α

n f
α↑n f

α↓ (A21)

with JH given by

JH = 2J2

(
�0

2π

)2 ∫ �c

0
dk′k′

∫ �c

k0

dk ke−λ2(k2+k′2 )

× sin2 θk′
2 cos2 θk

2

ε+(k) − ε−(k′)
, (A22)

where k0 is determined by ε+(k0) = 0. Here we have made
use of the fact that ε±(k) and θk only depend on |k| but
not φk. At CNP, εc,1 = 0 and εc,3 = G = J/2 = 8.19 meV,
taking the limit �c → ∞, we obtain JH ≈ 0.34 meV. Using
the self-consistent values of εc,a shown in Fig. 2(a), we find
JH at ν = 1, 2, 3, 4 are given by 0.30, 0.29, 0.28, 0.26 meV,
respectively. As JH is small, in this work, we simply set
JH = 0 for simplicity. In Figs. 7(a) and 7(c), we present the
NRG phase diagrams with JH = 0 and 0.34 meV, showing
that small finite JH do not lead to qualitative difference. The
effect of JH on the Kondo screening will be discussed in
Appendix B 3.

4. Hybridization function

By definition, the hybridization function �(ω) is given by

�(ω) = π

N

∑
k

∑
n

|Vnα (k)|2δ[ω − εn(k)], (A23)

where Vnα (k) = ∑
a u∗

an(k)H (c f )
aα (k)e− λ2k2

2 is the hybridization
between fαs and the nth energy band of c electrons. �(ω) does

not depend on α because of the C2zT or C2x symmetry that
flips the α index. Substituting εn(k) and uan(k) in Eqs. (A13)–
(A16) into the above equation, we obtain Vnα (k) for α = 1 as

V11(k) = γ sin
θk

2
eiφk e− λ2k2

2 ,

V21(k) = v′
�(−kx + iky) sin

θk

2
e−iφk e− λ2k2

2 ,

V31(k) = γ cos
θk

2
eiφk e− λ2k2

2 ,

V41(k) = v′
�(−kx + iky) cos

θk

2
e−iφk e− λ2k2

2 . (A24)

Using the energy eigenvalues in Eqs. (A13)–(A16) and the
Vnα (k) matrix elements given above, it is direct to obtain

�(ω) = �0

2v2
�

∣∣∣∣ω − εc,1 + εc,3

2

∣∣∣∣(γ 2 + v′2
� k2

F

)
e−k2

F λ2

×
[
θ (ω − εc,3) sin2 θkF

2
+ θ (εc,1 − ω) cos2 θkF

2

]
,

(A25)

where kF is given by

kF = 1

v�

√
[ω − (εc,1 + εc,3)/2]2 − (G/2)2. (A26)

Making use of Eqs. (A17) and (A25) can be further
simplified to

�(ω) = �0

4v2
�

|ω − εc,3|
(
γ 2 + v′2

� k2
F

)
e−k2

F λ2

× [θ (ω − εc,3) + θ (εc,1 − ω)]. (A27)

en ω → ε+
c,3(εc,1−), only the first (second) term in the second

line of Eq. (A27) contributes to �(ω), and kF → 0. Then we
obtain the asymptotic behavior of �(ω) as ω → ε+

c,3(ε−
c,1):

�(ω) ∼
⎧⎨⎩

�0
4v2

�
γ 2(ω − εc,3) + O[(ω − εc,3)2], ω → ε+

c,3

�0
4v2

�
Gγ 2 + O(ω − εc,1), ω → ε−

c,1.

(A28)

APPENDIX B: POOR MAN’S SCALING OF ANDERSON
MODELS WITH ENERGY-DEPENDENT COUPLINGS

1. Generic theory for U(N ) models

We consider the Anderson impurity model with N -
symmetric flavors

Ĥ = ε f N̂ f + U

2
N̂ f (N̂ f − 1) +

N∑
μ=1

∫ D

−D
dε εd†

μ(ε)dμ(ε)

+
N∑

μ=1

∫ D

−D
dε

√
�(ε)

π
[ f †

μdμ(ε) + H.c.], (B1)

where μ is the flavor index and Nf = ∑N
μ=1 f †

μ fμ. We assume
the ground state of the isolated impurity has n f f electrons,
which can take values in 1, 2, . . . , (N − 1). [We do not con-
sider the empty case (n f = 0), the full case (n f = N), nor the
mixed valence case where ground states with different n f are
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exactly degenerate.] We further assume the charge gaps to
n f − 1 and n f + 1 electrons are �E− and �E+ = U − �E−,
respectively. We then apply a Schrieffer-Wolff transformation
to obtain an effective Coqblin-Schrieffer model for the Hilbert
space restricted to N̂ f = n f :

