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Twisted topology of non-Hermitian systems induced by long-range coupling
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We investigate the twisted topology of the complex eigenspectrum of a one-dimensional non-Hermitian
system under the influence of long-range unidirectional coupling. Unlike the complex energy spectrum of the
conventional Hatano-Nelson chain, which takes the form of a single loop with a topological winding index of
a definite sign, the introduction of long-range unidirectional hopping results in the creation of multiple twisted
loops. These twisted loops exhibit opposite signs of the topological winding index, which correlate to alternating
clockwise and anticlockwise energy windings. The simultaneous presence of both signs of the winding index
translates into a bipolar non-Hermitian skin effect (NHSE), which challenges the conventional wisdom that
the NHSE localization is dependent on the direction of the dominant nearest-neighbor interactions. In this
bipolar NHSE, the exponents of the complex energy eigenvectors corresponding to clockwise and anticlockwise
windings lie inside and outside of the complex unit circle, respectively. Interestingly, at the intersections of
oppositely oriented energy loops where the sign of the topological winding index flips, the energy becomes real
valued, leading to a suppression of the NHSE. This marks the emergence of Bloch-like contact points, where both
the bipolar and conventional NHSE vanish. Based on the non-Hermitian model, we provide analytical insights
into the effects of long-range unidirectional coupling to the winding topology of its complex energy spectra and
their broader implications for the field of condensed matter physics.
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I. INTRODUCTION

In recent years, topological phases [1–9] and non-
Hermitian physics [10–15] have become rapidly growing
fields in condensed matter physics [16–18] and attracted
the attention of researchers owing to their unique prop-
erties [19,20] and potential applications in various areas
[21–24]. Fascinatingly, the investigation of non-Hermitian
systems, rooted in the early days of quantum mechanics,
has flourished into a dynamic research field, marked by
notable advancements over the past few decades [25–30].
These non-Hermitian systems manifest novel and exotic phys-
ical phenomena absent in their Hermitian counterparts. In
essence, non-Hermiticity in these systems arises from cou-
pling asymmetry or the presence of gain or loss terms at
the on-site level [31–33], contributing to a rich tapestry of
diverse and intriguing behaviors. The coupling asymmetry
in non-Hermitian lattice models lies at the origin of many
non-Hermitian phenomena ranging from the non-Hermitian
skin effect (NHSE) [31,34–38] to exceptional points [39,40],
which may be utilized in ultrasensitive sensing [24,41,42], ex-
ponential signal enhancement [22,43,44], and unidirectional
transport [45–47].
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However, the effects of long-range coupling and its
asymmetry on non-Hermitian systems have not been fully an-
alyzed. Incorporating unidirectional long-range coupling into
these platforms could open up a new realm of opportunities to
investigate various intriguing aspects of non-Hermitian band
topology. Recently, it was found that such long-range cou-
pling asymmetry introduces peculiar phenomena associated
with non-Hermiticity such as Type-II corner modes [48–50],
enhancement of topological boundary modes [51,52], and
complex energy braiding [53,54]. Furthermore, the inclu-
sion of asymmetric long-range coupling can lead to dramatic
changes in the complex energy eigenspectra and their cor-
responding topology. The interplay between unidirectional
long-range coupling and non-Hermiticity has also been
studied in various platforms such as photonics [55], meta-
material [56,57], optics [58,59], condensed matter [38,60],
and topolectrical circuit systems [37,61–68]. In photonic sys-
tems, asymmetric long-range coupling can be achieved by
using waveguides with asymmetric coupling coefficients [69],
while in metamaterials, it is implemented using asymmetrical
split-ring resonators [70,71]. Likewise, in condensed matter
systems, such coupling can be modeled via asymmetric long-
range electronic hopping between atoms [72,73], while in
topolectrical circuits, it can be realized through asymmetric
circuit components such as operational amplifiers [14,63,74].

In this work, we investigate the creation of complex en-
ergy spectra with multiple and arbitrary number of twisted
loops in the presence of long-range unidirectional hopping
in a Hatano-Nelson (HN) [35,75,76] chain. The complex en-
ergy spectrum of a finite HN chain has a nontrivial topology
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[77,78] that can be characterized by a topological invariant
called the winding number [13,79,80]. In the absence of long-
range coupling, the energy spectrum of the HN chain takes the
form of a single closed loop and the winding number assumes
a constant value with a definite sign throughout the complex
energy plane enclosed by the loop. This leads to the accumu-
lation of eigenstates at only one end of the chain depending
on the direction of the dominant asymmetric coupling, which
is reflected in the sign of the winding number.

This simple scenario can be dramatically modified by
incorporating unidirectional long-range coupling, which mod-
ifies the trajectory of the complex eigenvalues and results
in multiple twisted loops in the complex energy plane. The
twisted topology translates into an unconventional NHSE
configuration in which eigenstates associated with the clock-
wise and anticlockwise complex energy loops are localized
at opposite ends of the chain. The resulting bipolar NHSE
localization overturns the conventional expectation that NHSE
only occurs at one end of the NH chain correspond-
ing to the dominant coupling direction of the asymmetric
nearest-neighbor interactions. Furthermore, novel behavior
was observed at the contact points between oppositely ori-
ented energy loops, where the energy becomes real valued.
Here, the topological invariant changes sign leading to the
emergence of Bloch-like contact points at which the NHSE
vanishes. Our analysis of a NH model with long-range
unidirectional coupling offers fresh insights into the in-
terplay between non-Hermiticity and long-range coupling,
and the resulting topology described by its complex energy
eigenspectra.

II. EFFECTS OF LONG-RANGE COUPLING
ON COMPLEX ENERGY DISTRIBUTION

We consider a periodic one-band system with nonrecip-
rocal nearest-neighbor couplings t1 �= t−1, i.e., the Hatano-
Nelson (HN) model [26,28,32], whose eigenenergy is given
by

EHN = t1 exp(ik) + t−1 exp(−ik)

= (t1 + t−1) cos(k) + i(t1 − t−1) sin(k). (1)

The locus of EHN takes the form of an ellipse in the complex
energy plane with the axis lengths of |t1 + t−1| and |t1 − t−1|
[Fig. 1(a)]. The ellipse cuts across the real energy axis twice
under periodic boundary conditions (PBC).

