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We present a microscopic many-body theory of the recently measured two-dimensional coherent spectroscopy
(2DCS) of excitons and trions in monolayer MoSe2 materials [K. Hao et al., Nano Lett. 16, 5109 (2016)],
where excitons and trions can be well interpreted as repulsive and attractive polarons, respectively, in the dilute
limit of exciton density. We derive a simple relation for the 2DCS spectrum in terms of a modified, mixing
time-dependent polaron Green function, which is valid in the single-exciton limit. Our simulated spectra are in
excellent qualitative agreement with experiments without introducing any phenomenological parameters such as
decoherence rates. In particular, quantum beats between the off-diagonal cross peaks in the experimental 2DCS
spectra are well reproduced. Our work, therefore, clarifies the microscopic principle that underlies the observed
optical signals of exciton-trion coherence. We find that there are two quantitative discrepancies between theory
and experiment: the smaller than expected cross-peak strength and the slightly unsynchronized quantum beats at
different cross peaks. Tentatively, we attribute these residual discrepancies to the finite exciton density and the
resultant polaron-polaron interaction, which is not taken into account in our theory.
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I. INTRODUCTION

Over the last decade, atomically thin transition metal
dichalcogenides (TMD) have received increasing attention
[1–3] due to their unique physical properties arising from
extreme low-dimensional constraints. These two-dimensional
(2D) materials are expected to be promising candidates for a
wide range of applications in ultrathin low-power electronics,
optoelectronics, and spintronics. For this perspective, different
types of experimental spectroscopy techniques have been used
to characterize optical properties of monolayer TMD materi-
als [2,3], including the reflection or absorption spectra [4,5],
photoluminescence [6], spatial self-phase modulation [7–9],
nonlinear two-pulse pump-probe measurement [10,11], and
nonlinear four-wave mixing [12].

Here, we are specifically interested in the nonlinear
two-dimensional coherent spectroscopy (2DCS) based on
the four-wave mixing [13–15], which enables the study of
excited-state dynamics on femtosecond (fs) timescales and
maps out the full third-order nonlinear optical susceptibility of
2D materials by correlating excitation and emission energies
[15]. 2DCS has been applied to probe the formation and dy-
namics of excitons and higher-order excitonic complexes such
as trions and biexcitons in both molybdenum-based (MoX2)
and tungsten-based (WX2) TMD materials [12,16–18]. A
remarkable recent experimental discovery is the quantum co-
herence between trions and excitons in monolayer MoSe2,
as revealed by quantum beats between the two off-diagonal
cross peaks at the timescale of 100 fs [16]. However, due
to the lack of theoretical interpretation of 2DCS spectrum
at the microscopic level [14], it remains a challenge to clar-
ify the microscopic mechanisms underlying such quantum
beats.

In this respect, two pioneering theoretical analyses are
worth mentioning [19,20]. One is the combined use of the
perturbative Fermi golden rule and the few-body solution for
excitons and trions by Tempelaar and Berkelbach [19]. As in
the experiment, the electron density could be nonzero, a trion
is now commonly viewed as an attractive polaron [21,22], i.e.,
a quasiparticle formed by dressing an exciton with particle-
hole excitations of the electron Fermi sea [23–30]. Therefore,
in the numerical calculations for three-body trions [19], the
Brillouin zone sampling resolution has been varied as a way
to effectively tune the electron density and to provide an
approximate polaron description for excitons and trions. In
another theoretical analysis by Lindoy, Chang, and Reichman
[20], which was posted most recently, the unrealistic limit
of an infinitely heavy hole has been taken in order to uti-
lize the exact solution of the well-known Mahan-Nozières-De
Dominicis (MND) model [31–33]. However, in the immobile
heavy-hole limit, polaron quasiparticle resonance turns into
a power-law singularity due to the famous Anderson orthogo-
nality catastrophe [34,35]. Although the MND model provides
useful insight into quantum beats, it is desirable to consider
mobile holes and excitons with finite mass.

In this work, we would like to remove the downsides of
these two theoretical analyses by taking an exact polaron
model for mobile excitons and trions, with a realistic exciton
mass. We present a full microscopic many-body calculation
of the 2DCS spectrum of excitons and trions. Intriguingly,
as photons in four-wave-mixing pulses have negligible mo-
mentum [33], any intermediate nonexciton states that involve
particle-hole excitations of the Fermi sea will not make con-
tributions to the 2DCS signal due to their different linear
momentum from the initial configuration of the electron Fermi
sea. This is true if we always restrict the maximum number of
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excitons during excitations to one in the low-exciton density
limit. The absence of particle-hole excitations allows us to
derive a simple expression for the 2DCS spectrum, which pro-
vides a microscopic understanding of the perturbative Fermi
golden rule adopted by Tempelaar and Berkelbach [19]. The
latter was adopted without explanation.