Ĥ =
N∑

μ=1

∫ D

−D
dε εd†

μ(ε)dμ(ε) + 4g

πU

N∑
μ,μ′=1

∫ D

−D
dε dε′

× [
√

�(ε)�(ε′)( f †
μ fμ′ − xδμμ′ )d†

μ′ (ε′)dμ(ε)]. (B2)

Terms that only involve N̂ f are omitted because they only con-
tribute to an energy shift. The bandwidth D should be smaller
than min(�E+,�E−), otherwise, the Schrieffer-Wolff trans-
formation is invalid. The parameters g and x are given by

g = U

4

(
1

�E+
+ 1

�E−

)
, x = �E−

U
, (B3)

respectively. If ε f = −(n f − 1
2 )U , there will be �E+ =

�E− = 1
2U and g = 1, x = 1

2 .
We now truncate the bandwidth to D − dD = D(1 − dt )

(dt � 1) and consider second-order (in g) corrections from
the virtual particle (D − dD < ε < D) and hole (−D < ε <

−D + dD) excitations. The particle excitation contributes to
the correction

− (4g)2

(πU )2

1

D

∑
μ1μ2μ

′
1μ

′
2

∫ D−dD

−D+dD
dε1dε2d

∫ D

D−dD
dε′

1dε′
2

×
√

�(ε1)�(ε2)�(ε′
1)�(ε′

2)d†
μ1

(ε1)〈dμ′
1
(ε′

1)d†
μ′

2
(ε′

2)〉dμ2 (ε2)

× ( f †
μ′

1
fμ1 − xδμ1μ

′
1
)P ( f †

μ2
fμ′

2
− xδμ2μ

′
2
). (B4)

The denominator D in the factor is the excitation energy of a
virtual particle. P is a projector to the restricted Hilbert space,
where N̂ f = n f . The expectation 〈dμ′

1
(ε′

1)d†
μ′

2
(ε′

2)〉 evaluated

on the ground state is δ(ε′
1 − ε′

2)δμ′
1μ

′
2
. Then we have

− (4g)2

(πU )2

dD

D
�(D)

∑
μ1μ2μ′

∫ D−dD

−D+dD
dε1dε2

√
�(ε1)�(ε2)

× d†
μ1

(ε1)dμ2 (ε2)( f †
μ′ fμ1 − xδμ1μ′ )( f †

μ2
fμ′ − xδμ2μ′ ),

(B5)

where P is omitted as it commutes with f †
μ2

fμ′ and f †
μ′ fμ1 .

After a few steps of algebra, the four-fermion operator∑
μ′ f †

μ′ fμ1 f †
μ2

fμ′ can be simplified to

f †
μ2

fμ1 +
∑
μ′

f †
μ′ fμ′ fμ1 f †

μ2
= f †

μ2
fμ1 (1 − n f ) + n f δμ1μ2 ,

(B6)
where we have made use of the fact that the Hilbert space
is restricted to N̂ f = n f . Substituting this into Eq. (B5), we
obtain the corrections to parameters g and xg as

dg

dt

∣∣∣∣
p

= 4�(D(t ))
πU

[(n f − 1)] + 2xg2, (B7)

d (xg)

dt

∣∣∣∣
p

= 4�(D(t ))
πU

(
x2 + n f

)
g2. (B8)

Here t is the RG parameter and D(t ) = De−t is the reduced
bandwidth after successive t/dt RG steps.

We then calculate the contribution from virtual hole excita-
tion. Following the same process as in the last paragraph, we
obtain

− (4g)2

(πU )2

dD

D
�(−D)

∑
μ1μ2μ′

∫ D−dD

−D+dD
dε1dε2

√
�(ε1)�(ε2)

× dμ1 (ε1)d†
μ2

(ε2)( f †
μ1

fμ′ − xδμ1μ′ )P ( f †
μ′ fμ2 − xδμ2μ′ )

= (4g)2

(πU )2
dt�(−D)

∑
μ1μ2μ′

∫ D−dD

−D+dD
dε1dε2

√
�(ε1)�(ε2)

× d†
μ2

(ε2)dμ1 (ε1)( f †
μ1

fμ′ − xδμ1μ′ )( f †
μ′ fμ2 − xδμ2μ′ ).