The energy eigenspectrum exhibits distinct distributions
under open boundary conditions (OBC) from the PBC eigen-
spectrum owing to the asymmetrical coupling between lattice
sites. The tight-binding Hamiltonian corresponding to Eq. (1)
for a finite HN chain that extends from x = 1 to x = N with
OBC is given by

HHN;OBC =
N−1∑
x=1

|x〉t1〈x + 1| + |x + 1〉t−1〈x|, (2)

where |x〉 and 〈x| are ket and bra vectors representing the basis
states at site x.

We derive the eigenenergy spectrum of Eq. (2) using the
imaginary gauge approach in Appendix A and the generalized
Brillouin zone (GBZ) approach in Appendix B, and show

that the eigenenergies E lie on the real energy axis with
|E | < 2

√
t1t−1 [Fig. 1(a)]. The marked disparity between the

OBC and PBC eigenspectra (line vs. ellipse on the complex
energy plane) heralds the breakdown of the conventional bulk
boundary correspondence (BBC) in a non-Hermitian system.
Specifically, in non-Hermitian systems with coupling asym-
metry, the eigenstates under OBC become localized near a
single edge of the system in the non-Hermitian skin effect
(NHSE). As discussed in detail in Appendix A, the eigenstate
localization direction depends on the relative magnitudes of t1
and t−1; the NHSE localization occurs at the left (right) edge
when ln |t1/t−1| is positive (negative).

We now consider the introduction of a long-range unidi-
rectional coupling t−n exp(−ink) along the left direction a
distance of n nodes away. The eigenenergy E for a periodic
system now takes the form of

E = t1 exp(ik) + t−1 exp(−ik) + t−n exp(−ink)

= (t1 + t−1) cos(k) + t−n cos(nk)

+ i[(t1 − t−1) sin(k) − t−n sin(nk)]. (3)

The locus of the eigenenergy now intersects the real energy
axis more than the two times it does in the conventional HN
model. The intersection between the eigenenergy locus and
the real energy axis is governed by the following equation:

(t1 − t−1) sin(k) − t−n sin(nk) = 0 (4)

⇒ sin(nk) = t1 − t−1

t−n
sin(k). (5)

Introducing t ′ ≡ t1−t−1

t−n
, the number of real solutions for k

that satisfy Eq. (5) in the range of −π < k < π , depends
on the value of t ′. For illustration, sin(k) is plotted together
with t ′ sin(nk) for an odd value of n = 5 and even value of
n = 4 [see Fig. 1(b) and 1(c), respectively]. It can be seen
that the maximum number of times the t ′ sin(nk) curve can
intersect the sin(k) curve is 2n times regardless of whether
n is even or odd. Moreover, the sin(k) curve always touches
the t ′ sin(nk) curve at k = 0, π regardless of the value of t ′
or n.

For odd n, the t ′ sin(nk) curve intersects the sin(k) curve
the maximum number of 2n times when 0 < t ′ < 1. However,
when t ′ exceeds 1 slightly, the maximum value of |t ′ sin(k)|
at k = ±π/2 now exceeds the maximum value of sin(k) at
sin(±π/2) = 1. This results in the number of intersections
between the two curves decreasing by four since the t ′ sin(nk)
curve now no longer intersects the sin(k) curve at k = π/2 ±
δk and at k = −π/2 ± δk. We denote this first critical value of
t ′, which results in the lowering of the number of intersection
points as Cn,1 = 1. When t ′ is increased further to beyond
t ′ = n, the t ′ sin(nk) curve no longer intersects the sin(k)
curve near k = ±π and both sides of k = 0. This results in a
further decrease by four in the number of intersection points.
Moreover, when t ′ is negative, and its magnitude is increased,
we approach a second critical value of t ′ = Cn,2 beyond which
the t ′ sin(k) curve no longer intersects the sin(nk) curve near
k = ±π ( 1

2 ± 1
2n ) [see bottom plot of Fig. 1(b)], and the num-

ber of intersection points between the t ′ sin(k) and sin(nk)
curves drops by further a step of eight. For the particular case
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(d) (e) (f)

(g) (h) (i)

FIG. 1. Complex eigenenergy spectra induced by long-range unidirectional coupling (a) PBC spectra (thick red line), and OBC spectra
and spatial probability density distribution of a conventional Hatano-Nelson chain, 80 nodes in length and without unidirectional long-range
coupling (t−1 = 0.4, t−n = 0). (b), (c) Plots of t ′ sin x (green line) and sin(nx) (blue line) for (b) n = 5, t ′ = C5,1 = 1 (top) and t ′ = C5,2 = 1.250
(bottom), and (c) n = 4, t ′ = C4,1 = 1.089 and t ′ = C4,2 = 4. (d) Plot of the number of times that the PBC eigenenergy spectrum curve
intersects the real energy axis as a function of t−1 and t−n for n = 5. The boundaries between regions with different number of intersection
points are demarcated by the white dotted lines and the corresponding values of t ′ indicated. (e) and (f) Exemplary PBC eigenenergy spectra
and OBC eigenenergy spectra and spatial density distribution for n = 5 with (e) t−1 = 1.2, t−5 = −1, for which the eigenstates are all localized
towards the right, and (f) t−1 = 0.4, t−5 = 0.5, which exhibits bipolar NHSE. The (t−1, t−5) values for (e) and (f) are marked by dots on (d).
[(g)–(i)]. Corresponding plots for n = 4 with (h) t−1 = 0.5, t−4 = −2 and (i) t−1 = 0.2, t−4 = −0.5. The darker dots in the spatial probability
density distributions represent high-density values. The states that are localized towards the left (smaller node numbers) are denoted by green
dots and those localized towards the right (larger node numbers) by blue dots. t1 = 1 for all the plots in the figure.

of n = 5 shown in Fig. 1(b), C5,2 was numerically determined
to be −1.25.

