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Magnetization-induced phase transitions on the surface of three-dimensional topological insulators
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From the low-energy model, the topological field theory indicates that the surface magnetization can open a
surface gap in three-dimensional (3D) topological insulators (TIs), resulting in a half-quantized Hall conduc-
tance. Here, by employing the realistic lattice model, we show the occurrence of the surface phase transitions,
accompanied by the sharp changes of the surface Chern number from 1

2 to − 3
2 , and finally to − 1

2 , in 3D TIs
induced by surface magnetization. These surface phase transitions lead to the sudden jumps in the magneto-
electric coefficient and the quantum Hall conductance, which are experimentally observable. Furthermore, we
present the phase diagram that elucidates the behavior of the 3D TI surface Chern numbers under surface
magnetization for different Z4 topological numbers. Our study highlights the presence of the new phases with
broken bulk-boundary correspondence and enriches the understanding of the properties of TIs.
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I. INTRODUCTION

Three-dimensional (3D) topological insulators (TIs), fea-
tured by a bulk band gap and gapless helical surface states
protected by the time-reversal symmetry (TRS), have received
intense research over the past decade [1–5]. The physics
origin of the gapless surface states is well known as the bulk-
boundary correspondence, in which the gapless surface states
are determined by the topology of the bulk band. When the
TRS is broken on the surface (e.g., by the magnetization),
the fall of the bulk-boundary correspondence will result in
a gapped surface. Nevertheless, even on the TRS-breaking
surface, information about the bulk’s topological properties
can still be manifested at the gapped surface. For instance,
half-quantized anomalous Hall conductance (AHC) and topo-
logical magneto-electric (ME) effects [6,7] can arise within
the gap of the TRS-breaking surface [8–14], which relates to
the topological θ -axion term in the bulk [15]. In 3D TIs, the
θ term is directly associated with the Z2 topological index,
where θ = π (mod 2π ) corresponds to a nontrivial bulk [12].
It is worth noting that the bulk-boundary correspondence on
the TRS-breaking surface, and then the half-quantized AHC
and the topological ME effect, are considered outcomes of
low-energy models near the � point based on topological
field theory [12,16]. For a strong magnetization with the
TRS strongly broken, the availability of low-energy models
is poorly studied. In reality, the system should be described
on a complete Brillouin zone. The low-energy model fails to
capture information from the Brillouin zone, thereby missing
certain physics phenomena related to it.

In this paper, we systematically investigate the influence
of surface magnetization on 3D TIs within the realistic lattice
model. We discover that the increasing magnetization leads to
a series of topological phase transitions on the surface of the
3D TI. Specifically, the surface Chern number transitions from
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1
2 to − 3

2 and eventually reaches − 1
2 [see Fig. 1(b)]. To quanti-

tatively characterize these transitions, we employ a slab model
and an effective three-layer model, calculating the local Chern
markers from both numerical and analytical perspectives. The
computational results reveal that surface magnetization initi-
ates a nonadiabatic transformation in the first layer of the 3D
TI, converting the massive Dirac fermion into a state of quan-
tum anomalous Hall/ferromagnetic insulator (QAH/FMI).
Furthermore, as the first-layer topological transition occurs,
an opposing massive Dirac fermion reemerges in the second
layer and results in − 1

2 Chern number [see Fig. 1(a)]. More-
over, these topological phase transitions also lead to the sharp
changes of both the topological ME coefficient and the surface
Hall conductance plateau.

The organization of this paper is as follows. In Sec. II,
we present our lattice model and numerically investigate the
variation of the surface Chern number with the increase of
surface magnetization using a 20-layer 3D TI slab model.
In Sec. III, we establish an effective three-layer model to
describe the behavior of 3D TI surface states in the presence
of surface magnetization. In Sec. IV, we present a phase
diagram that illustrates how different bulk topological mass
terms affect the surface topological transitions induced by
surface magnetization. Both the topological ME coefficient
and the surface quantum Hall conductance plateaus induced
by the surface topological transitions are studied in Sec. V.
We discuss experimental implementation in Sec. VI and con-
clude with a summary. Additional computational details and
supplemental figures can be found in Appendices A to E.