(B9)

In the second equation, we have omitted an energy constant
term from the anticommutator {d†

μ2
(ε2), dμ1 (ε1)}. P is omit-

ted in the second equation because it commutes with f †
μ′ fμ2

and f †
μ1

fμ′ . The four-fermion operator
∑

μ′ f †
μ1

fμ′ f †
μ′ fμ2 can

be simplified to (N − n f + 1) f †
μ1

fμ2 as the Hilbert space is
restricted to N̂ f = n f . Then the corrections to g, xg from
Eq. (B9) can be read out as

dg

dt

∣∣∣∣
h

= 4�( − D(t ))
πU

(N − n f + 1 − 2x)g2, (B10)

d (xg)

dt

∣∣∣∣
h

= 4�( − D(t ))
πU

(−x2)g2. (B11)

Adding up the particle and the hole contributions we can
obtain the RG equations for g and (xg). The Kondo energy
scale TK can be estimated as the reduced bandwidth D(t )
where g diverges. For a constant �(ω) = �0, we obtain

dg

dt
= 4�0

πU
Ng2,

d (xg)

dt
= 4�0

πU
n f g2 (B12)

and the solution

g(t ) = g(0)

1 − g(0) 4�0
πU N t

, (B13)

x(t ) = x(0)
g(0)

g(t )
+ n f

N
g(t ) − g(0)

g(t )
, (B14)

where g(0) is the initial condition given in Eq. (B3). g(t )
diverges at tK = πU

4N g(0)�0
, corresponding the Kondo energy

scale De−tK = De− πU
4N g(0)�0 . As g(t ) diverges as t → tK , the

second term in x(t ) dominates and there must be x → n f

N . In
other words, x flows to the occupation fraction.

2. Application to the symmetric state at CNP

We assume a symmetric state of the THF model at CNP and
examine its Kondo energy scale. The Hamiltonian for the bath
and the impurity-bath hybridization here are given by H (c,η)

and H (c f ,η) in Eq. (1), respectively. The energy eigenvalues
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and wave functions of H (c,−) are

ε1(k) = M

2
+

√
M2

4
+ v2

�k2,

u1(k) = 1√
2

(
sin

θk

2
e−iφk sin

θk

2
eiφk − cos

θk

2
− cos

θk

2

)T

,

(B15)

ε2(k) = −M

2
+

√
M2

4
+ v2

�k2,

u2(k) = 1√
2

(
cos

θk

2
e−iφk − cos

θk

2
eiφk − sin

θk

2
sin

θk

2

)T

,

(B16)

ε3(k) = M

2
−

√
M2

4
+ v2

�k2,

u3(k) = 1√
2

(
cos

θk

2
e−iφk cos

θk

2
eiφk sin

θk

2
sin

θk

2

)T

,

(B17)

ε4(k) = M

2
−

√
M2

4
+ v2

�k2,

u4(k) = 1√
2

(
sin

θk

2
e−iφk sin

θk

2
eiφk cos

θk

2
− cos

θk

2

)T

.

(B18)

Following Appendix A 4, we obtain V (η)
nα (k) for α = 1, η = −

as

V11(k) = 1√
2

(γ eiφk − v′
�ke−2iφk ) sin

θk

2
e− λ2k2

2 ,

V21(k) = 1√
2

(γ eiφk + v′
�ke−2iφk ) cos

θk

2
e− λ2k2

2 ,

V31(k) = 1√
2

(γ eiφk − v′
�ke−2iφk ) cos

θk

2
e− λ2k2

2 ,

V41(k) = 1√
2

(γ eiφk + v′
�ke−2iφk ) sin

θk

2
e− λ2k2

2 , (B19)

where

θk = arccos
M/2√

M2/4 + v2
�k2

. (B20)

Using Eq. (A23) we obtain the hybridization function con-
tributed by the fully symmetric c bands [Fig. 1(b)] for α =
1, η = − as

�(ω) = �0

4v2
�

[∣∣∣∣|ω| − M

2

∣∣∣∣θ (|ω| − M )
(
γ 2 + v′2

� k2
F1

)
sin2 θkF1

2

× e−k2
F1λ

2 +
∣∣∣∣|ω| + M

2

∣∣∣∣(γ 2 + v′2
� k2

F2

)
× cos2 θkF2

2
e−k2

F2λ
2

]
, (B21)

where

kF1 = 1

v�

√
(|ω| − M/2)2 − (M/2)2, (B22)

kF2 = 1

v�

√
(|ω| + M/2)2 − (M/2)2. (B23)

Due to the time-reversal symmetry and crystalline symme-
tries, as explained in Sec. II B, the hybridization functions
for other α, η must be the same. We should choose the
initial cutoff D = 1