The above-mentioned trends for the number of intersection
points between the sin(k) and t ′ sin(nk) curves result in the
phase diagram shown in Fig. 1. Notice that the number of
intersection points drop in steps of four or eight as explained
above, and that the different phases are not symmetrically
distributed about t−n = 0. In general, for larger odd values of
n there will be further critical values of Cn,m at which the num-
ber of intersection points between the t ′ sin(k) and sin(nk)
curves drops in steps of four or eight from the maximum value
of 2n down to the minimum value of 2.

Conversely, for even n, the t ′ sin(k) curve intersects across
the sin(nk) curve for 2n times for small |t ′|. As |t ′| increases,
it reaches a critical value of |t ′| = Cn,1 beyond which the
t ′ sin(x) curve no longer intersects the sin(k) curve near k =
±π ( 1

2 + 1
2n ). For even n � 4, as |t ′| increases further, there

are further values of |t ′| = Cn,m beyond which the number of
times the t ′ sin(k) curve intercepts the sin(k) curve decreases
further because |t ′ sin(k)| > | sin(k)| at increasing values of
|k − (±π/2)|. In particular, at |t ′| values slightly larger than
Cn,n/2 = n the t ′ sin(k) curve no longer intersects the sin(k)
curve near k = 0 for all even n [bottom plot of Fig. 1(c)]. In
contrast to the case of odd n, the critical values of t ′ exist in
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±|t ′| pairs, which gives rise to the phase diagram shown in
Fig. 1(d), which is symmetrical about t ′

−n = 0.
With these considerations on the number of intersection

points and hence real solutions to the eigenenergy for the even
(n = 4) and odd cases (n = 5), we turn our attention to the
phase diagrams shown in Figs. 1(d) and 1(g). Figures 1(e), 1(f)
and 1(h), 1(i) show the eigenenergy curves for representative
examples of systems with intermediate [Figs. 1(e) and 1(h)]
and maximal [Figs. 1(f) and 1(i)] number of intersections
with the real axis, respectively. Note that these eigenenergy
curves are symmetric about the real axis. This symmetry may
be readily explained by the fact that since the coefficients
tis are real, E (k) = E∗(−k) from Eq. (3). Thus, for each
value of energy E corresponding to crystal momentum k on
the eigenenergy curve, its reflection about the real axis E∗
corresponding to −k would also be on the eigenenergy curve.
In particular, the time-reversal invariant momenta k = 0 and
k = π lie on the real axis.

For odd n, the eigenenergy curves are also symmetric about
the imaginary axis, as shown in Figs. 1(e) and 1(f). This
symmetry is to due to the fact that sin[n(x ± π )] = − sin(nx),
cos[n(x ± π )] = − cos(nx) for odd n, which implies that
E (k) = −E (k + π ), i.e., for each energy E corresponding to
k that exists on the eigenenergy curve, its reflection about the
origin −E corresponding to k + π is also on the eigenen-
ergy curve. This results in the inversion symmetry of the
eigenenergy curve about E = 0 on the complex energy plane.
Correspondingly, the real part of the eigenenergy curve spans
between −(t1 + t−1 + t−n) at k = π to (t1 + t−1 + t−n) at
k = −π . In contrast, for even n, the eigenenergy curves are
not symmetric about the imaginary axis [Figs. 1(i), 1(j).
This is because of the fact that sin[n(x ± π )] = sin(nx) and
cos[n(x ± π )] = cos(nx), which implies that the correspon-
dence E (k) = −E (k + π ) no longer holds for odd n. We find
instead that the real values of E now span from −(t1 + t−1 −
t−n) at k = π to t1 + t−1 + t−n at k = 0.

We introduce OBC to a modified HN chain of length N
with lattice sites located at x = 1 to x = N by setting the
couplings that extend outside the extent of the chain to 0.
The real-space tight-binding Hamiltonian of the chain is then
given by

HHNL;OBC =
N−1∑
x=1

(t1|x + 1〉〈x| + t−1|x〉〈x + 1|)

+
N−n∑
x=1

(t−n|x〉〈x + n|). (6)

Remarkably, the long-range coupling can cause the OBC
eigenspectrum to become complex, as depicted in Figs. 1(f),
1(h) and 1(i). This differs from the OBC eigenspectrum of
a HN chain without long-range coupling, which lies com-
pletely on the real energy axis. We illustrate how a complex
eigenspectrum can emerge in Appendix B. Notably, the NHSE
persists as long as the eigenenergy spectra under OBC and
PBC remain dissimilar. The persistence of the NHSE local-
ization when the OBC and PBC spectra differ from each other
can be intuitively understood through the following argument:
As described in detail in Appendix B, the wave function of
an OBC eigenstate ψ (x) at an eigenenergy E has the general

form of
∑

j c jβ
x
j where β j ≡ exp(ik j ) and the (n + 1) k js,

which are generally complex, are related to E via Eq. (3). The
PBC eigenenergy spectrum is essentially the loci of E values
at which at least one of the β j values has a modulus of 1,
which in turn corresponds to a real value of k. This implies
that none of the β values of the OBC eigenenergies has a
modulus of 1 when the OBC eigenspectrum differs from the
PBC eigenspectrum, and the wave function grows exponen-
tially towards the left or the right depending on the sign of the
dominant ln|β j | component. We show in Appendix B that the
OBC eigenspectrum in a sufficiently large (on the order of five
sites for the parameter ranges here) system is in turn given by
the locus of energy values at which the two largest |β j |s have
the same moduli.

Unlike the conventional HN system in which the eigen-
states are localized near one edge of the system [Fig. 1(a)],
we see in Figs. 1(f) and 1(i) that for some parameter ranges
of t−1 and t−n, a peculiar bipolar NHSE appears in which
the OBC eigenstates are localized around both edges of the
system. (The states localized nearer the left edge are denoted
by yellowish dots and located near E = 0, while the states
localized nearer the right edge are denoted by bluish dots and
located further away from E = 0.) This unique localization
of eigenstates overturns the conventional expectation that the
edge at which the NHSE localization occurs is determined
by the dominant nearest-neighbor asymmetric coupling di-
rection [31]. In the next section, we will analyze this bipolar
NHSE in more detail by considering the specific example of
the n = 5 long-range non-Hermitian coupling system, whose
eigenmode localization is illustrated in Figs. 1(e) and 1(f).