II. SURFACE MAGNETIZATION-INDUCED
PHASE TRANSITIONS

We start with the Hamiltonian of a 3D TI in a cubic lattice:

HTI = (m − 6B)s0σz +
∑

i

(2Bs0σz cos ki + Asiσx sin ki ),

(1)
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FIG. 1. (a) Upper and lower parts are schematic diagrams for the
surface phase of a 3D TI under the weaker and stronger surface mag-
netization, respectively. (b) Surface Chern number Cz as a function
of surface magnetization MA. The blue, orange, and yellow regions
correspond to Cz = 1

2 , − 3
2 , and − 1

2 . The insets illustrate schematic
diagrams of the systems in the three regions.

where m, B, and A are the model’s parameters and ki is the
momentum with i = x, y, z. si and σi are the Pauli matri-
ces on the spin and orbital spaces. The system exhibits a
nontrivial topological phase when satisfying 0 < m < 4B or
8B < m < 12B [17]. Below, we choose m = 2, B = 1, and
A = 1 to position the system in the nontrivial topological
phase, unless mentioned otherwise. We construct a 20-layer-
thick slab model [Fig. 2(a)]. For the convenient observation
of the influence of surface magnetization on energy bands,
we introduce symmetrical magnetization on both the top and
bottom surfaces, thereby opening magnetic energy gaps on

FIG. 2. (a) Schematic diagram of a 20-layer slab model of a
3D TI, with opposite magnetization MA applied to the upper and
lower surfaces. D denotes interlayer hopping. (b) Layer-resolved
local Chern markers Cz(l ) of a 20-layer 3D TI slab model with
different MA indicated by pentagrams in Fig. 1(b). (c) Band structures
under different MA.

both surfaces. The Hamiltonian is represented as follows:

Hslab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Hlay1 D 0 ... 0

D† Hlay2 D ... 0

0 D† Hlay3 ... 0

... ... ... ... ...

0 0 0 ... Hlay20

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The Hamiltonian for each layer is given by Hlayl =
Hlay + δl,1MAsz − δl,20MAsz, with Hlay = Aσxsx sin kx +
Aσxsy sin ky + [m − 6B + 2B(cos kx + cos ky)]σzs0. The
interlayer hopping is given by D = A

2i σxsz + Bσzs0. MA

represents the magnetization strength of the top and bottom
surfaces, which can be experimentally introduced through
magnetic doping or heterostructure approaches [9,18–20].

Then we investigate the local Chern markers within the
slab model to characterize the contributions of different layers
to the total Chern number [21–23]. The local Chern marker
projected onto layer l , denoted as Cz(l ), can be calculated
from the expression [23]

Cz(l ) = −4π

A
Im

1

Nk

∑
k

∑
vv′c

XvckY
†
v′ckρvv′k (l ). (2)

The matrix element for the position operator along the x
or y directions is denoted as X (Y )vck = 〈ψvk|x(y)|ψck〉 =
〈ψvk|ih̄vx (vy )|ψck〉

Eck−Evk
, which is related to the energy difference be-

tween the conduction and valence bands, Eck − Evk. The
indices v and c represent the valence and conduction bands.
ρvv′k (l ) is the projection matrix onto the corresponding layer l ,
which implies a summation over all orbitals v, v′, c belonging
to that layer. Nk represents the number of k points and A
represents the unit cell area.

In Figs. 2(b) and 2(c)–2(e), we have computed the local
Chern markers and corresponding band structures under some
representative magnetizations, which are marked with red
pentagrams in Fig. 1(b). Due to the opposite magnetization
on the top and bottom surfaces, the local Chern marker on
these surfaces is also opposite [see Fig. 2(b)]. As a result,
the overall Chern number of the system is zero, leading to
the absence of a net Hall effect. However, in practical sce-
narios, introducing surface magnetization on only one layer
can generate a net Hall effect. Subsequently, our analysis is
confined to the upper half of the system due to its symmetry.
The surface Chern number Cz is determined by the sum of the
local Chern markers Cz(l ) of the first several layers [23,24].
Computational results indicate that Cz(l ) becomes nearly zero
for l > 4. Therefore, we consider Cz = ∑4

l=1Cz(l ), which is
shown in Fig. 1(b). For a small magnetization MA (e.g., MA =
0.5), a gapped Dirac cone occurs at the � point [as shown in
Fig. 2(c)], leading to the local Chern markers Cz(1) ≈ 1/2,
Cz(20 > l > 1) ≈ 0, and the surface Chern number Cz = 1/2
[see Figs. 2(b) and 1(b)]. This finding is very consistent with
the results of previous theoretical works from the low-energy
models and has been observed in the experiments [8–14].
With the increase of the surface magnetization MA, at MA

