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Barrier and finite-size effects on the extension of topological surface states into magnetic insulators
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The interplay between magnetic and topological order can give rise to phenomena such as the quantum
anomalous Hall effect. The extension of topological surface states into magnetic insulators (MIs) has been
proposed as an alternative to using intrinsically magnetic topological insulators (TIs). Here, we theoretically
study how this extension of surface states into a magnetic insulator is influenced both by the interface barrier
potential separating a topological insulator and a magnetic insulator and by finite-size effects in such structures.
We find that the gap in the surface states depends nonmonotonically on the barrier strength. A small, but finite,
barrier potential turns out to be advantageous as it permits the surface states to penetrate even further into the
MI. Moreover, we find that due to finite-size effects in thin samples, increasing the spin splitting in the MI can
actually decrease the gap of the surface states.
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I. INTRODUCTION

Topological insulators (TIs) are materials that are insulat-
ing in the bulk and have topologically protected conducting
surface states [1–3]. Combining the topological properties of
TIs with magnetic order can give rise to the quantum anoma-
lous Hall effect (QAHE) as a result of broken time-reversal
symmetry in the TI [3–7], which could have applications in
low-dissipation spintronics devices. Magnetic TIs are also
discussed as an avenue to the realization of Majorana quasi-
particles with potential relevance for implementations of
quantum-computation platforms [6]. The first observation of
the QAHE was in 2013, where the effect was achieved by
doping a TI with magnetic impurities [8,9]. However, achiev-
ing QAH resistance quantization at zero magnetic field has
remained limited to temperatures of the order of tens of mK
in these systems, which was explained by thermally activated
bulk conductance [10]. An interesting alternative way to pro-
duce the QAHE would be to use an intrinsic magnetic TI,
such as the van der Waals magnet MnBi2Te4 [11]. Yet, while
signatures of the QAHE were reported in thin exfoliated flakes
of odd-layer thickness [12], the antiferromagnetic order in
MnBi2Te4, in general, does not provide ideal prerequisites for
a robust QAHE.

Another approach to break time-reversal symmetry at the
surface of a TI is to exploit a magnetic proximity effect be-
tween a TI and a magnetic insulator (MI) [3]. Here, proximity
to an MI is expected to induce a magnetization within a shal-
low region below the surface of an otherwise nonmagnetic TI.
This should give rise to an exchange gap in the Dirac cone of
the topological surface state. However, while various TI-MI
heterostructures have been investigated experimentally [13],
the observation of magnetic topological behavior and an ex-
change gap in the surface state has remained challenging.
For example, a strong magnetic proximity effect was initially
reported in a EuS/Bi2Se3 heterostructure [14]. Yet, more
recent experiments found no evidence for induced magne-
tization in the Bi2Se3 subsystem [15], in agreement with

first-principles calculations that find no significant exchange
gap in the topological surface state [16]. Going beyond a
magnetic proximity effect, it has been proposed that in suit-
able TI-MI heterostructures with weak potential modulation at
the interface the topological surface state can partly relocate
into the MI, leading to a larger overlap between the surface
state and the magnetic subsystem [17,18]. This effect is re-
ferred to as magnetic extension and requires similar atomic
structures and atomic compositions of the TI and MI, in
order to avoid the formation of a strong interface potential.
Compared to a mere magnetic proximity effect, a magnetic
extension can drastically enhance the exchange gap [17,18].
A magnetic extension was recently experimentally achieved in
Bi2Te3/MnBi2Te4 heterostructures [19], where it was possible
to observe a sizable exchange gap in the surface state up to
the critical temperature of 15 K. First-principles calculations
for various related material combinations and heterostructures
showed significant variations of the exchange gap [17,18],
indicating that the effective barrier heights at the interface
and the location of the surface state can be controlled by
the atomic composition and film thickness. In general, inter-
face potential barriers in semiconductor heterostructures can
be manipulated through various methods. For example, dop-
ing and an external gate voltage can be used to influence the
potential profile across an interface. Also graded compositions
have been used to tune interface potentials in heterostruc-
tures [20]. Applying strain in a heterostructure can modify
the electronic properties, potentially leading to changes in the
interface potential barrier [21]. Epitaxial growth techniques
can be employed to induce strain.