2U1 beyond which the Schrieffer-Wolff
transformation is invalid. For these states kF1,2 � U1

2v�
and

hence v′2
� k2

F1,2 � 119.4 meV2, which is significantly smaller

than γ 2 ≈ 612.6 meV2. The damping factors e−λ2k2
F1,2 � 0.74

are also large. Thus, in the following we approximate �(ω)
(|ω| < U1/2) as

�(ω) ≈ �0

4v2
�

[∣∣∣∣|ω| − M

2

∣∣∣∣θ (|ω| − M )γ 2 sin2 θkF1

2

+
∣∣∣∣|ω| + M

2

∣∣∣∣γ 2 cos2 θkF2

2

]
. (B24)

Equation ((B24) could be further simplified making use of
Eqs. (B20), (B22), and (B23), which yield

�(ω) =
{

2�(0)
M |ω|, |ω| > M

�(0)
(
1 + |ω|

M

)
, |ω| < M

(B25)

where �(0) = �0γ
2

8v2
�

M ≈ 0.0645M.
We first consider the flat-band limit (M = 0), where

�(ω) = b|ω| and b = 2�(0)/M ≈ 0.1290. We also assume
that there is no multiplet splitting in the symmetric state such
that the effective Anderson model should be a U(8) theory
with n f = 4. Naively applying the RG equations derived in
the last subsection gives

dg̃

dt
= −g̃ + 4bD

πU1
N g̃2, (B26)

where N = 8, D = U1/2, g̃ = ge−t . Due to the particle-hole
symmetry at CNP, the initial condition [Eq. (B3)] is g̃(0) = 1.
Ostensibly, it seems that there would be an unstable fixed
point g̃∗ = 2π

4N b , and an initial g̃(0) below (above) it will
flow to zero (infinity). Using the actual parameters, we find
g̃∗ ≈ 1.52, hence, the system would not be in the Kondo
phase. This result already differs from the standard case with
a constant �(ω), where a positive g always flows to infinity.
Furthermore, a more careful RG analysis [94] shows that the
fixed point g̃∗ does not really exist, and actually, any positive
g̃∗ flows to a non-Kondo phase. It is a false result of the
weak coupling expansion, which fails for �(ω) ∼ |ω|r with
r > 1

2 . Thus, a �(ω) ∼ |ω| bath does not have a strong cou-
pling phase. This conclusion is also consistent with numerical
studies [91–93].

We then consider the case with M �= 0. We use the value
M = 3.697 meV, which leads to �(0) ≈ 0.239 meV. The RG
process can be divided into two stages: D(t ) = 1

2U1e−t > M
and D(t ) < M. The boundary between the two stages is t1 =
ln U1

2M . The RG equation in the first stage reads as

dg

dt
= 2Nb

π
g2e−t ⇒ g(t ) = 1

1 − 2N b
π

(1 − e−t )
. (B27)

Due to the particle-hole symmetry, the initial condition given
by Eq. (B3) is g(0) = 1. We have

g1 = g(t1) = 1

1 − 2N b
π

(1 − 2M
U1

).
(B28)
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TABLE II. Energy scales of a fully symmetric Kondo phase in
an N = 4 model at various M. This model is used to test the validity
of the poor man’s scaling formula. The second and third columns
are TK obtained from NRG calculations using the exact hybridization
function (B21) and the approximate one (B25), respectively. DK is
the Kondo energy scale (B30) given by poor man’s scaling with the
approximate hybridization function (B25). As explained in the text,
NRG results for M � 4 meV have significant numerical errors and
hence are not tabulated here.

TK (meV) TK (meV)
M (meV) Exact �(ω) Approximated �(ω) DK (meV)

6 2.45 × 10−9 1.43 × 10−9 5.90 × 10−9

7 2.61 × 10−8 1.95 × 10−8 1.16 × 10−7

8 1.79 × 10−7 1.31 × 10−7 1.10 × 10−6

9 9.06 × 10−7 7.42 × 10−7 6.38 × 10−6

10 3.56 × 10−6 2.97 × 10−6 2.64 × 10−5

11 1.15 × 10−5 8.44 × 10−6 8.53 × 10−5

12 3.16 × 10−5 2.39 × 10−5 2.28 × 10−4

13 7.55 × 10−5 5.78 × 10−5 5.28 × 10−4

14 1.65 × 10−4 1.36 × 10−4 1.09 × 10−3

15 3.14 × 10−4 2.72 × 10−4 2.05 × 10−3

The RG equation in the second stage is given by

dg

dt
= 4N�0

πU1
g2 + 4N�0

πU1
g2e−(t−t1 )

⇒ g(t ) = 1

g−1
1 − 4N�0

πU1
(t − t1) − 4N�0

πU1
(1 − e−(t−t1 ) )

.