slightly less than 4, the bands close and reopen at the X and
Y points [Fig. 2(d)], leading to the local Chern marker Cz(1)
on the first layer abruptly jumping to −1. Meanwhile, Cz(2)
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of the second layer sharply changes to −1/2 [see the or-
ange line in Fig. 2(b)], resulting in the surface Chern number
Cz = −3/2 [Fig. 1(b)]. With MA = 8, after the bands close
and reopen at the M point [Fig. 2(e)], Cz(1) abruptly becomes
0, while Cz(2) remains approximately −1/2. Consequently,
Cz = −1/2 [Fig. 1(b)]. Figures 2(c)–2(e) only present sev-
eral instances under distinct magnetization MA, while a more
comprehensive evolution of the band structure is documented
in Fig. 6 of Appendix A.

In the following, we will provide a physics interpretation
of the transition of surface Chern number Cz from 1

2 to
− 3

2 to − 1
2 . When the surface magnetization MA is relatively

small, without gap closing, adiabatic changes ensure that Cz

remains at 1
2 without alteration, which is consistent with the

low-energy models [12,13]. With the increasing of MA, ac-
companied by the gap closing and reopening at points X and
Y, the first layer enters the QAH phase. Simultaneously, a
massive Dirac fermion reemerges in the second layer. This
effect is analogous to the impact of Anderson disorders on
the surface of 3D TIs [25], where the transition of the surface
QAH phase also leads to the revival of topological surface
states in the second layer. However, due to the effective mag-
netization on the second layer through second-order effects
being opposite in direction to the first layer (see Appendix B),
this results in a − 1

2 surface Chern number on the second
layer [as shown in the lower part of Fig. 1(a)]. The system
can be effectively modeled as a combination of a 3D TI and
a monolayer QAH system [see the inset in Fig. 1(b) or the
lower part in Fig. 1(a)], leading to Cz = −1 + (− 1

2 ) = − 3
2 .

As MA continues to increase, similarly, the gap closing and
reopening at point M corresponds to the transition of the first
layer from the QAH phase to the FMI phase, characterized
by a local Chern marker of zero. Consequently, due to the
coexistence of massive Dirac fermions and FMI monolayer
[the inset in Fig. 1(b)], the surface Chern number Cz becomes
0 + (− 1

2 ) = − 1
2 . Additionally, it is worth mentioning that the

essence of the surface phase transition lies in the finite size of
the Brillouin zone in real systems. Therefore, the occurrence
of the phase transition is independent of the specific lattice
model.

III. THREE-LAYER EFFECTIVE MODEL
AND PHASE DIAGRAM

To capture the surface physics of a 3D TI in the presence of
surface magnetization MA, we employ a simplified three-layer
effective model, as illustrated in Fig. 3(a). The corresponding
Hamiltonian is expressed as follows:

H =

⎛⎜⎝Hlay + MAsz D 0

D† Hlay D

0 D† Hlay + 	(ε)

⎞⎟⎠.

Here the surface magnetization MAsz is introduced in the first
layer, and the bulk’s effective influence is incorporated into
the third layer through a self-energy term 	(ε). The self-
energy term 	(ε) can be obtained through iterative calculation
of the Green’s function [26]. Specifically, for the ith layer,
the self-energy is defined as 	i(ε) = D†gi+1,i+1(ε)D, where
gi+1,i+1(ε) = 1/[ε − Hlay − 	i+1(ε)] represents the surface

FIG. 3. (a) Schematic diagram of the three-layer effective model.
Ellipses indicate the process of self-energy iteration. (b) Cz(1), Cz(2),
and Cz as a function of MA. (c) Band structures under different MA,
with colors indicating the layer of the states.

Green’s function for the (i + 1)-th layer, and ε denotes energy.
Since the gap closing occurs at ε = 0, we consider 	(ε = 0)
due to its effective description of physics around ε = 0.

We calculated the local Chern markers Cz(l ) under varying
surface magnetization MA [Fig. 3(b)]. The computation results
reveal a transition of the surface Chern number Cz from 1

2 to
− 3

2 to − 1
2 [black line in Fig. 3(b)], coinciding with the nu-

merical results shown in Fig. 1(b). It is noteworthy that before
the first gap closing (at X, Y points), as MA increases, the local
Chern maker of the first layer gradually increases from 1

