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Strain-induced topological phase transition in graphene nanoribbons
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The electronic properties of two-dimensional (2D) nanostructures are highly responsive to changes in their
geometry, making strain-engineering a powerful method for tuning the electronic characteristics of flexible 2D
nanostructures. Quasi-one-dimensional (1D) graphene nanoribbons (GNRs) are crucial quantum building blocks
in the development of next-generation flexible devices and have recently been recognized for possessing distinct
symmetry-protected topological phases characterized by a Z2 invariant. In this study, utilizing the tight-binding
(TB) model, we present compelling evidence that the topological phase transition in 1D GNRs can be effectively
controlled through strain-engineering. Furthermore, we investigate the behavior of heterojunctions composed
of different types of AGNR segments and reveal that strain can create or eliminate the junction state while
significantly enhancing the end states. Our study presents a new method for tuning topological phase transitions
in flexible quasi-1D materials, offering an efficient way to control over junction state and end states.
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I. INTRODUCTION

Topological phases of matter, having a gapped spectrum in
bulk and supporting a metallic edge excitation robust against
symmetry-respecting perturbation, have attracted tremendous
interest in the past decades. In contrast to the general wisdom
of Landau-Ginzburg field theory, the topological phases share
the same symmetry as a trivial insulator and still are differ-
ent phases, which are characterized by topological invariants
[1–10]. Since the discovery of topological quantum materi-
als [1–10], studies on the topology have mostly focused on
two-dimensional (2D) [3–5,7–10] and three-dimensional (3D)
[6,11] systems for many years. Recently, there is a rapidly
growing interest to study the topology of one-dimensional
(1D) systems such as graphene nanoribbons (GNRs) which
have additional rich physics and are different from other di-
mensions [12–22].

With the advancement of precision chemistry, it has
become feasible to synthesize GNRs through bottom-up ap-
proaches using precursor molecules. These techniques enable
the atomically precise design of a wide range of GNRs, allow-
ing for control over their edge shapes, widths, terminations,
and dopant atoms [23–27]. GNRs, as one-dimensional (1D)
systems, exhibit tunable electronic structures that hold great
promise for applications in material science, nanodevices,
and transport devices [28–32]. The topology classification of
various GNRs, characterized by the Z2 invariant and Z index,
has been extensively studied [12,14,22]. For instance, the Z2

invariant has been determined for armchair graphene nanorib-
bons (AGNRs) [12], cove-edged GNRs, chevron GNRs [14],
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cove-edged zigzag graphene nanoribbons (ZGNR-Cs) [22],
and chiral graphene nanoribbons [33]. These Z2 invariants are
influenced by factors such as the ribbon width, symmetry, and
geometric boundaries of the unit cell. Intriguingly, theoretical
predictions [12,14] and experimental verifications [16] have
demonstrated the existence of topological junction state in 1D
superlattices formed by alternating segments of GNRs with
distinct topological properties.

The ability to effectively and controllably adjust the topo-
logical invariants of materials is a crucial area of research,
with implications both in fundamental physics and practical
applications of topological insulators. In 2D and 3D systems,
extensive studies have investigated the transition between the
topological trivial phase and the topological nontrivial phase
using various methods including the application of exter-
nal electric fields [34], temperature variations [35], alloying
[36,37], asymmetry [38], polarization effects [39], and in-
terface engineering [40]. Through density-functional theory
(DFT) and tight-binding (TB) calculations, Refs. [41] and [42]
conducted an in-depth and comprehensive study on the gap
engineering through the strain of graphene nanoribbon and
found the band gap Eg of AGNRs can be closed and reopened.
However, in the context of 1D systems, the method for tuning
topological phases has only been proposed by Zhao et al., who
employed intricate and precise techniques involving the addi-
tion of boron-nitrogen atoms and external transverse electric
fields [21].

In this study, we propose a novel approach to achieve
topological phase transition in flexible 1D AGNRs through
the application of external strain. The graphene monolayer has
been experimentally demonstrated to possess high mechanical
strength, allowing them to withstand elastic strains up to 25%
and enabling the design of arbitrary strain patterns [43,44].
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FIG. 1. Geometry of AGNR. The illustration of unstrained
AGNR (a) and strained AGNR (b). The blue and red balls represent
A and B sublattice, respectively. The black dashed rectangular region
depicts a unit cell of the AGNR, which is commensurate with a
zigzag end termination. The unit cell contains 2N atoms, where N
corresponds to AGNRs with different widths. The two blue arrows
represent the direction of the strain.

