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The microscopic pairing mechanism for superconductivity in magic-angle twisted bilayer graphene remains
an open question. Recent experimental studies seem to rule out a purely electronic mechanism due to the
insensitivity of the critical superconducting temperature to either a highly doped screening layer or the proximity
to a metallic screening gate. In this theoretical work, we explore the role of external screening layers on
the superconducting properties of twisted bilayer graphene within a purely electronic mechanism. Consistent
with the experimental observations, we find that the critical temperature is unaffected by screening unless the
screening layer is closer than 3 nm from the superconductor. Thus, the available transport data are not in con-
tradiction with a plasmon-mediated mechanism. We also investigate other properties of this plasmon-mediated
superconductivity, including signatures in the tunneling density of states as probed in spectroscopy experiments.
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I. INTRODUCTION

The discovery of superconductivity in magic-angle twisted
bilayer graphene (MATBG) [1,2] has attracted tremendous
interest, in part due to the similarity of the observed phase
diagram with the long-standing problem of high-temperature
superconductivity in cuprates. At present, there is no consen-
sus on the microscopic mechanism for superconductivity in a
system as simple as two rotated sheets of carbon. A number
of theoretical studies based on the Bardeen-Cooper-Schrieffer
(BCS) approach have focused on a phonon-mediated mech-
anism [3–5]. Typically, a pure phonon mechanism gives a
critical temperature Tc ∼ 1 K (slightly below what is seen
in experiments). However, considering the dynamical po-
larizability, we have argued recently [6,7] that the phonon
deformation potential is likely to be strongly screened by the
large density of states in MATBG. In contrast, as was pointed
out recently in Refs. [8,9], umklapp processes in the reduced
moiré Brillouin zone might act to increase the strength of
phonon pairing. On the other hand, the emergence of flat
bands [10] strongly enhances the electron-electron interac-
tion, which favors plasmonic superconductivity [8,9,11,12]
with larger critical temperatures Tc ∼ 10 K.

Recently, three experimental papers [13–15] have inves-
tigated the role of screening on this superconducting state.
References [13,14] varied the distance of an external metal
screening gate from 6.7 to 68 nm and found that the corre-
lated insulating phases were killed when the screening gate
was close by, but the superconductivity survived. Similarly,
Ref. [15] used a nearby Bernal-stacked bilayer graphene with
varying carrier density to provide external screening. They
also observed that superconductivity was more robust when

Coulomb interaction was weakened by screening, and the crit-
ical temperature remained roughly constant over a wide range
of doping in the screening layer. One might naively expect that
these experiments rule out an electronic mechanism for super-
conductivity in twisted bilayer graphene. To the contrary, in
this theoretical work we show that the critical superconducting
temperature predicted using the plasmon pairing mechanism
is unchanged in the regimes probed in these experiments.
For both experimental configurations, we find that the critical
temperature is only suppressed for l � 3 nm, which was not
the case in either of the experiments. We can understand this
as the lengthscale at which the bare Coulomb interaction is
modified by the metal gates.

In what follows, we systematically investigate the ro-
bustness of the plasmon mechanism for superconductivity
mediated by a screened Coulomb repulsion. We first study the
unscreened case, where it was previously shown [11] that the
momentum-averaged Coulomb interaction can be modeled by
a Lorentzian form. In this limit, we prove that the critical
temperature for the plasmonic mechanism is nonmonotonic
as a function of experimental parameters such as doping and
twist angle. We discuss this nonmonotonicity in terms of
averaged plasmon frequency and the unscreened Coulomb
interaction. For the screened Coulomb interaction, we find
that the Lorentzian approximation no longer holds. A full
numerical calculation reveals that the critical temperature is
not sensitive to the external screening gate unless it is closer
than l ≈ 3 nm. Finally, we solve the full-bandwidth Eliash-
berg equation and compute the tunneling density of state,
and we find that, similar to the phononlike mechanism, the
plasmon mechanism gives a hard gap in the spectral function.
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The paper is organized as follows. In Sec. II, we introduce
a minimal theoretical model for plasmonic superconductivity.
In Sec. III, we discuss plasmon-induced superconductivity
in magic-angle twisted bilayer graphene. Section IV focuses
on superconductivity under external screening, including the
hybrid double-layer structure and the metal gate structure.
In Sec. V, we solve the full-bandwidth Eliashberg equa-
tion and compute the tunneling density of states. Finally, we
discuss the conclusions and future directions of our work in
Sec. VI. All derivations and technical details are provided in
Appendixes A–G.