2 to
1, while that of the second layer decreases from 0. Although
there is a redistribution of Cz(l ), the total Chern number of
the three-layer system, i.e., surface Chern number Cz, remains
at 1/2. This redistribution of Cz(l ) can be detected through
measurements of the ME coefficient; in Sec. V, we will pro-
vide a detailed discussion of this. Figure 3(c) displays the
band structures and layer-resolved projections under different
MA. At MA = 0.5, the color of the Dirac cone at the � point
is yellow, indicating that the wave function is predominantly
distributed in the first layer. The presence of a gapped Dirac
cone on the first layer corresponds to Cz(1) ≈ 1

2 at MA = 0.5
[Fig. 3(b)]. However, with the increase of MA, the structure of
the Dirac cone gradually disappears, which corresponds to the
redistribution of Cz(l ) between the first layer and the second
layer. After the gap closing and reopening at the X/Y point,
a Dirac cone structure reemerges in the second layer, marked
by green in the band structure [Fig. 3(c) with MA = 4]. The
reappearance of the Dirac cone in the second layer results
in Cz(2) approaching − 1

2 [see Fig. 3(b)], indicating that the
topological transition in the first layer leads to the reformation
of topological surface states in the second layer and Cz ≈ − 3

2 .
Furthermore, with the increase of MA, as the band closes and
reopens at the M point, the local Chern marker of the first layer
becomes zero, signifying the transition of the first layer to the
FMI phase and Cz jumping to − 1

2 . The detailed evolutions of
the energy bands with changing magnetization can be found
in Fig. 6 of Appendix A.
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FIG. 4. (a) Surface Chern number Cz vs the surface magnetiza-
tion MA and the mass term m. Figure 1(b) corresponds to the gray
dash-dotted line in (a). (b) Cz of the single-layer model changes in
response to alterations in MA and m. (c)–(f) These figures, respec-
tively, correspond to the band structures at points A–D, which are
identified with red markers in (a).

IV. PHASE DIAGRAM OF 3D TI WITH SURFACE
MAGNETIZATION

Next, we investigate how the surface Chern number Cz

is affected by the topology of the bulk, which is defined
by the topological mass term m [27]. Figure 4(a) shows Cz

with respect to both the surface magnetization MA and the
mass term m. The transition of Cz from 1

2 to − 3
2 to − 1

2 can
only be observed in the topologically nontrivial bulk region
(interval I), i.e., 0 < m < 4B and 8B < m < 12B [17]. Inthe
topologically trivial bulk regions (II, III), the behavior of Cz

with respect to changes in MA is inconsistent. In region II
where m < 0 and m > 12B, as MA increases, Cz changes
from 0 → 1 → −1 → 0. In region III (4B < m < 8B), as MA

increases, the surface Chern number Cz exhibits a transition

of −1 → 0 → 1. We attribute the distinct behavior of Cz in
regions II and III to different Z4 topological classification
[13,17,28].

To provide an explanation for the differing behavior of the
surface Chern number Cz in regions II and III under the in-
fluence of surface magnetization MA, we calculated the phase
diagram as a function of the magnetization MA and topolog-
ical mass m for the single-layer system [see Fig. 4(b)]. This
diagram reflects surface phase transitions under magnetization
conditions without bulk effects. In region II, the variation of
Cz in the single-layer system matches that of the multilayer
system, implying that Cz of the multilayer system remains
unaffected by bulk influence.

Conversely, in the topologically trivial region III, changes
in surface magnetization MA result in different behaviors in
the surface Chern number Cz between the single-layer and
multilayer systems. In this case, Cz undergoes a transition
from 0 → −2 → −1 → 0 in the single-layer system [see
Fig. 4(b)], but Cz changes from −1 → 0 → 1 in the mul-
tilayer system [see Fig. 4(a)], indicating the impact of the
bulk within region III. Specifically, at MA = 0, the multilayer
model exhibits two Dirac cones at the X/Y points due to the
bulk presence [see Fig. 4(c)]. However, a single-layer sys-
tem lacks these Dirac cones. When the surface magnetization
MA is small, the two Dirac cones open up gaps [Fig. 4(d)],
each contributing −1/2 to surface Chern number Cz. Conse-
quently, Cz of the multilayer system under small MA is −1. As
the surface magnetization MA increases, Cz of the multilayer
system in region III transitions from −1 to 0. The physics pic-
ture here is similar to the surface Chern number Cz transition
from 1/2 to −3/2 in region I, i.e., the topological transition
of the first layer and the reformation of the Dirac cone in the
second layer. In particular, accompanied by the nonadiabatic
change of the first layer [gap closing and reopening at the
� point; see Fig. 4(e)], the first layer enters the QAH phase
with Cz = −1 and, simultaneously, the Dirac cone at the X/Y
point re-forms in the second layer. Furthermore, the effective
magnetization direction on the second layer is opposite to that
of the first layer, leading to gap opening and contributing
to the +1 surface Chern number Cz. Therefore, Cz of the
multilayer system results from the QAH of the first layer and
the newly formed gapped Dirac cones in the second layer,
yielding a total surface Chern number of −1 + 1 = 0. Sim-
ilarly, with further increases in MA, the first layer undergoes
another nonadiabatic change [gap closing and reopening at the
M point; see Fig. 4(f)], transitioning to a zero Chern number
in the FMI phase. Consequently, the overall surface Chern
number Cz of the multilayer system is contributed by the
second layer, resulting in +1.

