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Quantum coherent control of linear and nonlinear thermoelectricity in graphene
nanostructure heat engines
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We theoretically show how structural modifications and controlling quantum coherency can enhance linear and
nonlinear thermoelectric performance in graphene nanostructure heat engines. Although graphene has emerged
as a promising material for a nanoscale heat engine due to its high coherency and tunable electronic properties,
its large lattice thermal transport often limits its thermal efficiency. Using the density-functional tight-binding
method, we demonstrate that one can suppress lattice thermal transport, degrading the thermal efficiency by
deliberately manipulating the junction’s bending angle at low temperatures. We further argue that applying an
optimal local gate voltage unleashes its great potential in achieving excellent efficiency and reasonably high
output power that persist in the fully nonlinear regime.
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I. INTRODUCTION

Over the last decade, low-dimensional and nanoscale ma-
terials have attracted much attention as promising candidates
for a thermoelectric engine that can directly convert heat into
electric power [1]. Sharp resonances due to discrete levels in
a nanoscale system naturally arise an energy filtering effect,
which makes the system act as a heat engine by exchanging
particles between external reservoirs. One typically assesses
thermoelectric performance by the linear-response quantity
called the figure of merit, ZT = GS2T/κ , which reflects tem-
perature T , conductance G, Seebeck coefficient S, and thermal
conductance κ . A higher value indicates greater thermal effi-
ciency. Researchers have long recognized that materials with
the density of states (DOS) characterized by sharp peaks and
acute changes can yield a high value of ZT , making nanoscale
materials a viable option for improved thermoelectric
performance [2–4].

Nanoscale systems have a further advantage of greater
control in designing and engineering the structure. A nanos-
tructure maintains quantum coherence over the system, and
its transport accordingly depends strongly on junction types
in contrast to bulk materials. Thermoelectric phenomena
in nanoscale systems often appear as nonlinear quantum
transport [5,6]. Several theoretical bounds in the nonlinear
thermoelectric processes have been discussed [7–9]. For a
given nanoscale system, it is worthwhile to ask what kinds
of minor structural modifications can enhance thermoelectric
performance effectively. Such insights will be highly ben-
eficial to advance thermoelectric technology and nanoscale
heat engines. One successful approach is to exploit quantum
coherence and destructive interference. Studies have shown
that enhancement of the thermal efficiency occurs when
the transmission is significantly lowered [10–14] or occurs
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near the Fano resonance [15–21]. The latter is particularly
appealing because the effect seems to persist in the fully non-
linear regime [21], where one usually operates nanoscale heat
engines.

Graphene nanoribbons have great potential as nanoscale
thermoelectric material due to their high phase coherency
and tunable electronic properties (see [22,23] for general
properties). One can utilize its versatile structures to control
ballistic transport. Graphene, however, has large lattice ther-
mal transport that often worsens thermal efficiency. Therefore
it is crucial to suppress phonon transport. Extensive research
has been conducted on thermoelectric properties of graphene
nanoribbons, with considerable efforts to identify favorable
structures that can achieve a higher value of ZT by explor-
ing changes in the width and edge orientation and whether
armchair or zigzag sections [24–33], or exploiting electron’s
quantum interference in a ring geometry [34,35].

In this paper, we choose a rhombus-shaped graphene
dot and theoretically demonstrate how linear and nonlinear
thermoelectric performance gets significantly improved by
introducing two types of structural modifications: (i) apply-
ing the local gate voltage in the middle to make electron
transport ringlike (Fig. 1), and (ii) changing bending angles
at the junction (Fig. 2). As gate voltage impacts little on
phonon transport, these two types of modification help control
electron and phonon transport separately. We systematically
explore which bending suppresses lattice transport most and
how local gate voltage helps improve thermoelectric per-
formance. Although phonons deteriorate thermal efficiency,
we will find such a controllable quantum nanostructure pro-
duces excellent efficiency and reasonably high output power
at optimized parameters, particularly at low temperatures. The
result contrasts with straight nanoribbons that are weakly
thermoelectric with typically ZT � 0.1. Besides examining
linear-response quantities like ZT , we investigate thermal
efficiency and output power in the fully nonlinear regime,
where a nanoscale heat engine usually operates. We also show
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(a) (b)

FIG. 1. Two types of graphene nanostructures: (a) rhombus ring,
(b) rhombus dot with applying gate voltage on the red region D.

normalized quantities enable us to estimate various nonlinear
thermoelectric performance quite well from linear-response
quantities.