A. Topological invariant in presence of long-range coupling

In the preceding section, we explored how the introduction
of long-range coupling gives rise to skin modes at one or
both boundaries. In this section, we introduce a non-Hermitian
topological invariant to analyze the conventional and bipo-
lar NHSE. The NHSE localization direction at an arbitrary
reference energy Eref can be determined from the non-Bloch
winding number η, which is given by

η = 1

2π

∮
|β|=1

dβ Arg[E (β ) − Eref ]. (7)

A positive (negative) finite value of η indicates that a
semi-infinite system extending from −∞ to 0 (0 to ∞) would
host bulk states that are NHSE- localized at the right (left)
edge of the system. A positive (negative) winding number
also indicates that if bulk OBC states exist within the energy
region around Eref bounded by the PBC curve, then these OBC
states will be localized at the right (left) boundaries of the
system. We explain why this is so below using the concept of
the GBZ. Figures 2(a) and 2(c) show the winding numbers
at different energies on the complex energy planes for the
n = 5 systems shown in Figs. 1(e) and 1(f), respectively. A
comparison between Fig. 2(a) and Fig. 1(e), and between
Fig. 2(d) and Fig. 1(f) shows that this correspondence between
the sign of the winding numbers and the localization direction
of the OBC eigenstates indeed holds.

Furthermore, the winding number can be visually deter-
mined from the PBC eigenenergy curve on the complex
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Winding number and NHSE localization : (a) PBC energy spectrum and winding number distribution of n = 5 system without
bipolar NHSE corresponding to Fig. 1(e) with t−1 = 1.2 and t−5 = −1. A lighter color on the PBC energy curve corresponds to smaller values
of k, which range from −π to π . The arrow on the PBC curve indicates the direction of increasing k. (b) The β distribution on the complex
β plane at the complex energies of (top) E = 0.9 + 0.4i and (bottom) E = 2 + 0.4i, which are indicated by the labeled circles in (a). (c) A
schematic illustration of the winding number distribution around an internal loop, as exemplified by the area within the white dotted rectangle
in Fig. 2(a). (d) PBC energy spectrum and winding number distribution of n = 5 system exhibiting bipolar NHSE with t−1 = 0.4 and t−5 = 0.5,
and (e) the β distribution at E = 0.1 (top) and E = 1.5 (bottom). (f) A schematic illustration of the winding number around an external loop,
as exemplified by the dotted rectangle in Fig. 2(d).

energy plane if the direction of increasing k on the eigenen-
ergy curve is known. From Eq. (7), the winding number
at the reference energy Eref is simply the number of times
the eigenenergy curve winds around Eref as k is increased
from −π to π with positive (negative) values of the wind-
ing number corresponding to counterclockwise (clockwise)
windings. As an illustration, let us consider the reference
energy Eref = 0.9 + 0.4i, indicated by the open circle la-
beled “A”, in Fig. 2(a). Its associated winding number is −1
because the vertical line x = 0.9 passing through the cen-
ter of this circle cuts across the eigenenergy curve twice,
with the eigenenergy curve progressing from left to right
with increasing k above the circle and the curve progressing
from right to left below the circle, indicating a clockwise
winding. Similarly, the winding number around Eref = 2 +
0.4i, indicated by the open circle labeled “B”, is −2 be-
cause the vertical line x = 2 passing through the circle cuts
across the eigenenergy curve twice above the circle and twice
below it.

Besides this visual interpretation of the winding number,
the winding number can also be expressed in an alternative
form that gives more insight into the connection between
the winding number and the NHSE localization direction.

Equation (7) can be recast into

η = −i

2π

∮
|β|=1

dβ
∂β[E (β ) − Eref ]

E (β ) − Eref
, (8)

where β ≡ exp(ik). Applying the argument principle, η is
then given by η(Eref ) = Z (Eref ) − P(Eref ) where P(Eref ) is
the number of poles of E (β ) − Eref while Z (Eref ) is the
corresponding number of zeros lying within the complex
unit circle. From Eq. (3), E (β ) − Eref = t1β + t−1β

−1 +
t−nβ

−n − Eref . Therefore P = n, while Z (Eref ) is the number
of βs that satisfy E (β ) = Eref and fall within the unit circle
on the complex β plane. Figure 2(b) shows the distribution
of βs satisfying E (β ) = Eref for Eref = 0.9 + 0.4i (top) and
Eref = 2 + 0.4i (bottom). From these plots, it is evident that
Z (Eref ) are 4 and 3, respectively, which correspond to the
winding numbers of η = 4 − 5 = −1 and η = 3 − 5 = −2,
respectively, for the two values of Eref , noting that n = 5. The
winding numbers obtained here by considering the number
of poles and zeros are in agreement with those obtained by
visually counting the number of times the eigenenergy curve
winds around Eref following Eq. (7) and depicted in Fig. 2(a).
Figure 2(e) shows corresponding examples for the two other
exemplary Eref values of 0.1 and 1.5 for the n = 4 case.
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From the above analysis, we can correlate the winding
number η to the NHSE localization direction under OBC: The
fact that η = Z − P = Z − n implies that the number of β

values that satisfy E (β ) = Eref and lie within the unit circle
in the complex β plane is given by Z = n + η. We show
in Appendix B that for a system with nth-order long-range
coupling to the left, the condition for Eref to lie on the GBZ
and thus be an OBC eigenenergy in the thermodynamic limit
is |βn+1| = |βn| where |β1| � |β2| . . . � |βn+1|. An η value
equal to 1 indicates that all (n + 1) β values lie within the
unit circle at energy values near Eref , which implies that βn and
βn+1 would both be within the unit circle if the GBZ condition
|βn| = |βn+1| holds. Here, we define an arbitrary energy E
to be near Eref if the PBC eigenenergy curve does not fall
between E and Eref on the complex energy plane. We explain
the reason for this definition in the next paragraph. Thus, if
an OBC eigenstate exists near Eref , then |βn| = |βn+1| < 1
for that eigenstate, and the eigenstate would be localized at
the left edge. Conversely, if η < 0 at Eref , then both |βn| and
|βn+1| have magnitudes larger than 1, which implies that any
OBC eigenstate that exists near Eref would be localized at the
right edge. Finally, an η value of exactly 0 would indicate
that exactly n of the smaller β values near Eref , including βn,
lie strictly inside the unit circle while βn+1 lies outside. This
implies that the condition |βn| = |βn+1| for an OBC eigenstate
to exist cannot be satisfied, so there are no OBC eigenstates
near Eref .