In summary, both regions II and III fall under the topo-
logical trivial phase (v0 = 0) according to Z2 topological
classification. However, their Z4 topological numbers are dis-
tinct [13,28]. For region II, Z4 = (0; 0, 0, 0), and for region
III, Z4 = (0; 1, 1, 1), which corresponds to the presence of an
even number of Dirac cones on the surface of region III [17].
Consequently, we attribute the contrasting behavior of sur-
face Chern numbers under surface magnetization variations
between region II and region III to their distinct Z4 topological
classifications.
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FIG. 5. (a) Sketch of a 3D TI with surface magnetization MA

normal to the side surfaces (purple arrows). With the application of
an electric field E, the surface Hall effect induces a circulating cur-
rent denoted as jH , consequently giving rise to a bulk magnetization
Mt ‖ E. (b) ME coefficient αzz as a function of MA with different side
length L. (c) Illustration of a Hall-bar device constructed using a 3D
TI, featuring metallic leads attached to the upper surface (highlighted
in blue). The upper surface displays the chiral edge channels, as
denoted by the orange curve. In this context, the magnetic field
along the z direction and the magnetization on the lateral surface
are represented by black and purple arrows, respectively. (d) Hall
conductance on the upper surface as the function of the side surface
magnetization MA with Fermi energy EF = 0.1.

V. TOPOLOGICAL ME EFFECT AND SIX-TERMINAL
HALL TRANSPORT

The discontinuous platform transition of the surface Chern
number Cz, driven by variations in surface magnetization MA,
can be experimentally detected by measuring the ME response
coefficient αzz [29,30]. It is worth noting that to detect the ME
effect, we apply outward-pointing magnetization MA on the
lateral surface of a 3D TI in the subsequent calculations, as
depicted in Fig. 5(a). Upon applying an electric field Ez in
the z direction, the lateral surface will trigger a Hall current
jH = σH Ez, where σH represents the surface Hall conduc-
tance [as shown in Fig. 5(a)]. According to Ampere’s law, the
magnetization along the z direction is defined as Mz = jH/c,
where c is the speed of light. As the ME response coefficient
satisfies the relation Mz = αzzEz, the ME coefficient and the
lateral surface Hall conductance differ by only a constant c
[10]. Consequently, we expect that with an increase in lateral
surface magnetization MA, the system’s ME response coef-
ficient will exhibit a transition from 1

2 to − 3
2 , and then to

− 1
2 , as shown by the red dashed line in Fig. 5(b). To evaluate

the ME effect, we employ linear response theory to compute
the orbital magnetization generated by a vertically applied
electric field Ez (see Appendix C). By constructing a square
in the xy plane with a side length of L sites while maintaining
translation symmetry along the z direction, we obtain the ME

response coefficient αzz via the Kubo formula [6,31]. The
numerical results for the αzz with different side length L are
illustrated in Fig. 5(b). As the αzz only converges when L
tends to infinity [22], increasing L progressively brings the
numerical αzz closer to theoretical values. Additionally, we
derive the ME response coefficient αzz at the thermodynamic
limit (L → ∞) through fitting (see Appendix C), and the
fitting results shows agreement with the theoretical outcomes
[see Fig. 5(b)].

As discussed in Sec. III [refer to Fig. 3(b)], we have ob-
served that for MA < 4, an increase in magnetization MA leads
to a redistribution of the local Chern markers across multiple
layers of the surface. However, since the overall surface Chern
number remains constant, this redistribution of local Chern
markers may not be detectable through conventional transport
experiments. However, we emphasize that the changes in the
distribution of local Chern markers can be experimentally
observed by measuring the ME response coefficient during
variations in the lateral surface magnetization [as shown in
Fig. 5(a)]. Specifically, in finite-size systems where MA < 4,
as the lateral surface magnetization increases, the ME re-
sponse coefficient gradually rises [see Fig. 5(b)]. This can be
attributed to the distinct cyclotron radii of the current in the
outermost and second-outermost layers. Consequently, this
leads to different weights in the contributions of the outermost
and second-outermost layers to the z-direction magnetization.
In experiments, this phenomenon can be observed by measur-
ing the change in magnetic flux along the z direction using a
superconducting quantum interference device (SQUID).