II. MINIMAL MODEL FOR PLASMONIC
SUPERCONDUCTIVITY

We begin by introducing a minimal theoretical model
that encapsulates the essential characteristics of plasmonic
superconductivity. It has been shown that superconductivity
mediated by a purely electronic mechanism can be studied
by introducing a momentum-averaged frequency-dependent
Coulomb interaction [11,16]:

λ(iωn) = N (EF )〈〈V (iωn)〉〉. (1)

Here, λ(iωn) signifies the pairing strength of Cooper pairs,
where ωn = (2n + 1)πT , with integer n denoting the fermion
Matsubara frequency. N (EF ) represents the density of states
(DOS) at the Fermi level, and 〈〈V (iωn)〉〉 is the momentum-
averaged Coulomb interaction:

〈〈V (iωn)〉〉 =
∑

k,p �(kc − k)�(kc − p)V (k − p, iωn)∑
k,p �(kc − k)�(kc − p)

,

(2)
where kc = 2kF represents the momentum cutoff, � is the
Heaviside function, and V (k, iωn) denotes the dynamically
screened Coulomb interaction. Following the procedures pro-
posed by Grabowski and Sham [16], the linearized isotropic
Eliashberg gap equation can be formulated as

�n = −2T̃c

∞∑
m=−∞

1

Zmω̃m
arctan

1

Zmω̃m
λn,m�m, (3)

where T̃c = kBTc/EF represents the superconducting critical
temperature, and ω̃n = (2n + 1)π T̃c denotes the dimension-
less Matsubara frequency. Both quantities are scaled by the
Fermi energy to be dimensionless. Zn is the mass renormal-
ization function considering self-energy corrections, �n is
the order parameter, and λn,m is shorthand for λ(iωn − iωm).
Equation (3) has the form of an eigenvalue equation �̄ = Ĉ�̄,
where the critical temperature T̃c can be determined by identi-
fying the largest eigenvalue of the matrix Ĉ that equals 1 (refer
to Appendix D for details).

In general, λn,m needs to be determined numerically due
to the complexity of the Coulomb interaction. To simplify
the problem, we adopt the Lorentzian approximation, which
has been demonstrated to hold well in two-dimensional (2D)
systems [16], allowing us to model the pairing interaction by
the Lorentzian form

λn,m = μ

(
1 − �̃2

b

�̃2
b + (ω̃n − ω̃m)2

)
, (4)
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FIG. 1. Critical temperature predicted by the Lorentzian model
[Eq. (4)] for plasmon-mediated superconductivity valid in the ab-
sence of a screening gate. Within this model, the critical temperature
(scaled by Fermi energy) T̃c is a function of two parameters: the
high-frequency limit of the Coulomb interaction μ and averaged
(scaled) plasmon frequency �̃b. (a) Color map of T̃c(μ, �̃b). The
dashed black line traces the maximum critical temperature for fixed
�̃b, while the dashed yellow line traces the same for fixed μ. (b) T̃c vs
�̃b for a given coupling strength μ. (c) T̃c vs μ for a given averaged
(scaled) plasmon frequency �̃b. In both cases, T̃c shows nonmono-
tonic behavior that can be understood analytically (see Appendix A).

where μ represents the high-frequency limit of the pair-
ing strength, set by both the bare Coulomb interaction and
the density of states at the Fermi level. �̃b = �b/EF rep-
resents the averaged (scaled) plasmon frequency, controlling
the overall transition of the pairing strength from low to high
frequency.