One corollary of η = Z − P, i.e., the difference between
the number of poles and zeros of E (β ) − Eref , is that changes
in the winding number as Eref is varied across the complex
plane would always entail a crossing of the PBC eigenenergy
curve. This is because any change in the winding numbers
will involve the transit of at least one of the β roots of the
E (β ) = Eref equation across the unit circle boundary in the
complex β plane. Thus, during this transition, at least one of
the β values must lie exactly on the complex unit circle at
some point. When β = β ′ lies exactly on the complex unit
circle, its corresponding k = −i ln(β ′) value is real, which
in turn implies that E (β ′) lies on the PBC energy spectrum.
Consequently, the winding number changes by 1 across a
simple linear section of the PBC spectrum, such as depicted
by the blue line segment in Fig. 2(c). We can thus conclude
that the NHSE must exist within any non-Hermitian system
in which the eigenenergy curve encloses a finite area. This
is because the winding number within the interior regions
bounded by the eigenenergy curve has a finite value, since
it differs by 1 from the winding number (which is 0) in the
region outside the curve that extends to infinity. Conversely,
there will be no NHSE when the eigenenergy curve takes the
form of an open curve that does not enclose any finite area in
the complex energy plane.

B. Mechanism of complex energy loop crossing
and its correspondence with NHSE

In the preceding section, we have examined the impact of
the interplay between the complex energy and long-range cou-
pling on the sign and magnitude of the winding number, which
in turn affects the localization of the NHSE. Intriguingly,
the presence of long-range coupling can alter the complex

energy spectra and lead to intersecting eigenenergy curves and
various loop configurations. In this section, we discuss how
long-range coupling also induces and modifies the complex
eigenenergy loop crossings and discuss their correspondence
with the winding number and NHSE.

As an illustration, Fig. 2(c) shows a schematic represen-
tation of an internal loop demarcated by the white dotted
rectangle in Fig. 2(a) in which the eigenenergy curve inter-
sects itself in a crossing that resembles an X shape to form an
inner loop enclosed within a larger outer loop in the complex
energy plane area bounded by the curve. We will refer to such
self-crossings as X crossings for conciseness henceforth. The
intersection point in an X crossing corresponds to having two
values of β lying on the unit circle on the complex plane.
Consequently, when one traverses across the two opposite
sides of the X crossing, the winding number must change
by either ±2 corresponding to having both β values moving
into or out of the unit circle, or remain unchanged, which
corresponds to one β value moving into the unit circle while
the other β moves out of it.

By considering the direction of increasing k on the
eigenenergy curve denoted by the arrowheads in Fig. 2(c),
it can be seen that the latter (i.e., 0 change in the winding
number) corresponds to the two quadrants of the X cross-
ing bounded by arrowheads pointing both towards or away
from the crossing point (i.e., the upper and lower quadrants
of the X crossing), and the former (i.e., ±2 change in the
winding number) involves the quadrants bounded by one ar-
rowhead pointing towards and the other pointing away from
the crossing point (the upper and lower quadrants of the X
crossing). Additionally, as shown in Fig. 2(c), the winding
number within the internal loop has the same sign as that the
larger outer loop bounded by the eigenenergy curve.

We now consider the self-intersection of the PBC eigenen-
ergy curve to form an external loop that protrudes into the
region exterior to the eigenenergy curve. (Note that “intersec-
tion” here refers to the eigenenergy curve intersecting itself,
while the related term “crossing” refers to the eigenenergy
curve crossing the real axis.) One example is demarcated
by the dotted white rectangle in Fig. 2(d), whose schematic
representation is shown in Fig. 2(f). Because an external loop
is directly adjacent to the region exterior to the PBC curve, its
winding number is necessarily ±1 (since the winding number
associated with the exterior region is 0). Furthermore, by
considering the direction of increasing k on the eigenenergy
curve, it can be seen that the winding number changes by ±2
as we traverse between the two quadrants of the X crossing
that link the external loop to the interior of the region bounded
by the eigenenergy curve. This results in the former having
a winding number of opposite sign to that in the latter. The
different signs of the winding number translates to the phe-
nomenon of bipolar NHSE in which the OBC eigenstates are
localized along both edges of the finite system.

Having established the correlation between the external
eigenenergy loops and the emergence of the bipolar NHSE,
we will proceed to show that the number of switches between
the NHSE localization at the two ends of the chain can be
engineered by tuning the system parameters so to increase
the number of X crossings. We have earlier explained how
the eigenenergy of an nth-order long-range coupled system
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(a) (b)

(c) (d) (e)

FIG. 3. Complex energy loops with alternating signs of winding numbers (a) Schematic representation of system with n complex energy
loops with alternating signs of winding numbers and (n − 1) X crossings denoted as BP1 to BPn−1. (b) Number of self-intersections in complex
eigenenergy spectrum at n = 5 as function of t−1 and t−5. The area demarcated by the solid red lines represents the region in which the
eigenenergy spectrum takes the form of alternating loops shown in Fig. 3(a). The dotted white line demarcates the region on the t−1 − t−5 plane
in which the eigenenergy distribution crosses the real energy axis ten times. [(c)–(e)] (Top) PBC eigenenergy spectrum, and OBC eigenenergy
spectrum and spatial density distribution, and (bottom) β-plane GBZ, of (c) n = 5, (d) n = 6, and (e) n = 7 systems with t1 = 1, t−1 = 1.05,
and t−n = 0.05.