We perform a numerical simulation of the 2DCS spectrum
under the experimental conditions without introducing any
phenomenological parameters. There are excellent qualitative
agreements between our theory and the recent experiment by
Hao et al. [16], indicating that the microscopic mechanism of
quantum beats is indeed captured by the exciton-trion-polaron
model [21,22]. We also find some residual discrepancies,
such as the smaller than expected cross-peak strength and the
slightly unsynchronized oscillations at different cross peaks.
These discrepancies could be due to the polaron-polaron in-
teraction at finite exciton density, which is not considered in
our calculations but is worth exploring in future works.

It is interesting to note that a cold-atom analog of the
2DCS spectroscopy was recently proposed by us (i.e., the
2D Ramsey spectroscopy) [36–38], in which the role of an
exciton is played by a spin- 1

2 impurity atom, and the four-
wave mixing is implemented by using a sequence of Ramsey
π/2 radio-frequency (rf) pulses to flip the pseudospin of the
impurity [35]. In this work, we will also briefly compare these
two different two-dimensional spectroscopies.

The rest of the paper is organized as follows. In the fol-
lowing section (Sec. II), we outline the model Hamiltonian
for the exciton-trion-polaron in 2D materials. In Sec. III, we
present the many-body theory of the 2DCS spectroscopy and
make a brief comparison to the 2D Ramsey spectroscopy with
cold atoms [38]. In Sec. IV, we first discuss the details of our
numerical calculations and then show the theoretical results in
comparison with the experimental data [16]. Finally, Sec. V is
devoted to conclusions and outlooks.

II. MODEL HAMILTONIAN

In monolayer MoSe2, spin-up (spin-down) electrons and
holes near the K (K ′) valley can form tightly bound excitons,
with binding energy about several hundred meV [2,16]. These
excitons can also attract extra spin-opposite electrons (to be
described by the creation and annihilation field operators c†

k
and ck) in other valleys to form singlet trions, with a trion
binding energy ET ∼ 30 meV [19]. In general, the density of
extra electrons in other valleys is finite, as characterized by an
electron Fermi energy about several tens meV, εF ∼ 10 meV.
As the exciton binding energy is significantly larger than other
energy scales in the system, the internal structure of excitons
is frozen and we can describe them by using the creation and
annihilation field operators X †

k and Xk. In the dilute limit of
exciton density, the system under consideration therefore can
be well described by a polaron model Hamiltonian (h̄ = 1)
[21,22],

H =
∑

k

[
εkc†

kck + εX
k X †

k Xk
] + U

∑
qkp

X †
k c†

q−kcq−pXp, (1)

where the maximum number of excitons is restricted to 1,
i.e.,

∑
k X †

k Xk � 1, and the density of the electrons (n =∑
k c†

kck) can be tuned by the Fermi energy εF through gate

FIG. 1. (a) Time ordering of excitation pulses for standard
rephasing 2D coherent spectra. The evolution, mixing, and emission
time delays are labeled as t1, t2, and t3, respectively. (b), (c) The two
double-sided Feynman diagrams representing the two contributions
to the phase-match directions ks = −k1 + k2 + k3. (b) Describes the
process of excited-state emission (ESE), R2(t1, t2, t3), while (c) is
referred to as ground-state bleaching (GSB), R3(t1, t2, t3). Here, we
use |g〉 and |e〉 to denote the many-body states without and with exci-
tons, respectively. There could be infinitely many excited many-body
(polaron) states |e〉, as indicated by different colors. In contrast, the
many-body state of the electron gas |g〉 (describing the Fermi sea)
does not change, due to the negligible momentum of photons in the
excitation pulses, as discussed in the text.

voltage. εk = k2/(2me) and εX
k = k2/(2mX ) are the single-

particle energy dispersion relations of electrons and excitons,
respectively, with electron mass me and exciton mass mX �
2me in 2D TMD materials [2].

In the dilute limit of electron density (n → 0), the forma-
tion of a trion is driven by the interaction Hamiltonian (i.e., the
U term). Hence, the interaction strength U can be determined
by reproducing the trion binding energy ET [21,22]. In the
general case of a finite electron density, it is now understood
that trions and excitons could be well interpreted as the at-
tractive polarons and repulsive polarons, the two types of
quasiparticles that have been systematically studied over the
past 15 years in ultracold-atomic physics [23–30]. In this con-
text, we may understand the trion in the zero-electron density
limit as the molecule phase and the trion at finite-electron
density as the polaron phase. These two phases are separated
by a quantum phase transition, i.e., the polaron-molecule tran-
sition, which is observable by decreasing the electron density
[23].