Figure 1(a) shows the color map of the critical temperature
T̃c(μ, �̃b) within the Lorentzian approximation. The dashed
black line traces the maximum critical temperature for a fixed
�̃b, while the dashed yellow line traces the same for a fixed
μ. Notably, we observe a nonmonotonic behavior of the su-
perconducting transition temperature for both fixed μ and �̃b

cases in Figs. 1(b) and 1(c). In both cases, the nonmonotonic
behavior can be understood analytically, as detailed in Ap-
pendix A. A similar phenomenon has also been reported in
recent works [17], where nonmonotonicity arises from the on-
site repulsion U in bond-Peierls bipolaronic superconductors.
This unique nonmonotonic behavior, absent in conventional
phonon mechanisms, assumes significant importance in the
context of MATBG, a point we will elucidate later.
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FIG. 2. Illustration of Lorentzian pairing interaction λ(iωn) and
the corresponding superconducting gap function obtained from solv-
ing the Eliashberg equation [Eq. (3)]. Unlike phonons (dynamics of
the ionic density), the mechanism here relies on dynamical fluctua-
tions of electron density. These electron density fluctuations give rise
to a retarded effective interaction, modeled here with a Lorentzian
form [Eq. (4)]. The corresponding gap function undergoes a sign
change near the characteristic plasmon frequency �̃b. The frequency
dependence of the effective interaction and the sign change in the
gap equation at the plasmon frequency are the two key features of
the plasmon-mediated superconductivity studied in this work.

The glue in the plasmon-mediated mechanism arises from
the time-dependent fluctuations of the electronic density. As
illustrated in Fig. 2, the essential feature that allows for
a nontrivial solution of the gap equation is the frequency
dependence of the effective interaction. The high-frequency
asymptote is set by μ, the unscreened Coulomb interac-
tion. The pairing potential λ(iωn) becomes less repulsive at
lower frequency due to screening. The static screening limit
gives a finite value for λ(0), which, because of the very
high density of states in twisted bilayer graphene, is close
to 0 in this example. Physically, one can think of the plas-
mon frequency as separating the density fluctuations being
unscreened at high frequency and strongly screened at low
frequency. The solution of the gap function also changes
sign near iω ∼ �b, as is seen by the red curve. Qualita-
tively, one can think of the sign change of the gap function
as suppressing the instantaneous (or high-frequency) part
of the frequency-independent repulsive interaction that av-
erages to zero when multiplied by a function that changes
sign. What survives the averaging is the frequency-dependent
low-frequency retarded part of the interaction giving an ef-
fective attractive pairing. We refer the reader to Refs. [18,19]
for more discussion on the sign change of the gap
function.

III. PLASMONIC SUPERCONDUCTIVITY IN
MAGIC-ANGLE TWISTED BILAYER GRAPHENE

In this section, we will focus on superconductivity in
MATBG. The dynamic properties of the screened Coulomb
interactions for MATBG have been widely investigated in

recent years [20–25]. The intrinsically undamped plasmon
modes were reported near magic angle, which was believed
to dominate in a moiré system. In this work, we consider the
dynamically screened Coulomb interaction

V (q, iω) = V (q)

ε(q, iω)
, (5)

where V (q) = 2πe2/κq represents the bare Coulomb interac-
tion, and κ is the background dielectric constant. We adopt
κ = 3.03 to account for the background dielectric subtraction
for hexagonal boron nitride (hBN). ε(q, iω) is the dynamic
dielectric function calculated via the random phase approxi-
mation (RPA),