Concurrently, the system undergoes a topological phase tran-
sition, leading to a change in the Z2 invariant from 1 to 0
or from 0 to 1, depending on the width of the AGNRs. And
multiple topological phase transitions can occur with larger
strain. This transition is characterized by the interchange of
the parity eigenvalues of the wave function at the conduction-
band minimum (CBM) and valence-band maximum (VBM).
Furthermore, in heterojunctions composed of different types
of AGNR segments, we observe the emergence of a junction
state localized at the interface of the heterojunction, as well as
the presence of end states localized at the ends of the ribbons,
consistent with previous studies. Interestingly, the application
of the strain can create or eliminate the junction state, while
simultaneously enhancing the end states. Our study presents a
new method for tuning topological phase transitions in flexible
quasi-1D materials, offering an effective approach to control
over junction state and end states.

This paper is organized as follows. Section II provides a
detailed description of the strain form used in the study, along
with the TB model employed for AGNRs. The discussion of
the Zak phase is also included in this section. In Sec. III,
we present the numerical results, which include an analysis
of the band structure for AGNRs with varying widths, an
examination of the influence of the strain on the Eg, and an
investigation into the ability of the strain to induce topological
phase transitions in AGNRs. Finally, in Sec. IV, we provide a
concise summary of the findings presented in this paper.

II. MODEL AND THEORY

The geometry of AGNR is shown in Fig. 1(a). A graphene
ribbon consists of two sublattices, denoted as A and B, rep-
resented by blue and red colors, respectively. The width of
AGNR, denoted as N , is determined by the number of A
(B) atoms in a unit cell and the real width is given by W =
Na0/2, where a0 is the lattice constant of graphene. In this
study, we focus on AGNRs with N being odd and commen-
surate with a zigzag end termination, which ensures the unit
cells possess inversion or mirror symmetry [12]. In general,
strain can significantly modify the electronic spectrum of a

honeycomb lattice, leading to intriguing physical phenomena
such as valley filter [45], manipulation of edge states [46],
valley-dependent Brewster angles, and Goos-Hänchen effect
[47]. For AGNRs, previous studies have shown that strain with
the form ux = cy2 induces a pseudogauge field A(r) in the
Dirac equation, resulting in quasiflat Landau levels [48,49]. In
this study, we consider the strain form uy = f (y). Here, f (y) is
an arbitrary function about y. Importantly, the strain-induced
topological phase transition does not rely on the specific form
of the strain f (y). In fact, any function f (y) about y can be
expanded by Taylor series. We have calculated different strain
forms, including strain forms of linear terms, quadratic terms,
and cubic terms, and found that all of them effectively control
the topological phase transition in AGNRs, yielding consistent
conclusions. For simplicity, we consider the homogeneous
strain with

uy = cy (1)

shown by blue arrows in Fig. 1(b), as a typical example to
demonstrate topological phase transition driven by the strain
effect in AGNRs. It is reported that nonlinear effects that
arise for deformation strengths greater than about 20% of the
lattice constant of graphene are significant [50,51]. For our
case, the maximum change of the lattice constant is smaller
than the 8%, which is two times smaller than the 20% for the
original lattice constant. Therefore, we can safely neglect the
nonlinear strain effects. Results for the other three strain forms
are presented in the Supplemental Material [52].

The AGNRs can be well described by a TB model with one
π electron per atom, which can be written as

H =
∑

i

εia
†
i ai −

∑
〈i j〉

ta†
i a j + H.c., (2)

where a†
i and ai are the creation and annihilation operators,

respectively, for an electron on the lattice site i and onsite
energy εi. The second term t is the hopping parameter between
site i and site j. When considering the strain described by
Eq. (1), the hopping parameter t becomes position dependent
instead of constant and should be replaced by the relation t =
t0e−β(d/acc−1) [53]. Here, t0 is the original unstrained hopping
parameter, β is about the strength of the distance-dependent
hopping modulation, d is the strained distance between two
atoms, and acc = a0/

√
3 is the unstrained carbon-carbon dis-

tance. Using the Pybinding [54] and PythTB package [55], we
can get the electronic properties of the system.