Here, we theoretically study how the topological surface
states in TI/MI heterostructures are affected by the barrier
potential at the TI/MI interface, the magnitude of the spin
splitting, and finite-size effects due to the finite thickness
of the materials. In particular, we choose a model Hamilto-
nian and parameter values corresponding to Bi2Se3 for the
TI, whereas we choose parameter values corresponding to
MnBi2Te4 for the MI. Moreover, we consider both when
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the MI is in a topologically trivial state and when it is in a
nontrivial state. We find that the energy gap of the surface
states has a nonmonotonic dependence on the barrier strength.
Below a critical value, the barrier potential actually turns out
to be advantageous as it permits the surface states to pene-
trate further into the MI compared to an ideal, barrier-free
interface. In addition, we find that due to finite-size effects
in thin samples, an increase in the spin splitting in the MI can
diminish the gap of the surface states at certain thicknesses.
This stands in contrast to the gap behavior in thick samples
without edge hybridization where the gap simply grows as the
spin splitting increases. These results might prove useful for
optimizing experimental efforts aiming to achieve extension
of topological surface states into a time-reversal symmetry-
breaking magnetic environment.

II. MODEL

To model the TI/MI bilayer we adopt an effective four-
band low-energy model [22] for momenta near the � point,

H = εk + V +
(

Mkτz + Akτx + h Bkτx

B∗
kτx Mkτz − Akτx − h

)
,

(1)
where the basis is a set of four orbitals,

� = (|P1+
z ,↑〉 |P2−

z ,↑〉 |P1+
z ,↓〉 |P2−

z ,↓〉)T
. (2)

The above Hamiltonian can be used to model the low-energy
behavior near the � point in the Brillouin zone for topological
insulators such as Bi2Se3, Bi2Te3, and MnBi2Te4 [22,23] The
P1 and P2 orbitals stem from the Bi and Se (Te) atoms or
a hybridization of these due to spin-orbit coupling, whereas
the subscript and superscript refer to the spatial orientation of
the orbital and its parity, respectively. For simplicity, we have
assumed the same g factor for both orbitals in Eq. (1).

The parameters εk , Mk , Ak , and Bk are functions of momen-
tum parallel to the interface, k‖, and momentum orthogonal to
the interface, kz, and can be obtained by fitting the low-energy
model above to first-principles calculations for each material.
As the translational symmetry is broken in the direction or-
thogonal to the interface, we perform a Peierls substitution,
kz → −i∂z. With this,

εk = C0(z) + 1
2

{
C1(z), (−i∂z )2

} + C2(z)k2
‖ , (3a)

Mk = M0(z) + 1
2

{
M1(z), (−i∂z )2} + M2(z)k2

‖ , (3b)

Ak = 1
2 {A1(z),−i∂k}, (3c)

Bk = B1(z)(kx + iky), (3d)

where {Cj, Mj, A1, B1} are material specific parameters and
j ∈ {0, 1, 2}. The anticommutators are added to ensure that
the Hamiltonian is Hermitian. We let the interface be located
at z = 0 and to allow for a smooth numerical solution we use
a sigmoid function,

θ (z) = 1

1 + e−z/0.14 Å
, (4)

to define the transition between the TI and the MI that extends
over a length of around 1 Å. That is,

M0(z) = ML
0 [1 − θ (z)] + MR

0 θ (z), (5)

and similarly for all the other parameters, where
{CL

j , ML
j , AL

1 , BL
1 } is the set of material parameters for the

TI and {CR
j , MR

j , AR
1 , BR

1 } is the set of material parameters for
the MI. Additionally, Eq. (1) includes the Zeeman exchange
energy

h(z) = h0θ (z), (6)

and a potential barrier

V (z) = V0∂zθ (z). (7)