ε(q, iω) = 1 − V (q)
(q, iω), (6)

and the polarization function 
(q, iω) is given by


(q, iω) =
∑

k

∑
γ ,γ ′

(
f γ

k+q − f γ ′
k

)
F γ γ ′

k,k+q

Eγ

k+q − Eγ ′
k − iω

, (7)

where the integration over k is restricted in the moiré Brillouin
zone and the composite indices γ , γ ′ run over electron bands,
valleys, and spins. Here f γ

k is the Fermi-Dirac distribution

for a state with energy Eγ

k , and F γ γ ′
k,k+q = |ψ†

γ ,k+qψγ ′,k|2 is
the form factor associated with different Bloch states. Starting
from the continuum model [10], we apply RPA calculations to
obtain the dynamic polarizability based on rigid/relaxed band
structures, enabling us to compute the dynamic Coulomb in-
teraction and momentum-averaged Coulomb interaction. For
the realistic model, the Lorentzian approximation may not be
valid, therefore we sought the full numerical solution instead
(see Appendix D for more details).

Figure 3(a) shows the numerical results for the plasmon-
mediated superconducting critical temperature in MATBG.
Defining the magic angle by minima in bandwidths, we find
that the magic angle shifts from θ = 1.22◦ in the rigid model
to θ = 1.05◦ in the relaxed model. A weak bimodal feature
is observed for both the rigid and relaxed structures, which is
similar to our previous observations [11]. This peak behavior
agrees qualitatively with the filling factor [26] window where
the angle-dependent dome feature is reported in experiment.
We also investigate the twist angle dependence as shown in
Fig. 3(b). The bimodal structure persists even when the lattice
relaxation effects are included. Relaxation acts as a redefini-
tion of the magic angle, with a weak suppression of the critical
temperature.

The nonmonotonic behavior of the critical temperature
with twist angle and filling can be understood through the
Lorentzian approximation discussed in Sec. II. By fitting the
frequency-dependent Coulomb interaction to the Lorentzian
form [Eq. (4)], we can extract the corresponding parameters,
as shown in Fig. 4. The results show that the averaged plas-
mon frequency �̃b depends weakly on filling but strongly
on the twist angle, while the high-frequency limit of the
Coulomb interaction μ mostly follows the density of states.
The trajectory mapped in the T̃c(μ, �̃b) phase space when
changing the filling is shown in Fig. 4(c), and similarly it
is shown in Fig. 4(f) for changing the twist angle. In both
cases, we observe a nonmonotonic dependence of Tc. This
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FIG. 3. Plasmon-mediated superconducting critical temperature
for magic-angle twisted bilayer graphene. (a) Tc vs band filling factor
at magic angle both with and without lattice relaxation effects. The
magic angle shifts from θ = 1.22◦ in the rigid model to θ = 1.05◦

in the relaxed model. Both results show a weak bimodal feature.
(b) Tc vs twist angle for fixed filling factor ν = 2. The bimodal de-
pendence on twist angle persists even when lattice relaxation effects
are included.

nonmonotonic behavior results primarily from the increase
in μ, which is due to the enhanced density of states near
the magic angle. We note that in Figs. 4(c) and 4(f) the red
dashed curves mapping the evolution of T̃c with experimental
parameters become almost vertical at the largest value of
T̃c. This implies that the maximum value of T̃c is largely
set by the maximum value of �̃b ≈ 〈〈ωb(q)〉〉/EF [where
ωb(q) is plasmon dispersion, and the average here is over
momentum]. This is a fixed property of the material, e.g., for
twisted bilayer graphene, Ref. [20] showed that Max(�̃b) ≈√

�/W is independent of doping and twist angle, where W
is the bandwidth and � is the gap between the flat band
and higher energy bands. Generically, our analysis suggests
that moiré materials with higher plasmon velocity will have a
larger T̃c.

IV. THE ROLE OF EXTERNAL SCREENING

Now we turn to the case in which external screening is
involved. We start with the derivation of effective Coulomb
interaction and then focus on hybrid double-layer structure
and metal gate structure.