This paper is structured as follows. In Sec. II, we intro-
duce the graphene nanoribbon systems and explain structural
modifications we will analyze. We will also present theo-
retical descriptions and numerical methodology. In Sec. III,
we discuss how various types of bending at the junction af-
fect phonon thermal conductance. After identifying a type of
junction bending that reduces lattice transport, we optimize
the figure of merit and linear-response thermoelectric per-
formance by introducing the local gate voltage. Section IV
devotes itself to the nonlinear thermoelectric performance of
the optimized heat engines. Finally, we conclude in Sec. V.

II. MODEL AND METHOD

A. Structures of the model

We consider a graphene rhombus ring or dot (Fig. 1), con-
necting with the two external reservoirs via two nanoribbon
contacts of width w0 ≈ 0.738 nm. The width of a rhombus
ring is w ≈ 0.492 nm, and for a rhombus dot, we apply local

(a)

(d)(c)

(b)

FIG. 2. Four configurations of bending angles of external leads:
(a) simple attached, (b) soft bent, (c) hard bent, and (d) double bent.
The same naming scheme is applied to rhombus rings.

(a) (b) (c) (d)

FIG. 3. The size N of a graphene rhombus refers to the number
of hexagons along its diagonal direction: (a) N = 9, (b) N = 11,
(c) N = 13, and (d) N = 15. The red region is punctured for rhombus
rings.

gate voltage in the middle region [shown as the red region
in Fig. 1(b)]. The presence of local gate voltage makes elec-
tron transport resemble a ring geometry, while it has little
impact on phonons; we ignore its effect on phonon transport.
We investigate four configurations of bending angles of the
junction: (a) simple attached, (b) soft bend, (c) hard bend,
and (d) double bend (Fig. 2). All sections of graphene are
assumed to have armchair edges except at the junction where
five-membered arcs are present. In addition, to see how the
size of a rhombus affects lattice transport, we choose four
different types of rhombus size for each configuration (Fig. 3).

B. Microscopic description

We analyze linear and nonlinear thermoelectricity based on
the microscopic description. Since the electron-phonon mean
free path in graphene nanostructures exceeds tens of µm at
the room temperature [36], we ignore the electron-phonon
interaction. The total Hamiltonian becomes H = Hel + Hph,
where the electron and phonon parts are given by

Hel = εg

∑
i∈D

c†
i ci − t

∑
〈i, j〉

(c†
i c j + c†

j ci ), (1)

Hph = 1

2

∑
i

u̇T
i u̇ + 1

2

∑
i, j

uT
i Ki ju j, (2)

where c†
i and ui refer to an electron creation operator and a

lattice displacement vector at the site i. Here we have em-
ployed the nearest-neighboring approximation for Hel, setting
t = 2.8 eV. Inside the region D [Fig. 1(b)], we introduce lo-
cal gate voltage εg, which will control the electron quantum
coherence. For each structure, we have numerically obtained
the force constant matrix Ki j in Hph by using the density
functional tight binding approach with the help of DFTB+
[37]. To do this, with Slater-Koster parameters for C and H
atoms [38], we have employed the conjugate gradient method
to achieve geometrical optimization including the reservoirs,
until the interatomic forces become less than 10−5 a.u. [35].
After that, Ki j is numerically available as the Hessian matrix
of the lattice potential. To investigate linear and nonlinear
transport quantities, we evaluate the transmission of an elec-
tron, Tel(E ) [39,40], and of phonon, Tph(E ) [41], using the
standard technique of nonequilibrium Green’s functions (see
also Sec. II C). During the process, we have also used Kwant
[42].
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C. Nonlinear thermoelectricity

As a concrete realization of a nanoscale heat engine, we
consider the graphene rhombus connecting via the nanoribbon
contacts with the reservoirs (the left and right leads, a = L/R)
with different electrochemical potentials μL < μR and tem-
peratures TL > TR. In this setting, the temperature voltage
drives heat flow against the potential bias and converts heat
into electric work. Output power P and the thermal efficiency
η of this heat engine are defined by