(B29)

g(t ) diverges at tK ≈ t1 + πU1
4g1N�0

− y with y = 1, correspond-
ing to the Kondo energy scale

DK = Meye− πU1
4g1N�0 ≈ 3.8 × 10−4 meV. (B30)

To confirm the validity of the two-stage RG procedure, we
compare it to the Kondo energy scale TK given by the NRG
spectral density for an N = 4 model defined by the same
hybridization function �(ω). (Notice that the NRG method
does not work well in N = 8 cases due to the large Hilbert
space dimension on a site.) In Table II we tabulate TK from
exact �(ω) [Eq. (B21)], TK from linearized �(ω) [Eq. (B25)],
and the poor man’s scaling DK [Eq. (B30)] at various M. We
have chosen the initial cutoff D in the NRG as 100 meV
and kept ∼1600 states every step. One can see that (i) the
linearization of �(ω) only slightly suppresses TK, and (ii) DK

is on the same order as TK.
We do not tabulate TK and DK for M < 4 meV because

when M is small, our NRG calculations fail to respect the
U(4) and particle-hole symmetries due to numerical errors. To
be concrete, for a large odd N that has reached a fixed point
with a singlet ground state, the first excited states should be
eightfold degenerate, containing four single-electron and four
single-hole excitation states. However, when M = 3 meV,
the energies of these eight excitations are all different, vary-
ing from 0.05DN to 1.06DN , where DN = D�−(N/2−1) is the
scaled cutoff in the N th step. A larger M will reduce this
splitting. For example, the energies of these states range

from 0.452DN to 0.616DN for M = 4 meV, and 0.532DN

to 0.534DN for M = 5 meV. The energy splitting becomes
negligible for M � 6 meV. This numerical error should arise
from the ω dependence of �(ω). Our calculations do not
have this problem for a small but constant �(ω). Also, our
calculations do not have this problem for the ν > 0 Kondo
phase upon the correlated insulator at CNP discussed in the
main text.

3. Application to the effective model for ν > 0 states

In the absence of the Hund’s coupling JH , we can regard
(α, s) as a composite index so that ĤSI [Eq. (14)] is a U(N )
theory with N = 4. Then the flow equations in Appendix B 1
apply. For simplicity, we omit the negative branch of �(ω)
[Eq. (A27)] at ω < εc,1 because it is far away from the Fermi
level for ν > 0 [Fig. 1(d)]. The positive branch of �(ω) can
be well approximated by �(ω) = �(0)(1 − ω/εc,3) for |ω| <

−εc,3 [Fig. 1(d), Eq. (A28)]. We choose the initial cutoff D to
be the minimum value of −εc,3 and �E±. Substituting this
�(ω) into the general RG equations in Appendix B 1, we
obtain

dg

dt
= 4�(0)

πU1
Ng2 + 4�(0)D

−πU1εc,3
(4x + 2n f − 2 − N )g2e−t

(B31)
and

d (xg)

dt
= 4�(0)

πU1
n f g2 + 4�(0)D

−πU1εc,3
(2x2 + n f )g2e−t . (B32)

The O(e−t ) terms will eventually become irrelevant when t is
sufficiently large. Since in Eq. (B31) x only enter the O(e−t )
terms and is relevant when t is small, we approximate x with
its initial value x = �E−

U [Eq. (B3)] in Eq. (B31). Then the
solution of g is

g(t ) ≈ 1

g−1(0) − 4�(0)
πU1

N [t + y(1 − e−t )]
, (B33)

where y ≈ ( 4�E+
U1

+ 2 − 2n f ) D
N εc,3

. The Kondo energy scale is
determined t = tK at which g diverges. Assuming tK 
 1, we
have

tK ≈ πU1

4Ng(0)�(0)
− y (B34)

and hence

DK ≈ Deye− πU1
4N g(0)�(0) . (B35)

a. The nf = 1, 3 cases

In the presence of the Hund’s coupling, we have to examine
the derivations in Appendix B 1 carefully. The most important
effect of ĤH is to change the local Hilbert space at small
energy scales. In general, JH leads to a multiplet splitting.
When the RG energy scale is smaller than the splitting, the
higher-energy multiplet will become inaccessible, and the
local Hilbert space is effectively reduced. A minor effect is
that the charge gaps �E± will depend on JH and the resulting
coupling between f -spin and d-spin in the Coqblin–Schrieffer
model will break the U(N ) symmetry.