A. Effective Coulomb interaction

Inspired by the graphene double-layer experiments
[27–32], we consider the hybrid structure involving MATBG
and a 2D material, as depicted in the inset of Fig. 5. The
structure consists of MATBG and the 2D material being sepa-
rated by a distance l within a homogeneous background with
a dielectric constant κm. The MATBG layer is designated as
the first layer, while the 2D layer constitutes the second layer.
On either side of the background, materials with dielectric
constants κt and κb are placed. For simplicity, we assume that
both materials are at the same distance d from the hybrid
structure.

The electron-electron interaction among the charge car-
riers in MATBG is affected by the dielectric properties of
the environment, which are encoded in the bare Coulomb
interaction as introduced in Sec. III. When the second layer is
introduced, the charge density in the second layer will alter the
dielectric properties of the environment and the bare Coulomb
interaction, thereby influencing its superconductivity. We an-
alytically derive the effective bare Coulomb interaction and
find

Veff (q, iω) = V11(q)

[
1 − V12(q)V21(q)

V11(q)V22(q)

(
1 − 1

ε2(q, iω)

)]
.

(8)

Here, Vi j (q) with i, j = 1, 2 represent the intralayer (i =
j) and interlayer (i 
= j) bare Coulomb interaction, and
ε2(q, iω) = 1 − V22(q)
2(q, iω) represents the dielectric
function of the 2D layer, with 
i(q, iω) representing the
polarization function in the ith layer. The detailed derivation
of this result can be found in Appendix G. Consequently, the
dynamic screened Coulomb interaction within the MATBG
layer is

V (q, iω) = Veff (q, iω)

1 − Veff (q, iω)
1(q, iω)
. (9)

Notably, Eq. (8) enables us to determine the role of exter-
nal screening on the superconducting properties of MATBG.
In particular, we can calculate how the dielectric proper-
ties of the screening layer ε2(q, iω) impact the Coulomb
interaction within the MATBG layer. We have checked
that in the static limit, our result reproduces the effec-
tive screened Coulomb interaction previously used in the
literature [15].

We first discuss two limiting cases: (i) when the screen-
ing layer is an insulator-like bulk h-BN commonly used as
a spacer in heterostructures, and (ii) when it is a metal-
like graphite or silicon used as gates in such structures. For
simplicity, we assume κt = κb = κm = κ , but this could be
relaxed without any complication. In the insulator limit, the
screening layer is replaced by a background insulator, leading
to a zero polarizability (
2 → 0). The effective bare Coulomb
interaction simplifies to

lim

2→0

Veff (q, iω) = V11(q) = 2πe2

κq
, (10)

which resembles the commonly used Coulomb interaction for
2D materials in a dielectric environment. In the metallic limit,
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FIG. 4. The nonmonotonic behavior of critical temperature with twist angle and filling can be understood by mapping the finite-
temperature, finite-frequency random phase approximation calculation of the Bistritzer-MacDonald continuum model without a screening
gate to the Lorentzian approximation used in this work. The averaged plasmon frequency depends weakly on filling factor (a) and strongly on
twist angle (d). By contrast, the high-frequency limit of the Coulomb interaction mostly just follows the density of states, shown in (b) and (e).
The trajectory mapped in the T̃c(μ, �̃b) phase space when changing filling is shown in (c), and similarly shown in (f) for changing the twist
angle. In both cases, there is a nonmonotonic dependence of Tc. The maximum value of T̃c is largely set by the momentum-averaged plasmon
frequency, which within the BM continuum model does not exceed the values shown here.

on the other hand, 
2 → ∞. This results in

lim

2→∞

Veff (q, iω) = V11(q)

(
1 − V12(q)V21(q)

V11(q)V22(q)

)
= 2πe2

κq
(1 − e−2lq ), (11)

which again corresponds to the standard case in which
MATBG is screened by an external metal [9,33,34]. These
two limits serve to benchmark the role of external screening
materials. We note that the metallic limit is a lower bound for
critical temperature, and in the presence of a screening layer
Tc should exceed this value.