The variation of the surface Chern number Cz with the
surface magnetization MA can also be observed through dis-
tinctive Hall conductance plateau transitions in a six-terminal
system. Let us consider a 3D TI slab under open boundary
conditions with the sizes Lz = 15, Ly = 20, and Lx = 100
[Fig. 5(c)]. We assume a magnetic field applied along the z
direction, corresponding to a magnetic flux of φ = ±0.1 per
unit cell. The surface magnetization MA is applied to the lat-
eral surfaces (but we still use Cz to describe the surface Chern
number of the lateral surface). Employing a six-terminal Hall-
bar structure, as depicted in Fig. 5(c), we calculate the Hall
conductance using the Landauer-Büttiker formula [26,32–35]
(see Appendix D). Figure 5(d) illustrates how the upper sur-
face Hall conductance changes with varying lateral surface
magnetization MA for φ = ±0.1. When φ = 0.1, the mag-
netic field leads to Cφ = 1

2 on the upper surface [13]. As
MA increases, a transition of surface Chern numbers Cz oc-
curs on the lateral surface, transitioning from 1

2 to − 3
2 , and

finally to − 1
2 . The difference between Cφ and Cz results in a

domain wall between the lateral and upper surfaces, leading
to the chiral modes appearing at the boundary of the upper
surface, with the number of the chiral modes, n = Cz − Cφ .
The Hall conductance of the upper surface corresponds to the
number of chiral modes, i.e., σxy = n e2

h . Therefore, with the
increasing MA, the Hall conductance undergoes a transition
from 0 to −2 e2

h to − e2

h [see the purple line in Fig. 5(d)].
When φ = −0.1, the Chern number on the upper surface is
− 1

2 . Similarly, with the increasing magnetization, the Hall

conductance undergoes a transition from e2

h to − e2

h to 0, as
depicted by the purple line in Fig. 5(d).
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VI. DISCUSSION AND CONCLUSION

To investigate the possibility of realizing the topological
phase transition mentioned in the paper using existing
materials, calculations were performed based on the real
parameters of the material Bi2Se3 in Appendix E. However,
the results indicate that the surface magnetic gap required for
the phase transition is slightly larger than what can currently
be achieved experimentally. In order to experimentally
observe the surface phase transition of 3D TI, it is required to
minimize the material band width and maximize the Zeeman
splitting induced by the surface magnetization as much as
possible. Considering these requirements, 3D d-orbital TIs
are ideal candidates for realizing the aforementioned phase
transition. In such materials, the radial wave functions of
the d orbitals are predominantly distributed near the atomic
nucleus, leading to reduced overlap integrals and narrower
band widths. Additionally, the Zeeman splitting effect of
the d orbitals is relatively strong. A recent first-principles
calculation suggests that materials within the antifluorite
Cu2S family can achieve a d-orbital strong 3D TI phase [36].
Furthermore, Z2 strong TIs with flat band structures are also
an ideal choice for realizing such phase transitions due to
the small band width [37]. Meanwhile, quantum simulation
techniques have undergone significant advancements in recent
years, and many condensed matter systems have achieved
success through this approach [38–45]. Notably, Wilson lat-
tice Hamiltonians, identical in form to the model used in this
paper, have been realized in circuit systems [46]. Therefore,
quantum simulation methods also provide a powerful avenue
for investigating such surface phase transitions.