III. MANY-BODY THEORY OF TWO-DIMENSIONAL
COHERENT SPECTROSCOPY

In the 2DCS spectroscopy [13,14], three pulses are applied
to the sample at times τ1, τ2, and τ3, respectively, separated
by an evolution time delay t1 = τ 2 − τ1 and a mixing time
delay t2 = τ3 − τ2, as illustrated in Fig. 1(a). The nonlinear
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third-order four-wave-mixing signal (i.e., the red wave packet
in the figure), as a result of the three pulses, is measured
with frequency-domain heterodyne detection at a later time
τs, separated from the third pulse by an emission time delay
t3 = τs − τ3. In the 2DCS experiment for excitons and trions
in MoSe2 [16], the three excitation pulses and detected signal
are all cocircularly polarized (i.e., σ+ polarization). As a con-
sequence, only K-valley excitons are created or annihilated
by each excitation pulse, as described by the light-matter
interaction operator V̂ ,∑

k

(φkekh−k + φ∗
kh†

−ke†
k ) ∝ X0 + X †

0 ≡ V̂ , (2)

where φk is the dipole matrix element. As we mentioned
earlier, the proportionality in the above equation (i.e., the
introduction of the exciton field operator) is reasonable in the
limit of extremely large exciton binding energy. We note that
only the zero-momentum exciton field operators appear in the
interaction operator V̂ , due to the negligible photon momen-
tum in the excitation pulses (i.e., ki ∼ ks ∼ 0). After some
of the three pulses, different many-body polaron states |e〉
with a single exciton are created. These include the intervalley
trion or attractive polaron, consisting of a K-valley exciton
and a K ′-valley electron, dressed by the multiple-particle-hole
excitations of the electron Fermi sea in the K ′ valley [16,19].

According to the standard nonlinear response theory
[15,39,40], the four-wave-mixing signal is given by the third-
order nonlinear response function

R(3) ∝ 〈[[[V̂ (t1 + t2 + t3), V̂ (t1 + t2)], V̂ (t1)], V̂ ]〉, (3)

where the time-dependent interaction operator V̂ (t ) ≡
eiHtV̂ e−iHt , and 〈. . . 〉 stands for the quantum average over
the initial many-body configuration of the system without
excitation pulses, which can be either the ground state at
zero temperature or a thermal state at nonzero temperature.
By expanding the three bosonic commutators, there are a
total of four distinct correlation functions and their com-
plex conjugates [15]. For the rephasing scheme (i.e., t1 >

0) with the phase-match directions ks = −k1 + k2 + k3, as
adopted in the experiment [16], we can consider two signifi-
cant contributions within the rotating-wave approximation in
the low-exciton density limit, i.e., the process of so-called
excited-state emission (ESE) [17,40],

R2 = 〈V̂ V̂ (t1 + t2)V̂ (t1 + t2 + t3)V̂ (t1)〉, (4)

and the process of ground-state bleaching (GSB) [17,40],

R3 = 〈V̂ V̂ (t1)V̂ (t1 + t2 + t3)V̂ (t1 + t2)〉. (5)

These two processes can be understood by using double-sided
Feynman diagrams, as shown in Figs. 1(b) and 1(c), respec-
tively. Note that at a small exciton density we only include
the excitations involving a single exciton and therefore neglect
the third rephasing process of excited-state absorption (ESA)
[17,40], R∗

1(t1, t2, t3).
The total rephasing 2DCS spectrum can then be obtained

by evaluating the two correlation functions after a double
Fourier transformation [14,40],

S (ω1, t2, ω3) = S2(ω1, t2, ω3) + S3(ω1, t2, ω3), (6)

where, for i = 2, 3,

Si =
∫ ∞

0

∫ ∞

0
dt1dt3eiω+

1 t1 eiω+
3 t3 Ri(t1, t2, t3). (7)

Here, ω1 is the excitation (or absorption) energy and ω3 is
the emission energy. As a response function, we have defined
ω+

1 = ω1 + i0+ and ω+
3 = ω3 + i0+, where the infinitesimal

0+ is introduced to regularize the Fourier transformation at
t1 → ∞ and t3 → ∞.

A. A simple expression of the 2DCS spectrum

Let us first focus on the ESE process R2(t1, t2, t3), as de-
scribed by Fig. 1(b). By inserting the expression of V̂0 and
explicitly listing the time dependence of the operators, we find
that

R2(t1, t2, t3) = 〈FS|X0eiHX (t1+t2 )X †
0 eiH0t3 X0e−iHX (t2+t3 )

× X †
0 |FS〉e−iEFSt1 , (8)

where H0 and HX denote the model Hamiltonian H in the
cases of no exciton and of a single exciton, respectively. We
also denote the initial configuration of the system (without any
excitons and with a background energy EFS of the electron
Fermi sea) as |FS〉, so we can evaluate

e−iHt1 |FS〉 = e−iH0t1 |FS〉 = e−iEFSt1 |FS〉. (9)

The configuration |FS〉 could be a thermal mixed state at
nonzero temperature.

In the above expression of R2(t1, t2, t3), we may insert a
complete set of many-body states of the electron Fermi sea,
just before or just after eiH0t3 . These many-body states can
formally be constructed by creating multiple-particle-hole ex-
citations out of the Fermi sea, in the form

|�κν〉 =
[

ν∏
i=1

c†
k(i)

p

ν∏
i=1

ck(i)
h

]
|FS〉, (10)

where ν is the number of particle-hole pairs, �κν ≡
{k(1)

p , k(2)
p , . . . , k(ν)

p ; k(1)
h , k(2)

h , . . . , k(ν)
h } collectively indexes

the ν particle momenta (k(i)
p > kF ) and hole momenta (k(i)

h <

kF ), where kF is the Fermi wave vector. The corresponding
momentum and energy of the many-body state can be denoted
as ε�κν

and k�κν
, respectively. In the absence of any particle-hole

excitations, we simply have |�κν=0〉 = |FS〉 and ε�κν
= EFS.