The Zak phase, which refers to Berry’s phase [12,56]
gathered up by a particle moving across the Brillouin zone
(BZ), characterizes the symmetry-protected topological (SPT)
phases in a 1D periodic system. It can be obtained by an
integral of the Berry connection, i 〈ϕnk|∇kϕnk〉 across the 1D
BZ as follows:

γn = i(2π/L)
∫ π/L

−π/L
dk 〈ϕnk|∇kϕnk〉 , (3)

where L is the unit cell size, k is the wave vector, and ϕnk

is the the periodic part of the electronic Bloch wave func-
tion in band n. The Zak phase could be written in two parts
γn = γ1,n + γ2,n [15,57]. The former part of the Zak phase is
an intracell quantity that depends on the specific spatial origin
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and the choice of the unit cell. On the other hand, the latter
part is an intercell quantity that is purely defined in k space
and is based on the Bloch wave function. In general, the Zak
phase is sensitive to the shape of the unit cell and can take
on various values. However, if the system possesses spatial
symmetries such as inversion Î and/or mirror M̂, the Zak
phase of a band becomes quantized at either 0 or π . A Zak
phase of 0 corresponds to a topological trivial band, while a
Zak phase of π indicates a topological nontrivial band [12,56].

In 1D AGNRs, the SPT phase of a band insulator is de-
termined by the sum of the Zak phases of all the occupied
bands. To characterize the topology of AGNRs, we use the Z2

invariant [7]. The Z2 invariant could be calculated by [12]

(−1)Z2 = ei
∑

n γn , (4)

where the sum is over the occupied bands. The Z2 = 1(0)
indicates a topological nontrivial (trivial) insulator.

In addition to the TB model, we perform additional calcu-
lations using the Vienna ab initio simulation package (VASP)
code [58,59] to further validate the influence of the strain on
the electronic structure of AGNRs. In our DFT calculations,
we employ the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [60]. To ensure accuracy, a 13×1×1
Monkhorst-Pack k mesh is used to sample the BZ, and a
substantial vacuum region exceeding 20 Å is included in the y
and z direction. The plane-wave basis has an energy cutoff of
400 eV.

III. RESULTS AND DISCUSSIONS

It is widely recognized that the electronic properties of
AGNRs can be categorized into three distinct groups based
on their Eg, which are highly sensitive to the width (N) of the
ribbon. These categories are typically referred to as N = 3p,
N = 3p + 1, and N = 3p + 2, where p is an integer. Accord-
ing to the topological classification by Zak phase, for the cases
of AGNRs with N = 3p and N = 3p + 1, where N satisfies an
odd number, the Z2 invariant of the system can be expressed
as follows [12]:

Z2 = 1 + (−1)�
N
3 �+� N+1

2 �

2
, (5)

where the floor function �x� takes the largest integer less than
or equal to a real number x. For the cases of N = 3p + 2,
AGNRs is predicted to be semimetal. In the following, for
simplicity, we will focus discussion on the case of N = 3p
in detail and the discussion for N = 3p + 2 and N = 3p + 1
in Supplemental Material [52].

In the case of AGNR with N = 3p, such as N = 69, we ini-
tially observe an Eg of 0.139 eV without any strain [Fig. 2(a)].
Using Eqs. (4) and (5), we calculate the Z2 invariant to be
1, indicating that the system is in a topological nontrivial
phase in the absence of the strain. The parity eigenvalues of
the VBM and the CBM at the � point are represented by
the red and green dots, respectively, with values of −1 and
+1 [Fig. 2(a)]. Interestingly, the Eg can be effectively con-
trolled by the application of the strain [Figs. 2(b)–2(d)]. As the
strain increases, the Eg decreases [Fig. 2(b)], while the parity
eigenvalues of the VBM and CBM remain unchanged. At a
critical strain value of cc = 0.01005, the Eg closes, resulting
in the formation of a gapless Dirac cone [Fig. 2(c)]. In this