In the following, we study how ĤH changes the RG equa-
tions. We first consider the n f = 1 case. In the virtual particle
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excitation process [Eq. (B5)], the intermediate f multiplet is
given by |F ′〉 = ( f †

μ2
fμ′ − δμ2μ′ )|F 〉, where F is the initial

f multiplet. [μ should be regarded as the composite index
(α, s).] As |F ′〉 has the same particle number as |F 〉, it must
be one of the four states with (n1↑, n1↓; n2↑, n2↓) = (10; 00),
(01;00), (00;10), (00;01). All of the possible intermediate
states do not feel the Hund’s coupling (JH

∑
α nα↑nα↓) and

hence they have the same energy as |F 〉. Hence, the excitation
energy of the intermediate state is purely contributed by d
electrons. Then all the following derivations apply. The same
argument applies to the virtual hole excitation [Eq. (B9)].
Therefore, the RG equations for n f = 1 will not be affected
by JH . For the same reason, RG equations for n f = 3 will also
not be affected by JH , where the initial and intermediate states
are single-hole states that do not feel JH . The TK for n f = 1, 3
is still given by Eq. (B35).

b. The nf = 2 case

The Hilbert space with two particles has six states:
(n1↑, n1↓; n2↑, n2↓) = (10; 10), (10;01), (01;10), (01;01),
(11;00), (00;11). The former four states have the energy
2ε f + U1, and the latter two states have the energy
2ε f + U1 + JH . Thus, JH leads to a multiplet splitting.
We divide the RG into two stages. In the first stage D(t ) is
larger than JH , then the splitting JH only plays a minor role
and can be neglected. Thus, the RG equations in the first stage
are given by Eq. (B31). The first stage ends at t1 = ln(D/JH ).
If g diverges before t reaches t1, the Kondo energy scale
should be given by Eq. (B35):

D′
K = Deye− πU1

4N g(0)�(0) . (B36)

If g is still finite at t1

g1 = g(0)

1 − g(0) 4�(0)
πU1

N
(

ln D
JH

+ y D−JH
JH

) , (B37)

then the RG goes into the second stage.
The effective cutoff and the initial g of the second stage

are JH and g1, respectively. We first examine the virtual par-
ticle excitation process [Eq. (B5)], where the intermediate f
multiplet is given by |F ′〉 = ( f †

μ2
fμ′ − δμ2μ′ )|F 〉. Here F is the

initial f multiplet. μ′, μ2 should be regarded as the composite
indices (α′, s′), (α2, s2), respectively. Suppose |F 〉 is one of
the four low-energy states, where each orbital (α = 1, 2) has
one electron; then, for |F ′〉 to be a low-energy state, the index
μ′ must have the same orbital index with μ2, i.e.,α′ = α2, such
that each orbital (α = 1, 2) in |F ′〉 still has one electron. With
this restriction, the four-fermion operator in Eq. (B6) becomes

f †
α2s2

fα1s1 +
∑

s′
f †
α2s′ fα2s′ fα1s1 f †

α2s2
. (B38)

∑
s′ f †

α2s′ fα2s′ acting on the bra state (final state) gives n f
α2 ,

which must equal to 1 given that the bra state is one of the four
low-energy states. Thus, the four-fermion operator equals to
δα2α1δs2s1 . The resulting contributions to the RG equation are

dg

dt

∣∣∣∣
p

= 4�(D(t ))
πU

(2x)g2, (B39)

d (xg)

dt

∣∣∣∣
p

= 4�(D(t ))
πU

(
x2 + 1

)
g2. (B40)

We second examine the virtual hole excitation process
[Eq. (B9)], where the intermediate f multiplet is given by
|F ′〉 = ( f †

μ′ fμ2 − δμ′μ2 )|F 〉. Suppose |F 〉 is one of the four
low-energy states; then, for |F ′〉 to be in the low-energy
state, the index μ′ must have the same orbital index with μ2,
i.e.,α′ = α2. With this restriction, the four-fermion operator in
Eq. (B9) can be written as∑

s′
f †
α1s1

fα2s′ f †
α2s′ fα2s2 . (B41)

If |F 〉 is one of the four low-energy states, it at most occupies
one electron in the α2 orbital. The α2 orbital of fα2s2 |F 〉 must
be empty, implying