described by Eq. (3) can cross the imaginary axis up to a
maximum of 2n times. Hence, a large number of alterna-
tions between NHSE localizations can be achieved by tuning
the system parameters such that all the 2(n − 1) real-axis
eigenenergy crossings (disregarding the two crossings at the
extreme ends of the eigenenergy curve) take the form of X
crossings. In other words, we have (n − 1) X crossings (n.b.
each X crossing corresponds to two crossings of the real axis
by the two degenerate states at each X point) resulting in n
loops, as shown schematically in Fig. 3(a). Such a config-
uration corresponds to the maximum number of times the
complex energy loop crosses the real energy axis and the mini-
mal number that the loop intersects itself where all the self-
intersections occur at the crossings. Figure 3(b) plots the
number of self-intersections for a n = 5 long-range coupled
system as a function of the coupling parameters t−n and t−1.
The intersection between the region with the maximal number
of real energy axis crossings demarcated by the dotted white
lines [refer also to Fig. 1(d)] and the region with the minimal
number of self-intersections is denoted by the solid white lines
marks. Within this intersection region, we have the desired
eigenenergy spectrum which takes the form of consecutive
loops along the real axis [schematically drawn in Fig. 3(a)].
From Fig. 3(b), we see that such a configuration exists around

the vicinity of t1 = 1, t−n = 0 (although not exactly at t−n = 0,
which would correspond to a conventional HN system.)

C. Formation of series of twisted complex energy loops
with opposite windings and Bloch points

To illustrate the concept of series of twisted complex en-
ergy loops with opposite winding index [shown schematically
in Fig. 3(a)], we consider various order of unidirectional
long-range coupling. With the optimal choice of the cou-
pling parameters [e.g., corresponding to the triangular areas
bounded by the white dotted lines in Fig. 3(b) for the
case n = 5], we depict examples for n = 5 − 7 for which
the eigenenergy spectrum takes the form of n consecutive
loops. As we traverse each X crossing, the winding direc-
tion (clockwise/anticlockwise) of the eigenenergy curve flips.
This leads to a change in the sign of the winding number
and the flipping of the NHSE localization direction of the
OBC states between successive loops. The existence of bipo-
lar NHSE localization implies that the GBZ would contain
segments that lie both within and outside the unit circle
on the complex β plane, as verified in the bottom plots of
Figs. 3(b)–3(e).
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Let us consider the Bloch-like points that lie exactly on
the complex unit circle in Figs. 3(b)–3(e), which correspond
to the k values at which the eigenenergy curve intersects the
real axis and forms a X crossing. Interestingly, these OBC
eigenstates that lie exactly at each X crossing are not localized
at either of the edges. This absence of localization can be
explained in terms of the following: Each internal intersection
point at a X crossing on the complex energy plane represents
a transition between a region with η = 1, which possesses
(n + 1) β values lying within the unit circle, and a region
with η = −1, which possesses (n − 1) β values within the
unit circle (and hence two β values outside it). Thus, each
X crossing corresponds to an energy value where two β states
lie exactly on the complex unit circle as one state moves from
outside the unit circle to inside, and the other state moves
in the opposite direction. At this intersection point, there are
(n − 2) β values inside the complex unit circle and one β

value outside. This means that the n and (n + 1)th largest |β|
values are both on the complex unit circle. In other words,
the β-plane GBZ on the X crossing falls on the complex unit
circle. Thus, the NHSE localization length is 0, which results
in the absence of NHSE localization.

III. CONCLUSION

In conclusion, we have analyzed the generalized Hatano-
Nelson chain, which incorporates the effects of asymmetric
long-range coupling of arbitrary orders. The introduction
of unidirectional long-range coupling results in multiple
twisting topology of its PBC eigenspectra in complex en-
ergy space. The number of eigenenergy loops equates to
the order of coupling. Furthermore, we showed the close
correlation between the loop topology and the NHSE local-
ization of the eigenstates of the system. The loop topology
can be engineered by tuning the long-range coupling pa-
rameters to exhibit maximum number of external loops
of alternating winding numbers. This leads to the phe-
nomenon of bipolar NHSE, where the position of the
NHSE localization is determined by the sign of the wind-
ing index rather than the direction of coupling asymmetry
according to the conventional understanding. Interestingly,
the crossing points of the eigenenergy loops are char-
acterized by real energy Bloch-like points, at which the
NHSE localization vanishes. We provide the underlying the-
oretical basis for the observed NHSE phenomena induced
by the eigenenergy loop topology, as well as numerical
verification of the theory. Finally, our results provide a
flexible and accessible method to modulate the complex
energy spectra of a long-range coupled non-Hermitian sys-
tem, thereby realizing multiple twisted eigenenergy loop
topology and inducing the novel NHSE localization as
described above.
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APPENDIX A: LOCALIZATION OF EIGENSTATES IN
HATANO-NELSON MODEL: IMAGINARY GAUGE

TRANSFORMATION APPROACH

The imaginary gauge transformation (similarity transfor-
mation) is a historically important approach in understanding
the exponential localization and eigenenergy spectrum of the
HN chain without long-range coupling. In this section, we
apply this approach on the finite chain represented by the
Hamiltonian Eq. (2). An imaginary gauge transformation

|x〉 → |x〉〉e−gx, (A1)

〈x| → egx〈〈x|, (A2)

g = ln

√
t1

t−1
(A3)

can be applied to Eq. (2) to convert it into the equivalent
Hermitian Hamiltonian

HOBC = √
t1t−1

N−1∑
x=1

(|x〉〉〈〈x + 1| + |x〉〉〈〈x + 1|), (A4)

where the double left/right angular brackets denote the trans-
formed basis states.

Importantly, this transformation preserves the energy spec-
trum because it is a similarity transformation. Consequently,
the eigenvalue spectrum of Eq. (2) is identical to that of
Eq. (A4). This implies that the eigenspectrum remains real
for any degree of non-Hermiticity as long as

√
t1t−1 is real.