P = (μR − μL )IL; η = P

JL
, (3)

where Ia and Ja are particle and heat inflows from the lead a
(see [6] for a review). Since electrons and phonons contribute
to heat flow, one can express Ja as Jel

a + Jph
a . We also introduce

the electron thermal efficiency ηel = P/Jel
L by ignoring the

phonon deterioration effect. The knowledge of transmission
spectra enables us to evaluate these flows in the fully nonlinear
regime [5,6] as

IL =
∫ ∞

−∞

dE

h
Tel(E )[ fL(E ) − fR(E )], (4)

Jel
L =

∫ ∞

−∞

dE

h
(E − μL ) Tel(E )[ fL(E ) − fR(E )], (5)

Jph
L =

∫
dE

h
E Tph(ε)[nL(E ) − nR(E )], (6)

with Fermi distribution fa(E ) = 1/[eβa (E−μa ) + 1] and Bose
distribution na(E ) = 1/[eβaE − 1], with the inverse tempera-
ture βa = 1/kBTa of the lead a.

Efficiency η is bound from above by the Carnot efficiency
ηC = (TL − TR)/TL, while the natural scale for the output
power is P�T = k2

B(TL − TR)2/4h [see Eq. (12)]. We will see
that investigating normalized quantities such as η/ηC and
P/P�T has distinct advantages in comparing linear and non-
linear transport on the same footing; it also allows us to
predict nonlinear thermoelectricity based on linear-response
quantities.

D. Linear-response quantities

Since the formalism of the previous section describes fully
nonlinear transport of particle and heat, it readily reproduces
the linear response theory by expanding the result regarding
small bias and temperature difference. For convenience, we
here collect results of linear-response quantities necessary for
later analysis, following the notation of Ref. [21].

Within the linear response theory, one can describe ther-
moelectric transport of electronic contribution by using the
formula

h

(
IL

βJel
L

)
=

(
K0 K1

K1 K2

)(−�μ

kB�T

)
, (7)

by assuming �T = TL − TR > 0 and �μ = μR − μL > 0 are
much smaller than the average temperature kBT̄ = kB(TL +
TR)/2. Here we have used β = (kBT̄ )−1 and the dimensionless
Onsager coefficients Kn. As for coherent transport across a
nanostructure, one can express these coefficients in terms of

transmission function Tel(E ) as

Kn = βn
∫

dE (E − μ)nTel(E )

[
− ∂ f

∂E

]
. (8)

By these coefficients Kn, we can express standard linear-
response quantities:

G = e2

h
K0, κel = k2

BT

h

(
K2 − K2

1

K0

)
, S = kB

e

K1

K0
. (9)

Therefore, the figure of merit (ZT )el when ignoring the
phonon adverse effect becomes

(ZT )el = S2GT

κel
= K2

1

K0K2 − K2
1

. (10)

One can also evaluate the output power P by Eq. (3), and
express the stopping bias potential �μstop and maximal power
output Pmax as

�μstop = −eS�T = K1

K0
kB�T, (11)

Pmax = GS2

4
(�T )2 = P�T · K

2
1

K0
. (12)

The total thermal conductance κ is the sum of the electron
and phonon contributions, κ = κel + κph, where one can de-
rive phonon conductance κph from Eq. (6) as

κph =
∫ ∞

0

dE

h
ETph(E )

∂n(E )

∂T
. (13)

It is clear that the presence of κph � κel significantly lowers
the value of ZT from (ZT )el by

ZT = S2GT

κel + κph
= (ZT )el

1 + κph/κel
, (14)

as well as the linear-response efficiency η = ηel/(1 +
κph/κel ). Thus, for electron’s quantum coherence to improve
thermoelectricity, it is a prerequisite to find a system with
thermal conductance satisfying κph � κel.

We note that when introducing the dimensionless bias
voltage v = �μ/�μstop, we can express the output power
as P/Pmax = 4v(1 − v) and the electron efficiency as ηel =
v(1 − v)/[1 − v + (ZT )−1

el ] [21]. As a result, using these
dimensionless quantities enables us to estimate the power-
efficiency diagram by changing the bias voltage within the
linear response theory.