By inserting the identity
∑

�κν
|�κν〉〈�κν | = 1 into Eq. (8), we

find that

R2 =
∑
�κν

F ∗
�κν

(t1 + t2)F�κν
(t2 + t3)eiε�κν t3 e−iEFSt1 , (11)

where we have defined the correlation function

F�κν
(t ) ≡ 〈�κν |X0e−iHX t X †

0 |FS〉. (12)

An immediate observation is that, as a result of the momen-
tum conservation, the many-body states |�κν〉 must have zero
momentum. Thus, no particle-hole excitations are allowed in
|�κν〉 and the only contribution to F�κν

(t ) is provided by the
unperturbed Fermi sea |�κν=0〉 = |FS〉.

We now see that the correlation function F�κν
(t ) can be

directly expressed in terms of the retarded polaron Green

045417-3



HUI HU, JIA WANG, AND XIA-JI LIU PHYSICAL REVIEW B 109, 045417 (2024)

function at zero momentum Gk=0(t ) = G(t ), i.e.,

F (t ) = iG(t )e−iEFSt , (13)

where [28,33]

Gk(t − t ′) ≡ −iθ (t − t ′)〈FS|[Xk(t ), X †
k (t ′)]|FS〉. (14)

Therefore, we obtain a remarkably simple expression for the
ESE contribution R2:

R2(t1, t2, t3) = G∗(t1 + t2)G(t2 + t3). (15)

It would be useful to write a formal expression for the
retarded polaron Green function at zero momentum. For this
purpose, we recall that different zero-momentum polaron
states (i.e., the nth state with polaron energy E (n)) can be
written as [38,41]

|n〉 = φ
(n)
0 X †

0 |FS〉 +
∑
�κν�1

φ
(n)
�κν

X †
−k�κν

|�κν〉, (16)

where the second term describes the dressing of multi-
particle-hole excitations and the first term describes the ability
of free propagation of the exciton, as measured by the polaron
residue Z (n) ≡ φ

(n)∗
0 φ

(n)
0 . By inserting the identity

e−iHX t =
∑

n

|n〉e−iE (n)t 〈n| (17)

into the expression of the polaron Green function, we find that

G(t ) = −i
∑

n

Z (n)e−iE (n)t , (18)

where E (n) = E (n) − EFS is the polaron energy measured with
respect to the Fermi sea energy. Therefore, the ESE contribu-
tion R2 takes the form

R2 =
∑
nm

Z (n)Z (m)eiE (n)t1 ei[E (n)−E (m)]t2 e−iE (m)t3 . (19)

The physics behind this expression may easily be understood
from the ESE process illustrated in Fig. 1(b). The factor
Z (n)Z (m) or φ

(n)
0 φ

(m)∗
0 φ

(m)
0 φ

(n)∗
0 measures the transfer rates be-

tween many-body states induced by the three excitation pulses
and the four-wave-mixing signal, while the three dynamical
(time-evolution) phase factors simply show the phases accu-
mulated during the time delays t1, t2, and t3, respectively.

After the double Fourier transformation, we obtain

S2 =
∑
nm

−Z (n)

ω+
1 + E (n)

ei[E (n)−E (m)]t2
Z (m)

ω+
3 − E (m)

. (20)

It is convenient to introduce a modified, t2-dependent polaron
Green function in the frequency domain [33]

GR(ω, t2) ≡
∑

n

Z (n)

ω + i0+ − E (n)
e−iE (n)t2 , (21)

which reduces to the conventional retarded polaron Green
function GR(ω) at zero mixing time delay t2 = 0. Then, the
ESE third-order response function S2 can be written as

S2(ω1, t2, ω3) = G∗
R(−ω1, t2)GR(ω3, t2). (22)

The GSB process R3 can be analyzed in the exactly same
way. We find the expressions R3(t1, t2, t3) = G∗(t1)G(t3) and

S3(ω1, t2, ω3) = G∗
R(−ω1)GR(ω3). (23)

The absence of the mixing time (t2) dependence in the expres-
sions is easy to understand from Fig. 1(c): the system returns
to the initial configuration between the second and third pulses
and therefore does not evolve during the mixing time delay.