At the same time, the introduction of the imaginary gauge
potential induces a position-dependent scaling of the eigen-
functions. From Eq. (A2), we read off that the spatial wave
function of the eigenstate |ψ〉 in the basis of Eq. (2), 〈x|ψ (x)〉,
is related to that in the basis of Eq. (A4), 〈〈x|ψ (x)〉 by

〈x|ψ〉 = egx〈〈x|ψ〉. (A5)

The egx term on the right of Eq. (A5) results in an exponen-
tial growth or decrease of the right wave function depending
on the sign of g. All the eigenstates therefore become localized
at one of the chain edges under OBC when the coupling
is asymmetrical (t1 �= t−1). Equation (A4) is essentially the
lattice version of Hamiltonian one-dimensional free electron
gas in an infinite potential well, which has the well-known so-
lution 〈〈x|ψ〉 = eikx − e−ikx where k = [2nπ/(N + 1)], n =
1, . . . , N for a chain that extends from x = 1 to x = N . From
the Bloch counterpart of Eq. (A4), H (k) = 2

√
t1t−1 cos(k), it

can be deduced that the OBC eigenenergies of Eq. (A5) lie on
the real line |E | � 2

√
t1t−1.

The relationship between 〈x| and 〈〈x| then implies that the
wave function of an OBC eigenstate ψHN (x) ≡ 〈n|ψHN in the
basis of Eq. (2) is explicitly given by

ψHN(x) =
(

t−1

t1

)x/2

(eikx − e−ikx ). (A6)

A notable observation from Eq. (A6) is that the magnitude
of the wave function is directly proportional to ( t−1

t1
)x/2. This

dependence has a significant implication: when |t−1| > |t1|,
the eigenstates become exponentially localized near the right
edge of the chain at x = N . Conversely, if |t−1| < |t1|, the
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eigenstates exhibit exponential localization near the left edge
of the chain at x = 1.

Although the imaginary gauge transformation described
above sheds light on the effects of asymmetrical coupling and
the spatial distribution of the wave function in simple non-
Hermitian systems like the non-reciprocal Hatano-Nelson
system above or the Su-Schrieffer-Heeger chain, it is not
universally applicable to more complicated systems such as
the ones with asymmetrical long-range coupling studied here.
This is because there is no similarity transformation with a
constant value of g like that in Eq. (A1) and (A2) that can be
performed on a generic nonreciprocal long-range Hamiltonian
to convert it into a Hermitian Hamiltonian with purely real
eigenvalues. The nonexistence of such similarity transforma-
tions is hinted at by the fact that unlike the HN system where
|β| has the constant value of g in Eq. (A3) throughout the
entire GBZ, which then takes the form of a circle in the
complex β plane, the |β| values in general vary at different
points on the GBZ, as can be seen from the bottom plots in
Figs. 3(c)–3(e). Another indication that such similarity trans-
formations do not exist is the fact that the OBC energy spectra
for these systems are complex rather than real: if a similarity
transformation that converts the non-Hermitian Hamiltonian
to a Hermitian one and preserves the eigenvalues exists, it
would not have been possible to obtain complex eigenvalues
from a Hermitian Hamiltonian. A more modern and univer-
sally applicable approach that has been commonly adopted
to explain the non-Hermitian skin effect in more recent works
over the past three years is the GBZ, which we explain in more
detail in the next section.

APPENDIX B: GENERALIZED BRILLOUIN ZONE

As noted above, although the OBC eigenspectra of pro-
totypical systems as the Su-Schrieffer-Heeger (SSH) and
Hatano-Nelson chains with nearest-neighbor couplings are
consistently real, this is not always the case for more complex
models involving long-range couplings or gain/loss terms
[31,32,35,73,81,82].

The emergence of complex eigenenergies is not surprising
because the eigenvalues of a non-Hermitian matrix, such as
the Hamiltonian of a finite-length chain with asymmetrical
coupling in Eq. (6), are not restricted to real values but can,
in general, be complex. Fundamentally, the eigenvalue E
must satisfy the requirement that the Schrödinger equation
〈x|H |ψ〉 = 〈x|ψ〉E is satisfied by the eigenstate of a Hamilto-
nian of a finite-length chain (i.e., under OBC) at all the lattice
sites lying within the extent of the chain, i.e., x = 1, . . . , N .

Consider the Hamiltonian Eq. (6). For a lattice site x that
lies within the interior in the chain for which all the sites it is
coupled to by t−1, t1, and t−n lie within the chain, i.e., n < x <

N − 1, the Schrödinger equation at x reads

t1ψ (x + 1) + t−1ψ (x − 1) + t−nψ (x − n) = Eψ (x). (B1)

This is the same equation that is obeyed at any lattice site
inside an infinitely long chain. In non-Hermitian systems, the
Bloch theorem for Hermitian system, which states that the
wave function of a periodic system with a unit cell containing
a single lattice point has the form of exp(ikx), is extended so
that k is no longer limited to real values but can, in general,

be complex (see, for example, Ref. [79]). It is conventional to
introduce β ≡ exp(ik). Writing ψ (x) = βx in Eq. (B1) gives

t1β
n+1 + t−1β

n−1 + t−n − Eβn = 0, (B2)

which is an (n + 1)th-order polynomial in β. For a given
E , Eq. (B2) has n + 1 solutions for β, which we label
as β1, β2, . . . , βn+1 where |β1| � |β2| � . . . � |βn+1|. Equa-
tion (B1) is then satisfied by any linear combination of the
n + 1 β values

ψ (x) =
n+1∑
j=1

βx
j c j, (B3)

where the n + 1 c js are position-independent constant coef-
ficients. In particular, ψ (x) in Eq. (B3) is also an eigenstate
of the OBC Hamiltonian Eq. (6) when appropriate boundary
conditions are applied as follows: We note that Eq. (B1)
will also hold for an eigenstate of Eq. (6) at 1 � x � n and
x = N if we introduce the n + 1 constraints that ψ (−n +
1) = . . . = ψ (0) = 0 and ψ (N + 1) = 0 [for example, 〈x =
1|H〉 = Eψ (1) = t1ψ (2) in Eq. (6) is equal to t1ψ (2) +
t1ψ (0) + t−nψ (1 − n) if ψ (0) = ψ (1 − n) = 0]. Substitut-
ing the expression for ψ (x) in Eq. (B3) into these n + 1
constraints results in a homogenous system of n + 1 linear
equations in the n + 1 unknown c js. The eigenenergies of a
chain with any finite value of N can then be solved for exactly
by finding the values of E at which the determinant of this
system of linear equations is zero.