In the metal limit, the dynamic screened Coulomb interac-
tion can be obtained by combining Eqs. (5) and (6),

V (q, iω) = V0(q)(1 − e−2lq )

1 − V0(q)(1 − e−2lq )
1(q, iω)

= V0(q)

β(l, q) − V0(q)
1(q, iω)
. (12)

Here, V0(q) = 2πe2/κq represents the bare Coulomb inter-
action without external screening, 
1(q, iω) represent the
polarization function in the active layer, and β(l, q) = 1/(1 −
e−2lq ) represents the strength of external screening. In the

limit of a large distance l , limlq�1 β(l, q) = 1, indicating that
the metal gate has no effect on the active layer. In the op-
posite limit, β(l, q) increases, leading to the screening of the
Coulomb interaction. We estimate the critical distance l∗ as
the point where the screening factor changes by a factor of
2, i.e., β(l∗, qF ) = 2. Using average Fermi momentum, qF ≈
q(� → K )/2 = π/

√
3LM . This yields l∗ = √

3 ln 2/2πLM ≈
3 nm near the magic angle.

B. Numerical results

To make a comparison with experiments, we mainly fo-
cus on two types of structures: (i) the hybrid double-layer
structure [15], where the screening layer is a 2D semiconduc-
tor such as single-layer graphene (SLG) or bilayer graphene
(BLG), and (ii) the metal gate structure [13,14], where a
metal-like graphite or silicon is used as a gate.

In the first structure, we assume that the top and bottom
layers are metals, i.e., κt , κb → ∞. Figure 5 shows the crit-
ical temperature Tc as a function of the carrier density in
the screening layer, denoted as n2D, for different screening
materials. Here, we assume that the 2D material layer is either
SLG (purple line) or BLG (yellow line). Within the range of
carrier densities commonly used in experiments, the critical
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FIG. 5. Critical temperature Tc as a function of carrier density in
screening layer n2D for different screening materials. Here θ = 1.05◦

and ν = 2 were used for the MATBG layer. Purple and yellow lines
represent the 2D material layer—either single-layer graphene (SLG)
or bilayer graphene (BLG). Within the range of carrier density dop-
ing commonly used in experiments, the critical temperature is almost
unchanged. The point labeled by “hNB” and “metal” represents the
two limits discussed in the main text, corresponding to 
2 → 0
and 
2 → ∞. The inset shows the schematic of the MATBG-2D
heterostructure.

temperature remains almost unchanged. Our results align with
those of Ref. [15], where a nearly constant critical temperature
is observed in this structure. We also observe that the critical
temperature is slightly higher than the insulator limit (the
point labeled as “hNB”), indicating that the superconductivity
is stabilized by the screening layer. This finding is akin to
an earlier experimental study [35], where insulating tungsten
diselenide (WSe2) monolayers sandwiched between hBN and
TBG contributed to the stabilization of superconductivity.

In the second structure, a single metal gate is considered
as the screening layer, i.e., 
2 → ∞. The corresponding
bare Coulomb interaction has been discussed in Eq. (11).
Figure 6(a) shows the critical temperature as a function of
the filling factor ν for various separation distances l . As l
decreases, the bimodal feature disappears and is replaced by
a single peak near the VHS. In Fig. 6(b), a nonmonotonic
transition temperature is also observed for fixed filling-factor
cases. This nonmonotonicity can also be understood by map-
ping to the Lorentzian model, as shown in Figs. 6(c) and 6(d).
Notably, we observed that the critical temperature remains
relatively constant across a wide range of separations but
experiences a significant drop when l � 3 nm, which agrees
with our estimation in Sec. IV A. However, the typical value
of l in experiments is around 7−68 nm, which is larger than
the distance where superconductivity is visibly suppressed.