By adding the two contributions S2 and S3, S = S2 + S3,
we arrive at one of the key results of our work,

S (ω1, t2, ω3) =
∑
nm

Z (n)Z (m)

(−ω1)− − E (n)

1 + ei[E (n)−E (m)]t2

ω+
3 − E (m)

, (24)

where (−ω1)− ≡ −ω1 − i0+. It is readily seen that the 2DCS
spectrum satisfies the relation

S (ω1, t2, ω3) = S∗(−ω3, t2,−ω1). (25)

Therefore, the amplitude and the real part of the 2DCS spec-
trum are both symmetric, upon the replacements −ω1 → ω3

and −ω3 → ω1.
We would like to emphasize that the symmetric 2DCS

spectrum is rooted in two facts. First, the excitation pulse
creates or annihilates electron-hole pairs at essentially zero
momentum [33]. The electron-hole pairs can be either tightly
bound (i.e., excitons considered in this work) or loosely
bound. On the other hand, we must only take into account
one electron-hole pair in the intermediate excited states. The
existence of the pair-pair correlation, for example, the exciton-
exciton scattering will redistribute the exciton momentum and
then lead to the contributions from the excited Fermi sea |�κν〉.
In this case, we can no longer write the response function R2

and R3 into a product of two polaron Green functions, i.e., as
given in Eq. (15).

B. Connection to the Fermi golden rule

At this point, it is useful to contrast our simple expression
of the 2DCS spectrum, Eq. (24), with the many-body formal-
ism used by Tempelaar and Berkelbach (TB) [19]:

STB(ω1, t2, ω3) = −(2π )2
∑
αβ

|〈� i|V̂ |�α〉|2|〈� i|V̂ |�β〉|2

× e−(iωαβ+γαβ )t2�∗(Eα − Ei + ω1)

× �(Eβ − Ei − ω3), (26)

where � i is the initial state, �α (�β) are the excited states
with energies Eα (Eβ), ωαβ ≡ Eα − Eβ are the energy differ-
ences, and γαβ are the associated decoherence rates. �(ω) =
1/(iω − σ ) is the complex line-shape function with σ as the
line-broadening parameter.

It is readily seen that the t2-independent term (i.e., the R3

contribution) in our Eq. (24) is absent in the TB formalism.
This is simply because Tempelaar and Berkelbach focused
on the simulated emission signal [19], which is precisely our
ESE contribution S2. We can clearly see that, if we neglect the
phenomenological decoherence rates γαβ and line-broadening
parameter σ , the TB formalism (26) is essentially identical
to our Eq. (20), owing to the correspondences in the indices
α ↔ n and β ↔ m, in the overlaps Z (n) ↔ |〈� i|V̂ |�α〉|2
and Z (m) ↔ |〈� i|V̂ |�β〉|2, and finally in the energies E (n) ↔
Eα − Ei and E (m) ↔ Eβ − Ei. Thus, our derivation of the
2DCS spectrum (24) provides a useful microscopic explana-
tion to the TB formalism (26).
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C. 2DCS versus 2D Ramsey spectroscopy

Let us now briefly compare 2DCS with another type of
2D spectroscopy with ultracold atoms, the so-called 2D Ram-
sey spectroscopy [36–38], in which the exciton in 2DCS is
replaced by a spin- 1

2 impurity atom. The spin state of the
impurity can be controlled by a rf pulse with a specific phase
[35] and only the spin-up impurity experiences an interaction
potential with the background Fermi sea. As a result, the
two spin-flip operations, given by the Pauli matrices ŝ+ =
(σx + iσy)/2 and ŝ− = (σx − iσy)/2, roughly correspond to
the exciton creation operator X † and annihilation operator X .
A notable difference is that the excitation rf pulse does not
change the external spatial status of the impurity atom, so it
might be understood as an effective light-matter interaction
operator V̂eff ∼ ∑

k(Xk + X †
−k ). Therefore, as the momentum

of the impurity atom (i.e., an effective exciton) is not re-
stricted to zero, for the intermediate many-body dynamics
the excited Fermi sea with multiple-particle-hole excitations
(as described by |�κν〉 with ν � 1) do make contributions to
the third-order response function R(3). The simple expression
found for the 2DCS spectrum, Eq. (24), does not hold in
the 2D Ramsey spectroscopy. Additional terms that make
the spectroscopy asymmetric (with respect to exchange the
excitation and emission energies) will appear [38].

Apart from this difference, there are amazing similari-
ties between the 2DCS and the 2D Ramsey spectroscopy,
although in the latter [36–38] we have used different nota-
tions such as (τ, T, t) for various time delays and (ωτ , ωt ) as
the excitation and emission energies. In both spectroscopies,
phase-cycling techniques can be implemented to select the
desired pathways. In the rephasing mode, the ESE term
R2(t1, t2, t3) in the 2DCS is exactly given by the pathway
I∗
1 (τ, T, t ) in the 2D Ramsey spectroscopy [38] and the GSB

term R3(t1, t2, t3) corresponds to the pathway I∗
2 (τ, T, t ) [38].

Finally, the third-order response function S (ω1, t2, ω3) in the
2DCS precisely corresponds to the symmetric 2D Ramsey
response A∗

s (−ωτ , T, ωt ) [38].