III. SEARCH FOR SUITABLE STRUCTURES
BY LINEAR-RESPONSE QUANTITIES

Our strategy to get higher thermoelectricity in quantum
nanostructures is to use electron’s destructive quantum in-
terference. However, to make such an effect conspicuous,
we should suppress phonon conductance κph smaller than κel

[see Eq. (14)]. Temperature increase in κph is usually much
faster than that in κel. We have observed that though it highly
depends on the location of the electrochemical potential, a
typical value of electron’s thermal conductance κel amounts
to 10−12 WK−1 or less around 10 K for a quantum dot con-
sidered here [see Eq. (9)]. This implies that we usually have
difficulty in finding a temperature range suitable to suppress
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(a) (b)

(c) (d)

FIG. 4. Temperature dependence of phonon thermal conductance
of a graphene rhombus dot (solid line) and a graphene ring (dashed
line) with four types of bending angles of junctions: Simple attached
(blue), soft bent (orange), hard bent (red), and double bent (green).
Black dotted line refers to the result of a simple nanoribbon. The size
of a rhombus is (a) N = 15, (b) N = 13, (c) N = 11, and (d) N = 9.

κph. Nevertheless, we will show that modifying bending at the
junction can create a situation κph � κel, where we will further
vary local gate voltage εg to achieve higher ZT and thermal
efficiency.

A. Phonon thermal conductance

Let us start by examining how various modifications of a
nanostructure affect phonon thermal conductance. Figure 4
shows the temperature dependence of phonon thermal con-
ductance for a rhombus dot (solid lines) and a rhombus
ring (dashed lines). Different bending configurations of the
junction (as in Fig. 2) are shown in different colors: Simple
attached (blue), soft bent (orange), hard bent (red), and double
bent (green). For reference, we also include the result of
a straight nanoribbon with the width w0 = 0.738 nm (black
dotted line). Besides, we vary the size of a rhombus itself: (a)
N = 15, (b) N = 13, (c) N = 11, and (d) N = 9, as is defined
in Fig. 3. Depending on the relative size of a structure to the
lead width, we will see different effects of the bending on
phonon conductance.

At high temperatures T � 100 K, phonon conductance in
all the configurations reaches 10−10 WK−1. The value greatly
exceeds a typical value of κel, though it is smaller than the
phonon conductance of a straight nanoribbon. For larger sizes
[N = 15 and N = 13 in Figs. 4(a) and 4(b)], phonon conduc-
tance of a rhombus ring is smaller than that of a rhombus
dot, reflecting the increased scattering by a puncture inside the
rhombus. For smaller sizes [N = 11 and N = 9 in Figs. 4(c)
and 4(d)], phonon conductance seems independent of whether
a rhombus dot or ring. This suggests that phonons in these
systems are mainly scattered by the bending, not by the punc-
ture inside the rhombus. With κph � κel in this temperature
range, we find it challenging to enhance thermoelectricity by
controlling the electron’s coherency.

(a) (b)

FIG. 5. The figure of merit of the simple-attached rhombus dot
as a function of μ and εg. (a) (ZT )el, neglecting phonon transport
and (b) ZT including phonon contribution.

The situation differs at low temperatures T � 10 K, espe-
cially for smaller rhombus [N = 11 and N = 9 in Figs. 4(c)
and 4(d)]. Phonon conductance depends highly on the bending
angle at the junction, compared to larger rhombuses (N = 15
and N = 13). We observe that the phonon conductance of
the double-bent rhombus dot is significantly small, reach-
ing an order of 10−13 WK−1 or less. This is one order of
magnitude smaller than that of the simple-attached rhombus
dot. These results are consistent with Refs. [26,28,33], which
attributed the reduction of κph to phonon scattering due to
interface mismatching and rough-edge effects. We emphasize
the value of κph of the double-bent rhombus dot is compa-
rable or smaller than κel at T � 10 K. Accordingly, using a
double-bent graphene rhombus is a viable strategy to suppress
phonon transport. In the next section, we will exploit quantum
coherence to get a better thermoelectricity.

B. Linear-response thermoelectricity

Having identified the structure suitable for suppressing
phonon transport, we will now demonstrate how to improve
its thermoelectricity using the local gate voltage εg. Based on
the result of phonon conductance in the previous section, we
choose to operate the double-bent graphene rhombus dot of
N = 11 at temperature T = 4 K, whose phonon conductance
κph is low [Fig. 4(c)]. To clarify how different bending angles
affect ZT , we compare it with the simple-attached rhombus
dot of the same size.