In summary, our study unveils a surface phase transition
with broken bulk-boundary correspondence in 3D TIs induced
by surface magnetization. Employing both a realistic lattice
model and a three-layer effective model, we calculate the
surface Chern number. Remarkably, as surface magnetization
increases, the surface Chern number exhibits the transition
from 1

2 to − 3
2 , and finally to − 1

2 , which cannot be explained
by low-energy theories. We attribute these transitions to the
evolution of the first-layer massive Dirac fermions into
quantum QAH and FMI phases, and the reemergence of a
second-layer massive Dirac fermion with opposite mass sign.
These topological transitions also lead to the sudden jumps in
the ME coefficient and the Hall conductance, which can ex-
perimentally be observed. Our investigation reveals a different
phase with broken bulk-boundary correspondence, enriching
the understanding of the properties of TIs.
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APPENDIX A: EVOLUTION OF BAND STRUCTURE
WITH SURFACE MAGNETIZATION VARIATION

In this Appendix, we will present a more detailed variation
of the system’s band structure with increasing surface mag-
netization MA. The model and computational methods used
are consistent with those in the main text. When the sur-
face magnetization MA = 0, bulk-boundary correspondence
ensures the existence of gapless Dirac cones on the surface of
the 3D TI (see Fig. 6 with MA = 0). Upon introducing a small
MA, the breaking of TRS on the surface leads to the gapped
Dirac cone (Fig. 6 with MA = 0.5) and the surface Chern
number Cz of 1/2 [Fig. 1(b)]. Alongside the band closing
and reopening at the XY points (Fig. 6 with MA = 3.8), the
first layer undergoes a topological phase transition, resulting
in a jump of Cz from 1/2 to −3/2. With further increase
in magnetization MA, the band at the M point experiences
a similar closing and reopening (see Fig. 6 with MA = 7.9),
causing Cz to sharply shift from −3/2 to −1/2. From the
projection of wave functions, we can observe that the −1/2
surface Chern number Cz is contributed by the massive Dirac
fermion in the second layer (see Fig. 6 with MA = 10).

APPENDIX B: EFFECTIVE MAGNETIZATION
ON SECOND LAYER

In our model, the magnetization MA is added on the first
layer (the outermost layer), and the magnetization term is
represented as MAσ0sz. However, an effective magnetization
in the second layer can be induced by the magnetization MA

in the first layer. The induced effective magnetization in the
second layer can be obtained by calculating the self-energy
correction 	mag(ε) of the first layer’s magnetization with re-
spect to the second layer [26],

	mag(ε) = D† 1

ε − MAsz + iη
D,

where η is an infinitesimally small quantity approaching 0 and
D = A

2i σxsz + Bσzs0 is the interlayer hopping with A = 1 and
B = 1. The symbol ε represents energy. Similar to the main
text, here we adopt the approximation ε = 0; then the self-
energy correction reduces to

	mag(0) = − 5

4MA
σ0sz + 1

MA
σys0.

The first term corresponds to the effective magnetization of
the second layer, with its sign opposite to that of the first layer.

APPENDIX C: CALCULATION AND FITTING OF
MAGNETO-ELECTRIC COUPLING COEFFICIENT

ME response of a bounded sample can be derived by linear
response theory [6],

αzz =
∑

kz
i∈ occ.

j∈ unocc.

h Im[〈kz, i|M̂z|kz, j〉〈kz, j|Ĵz|kz, i〉]
aNkzA

(
εi,kz − ε j,kz

)2 . (C1)

The orbital magnetic moment, denoted as M, is given by
M̂ = −(e/2c )̂r × v̂ [47]. Here, r̂ and v̂ represent the position
and velocity operators, and the current density J is expressed
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FIG. 6. Band structure of systems under different surface magnetizations MA [corresponding to the red points in Fig. 1(b)]. Upper part:
Band structure calculations for a 20-layer slab model. Lower part: Band structure calculations for a three-layer effective model, where colors
denote the state’s corresponding layer. The first, second, and third layers are, respectively, denoted by yellow, green, and purple.

as J = êv. A represents the cross-sectional area in the xy
direction of the system, while a stands for the lattice constant
in the z direction. Here, |kz, i〉 denotes the ith eigenstate with
momentum kz and corresponding eigenvalue εi,kz . In the sum-
mation, i and j are limited to occupied and unoccupied bands,
respectively.

Magnetization on the lateral surface leads to a redistribu-
tion of the local Chern markers between the outermost and
second-outermost layers, causing z-directional electric fields
to induce Hall currents in both layers simultaneously. Due
to the diverse angular momentum of Hall ring currents in
different layers, variations occur in the electrically induced
magnetic moment M, subsequently causing changes in the αzz.
The coefficients αout/in

zz are defined as the ME coupling coeffi-
cients of the system considering only the magnetic moments
generated by the Hall currents in the outermost (second-
outermost) layer. Since the overall magnetic moment of the
system results from the contributions of both the outermost
and second-outermost layer currents, there exists a correlation
between αzz and αout

zz , αin
zz :

L2αzz = L2αout
zz + (L − 1)2αin

zz . (C2)

αzz converges in the thermodynamic limit (L → ∞) [22],

αzz = lim
L→∞

[
αout

zz +
(

L − 1

L

)2

αin
zz

]
= αout

zz + αin
zz .