Note that
∫ ∞

−∞
dz V (z) = V0 (8)

by construction.
For the TI we choose parameters that correspond to Bi2Se3,

meaning that CL
0 = −6.8 × 10−3 eV, CL

1 = 1.3 eV Å2 ,
CL

2 = 19.6 eV Å2 , ML
0 = 0.28 eV, ML

1 = −10 eV Å2 ,
ML

2 = −56.6 eV Å2 , AL
1 = 2.2 eVÅ, and BL

1 = 4.1 eVÅ.
We vary the parameters of the MI, but set CR

0 =
−4.8 × 10−3 eV, CR

1 = 2.7232 eV Å2 , CR
2 = 17 eV Å2 ,

MR
1 = −11.9048 eV Å2 , MR

2 = −9.4048 eV Å2 , AR
1 =

2.7023 eVÅ, and BR
1 = 3.1964 eVÅ fixed. These values

correspond to a low-energy effective model for MnBi2Te4

in the antiferromagnetic state [23]. The MI can be in a
topologically trivial or nontrivial state depending on the
sign of MR

0 , and we consider both possibilities below. We
emphasize that TI and MI from now on refer to the specific
material choices described above.

To clarify, let us outline how the Hamiltonian used in
Eq. (1) may be obtained. First-principles calculations have
previously been used to determine the band structure of
MnBi2Te4 [23]. To describe the topological edge states, it is
sufficient to consider the low-energy behavior of these bands
close to the � point in the Brillouin zone. Starting from the
lowest-lying orbitals |P1+

z , σ 〉 and |P2−
z , σ 〉 and using these

as a basis for the eigenstates of the low-energy Hamiltonian
operator, the latter may then be constructed on symmetry
grounds by expanding it up to quadratic order in momen-
tum k and keeping only terms that are compatible with the
symmetry of the crystal structure. The magnitudes of all such
allowed terms are then characterized by the material-specific
parameters {Cj, Mj, A1, B1} used above. The values of these
coefficients can finally be extracted by fitting the low-energy
model to the results obtained via first-principles calculations.

The choice of this model Hamiltonian is motivated by the
fact that the same material was used in the recent experi-
ment [19] that studied precisely the extension of surface states
into an MI. We also set ky = 0, such that k‖ = kx. We denote
by LTI and LMI the lengths of the TI and MI, respectively.

To numerically determine eigenstates and eigenvalues of
the Hamiltonian, we discretize the wave functions in space
and approximate derivatives by finite differences. In order to
ensure sufficient resolution at the interface we also perform a
substitution ζ = f (z) and discretize ζ such that a uniform ζ

grid correspond to a high density of discretization points near
z = 0.
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FIG. 1. (a) Penetration depth, 〈z〉, associated with the surface
states as a function of MR

0 with h0 = 0.1 eV, V0 = 0, LTI = 10 nm,
and LMI = 13.7 nm. (b) The square amplitude of the interfacial sur-
face state at a selection of MR

0 values and the same parameters as
in (a).

III. MAGNETIC EXTENSION OF SURFACE STATES

First, we consider how the magnetic extension of surface
states varies as a function of MR

0 . Figure 1 shows the penetra-
tion depth,

〈z〉 =
∫ LMI

−LTI

dz z|ψ (z)|2, (9)

where ψ is the wave function corresponding to a surface state.
We set kx = 0 when evaluating wave functions of surface
states. At h0 = 0 and kx = 0 the Hamiltonian is block diagonal
and the two blocks are related through time reversal. There-
fore, the eigenfunctions come in pairs that are related through
time reversal. For this reason, there are two surface states at
both surfaces of the TI. The two surface states are no longer
Kramers pairs when h �= 0, but we find that they have a similar
penetration depth and spatial distribution for the parameters in
Fig. 1. Therefore, although Fig. 1 only shows the penetration
depth of one of the surface states, the results are similar for
the other surface state.

Figure 1 shows a sudden jump in 〈z〉 as MR
0 crosses 0.