Figures 5 and 6 show how the figure of merit depends on
the electrochemical potential μ and the local gate voltage εg

for the simple-attached and double-bent rhombus dots. In each
figure, we compare (i) the electron contribution (ZT )el with

(a) (b)

FIG. 6. The figure of merit of the double-bent rhombus dot as a
function of μ and εg. (a) (ZT )el without phonon transport and (b) ZT
including phonon contribution.
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(a) (b)

FIG. 7. Comparison of the figures of merit, ZT (blue) and (ZT )el

(orange), with the transmission function T (μ) (below) as a function
of chemical potential μ. (a) The simple-attached rhombus dot at εg =
4.36 eV and (b) the double-bent rhombus dot at εg = 5.40 eV.

(ii) the total contribution ZT that includes phonon transport.
The result of the simple-attached dot (Fig. 5) shows that
though the value of (ZT )el amounts to well above one (even
reaching above five), large phonon conductance κph consid-
erably reduces its value. For instance, high (ZT )el around
the region (μ, εg) ∼ (1.1 eV, 3.0 eV) or (1.0 eV, 4.4 eV) does
not lead to a high value of ZT . The maximum of ZT in the
parameter range of Fig. 5 is 1.1. In contrast, the double-bent
rhombus dot is more robust against the phonon deterioration
effect due to a smaller value of κph. Indeed, ZT reaches as
much as 3.1 by adjusting the local gate voltage εg ≈ 5.40 eV.

It is worthwhile to inspect what causes high values of ZT
in the presence of phonon transport. We observe that the Fano-
type transmission is responsible for it. In Fig. 7, we compare
the figure of merit with the transmission spectrum as a func-
tion of the chemical potential μ at the fixed local gate voltage
that achieves the highest value of ZT : (i) εg = 4.36 eV for the
simple-attached dot and (ii) εg = 5.40 eV for the double-bent
dot. We see a Fano-type asymmetric resonance occur at μ ≈
1.15 eV in Fig. 7(a) or μ ≈ 1.09 eV in Fig. 7(b), as well as a
Breit-Wigner-type symmetric one at μ ≈ 0.7 eV in Fig. 7(a)
or μ ≈ 0.86 eV in Fig. 7(b). Clearly, both types of resonances
can produce high (ZT )el in the absence of the phonon degra-
dation effect. However, Fano-type resonances provide higher
ZT , making them much more robust against phonon transport
than Breit-Wigner ones. This is seen from the results of the
simple-attached dot [Fig. 7(a)]. A very narrow Breit-Wigner
resonance at μ ≈ 0.7 eV produces a high (ZT )el, but the total
ZT gets suppressed by more than one order of magnitude from
(ZT )el due to the phonon degradation effect. In contrast, the
suppression of ZT at μ ≈ 1.15 eV is not so drastic, though
the relatively large value of κph in the simple-attached dot
makes ZT smaller than one. In the double-bent dot [Fig. 7(b)],
which has a reduced value of κph, the degradation of ZT due
to phonons becomes less striking at the Fano resonance (μ ≈
1.09 eV). The Breit-Wigner resonance at μ ≈ 0.86 eV does
not produce high ZT or (ZT )el because the resonance width
is too large. It shows that suppressing the phonon transport is
an effective way to utilize the enhanced thermoelectricity due
to electron’s quantum coherence and Fano resonances.

To realize a heat engine, we need to attain high output
power besides high efficiency. One can assess such perfor-
mance by examining the power-efficiency diagram (P, η).
In Fig. 8, we draw the power-efficiency diagram within the

(a) (b)

FIG. 8. Power-efficiency diagram within the linear-response the-
ory for (a) the simple-attached rhombus dot at εg = 4.36 eV and
(b) the double-bent rhombus dot at εg = 5.40 eV. Each blue line
corresponds to the evolution of the power efficiency (P, η) by chang-
ing the bias voltage at a fixed μ. The result is compared with
the evolution of (P, ηel ), ignoring phonon transport (red dashed
line). Efficiency and output power are normalized by ηc and P�T ,
respectively.

linear response theory, (i) for the simple-attached rhombus
at εg = 4.36 eV, and (ii) for the double-bent rhombus dot
at εg = 5.40 eV. Each line corresponds to the evolution by
changing the bias voltage at a fixed chemical potential (from
0.66 eV to 1.3 eV). Here, we have normalized the efficiency
η by the Carnot efficiency and the output power P by P�T .
Such normalization will later allow us to compare the linear-
response result directly with the performance in the fully
nonlinear regime. Figure 8 shows that high output power and
high efficiency are well balanced. Compared with the simple-
attached dot, we see that the output power of the double-bent
rhombus dot gets lower, though its efficiency is higher.