To obtain αzz in the thermodynamic limit, we calculate αzz

for different side lengths L, and take αout
zz + αin

zz as the fitting
outcome for αzz (see Fig. 7).

APPENDIX D: LANDAUER-BÜTTIKER FORMULA

In a Hall-bar configuration like that shown in Fig. 5(c),
we can employ the Landauer-Büttiker formula to compute
the Hall conductance on the system’s surface. The Landauer-

Büttiker formula is expressed as [48,49]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 T12 T13 T14 T15 T16

T21 T2 T23 T24 T25 T26

T31 T32 T3 T34 T35 T36

T41 T42 T43 T4 T45 T46

T51 T52 T53 T54 T5 T56

T61 T62 T63 T64 T65 T6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2

I3

I4

I5

I6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(D1)

where Tp = −∑
q(q 
=p) Tpq. Vp and Ip represent the voltage

and current at lead p, respectively. The transmission co-
efficient from lead q to lead p, denoted as Tpq, can be
obtained using the formula Tpq = Tr(�pGR�qGA), where
GR/A = (εF − HD − ∑6

p=1 	R/A
p )−1 are the retarded and ad-

vance Green’s functions [48,49]. �p = i(	R
p − 	A

p ) is the line
width function, with 	R/A

p being the self-energy of lead p

[48,49]. Given the current vector as �I= [I, 0, 0,−I, 0, 0], the

FIG. 7. A representative diagram illustrates the ME coupling
coefficient αzz for systems with different side lengths L. The ME
coefficient in the thermodynamic limit (L → ∞) is marked by the
red data point on the graph. The surface magnetization MA = 10.5.
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voltage at each port can be determined by solving Eq. (D1).
The longitudinal resistivity ρxx = (V2 − V3)/I and Hall resis-
tivity ρxy = (V2 − V6)/I . Furthermore, the Hall conductance
can be computed using σxy = ρxy/(ρ2

xx + ρ2
xy). In the calcula-

tions, we set the central region’s thickness as Lz = 15, width
as Ly = 20, and length as Lx = 100. The height and width of
the leads are set as 3 and 10, respectively.

APPENDIX E: PHASE TRANSITION POINTS UNDER
REAL MATERIAL PARAMETERS

In the paper, we utilize dimensionless parameters to en-
hance the clarity of the physical picture. To underscore
practical relevance, this Appendix focuses on utilizing param-
eters specific to realistic materials.

We compare our approach with the low-energy model of
Bi2Se3 [50], where the Hamiltonian near the Gamma point is
given by

H3D = ε0(k)s0σ0 + M(k)s0σz + A1kzszσx + A2(kxsx + kysy)σx.

Here, k⊥ = k2
x + k2

y , ε0(k) = C + D1k2
z + D2k2

⊥, and
M(k) = M0 − B1k2

z − B2k2
⊥. In this study, we simplify

by setting ε0(k) = 0, M0 = 0.28 eV, B1 = B2 = 0.1
eV nm2, and A1 = A2 = 0.1 eV nm. The parameters
M0 and B1 here are consistent with the real material
Bi2Se3 [50].

This low-energy model, within a cubic lattice with a lattice
constant of a = 1 nm, allows us to establish the relation be-
tween the parameters of real materials and those in Eq. (1).
For a realistic parameter of Bi2Se3: B1/a2 = 0.1 eV, it cor-
responds to the dimensionless parameter B = 1 in Eq. (1).
Similarly, the topological mass M0 = 0.28 eV corresponds
to m = 2.8, and A1/a = 0.1 eV corresponds to A = 1. Un-
der this parameter mapping, the phase transition induced by
the surface magnetization of Bi2Se3 can be observed in the
phase diagram given in Fig. 4(a), where the unit 1 corre-
sponds to 0.1 eV for Bi2Se3. With the increase of surface
magnetization, the surface magnetic gaps corresponding to
two phase transitions are approximately MA1 ≈ 0.32 eV and
MA2 ≈ 0.72 eV, respectively. However, the intrinsic magnetic
topological insulator MnBi2Te4 currently exhibits the largest
observed surface magnetic gap, measuring more than 60 meV
[51,52]. Therefore, achieving the phase transition discussed
in this paper still presents some challenges with the existing
materials.
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