This is reasonable because MR
0 = 0 marks the transition from

topologically trivial (MR
0 /MR

2 > 0) to topologically nontrivial

(MR
0 /MR

2 < 0). The MI is topologically trivial when MR
0 <

0, and the surface state is therefore located at the interface
between the TI and the MI at z = 0. As |MR

0 | is reduced,
the bulk gap is reduced and therefore the energy difference
between the surface states and the bulk states is reduced. This
leads to the surface states becoming more delocalized until
the state is fully delocalized inside the MI when MR

0 = 0. As
MR

0 is increased further, the surface state again becomes more
localized, but now it centers around the interface between
the MI and vacuum because the MI is also topologically
nontrivial [3].

Figure 2 shows the energy spectra for different values of
V0, and with the remaining parameters fixed at LTI = LMI =
50 nm, MR

0 = −0.5 eV, and h0 = 50 meV. For all values of
V0, there are four energy bands inside the bulk gap. The two
that cross around E = 0 come from the topological surface
states at z = −LT I and are therefore unaffected by the inter-
face potential proportional to V0. The two remaining surface
states are gapped at kx = 0, but this gap has an interest-
ing, nonmonotonic dependence on V0. The interfacial surface
states corresponding to kx = 0 are shown in Fig. 3 for the same
parameters as in Fig. 2.

As V0 is increased, both of the energy bands corresponding
to the interfacial surface states are shifted upwards in energy.
Simultaneously, the gap is also increased. In Fig. 2(a), the gap
between the interfacial surface states is 23 meV, and the gap in
Fig. 2(b) is 31 meV. This increase can be understood from the
fact that the wave function is slightly shifted into the MI as V0

increases. As the interfacial surface state bands are shifted into
the region bulk conduction bands, new energy bands emerge
from the valence bands.

This transition can be seen in Figs. 2(b)–2(e), where two
new energy bands emerge into the bulk gap from below
while the two energy bands corresponding to the initial sur-
face states leave the gap. As the new states enter the bulk
gap from the valence band, they also become localized at
the interface, as can be seen in Fig. 3. Moreover, the initial
surface states become delocalized as V0 increases, and their

FIG. 2. Energy spectra for TI/MI heterostructures with LTI = LMI = 50 nm, MR
0 = −0.5 eV, h0 = 50 meV, and (a) V0 = 0 eVÅ, (b) V0 =

0.3 eVÅ, (c) V0 = 0.35 eVÅ, (d) V0 = 0.4 eVÅ, (e) V0 = 0.6 eVÅ, and (f) V0 = 10 eVÅ. The blue lines correspond to the surface states at
z = −LTI. The energy eigenvalues at kx = 0 inside the gap correspond to some of the surface states plotted in Fig. 3.
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FIG. 3. Interfacial surface states in TI/MI heterostructures with LTI = LMI = 50 nm, MR
0 = −0.5 eV, h0 = 50 meV, and (a) V0 = 0 eVÅ,

(b) V0 = 0.3 eVÅ, (c) V0 = 0.35 eVÅ, (d) V0 = 0.4 eVÅ, (e) V0 = 0.6 eVÅ, and (f) V0 = 10 eVÅ. The surfaces states shown in this figure can
be matched with the energy spectra at kx = 0 in Fig. 2.

energies are shifted into the conduction band. In other words,
as V0 increases, the surface states are shifted into the MI
and are replaced by new surface states. These new states
seem to emerge from TI bulk states and they remain more
localized in the TI side of the interface. As a result, the
energy gap associated with these states is much smaller. As
V0 is increased further, the surface states are pushed further
into the TI, reducing the energy gap even more. This is as
expected since the TI and MI should become decoupled as
V0 → ∞. From Fig. 2(f), we can see that the energy bands
corresponding to the interfacial surface states start to over-
lap with the energy bands associated with the surface states
at z = −LTI.

These results indicate that the interfacial barrier potential
must be smaller than some cutoff in order to get an appreciable
gap induced by the MI. This can explain why it has been
challenging to observe gaps in TI/MI heterostructures before
the introduction of lattice-matched van der Waals structures.
Interestingly, a small interfacial potential can be advanta-
geous, as it increases the energy gap and shifts the surface
state further into the MI.