∑
s′ fα2s′ f †

α2s′ = 2. Thus, the four-fermion
operator equals 2 f †

α1s1
fα2s2 . The resulting contributions to the

RG equation are

dg

dt

∣∣∣∣
h

= 4�(D(t ))
πU

(2 − 2x)g2, (B42)

d (xg)

dt

∣∣∣∣
h

= 4�(D(t ))
πU

(−x2
)
g2. (B43)

Equations (B39), (B40), (B42), and (B43) are identical to
equations of the U(2) case where N = 2, n f = 1. Following
the steps of deriving Eq. (B35), we find x still flows to 1

2 , and

D′′
K ≈ JH e− πU1

8g1�(0) . (B44)

The final expression for the Kondo energy scale at
n f = 2 is

DK =
{

D′
K , D′

K > JH

D′′
K , otherwise.

(B45)

Several features of Figs. 7(a)–7(c) can be understood us-
ing the poor man’s scaling result here. First, there are three
domes around ε f = − 1

2U1,− 3
2U1,− 5

2U1 where TK is rela-
tively small. They correspond to the n f = 1, 2, 3 cases here.
From the poor man’s scaling perspective, these three ε f ’s cor-
respond to the minimal initial value of the coupling constant g
[Eq. (B3)], which leads to smaller TK’s. Second, when JH = 0
[Figs. 7(a) and 7(b)], for the same εc,1, the dome at the left
has a lower TK than the dome at the right. This is due to when
fixing �E+ a larger n f means larger y and then larger TK as
argued in Sec. III B. Whe JH > 0 [Fig. 7(c)] the first dome also
has a lower TK than the third dome since JH does not affect
the n f = 1, 3 cases. Third, if JH > 0 [Fig. 7(c)], when |εc,1|
is small (�30 meV), TK in the middle dome is the smallest.
The reason is that the Kondo energy scale TK for n f = 2 will
be strongly suppressed due to the multiplet splitting if TK is
smaller than JH .

APPENDIX C: NRG RESULTS AT OTHER ε f , εc1,2, G

Here, we plot the RG flows of the many-body spectra and
spectral densities at other ε f , εc1,2, G in Fig. 8 from the single-
impurity model as a complement to Figs. 2(c) and 2(d). The
flow diagrams here correspond to the Kondo phase with mean
field parameters at ν = 2.5 and LM2,3 phases, respectively.
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FIG. 8. (a) The RG flows of the many-body spectra of the scaled
Hamiltonian H̃N (N ∈ odd) at ν = 2.5, with mean-field parameters
εc,1 = −38.6 meV, ε f /U1 = −1.39, G = 12.04 meV. (b), (c) The
RG flows in the LMn phases (n = 2, 3), where ε f = −(n − 1

2 )U1,
εc,1 = −5 meV, and G = 12 meV. Only spectra at N <= 5 are
shown for the same reason with Fig. 2(d). The levels are labeled by
total charge Q and the SU(4) irreducible representation. The insets
are the corresponding spectral densities.

APPENDIX D: HATREE-FOCK CALCULATION
OF RKKY ENERGY SCALE

In this Appendix, we discuss how we estimate the RKKY
energy scale from Hartree-Fock mean field. We consider a
1 × 2 supercell respective to the origin lattice in Fig. 1(a),
where the order parameters are uniform along y direction
but staggered along a1 = 2π

3kθ
(
√

3, 1). The supercell is then

invariant under translations along a′
1 = 4π

3kθ
(0, 1) and a′

2 =
4π
3kθ

(
√

3, 0), and the state at k could couple with the state at

k ± Q where Q = kθ (
√

3
2 , 0). The order parameters in real

space are defined as

O f
αs,α′s′ (R) = 〈�| f †

Rαs fRαs′ |�〉,

Oc
as,a′s′ (R) = 1

NM

∑
|k|,|k′|
<�c

e−i(k−k′ )R

×
(

〈�|c†
kasck′a′s′ |�〉 − 1

2
δkk′δaa′δss′

)
, (D1)

where NM is the number of the original moiré unit cell. The
order parameters could be decomposed into a uniform part
and a staggered part as O f (R) = O f ,0 + eiQ·RO f ,1, Oc(R) =
Oc,0 + eiQ·ROc,1, where

O f ,0
αs,α′s′ = 1

NM

∑
k∈MBZ

〈�| f †
kαs fkα′s′ |�〉,

O f ,1
αs,α′s′ = 1

NM

∑
k∈MBZ

〈�| f †
k+Qαs fkα′s′ |�〉,

Oc,0
as,a′s′ = 1

NM

∑
|k|<�c

(
〈�|c†

kascka′s′ |�〉 − 1

2
δq,0δaa′δss′

)
,

Oc,1
as,a′s′ = 1

NM

∑
G

∑
|k|<�c,|k+Q+G|<�c

〈�|c†
k+Q+Gascka′s′ |�〉, (D2)

where G runs over the reciprocal lattice vectors of the un-
folded lattice. Whereas, we only keep Q + G = ±Q for Oc,1

since other c†
k+Q+G,as create states with large kinetic energy

and the corresponding order parameters are small.