The GBZ approach provides a simpler approach for
obtaining the loci of the eigenenergies on the complex en-
ergy plane in the thermodynamic limit N → ∞ compared
to computing the zeros of the determinant explicitly. The
key idea in this is that a certain pair of the β values is
required to have the same moduli so that the boundary
conditions can be satisfied at both ends of the chain si-
multaneously, as explained in the following. To facilitate
the explanation, we shift the x position labels of the chain
from x = 1 − x = N to x = −(N − 1)/2 − x = (N − 1)/2.
The boundary conditions then become ψ[−(N − 1)/2 −
n] = ψ[(N − 1)/2 − n + 1] = . . . = ψ[−(N − 1)/2 − 1] =
0 and ψ[(N − 1)/2 + 1] = 0.

Consider first the boundary condition at x = (N − 1)/2 +
1. As N → ∞, the absolute value of β

(N−1)/2+1
j for the

smaller β j values with j = 1, . . . , n − 1 become negligibly
small compared to those of βn and βn+1. The corresponding
c jβ

(N−1)/2+1
j , j = 1, . . . , n − 1 terms in Eq. (B3) can then be

approximated to zero and we have

ψ[(N − 1)/2 + 1] ≈ cnβ
(N−1)/2+1
n + cn+1β

(N−1)/2+1
n+1 . (B4)

Note that we cannot approximate the cnβ
(N−1)/2+1
n term in

Eq. (B4) to 0 because otherwise, the cn+1β
(N−1)/2+1
n+1 cannot

be canceled off to make ψ[(N − 1)/2 + 1] zero.
Consider next the n boundary conditions at the left

end of the chain ψ (x) = 0, x = −(N − 2)/2 − n, . . . ,−(N −
1)/2 − 1. To guarantee the existence of a solution for these
n equations, we need all n + 1 terms in Eq. (B3) to be of
approximately the same order of magnitude at these values
of x so that there are more non-negligible free variables (i.e.,
the n + 1 c js) than constraints (the n boundary conditions).
Now considering all the n + 1 boundary conditions at the left
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and right ends collectively, we note that there is a requirement
for ∣∣cnβ

x
n

∣∣ � ∣∣cn+1β
x
n+1

∣∣ (B5)

at both negative values of x at x = −(N − 2)/2 −
n, . . . ,−(N − 1)/2 − 1 and at a positive value of x at x =
(N − 1)/2 + 1. Equation (B5) can hold at both the negative
and positive values of x as N → ∞ only when |βn| = |βn+1|;
otherwise, if |βn+1| is slightly larger than |βn|, the left side of
Eq. (B5) will become exponentially smaller than the right side
at x = (N − 1)/2 + 1, and exponentially larger than the right
at x = −(N − 2)/2 − n, . . . ,−(N − 1)/2 − 1 as N → ∞ for
any finite values of cn and cn+1. The loci of the OBC energy
eigenvalues at large values of N therefore approaches the
loci of E at which |βn| = |βn+1|, which gives the GBZ. (This
condition differs from the usual criteria that it is the moduli of
the middle pair of |β| that needs to have the same value rather
than the largest pair of |β| values here because the former
applies only for systems at which the farthest coupling to the
left and right have the same distances, whereas the long-range
coupling here is unidirectional.)

We illustrate the application of the GBZ approach through
the example of the system with second-order unidirectional
coupling in Eq. (6). The solutions for β of Eq. (B2) at n = 2
are then given by

β1 = E

3t1
− 2

1
2 λ2

3t1λ
+ λ

3 × 2
1
3 t1

, (B6)

β2 = E

3t1
+ (1 + √

3i)λ2

3 × 2
2
3 t1λ

− (1 − √
3i)λ

6 × 2
1
3 t1

, (B7)

β3 = E

3t1
+ (1 − √

3i)λ2

3 × 2
2
3 t1λ

− (1 + √
3i)λ

6 × 2
1
3 t1

, (B8)

where λ1 = 2E3 − 27t2
1 t2

−2 − 9Et1t−1, λ2 = 3t1t−1 − E2, and

λ = (λ1 +
√

4λ3
2 + λ2

1 )1/3. Following the arguments above,
the OBC eigenspectrum is given by the loci of E where |β2| =
|β3|. Although the loci of E that satisfies this requirement is
obviously too complicated to solve for analytically, it can be
appreciated from the presence of the complex coefficients in
Eq. (B7) and (B8) that the solutions for E are, in general,
complex and not purely real. Moreover, the common value of
|β2| and |β3| is, in general, not necessarily 1. This results in an
exponential localization of the wave function, i.e., the NHSE
via Eq. (B3).

For comparison, we also derive the OBC eigenenergy spec-
trum of the HN chain without long-range coupling (i.e., tn =
0) using the GBZ approach. In this case, the two values of β

are given by

β± = E ±
√

E2 − 4t1t−1

2t1
, (B9)

and it is required that |β+| = |β−| on the GBZ. A key dif-
ference between Eqs. (B9), for which there is no long-range
coupling, and (B7) and (B8), for which there is a second-order
long-range coupling, is that there are no complex coefficients
in the former. This opens the possibility for the solutions of
E in |β+| = |β−| to be purely real in the HN chain rather
than complex. Indeed, |β+| = |β−| holds when the β±s form
a complex conjugate pair. This occurs when the term in the
square root, viz. E2 − 4t1t−1, is negative. The OBC spectrum
of the HN chain in the thermodynamic limit is hence given
by |E | < 2

√
t1t−1, which matches the OBC spectrum obtained

using the imaginary gauge approach.
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