IV. FINITE-SIZE EFFECTS

Next, we consider how the ferromagnetically extended sur-
face states at z = 0 interact with the topological surface states
at z = −LTI when LTI is small. We fix LTI/LMI and determine
the energy gap � as a function of LTI. The result is shown
in Fig. 4 together with the spectrum at some values of LTI.
The gap closes and reopens as a function of L, similar to the
gap in pure Bi2Se3 [24–26]. This is not surprising, as the TI
is Bi2Se3 in our model. However, unlike the gap in Bi2Se3,
the values of L for which the gap closes are not uniformly
spaced in Fig. 4(a). The gap closes around LTI = 2 nm and
LTI = 4.5 nm for all values of LTI/LMI, but the locations of
the other gap closures depend on LTI/LMI.

For more insight into why the ferromagnetically extended
surface states display an energy gap that vanishes at unevenly

spaced values of the layer thickness, we study how an addi-
tional uniform exchange field affects the finite-size effects in
pure Bi2Se3. That is, we set LMI = 0 and let the exchange field

FIG. 4. (a) Energy gap � in TI/MI bilayers as a function of
LTI for different values of LTI/LMI, and with MR

0 = −0.2 eV, h0 =
100 meV, and V0 = 0 eVÅ. (b) The energy spectrum for some values
of LTI for the case with LTI = LMI, illustrating that the gap closes and
reopens at LTI = 2.0419 nm.
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FIG. 5. Energy gap in Bi2Se3 with an added constant spin split-
ting field h as a function of LTI.

h act also on the TI side. The result is shown in Fig. 5. When
h = 0 the thicknesses where the gap function goes to zero
(so-called roots) are uniformly spaced as expected. However,
as h increases, the roots split, leaving a nonuniform spacing
between roots. We find that the gap as a function of h in Fig. 5
satisfies

�(h) = |�(0) − 2h|. (10)

This can be understood by how the exchange field splits the
two energy bands. At h = 0, the gapped energy bands are also
spin degenerate because of the symmetries of the Hamilto-
nian, as explained above. That is, there are two states with
energies E1 below the gap and two states with E2 above the
gap, such that E2 − E1 = �(0). As h is increased, each of the
bands is split such that the four states have energies E1 ± h
and E2 ± h. Hence, the gap is �(h) = E2 − h − (E1 + h) =
�(0) − 2h.

The splitting of the roots in TI/MI heterostructures is
similar, although there are some important differences. In
particular, Eq. (10) is not true for the TI/MI structures. While
the gap in pure magnetic TIs goes to 2h, the gap in the TI/MI
structures goes to 0 as L → ∞. Moreover, because the gap

amplitude is much smaller near the second root in the pure
TIs, the second root is split much more as a function of LTI

when the exchange field is applied compared to the first root.
In contrast, the difference between the third and fourth roots
in Fig. 4 is not much larger than the difference between the
first and second roots, although this difference depends on the
ratio LTI/LMI.

In both cases, it is interesting to note that, depending on the
sample length, the gap can actually be reduced or even closed
by increasing h. This means that, although one usually expects
the gap to open when reducing the temperature and going
from the paramagnetic phase to the ferromagnetic phase, the
opposite can happen in thin samples.

V. CONCLUSION

Summarizing, we have studied the effects of a (i) finite
barrier and (ii) finite thickness on the surface states of a
topological insulator/magnetic insulator (TI/MI) bilayer, as
well as the effect of (ii) on an intrinsic topological magnetic
insulator. We find that the energy gap of the surface states has
a nonmonotonic dependence on the barrier strength. Below a
critical value, the barrier potential permits the surface states to
extend further into the MI compared to a barrier-free interface.
We also find that due to finite-size effects in thin samples,
an increase in the spin splitting in the MI can diminish the
gap of the surface states at certain thicknesses. This stands
in contrast to the gap behavior in thick samples without edge
hybridization where the gap simply grows as the spin splitting
increases. We hope these findings may be of use in terms of
designing experiments aiming to realize extension of topolog-
ical surface states into a magnetic material.
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