FIG. 2. Band structure of AGNR (N = 69) with the different
strain (a) for c = 0.0, (b) for c = 0.0028, (c) for c = 0.01005, (d) for
c = 0.0175. The Z2 invariants are shown in the figures. The labels
for SM, TI, and NI represent semimetal, topological insulator, and
normal insulator, respectively. The parity eigenvalues 〈ψn�i | M̂ |ψn�i 〉
of the bands near Fermi level at � are marked with red dot (green dot)
for a value of +1 (−1).

semimetallic phase, the Z2 invariant is not well defined. Upon
further increasing the strain, for example, by increasing c to
0.0175 [Fig. 2(d)], the Eg reopens, and the parity eigenval-
ues of the VBM and CBM switch, leading to a calculated
Z2 invariant of 0. This indicates that the system undergoes
transition from a topological insulator (TI) phase to a normal
insulator (NI) phase, driven by the applied strain. Examining
the conduction bands, represented by the red (green) dots, we
observe that with increasing the strain, bands with +1 (−1)
parity eigenvalues at the � point move closer (farther) to the
Fermi energy. This trend is reversed for the valence bands.
This suggests that near the Fermi energy, further increasing
the strain will result in repeated interleaving of the topolog-
ical order of the energy bands. Our subsequent calculations
provide further evidence for this phenomenon.

Figure 3 shows the Eg as a function of the strain, allowing
for a broader perspective on how strain affects the topological
properties of the system. In the range from c = 0 to c = 0.1,
due to the bands with +1 (−1), parity eigenvalues at the �

point move closer (farther) to the Fermi energy for the conduc-
tion bands, multiple topological phase transitions can occur
for N = 69, N = 71 and N = 73 which belongs to N = 3p,
N = 3p + 2 and N = 3p + 1, respectively. For the different
cases, the relation for Eg and the strain is different especially
for the first phase transition shown in Figs. 3(a)–3(c). For the
case with N = 3p, as the strain increases, the Eg decreases
and then increases for the first phase transition shown in
Fig. 3(a). However, for the N = 3p + 2 and N = 3p + 1, the
Eg increases, then decreases and then increases for the first
phase transition shown in Figs. 3(b)–3(c). However, it is cru-
cial to determine the initial topological state of the AGNRs
based on Eq. (5) before analyzing the subsequent topological
transitions. This equation serves as a criterion for identifying
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FIG. 3. The band gap versus strain (a) for N = 69, (b) for N =
71, (c) for N = 73, (d) for N = 9. The Z2 invariants are shown in the
figures. In (a) to (d), the regions with red and blue colors represent
the regions with Z2 = 1 and Z2 = 0, respectively. The solid lines in
(d) represent the results calculated using DFT, while the dotted lines
represent the results obtained from the TB model.

the initial topological phase of the AGNRs. It is worth not-
ing that the specific form of the strain does not significantly
impact the results. The conclusions drawn from the analysis
remain consistent across all four strain forms considered. Ad-
ditional calculations involving inhomogeneous strains, such
as quadratic power uy = cy2 and uy = {cy2, y > 0

−cy2, y � 0 and cubic

power uy = cy3, yield similar results (refer to the Supplemen-
tal Material [52] for more details).

To validate the reliability of the results obtained from the
TB model, the influence of strain on the electronic structure
of AGNRs is further validated using DFT calculations. In
this case, a relatively narrow AGNR with N = 9 (belong-
ing to the N = 3p category) is chosen. The DFT calculation
results are consistent with the TB model, and both curves
exhibit the same trend, as shown in Fig. 3(d). Although the
transition point (TP) values slightly differ between the TB
model (c = 0.0635) and DFT (c = 0.053), this discrepancy
may arise from the choice of TB parameters. From the above
discussion, based on both DFT and TB model results, it is
confirmed that strain can drive topological phase transitions in
AGNRs, and the specific phase transition depends sensitively
on the width of the AGNRs.