Summarizing the linear-response thermoelectricity, we find
the double-bent graphene rhombus dot is a promising nanos-
tructure for achieving nanoscale heat engines. Modifying
the bending angle and adjustment of the local gate voltage
significantly enhance the thermal efficiency while retaining
high output power. It suggests that utilizing the Fano-type
asymmetric resonance is a viable option for achieving high
thermoelectric performance.

IV. NONLINEAR THERMOELECTRICITY

Next, we will examine the nonlinear thermoelectric perfor-
mance of the graphene double-bent rhombus dot (N = 11).
We choose its local gate voltage to be εg = 5.40 eV, which
has exhibited the highest value of ZT in Sec. III B. We focus
on nonlinear efficiency and output power in two situations: (i)
at a fixed average temperature T̄ = 4 K by changing thermal
bias and (ii) at fixed Carnot efficiencies (ηc = 1/3 and 2/3)
by changing the average temperature. To compare them with
the linear-response result, Fig. 8(b), we normalize the thermal
efficiency η by ηc and the output power P by P�T .

A. Nonlinear effect at a fixed average temperature

Figure 9 shows the efficiency-power diagram for
the double-bent graphene rhombus dot at the average
temperature T̄ = 4 K, with increasing nonlinearity:
(i) (TL, TR) = (4.8 K, 3.2 K) with ηc = 1/3, and (ii)
(TL, TR) = (6.0 K, 2.0 K) with ηc = 2/3. Although the
efficiency gets suppressed by finite phonon thermal transport
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(a) (b)

FIG. 9. Power-efficiency diagram at the average temperature
T̄ = 4 K for (a) (TL, TR ) = (4.8 K, 3.2 K) with ηc = 1/3, and
(b) (TL, TR ) = (6.0 K, 2.0 K) with ηc = 2/3. Other parameters and
conventions are the same with Fig. 8(b).

(compare blue lines and red dashed lines), maximum
efficiency reaches 0.395ηc at ηc = 1/3, or 0.426ηc at
ηc = 2/3. We note that the normalized thermal efficiency
η/ηc increases slightly with increasing nonlinearity, which
confirms the robustness of enhanced thermal efficiency due to
the Fano-type resonance. In contrast, the normalized output
power P/P�T stays almost independent of nonlinearity.

B. Temperature effect at a fixed nonlinearity

We will now explore the role of the average temper-
ature at a fixed Carnot efficiency. Figure 10 shows the
power-efficiency diagrams for the Carnot efficiency ηc =
2/3 by increasing the average temperature T̄ : (i) (TL, TR) =
(12 K, 4 K) with T̄ = 8 K, and (ii) (TL, TR) = (18 K, 6 K)
with T̄ = 12 K. Comparing these results with Fig. 9(b) clearly
shows that increasing the average temperature suppresses the
efficiency considerably, though the output power tends to
increase. We understand that two factors contribute to this
vulnerability in thermal efficiency. First, phonon transport
increases with rising average temperature. While some of
the electron efficiency ηel remains high [see Fig. 10(a)], the
total efficiency η considerably reduces. The other factor is
the finite-temperature effect smearing out the singularity of
a Fano-type resonance. It prevents destructive quantum inter-
ference from enhancing thermal efficiency.

(a) (b)

FIG. 10. Power-efficiency diagram at the fixed Carnot effi-
ciency ηc = 2/3 for (a) (TL, TR ) = (12 K, 4 K) with T̄ = 8 K and
(b) (TL, TR ) = (18 K, 6 K) with T̄ = 12 K. Other parameters and
conventions are the same with Fig. 8(b).