IV. RESULTS AND DISCUSSIONS

A. Computation details

To demonstrate the usefulness of the simple expres-
sion (24), we perform numerical simulations for monolayer
MoSe2, with the effective polaron model Hamiltonian in
Eq. (1). To reduce the numerical workload, we load the sys-
tem, which consists of N electrons and a single exciton, onto a
two-dimensional square lattice with L × L sites. The electron
density is then given by n = N/(La)2, where a is the lattice
spacing and will be set to be unity (a = 1) unless specified
otherwise. We assume the electrons and the exciton move on
the lattice with hopping strength tc and td , respectively. Their
single-particle energy dispersion relations are

εk = −2tc[cos(kx ) + cos(ky)] � −4tc + k2
x + k2

y

2me
, (27)

εI
k = −2td [cos(kx ) + cos(ky)] � −4td + k2

x + k2
y

2mX
, (28)

where me ≡ 1/(2tca2) and mX ≡ 1/(2td a2) in the dilute limit
(n → 0) that of interest. We note that the momentum k on the

lattice takes the values

(kx, ky) =
(

2πnx

L
,

2πny

L

)
, (29)

with the integers nx, ny = −L/2 + 1, · · · − 1, 0, 1, . . . L/2.
We solve the polaron model at zero temperature by ap-

plying the polaron ansatz (16) truncated to one-particle-hole
excitations [41]. This is the so-called Chevy ansatz [41],
which is known to yield a quantitatively accurate prediction
for the attractive polaron energy in the strongly interacting
unitary limit [23]. In other words, we consider a Hilbert space
constructed by the two kinds of basis states (at zero polaron
momentum)

|i〉 = X †
0 |FS〉, (30)

| j〉 = X †
−kp+kh

c†
kp

ckh |FS〉. (31)

Here, the Fermi sea at zero temperature |FS〉 is obtained by
filling the single-particle energy level εk with N electrons
from the bottom of the energy band (i.e., −4tc), up to the en-
ergy EF . The hole momentum kh and the particle momentum
kp must satisfy the constraints εkp � EF and εkh < EF , respec-
tively. The Fermi energy measured from the band bottom is
then

εF = EF + 4tc � 4πntc = 4πN

L2
tc. (32)

It is readily seen the dimension of the Hilbert space is D =
1 + N (L2 − N ). Under the basis states, the polaron Hamilto-
nian then is casted into a D × D matrix, with the following
matrix elements:

〈FS|X0HX †
0 |FS〉 = EFS − 4td + nU, (33)

〈FS|X0HX †
−kp+kh

c†
kp

ckh |FS〉 = U/L2, (34)

and

〈FS|c†
k′

h
ck′

p
X−k′

p+k′
h
HX †

−kp+kh
c†

kp
ckh |FS〉

= [
EFS + nU + εkp − εkh + ε

(I )
−kp+kh

]
δkpk′

p
δkhk′

h

+ U

L2
(δkhk′

h
− δkpk′

p
). (35)

We diagonalize the matrix to obtain the eigenvalues E (n)

and eigenstates, from which we extract the polaron energies
E (n) = E (n) − (EFS − 4td ) and the residues Z (n) ≡ φ

(n)∗
0 φ

(n)
0 .

Here, due to the use of a square lattice, we also need to
subtract the lowest energy of exciton (i.e., −4td ) in calculating
the polaron energies.

Let us now fix the parameters tc, td , and U in the polaron
model Hamiltonian, according to the recent experimental
data on monolayer MoSe2 [16]. The electron mass and hole
mass in MoSe2 are very similar, i.e., me = mh � 0.6m0 where
m0 is the free-electron mass [2]. Therefore, the mass of
the exciton should be two times larger, indicating td = tc/2.
The hopping parameter tc might be estimated by the rela-
tion tc = h̄2/(2mea2), where the lattice spacing of monolayer
MoSe2 a ∼ 3.2 Å [19]. We find then (tc)expt ∼ 620 meV,
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FIG. 2. The simulated polaron spectral function at the electron
Fermi energy εF = 9.3 meV, revealing the existence of attractive
polaron (trion) and repulsive polaron (exciton). The two dashed lines
indicate the two peak positions for trions (1632 meV) and excitons
(1663 meV) shown in the experimental photoluminescence spectrum
of monolayer MoSe2 taken at 20 K [16].

where the subscript “expt” stands for the experiment. How-
ever, we can not directly use this value, considering the small
electron density n ∼ 1012 cm−2 in the experiment [16], which
leads to (na2)expt = N/L2 ∼ 10−3. Our numerical simulations
have to be restricted to relatively small lattice size, i.e., L =
18 ∼ N , which has a density (na2)sim ∼ 0.06, where the sub-
script “sim” means numerical simulation. Despite the vastly
different electron density, the low-energy results would be the
same, as long as the 2D Fermi energy

εF = h̄2

2me
(4πn) = 4πna2tc (36)

is kept to the same value. In other words, na2tc should be
invariant. As a result, it seems reasonable to take (tc)sim =
(na2)expt(tc)expt/(na2)sim � 10 meV.