As discussed earlier, it is known that nanoribbons with
different widths exhibit distinct topological properties. A fas-
cinating quantum structure is the heterojunction composed of
a finite number of nanoribbons with varying widths. Such het-
erojunctions give rise to end states (ES) and junction state (JS)
due to the diverse topological nature of the electronic structure
of the constituent nanoribbons. The ability to manipulate and
control these ES and JS may have potential applications in
quantum devices. However, achieving precise control over the
topological phase and JS in one-dimensional systems remains
a challenging task. In the final part of this study, we aim to

investigate the influence of the strain on the ES and JS in
heterojunctions composed of flexible AGNR segments with
different widths. Based on the calculated Z2 invariants for
various widths, we construct an AGNR heterojunction com-
posed of a 9AGNR (N = 9) and a 7AGNR (N = 7) which
possesses a commensurate zigzag’ end termination [12]. The
heterojunction, denoted as 9AGNR/7AGNR, is illustrated in
Figs. 4(a) and 4(b), with each segment comprising 25 unit
cells. We choose the 9AGNR/7AGNR heterojunction as a
representative example to investigate the JS and ES, as the
existence of these states in the unstrained 9AGNR/7AGNR
system has been experimentally confirmed [16].

The Z2 invariant is 1 and 0 for 9AGNR and 7AGNR with-
out the strain, respectively, as labeled in Fig. 4(a). With the
strain depicted in Eq. (1) for c = 0.09, based on Eq. (4), we
find both the 9AGNR and 7AGNR segments have Z2 = 0, as
labeled in Fig. 4(b). Figure 4(c) shows the density of state
(DOS) of the system with (blue dashed line) and without (red
solid line) the strain. In Fig. 4(c), we use a Gaussian function
f (E ) = e−(E−E0 )2/�2

with a broadening factor � = 0.01 eV to
smooth the discontinuous energy spectra.

We observed sharp and equally heightened peaks at EF =
0 eV in the DOS spectrum, regardless of the presence of
the strain. Without the strain, our results are consistent with
previous findings. However, previous studies did not show
such significant peaks or in-gap states in the DOS for two
topologically equivalent segments [12,14]. In contrast, with
strain applied, both segments are nontrivial insulating phase
in our case, but we still observe equally heightened peaks at
EF = 0 eV. To further illustrate the in-gap states with and
without the strain, we plot the charge-density distribution
for EF = 0 eV, as indicated by the black arrow in Fig. 4(c),
highlighting the colored carbon atoms. We make the following
observations: (i) In the absence of the strain, the in-gap states
consist of both JS and ES, which aligns with previous findings.
(ii) Under the strain, the in-gap states only comprise ES, a
novel observation not reported previously. In other words,
regardless of the strain, ES persist at the edge of the 9AGNR,
while JS is exclusively present at the interface without the
strain. Consequently, the strain can eliminate JS in flexible
AGNR heterojunctions.

The underlying physics behind this phenomenon is rel-
atively straightforward. When the strain is applied to the
system, the AGNRs of heterojunction change from topolog-
ically inequivalent to topologically equivalent, inducing the
elimination of JS [12]. To further clarify this point, we cal-
culate the local density of states (LDOS) using a Gaussian
function for the left cell, interface, and right cell regions, as
denoted by the red and blue dashed rectangles in Figs. 4(a)
and 4(b). Regardless of the strain, we observe a sharp peak
at EF = 0 eV in the LDOS of the left cell, as shown in
Fig. 4(d). Interestingly, the peak for the heterojunction with
the strain (blue dashed line) is larger than that without the
strain (red solid line), indicating that the strain significantly
enhances the ES of the 9AGNR. Simultaneously, as depicted
in Fig. 4(e), a sharp peak at EF = 0 eV is exclusively present
in the interface of the heterojunction without the strain due to
the presence of JS. This suggests that strain enhances ES while
simultaneously eliminating JS. Furthermore, the LDOS of the
right cell does not exhibit a peak at EF = 0 eV, regardless
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FIG. 4. The heterojunction formed by finite AGNR segments with N = 9 and N = 7 AGNR (9AGNR/7AGNR) containing 25 unit cells.
The unstrained and strained heterojunction configurations are depicted in (a) and (b), respectively. The interface between the two nanoribbons
is denoted by the black dotted line. The charge-density distribution is represented by the carbon atoms in different colors and sizes, indicating
the strength of the charge distribution. The charge density is scaled relative to the state labeled by the black arrow in (c). (c) The DOS of the
heterojunction with and without strain. (d)–(f) The LDOS of the heterojunction with and without strain. The red solid and blue dashed lines in
(c)–(f) denote the heterojunction with and without strain, respectively. The LDOS in (d)–(f) is obtained by integration in region labeled by the
red and blue rectangles in (a) and (b). The Z2 invariants for two segments are labeled in (a) and (b).