For simplicity, we only consider spin density wave and
require that the electron density is uniform, i.e., ν f (R) =
Tr[O f (R)] and νc,a(R) = ∑

s[O
c
as,as(R)] do not depend on R.

The interaction terms in Eq. (9) could be decomposed into

Ĥ eff
I ≈ ĤMF

U + ĤMF
V + ĤMF

W + ĤMF
J − EU − EV − EW − EJ

(D3)

with their expression listed below as

ĤMF
U =

∑
k∈fMBZ

[(
U1ν f + 6U2ν f − U1O f ,0

α′s′,αs

)]
× ( f †

kαs fkα′s′ + f †
k+Qαs fk+Qα′s′ )

− U1
[
O f ,1

α′s′,αs f †
k+Q,αs fkα′s′ + H.c.

]
, (D4)

ĤMF
V = V0νc

∑
as

∑
|k|<�c

c†
kasckas, (D5)

ĤMF
W = ν f

∑
k<�c

∑
as

Wac†
kasckas

+
∑

k∈fMBZ

∑
a

Waνc,a( f †
kαs fkα′s′ + f †

k+Qαs fk+Qα′s′ ),

(D6)

ĤMF
J = −J

{ ∑
|k|<�c

∑
αss′

O f ,0
αs′,αsc

†
k,α+2,sck,α+2s′

+
∑

|k|,|k+Q|<�c

∑
αss′

(
O f ,1

αs′,αsc
†
k+Q,α+2,sck,α+2s′ + H.c.

)
+

∑
k∈fMBZ

∑
αss′

[
Oc,0

α+2s,α+2s′ ( f †
kαs′ fkαs + f †

k+Qαs′ fk+Qαs)

+ (
Oc,1

α+2s,α+2s′ f †
k+Qαs′ fkαs + H.c.

)]}
, (D7)

where fMBZ denotes the folded moiré Brillouin and

EU = U1

2
NMν2

f − U1

2

∑
R

Tr[O f (R)O f (R)] + 3NMU2ν
2
f ,

EV = 1

2
V0NMν2

c + V0

∑
|k|<�c

4νc,

EW = NM

∑
a

Waνc,aν f +
∑

a

∑
|k|<�c

Waν f ,

EJ = −J
∑

R

∑
αss′

O f
αs′,αs(R)Oc

α+2s,α+2s′ (R)

− J
∑

|k|<�c

∑
αs

1

2
O f ,0

αs,α,s. (D8)

We have neglected the Fock channel of ĤV as done in section
S4A of the supplementary material of Ref. [61], assuming that
symmetry breaking is mainly contributed by f electron.

We then do two self-consistent calculations to estimate the
relative energy between the spin ferromagnetic (FM) state
and the antiferromagnetic (AFM) state. To be concrete, we
choose the spin polarization at the z direction and assume
no orbital polarization, which means that O f is diagonal
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and O f
1s,1s = O f

2s,2s for s =↑ / ↓, while Oc is diagonal in
spin space and commutes with σμ ⊕ σμ for μ = x, y, z where
σμ is Pauli matrix act on orbital space. We further enforce
O f (a1) = O f (0), Oc(a1) = Oc(0) for FM state and O f (a1) =
ςxO f (0)ςx, Oc(a1) = ςxOc(0)ςx for AFM state, where ςx is
Pauli x matrix in the spin space. We then do the self-consistent
calculation as described above, yielding two converged total
energy (per moiŕe unit cell) EFM and EAFM for the spin FM and

AFM state, respectively. We define the RKKY energy scale
JRKKY as the effective energy gain at each nearest-neighbor
bond of parallel spin, where JRKKY > 0 means ferromagnetic
coupling and JRKKY < 0 means antiferromagnetic coupling.
Then the FM and AFM state gain energy of −3JRKKY, JRKKY

per moiŕe unit cell, respectively, for which we can extract
JRKKY = 1

4 (EAFM − EFM). We plot JRKKY as a function of ν

in Fig. 4(f).
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