To determine the interaction strength U < 0, we recall
that the trion binding energy is about 30 meV [16,19]. In
our polaron model, this binding energy corresponds to the
difference between the repulsive polaron energy and the at-
tractive polaron energy. By performing numerical calculations
with varying U at a given Fermi energy εF = 9.3 meV (which
corresponds to N = 24 at the lattice size L = 18), we find that
U = −6.6tc reproduces the observed trion binding energy, as
reported in Fig. 2. There, the simulated polaron spectral func-
tion has been rigidly shifted by an amount ωX = 1657 meV,
so the repulsive polaron peak lies at about 1663 meV. The
photoluminescence spectrum of monolayer MoSe2 observed
in the experiment [16] is then qualitatively reproduced, by
using our polaron model.

As a brief summary of the parameters to be used, through-
out the work we will use tc = 10 meV, td = tc/2 = 5 meV,
and U = −6.6tc = −66 meV. The lattice size is fixed to L =
18. We tune the Fermi energy εF � 4πNtc/L2 by changing
the number of electrons N . For the largest number of electrons
considered in our simulations, N = 32, the dimension of the
whole Hilbert space is D = 9345. For this matrix size, we
use the standard diagonalization routine for a real symmetric

matrix to calculate all the eigenvalues (i.e., polaron energies)
and eigenstates (i.e., polaron residues).

To compare with the experimental 2DCS data [16], the ex-
citation energy ω1 and the emission energy ω3 will be shifted
by ωX = 1657 meV. As we use a finite-size square lattice,
the level spacing in the single-particle dispersion relation is
about δ = 4tc/L. We will use δ to replace the infinitesimal
0+ and to eliminate the discreteness in single-particle energy
levels. Finally, we would like to emphasize that, in our nu-
merical simulations, we do not include any phenomenological
parameters such as decoherence rates, which are often used
to qualitatively understand the experimental data [16,19]. For
the trion peak in Fig. 2, its nonzero spectral width is due to
the finite level spacing δ, which would vanish in the ther-
modynamic limit. On the other hand, in addition to the level
spacing δ the exciton peak has an intrinsic spectral width,
due to the nonzero decay rate or lifetime of repulsive Fermi
polarons [23,28]. Therefore, the width of the exciton peak
remains finite even in the thermodynamic limit.

B. Quantum beats at the two cross peaks

In Fig. 3, we present the simulated rephasing 2D coherent
spectra |S (ω1, t2, ω3)| at three mixing time decays t2 = 0 (a),
t2 = 70 fs (b), and t2 = 140 fs (c). Although the electron den-
sity in the experiment is unknown, we believe εF = 9.3 meV,
which corresponds to the electron number N = 24, could be a
reasonable choice. The three time delays are selected accord-
ing to the measurements in Figs. 2(a)–2(c) of Ref. [16], so we
can make an one-to-one comparison.

We find clearly the exciton (X ) and trion (T ) peaks along
the diagonal direction (see the dashed lines), as in the exper-
iment. Furthermore, two off-diagonal cross peaks, labeled as
HCP and LCP, are fairly evident. Their brightness oscillates
with the mixing time delay t2 as experimentally observed,
revealing the coherent coupling between excitons and trions.

All those intriguing features can be understood from the
simple expression (24). At zero mixing time t2 = 0, Eq. (24)
precisely predicts the existence of two diagonal peaks at the
attractive polaron (trion) energy ET = E (n=0) and at the repul-
sive polaron (exciton) energy EX , respectively, with strengths
given by the residues ZT = φ

(0)∗
0 φ

(0)
0 and ZX ∼ 1 − ZT . The

expression also predicts the two off-diagonal cross peaks at
(−ω1, ω3) = (ET , EX ) and (EX , ET ), with strength

√
ZT ZX .

At nonzero mixing time t2 �= 0, the quantum beats at the
HCP and LCP cross peaks can be easily attributed to the
term e−i(En−Em )T , which gives rise to quantum oscillations with
periodicity 2π/|EX − ET |.

Let us now have a close comparison into the details. There
is an apparent quantitative discrepancy between theory and
experiment on the cross-peak brightness. Our prediction of
the cross-peak strength

√
ZT ZX means that at the zero mixing

time t2 = 0 the cross-peak brightness should lie between those
of the two diagonal peaks, as shown in Fig. 3(a). However,
this is not observed in the experiment [16]. Experimentally,
the cross peaks are always darker than the two main diag-
onal peaks, indicating the possibility of some decoherence
channels (i.e., the phonon-assisted up-conversion and down-
conversion processes as experimentally observed [16]).
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FIG. 3. The simulated rephasing 2D coherent spectra (amplitude) at various mixing time decays t2, to be compared with the experimental
data in Fig. 2 of Ref. [16]. As in the experiment, the exciton (X ) and trion (T ) peaks appear on the diagonal dashed line. The higher (HCP)
and lower (LCP) off-diagonal cross peaks oscillate as a function of t2, revealing quantum coherence between excitons and trions. The red color
illustrates the maximum amplitude, as indicated in the color map above each subplot. The electron Fermi energy is set to be εF = 9.3 meV.