of the strain, indicating the absence of ES in the 7AGNR.
This observation can be attributed to the quantum confinement
effect, where the narrow width of the 7AGNR prevents the
formation of ES (see Fig. 5). And for the AGNR with Z2 =
1, the end states have robustness against local perturbations
[12]. To align our examination’s structure more closely with
real experimental material samples, here we consider disor-
der effects arising from defects or adsorption in the sample
material. We introduce disorders by incorporating Anderson
disorders. In this context, we perform disorder calculations
by adding a randomly, spatially dependent onsite potential
with a distribution ranging from [−ω/2, ω/2], where ω is

the intensity of the disorders. Figures 4(a) and 4(b) show
the charge distribution without disorders. Introducing disor-
ders, as depicted in Figs. S4(c) and S4(d) in Supplemental
Material [52], illustrates that within a certain disorder range,
our conclusions remain unaffected under the same strain. For
example, with ω = 1.1 eV, the charge distribution remains
essentially the same, regardless of the presence of disorders
[Figs. 4(a) and S4(c) or Figs. 4(b) and S4(d)]. Furthermore,
the presence or absence of disorders does not hinder the
strain’s ability to eliminate the junction state. Therefore, we
assert that disorders arising in real materials will not impact
our results.
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FIG. 5. The heterojunction formed by finite AGNR segments with N = 15 and N = 9 AGNR (15AGNR/9AGNR) containing 25 unit cells.
The unstrained and strained heterojunction configurations are depicted in (a) and (b), respectively. The interface between the two nanoribbons
is denoted by the black dotted line. The charge-density distribution is represented by the carbon atoms in different colors and sizes, indicating
the strength of the charge distribution. The charge density is scaled relative to the state labeled by the black arrow in (c). (c) The DOS of the
heterojunction with and without strain. (d)–(f) The LDOS of the heterojunction with and without strain. The red solid and blue dashed lines in
(c)–(f) denote the heterojunction with and without strain, respectively. The LDOS in (d)–(f) is obtained by integration in region labeled by the
red and blue rectangles in (a) and (b). The Z2 invariants for two segments are labeled in (a) and (b).

We also investigate the 15AGNR/9AGNR heterojunction,
where the Z2 invariant is 0 for 15AGNR and 9AGNR without
the strain, as indicated in Fig. 5(a). However, when a strain
with c = 0.06 is applied, the Z2 invariant changes to 1 for
15AGNR, as shown in Fig. 5(b). Notably, we observe that
the strain can enhance the ES and create JS, as depicted
in Figs. 5(c)–5(f). Therefore, the strain has the ability to
both create or eliminate JS while enhancing ES. This implies
that through the application of the strain, we can effectively
control and regulate the properties of the ES and JS in the
heterojunction.

IV. CONCLUSIONS

In summary, we present a novel approach for designing 1D
AGNRs with adjustable topological phases by applying the
strain. Notably, the strain effect is not limited to a specific
strain form. This transition is achieved through the switching
of parity eigenvalues of the wave functions at the center of
the Brillouin Zone, altering the Z2 invariant of the system
from 1 to 0 or 0 to 1 and effectively driving the topological
phase transition. And multiple topological phase transitions
can occur with larger strain. Additionally, we propose a new
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strategy for manipulating the end states and junction state in
heterojunctions formed by different topological segments of
AGNRs through the application of the strain. By appropriately
tuning the strain, we can either create or eliminate the junction
state and enhance the end states in the heterojunction. On one
hand, experimentally, through bottom-up approaches using
precursor molecules, scientists can atomically design edge
shapes, widths, and terminations of the graphene ribbon [24].
On the other hand, in real graphene samples, experimentally,
uniaxial strain has been achieved by bending graphene on a
flexible substrate [61,62]. Based on these experimental find-
ings, we believe that, with the in-depth research on graphene
nanoribbon and the advancement of nano-fabrication tech-
nology, we expect that our theoretical proposal might be

experimentally realized. Our study offers a promising avenue
for tuning topological phase transitions in flexible quasi-1D
materials, controlling and customizing the properties of the
junction state and end states.
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