(a) Linear-response estimate (b) Weak nonlinear regime

(c) Intermediate nonlinear regime (d) Strong nonlinear regime

FIG. 11. The dependence of the normalized efficiency on the
normalized bias voltage �μ/kB�T and the gate voltage μL .
Linear-response result at (a) T = 4 K is compared with nonlinear-
response regimes of (b)�T < T̄ , (c) �T = T̄, and (d) �T > T̄ .
(b) (TL, TR ) = (4.8 K, 3.2 K) at ηc = 1/3, (c) (TL, TR ) = (6 K, 2 K)
at ηc = 2/3, and (d) (TL, TR ) = (7.27 K, 0.73 K) at ηc = 0.9. In each
subfigure, half values of ηmax, Pmax, and ηel

max are depicted respectively
by black dotted, green dashed, and blue dot dashed lines.

C. Linear-response estimate of nonlinear thermoelectricity

In retrospect, we have started by examining linear-response
quantities to search for a nanostructure suitable for high
nonlinear thermoelectricity. The significance of the linear-
response estimate has already proved itself by comparing the
linear and nonlinear power-efficiency diagrams [Figs. 8(b)
and 9]. To make such a direct comparison, we have found it
crucial to normalize the thermal efficiency and output power,
and to use the average temperature (see also the argument in
[21,43] for an appropriate choice of the temperature). In this
section, we will examine it more closely and argue that we can
assess the nonlinear performance of a heat engine reasonably
well based on the linear response theory.

In Fig. 11, we closely examine how linear and nonlinear
efficiencies depend on the bias voltage and the chemical po-
tential in the double-bent rhombus dot at εg = 5.40 eV (with
the Fano resonance peak at μ ≈ 1.08 eV). We recall that the
linear-response theory can provide an estimate of the nor-
malized power P/P�T and the electronic efficiency ηel/η in
the full range of bias voltage ratio 0 � �μ/�μstop � 1 (see
the last paragraph of Sec. II D). Accordingly, normalizing the
bias voltage �μ by kB�T enables us to make direct and
detailed comparisons between linear and nonlinear-response
results. We have prepared “linear-response estimate” at 4 K
in Fig. 11(a), calculated entirely by linear-response quantities.
This result is compared with nonlinear responses of weakly
nonlinear T̄ > �T , intermediately nonlinear T̄ = �T, and
strongly nonlinear T̄ < �T results: (TL, TR) = (4.8 K, 3.2 K)
at ηc = 1/3 [Fig. 11(b)], (TL, TR) = (6 K, 2 K) at ηc = 2/3
[Fig. 11(c)], and (TL, TR) = (7.27 K, 0.73 K) at ηc = 0.9
[Fig. 11(d)]. First, Fig. 11 confirms a considerable overlap
between the region with high efficiency (inside of the black
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dotted line, η > 0.5ηmax) and the one with high output power
(inside the green dashed line, P > 0.5Pmax). We also see the
linear-response result [Fig. 11(a)] capture the essence of non-
linear responses [Figs. 11(b)–11(d)] quite well even in fully
nonlinear regimes, while the stopping voltage gets increas-
ingly suppressed by increasing the nonlinearity, especially for
ηc ≈ 0.9 [Fig. 11(d)]. In addition, the linear-response estimate
identifies the locations of optical parameters for achieving the
highest efficiency and output power. Therefore, we can rely
on the linear-response results to predict the nonlinear thermo-
electric performance of a nanoscale heat engine. We remark
that the present situation is quite different from graphene-
superconductor and superconductor-superconductor tunnel
junctions [44–46], where strong thermoelectricity appears
only in the nonlinear regime with almost vanishing linear
thermoelectricity.

V. CONCLUSION

We have theoretically explored how to enhance linear and
nonlinear thermoelectric performance in a nanoscale heat

engine by making structural modifications on a graphene
rhombus dot. After evaluating the phonon and electron
transport in a linear-response model, we have identified a
nanostructure suitable for high thermoelectricity. Modifying
the junction bending angle suppresses phonon transport, and
Fano-like asymmetric resonances provide high efficiency. We
have found that adjusting a tunable local gate voltage on
a double-bent graphene rhombus dot is an effective way to
achieve high efficiency and output power, particularly at low
temperatures (T = 4 K). We have also demonstrated how nor-
malized linear-response plotting helps us predict nonlinear
thermoelectric performance reliably. We believe controlling
quantum coherence is a powerful method when searching for
better thermoelectric materials at the nanoscale.
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