Apart from this discrepancy, we find a remarkable agree-
ment between theory and experiment on other details, upon
changing the mixing time t2. As in the experiment, in each
subplot of Fig. 3, the color scale is normalized to the highest
peak (i.e., the exciton peak X ) in the spectra. For the trion peak
T , we can see that its relative brightness is highest at t2 = 140
fs and then is a bit weaker at t2 = 0 fs and 70 fs. This subtle
change is precisely observed in the experiment [16]. At the
two cross peaks, their relative brightness is similar at t2 = 0
and 140 fs, which is also experimentally observed [16].

In Fig. 4, we report the simulated rephasing 2D signal
at the cross peaks as a function of the mixing time t2. The
amplitude of the 2D signal in Fig. 4(a) should be contrasted
with Fig. 3(b) of the experiment [16]. Our simulation re-
produces very well the quantum oscillations observed in the
experiment, with essentially the same periodicity. However,
we note that, in spite of the same periodicity the two oscilla-
tions at HCP and LCP cross peaks measured in the experiment
are slightly unsynchronized. Our theory always predicts the
exactly same oscillation at the two cross peaks, as the pre-
dicted 2DCS response (24) is symmetric upon switching the
excitation and emission energies, as we emphasized earlier.

On the other hand, the real part of the 2D signal in Fig. 4(b)
might be compared with Fig. 3(b) of the pioneering work
by Tempelaar and Berkelbach [19]. There is an excellent
agreement in curve shape and periodicity. The only difference
is that our 2D signal never decays to zero. This is simply
due to the ground-state bleaching (GSB) process illustrated
in Fig. 1(c), which has not taken into account in Ref. [19] but
gives an important t2-independent 2D signal.

C. Dependence on the electron density

We finally consider the dependence of the rephasing 2D
signal on the electron density or the electron Fermi energy
at the mixing time t2 = 0. As shown in Fig. 5, as the den-
sity increases, the attractive polaron (or trions) peak acquires
larger brightness (i.e., oscillation strength) and has a redshift
in energy with respect to the repulsive polaron peak (exci-
tons). This observation agrees well the existing measurements

[2] on the reflection (absorption) spectra of 2D materials and
also the relevant theoretical explanations [19]. The bright-
ness of the two off-diagonal cross peaks also increases with
increasing electron density. This theoretical prediction could
be examined in future 2DCS measurements with a control-
lable electron density.

FIG. 4. The simulated amplitude (a) and real part (b) of the
rephasing 2D signal at the cross peaks as a function of the mix-
ing time delays t2. The upper plot (a) is to be compared with
Fig. 3(b) of the experiment [16]. We take the electron Fermi energy
εF = 9.3 meV.
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FIG. 5. The simulated rephasing 2D coherent spectra (amplitude) with increasing electron density or Fermi energy, at zero mixing time
delay t2 = 0. The red color illustrates the maximum amplitude, as indicated in the color map above each subplot.

V. CONCLUSIONS AND OUTLOOKS

In summary, we have investigated the 2D coherent spec-
troscopy of excitons and trions in monolayer transition metal
dichalcogenides by using a many-body Fermi polaron model
with mobile exciton. Our investigation complements the
previous pioneering studies based on either few-body calcu-
lations [19] or the exact solutions in immobile heavy-exciton
limit [20]. We have derived a simple expression for the 2D
coherent spectroscopy, which is applicable to the limit of a
single exciton. By performing numerical simulations without
any phenomenological parameters, we have found that this
simple expression captures the essential features of the ob-
served 2D coherent spectroscopy of monolayer MoSe2 and
yields an excellent agreement with the experiment [16].

There are residual discrepancies at the quantitative level.
For example, the predicted cross-peak relative brightness is
higher than what has been observed [16] and our theory is
unable to explain the slightly unsynchronized quantum beats
at different cross peaks in the experiment [16]. Presumably,
we feel that the polaron-polaron interaction (that we have

neglected in our treatment) could be one of the sources for
these discrepancies. To take into account the polaron-polaron
interaction, we need to consider at least two excitons. The
third rephasing process of excited-state absorption [i.e., the
R∗

1(t1, t2, t3) term] then would start to make contributions. We
have performed some preliminary calculations of the excited-
state absorption in a one-dimensional configuration [42] and
have confirmed that it leads to small but quantitative contribu-
tions to the 2D coherent spectroscopy. We plan to extend such
calculations to the more laborious case of two-dimensional
configuration in future studies.

On the other hand, for a quantitative comparison with the
experimental data, it would be interesting to consider various
realistic experimental conditions, such as nonzero temperature
and the finite radiative decay of excitons. The temperature
effect might be conveniently taken into account by using
a finite-temperature diagrammatic theory for the impurity
Green function [28], based on our key formulas (22) and (23).
The radiative decay of excitons might also be considered ei-
ther by using a line-broadening factor or more fundamentally
by adopting a nonequilibrium diagrammatic theory.
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Finally, experimentally, the different implementation of
the polarization of the laser pulses (such as the pathway
σ+σ−σ+σ−) can be used to create biexcitons [17] and bipo-
larons [18] in the many-body dynamics of monolayer 2D ma-
terials. It would be interesting to extend our theoretical frame-
work to explain the experimental data in those situations.
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