The conclusion above can be understood as a result of the
comparison between the size of the moiré Brillouin zone and
the separation distance. As we discussed in Sec. IV A, the
dimensionless quantity β sets the scale for when the screen-
ing due to the external metal gate is important. The critical
separation approximately follows the relationship l∗/LM =√

3 ln 2/2π ≈ 0.2. We note that due to the large lattice

FIG. 6. Numerical results for superconducting critical temper-
ature with a single screening gate. (a) Critical temperature as a
function of filling factor ν for different separation distances l . As
l decreases, the bimodal structure disappears and is replaced by a
single peak near Van Hove singularity (VHS). (b) Critical tempera-
ture vs separation distance l at fixed filling. The dashed lines show
the value for an infinite gate separation. Parts (c) and (d) show the
extracted parameters μ and �̃b for the Lorentzian model at ν = 2,
where the dashed lines here show the value in the static screening
limit. All calculations were performed with θ = 1.05◦.

constant in moiré systems, a small separation distance is
needed to screen out the Coulomb interaction. Since l∗/LM

is the relevant quantity, for even smaller twist angles (with
larger LM) this suppression could be achieved in gate dis-
tances comparable to existing experiments. Alternatively, we
can understand this conclusion in terms of the superconduct-
ing coherence length that is known to be small in MATBG
[36,37]. According to BCS theory, the superconductivity co-
herence length is given by ξ0 = h̄vF /π�0, where vF is the
Fermi velocity and �0 is the quasiparticle gap. Approximating
h̄vF ≈ 32 meV Å near the magic angle and �0 ≈ 2 meV from
tunneling density of states results (see Sec. V), we obtain
ξ0 ≈ 5 Å. This small coherence length confirms that a small
gate separation is necessary to disrupt the superconducting
phase.

V. SPECTRAL FUNCTION AND TUNNELING
DENSITY OF STATES

The connection between the tunneling density of states and
scanning tunneling spectroscopy/microscopy (STS/STM)
spectra has been understood for a long time [38,39]. Advances
in angle-resolved photoemission spectroscopy (ARPES) have
made it possible to compare theory with experiments [40–42].
Recently, a series of experiments have attempted to measure
the superconductivity gap in moiré systems [43,44]. In par-
ticular, Ref. [43] reported strong spectroscopic evidence of a
“V”-shaped gap, suggesting an unconventional pairing. While
some previous work has discussed the pairing symmetry for
phonon-based superconductivity [45,46], it remains unclear
what the pairing symmetry is for the plasmonic mechanism.
In this section, we will explore the signatures in the tunneling
density of states as probed in spectroscopy experiments for
both mechanisms.
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FIG. 7. Tunneling density of state for both the phonon and plas-
mon mechanism given by solving the full-bandwidth Eliashberg
equation. Other than the asymmetry in the peaks, both phonons and
plasmons show a relatively hard superconducting gap consistent with
s-wave superconductivity.

To determine the tunneling density of states, it is necessary
to obtain the superconductivity gap in real frequency, i.e.,
iωn → ω + iη. This process can be achieved by employing
the approach introduced by Marsiglio et al. [47], where we
need to solve the full-bandwidth Eliashberg equations in both
the real and imaginary axes. This method provides an ex-
act solution, but it is computationally intensive. To reduce
computational demands, we first solve the full-bandwidth gap
equations in the imaginary axis and then adopt the Padé ap-
proximation [48,49] to analytically continue the results to real
frequencies. The anisotropic Eliashberg gap equations con-
sist of three components: the order parameter φ, the mass
renormalization Z , and the chemical potential shift χ (see
Appendix C for more details). To simplify the calculations,
we consider only the singlet superconducting channel in our
calculations and set χ = 0. This simplification allows us to
compare the spectral function from both the phonon-pairing
and plasmon-pairing on an equal footing. After we obtain
Z (k, ω) and φ(k, ω), the band- and momentum-resolved spec-
tral function can be computed via

An(k, ω) = − 1

π
Im([Ĝn(k, ω + iδ)]11), (13)

where n is the band index. The tunneling density of state
is then computed by further summation over the momentum
degree of freedom [45,46],

dI

dV
∝ A(ω) =

∑
k,n

An(k, ω). (14)

Figure 7 shows the tunneling density of states for both
phonon and plasmon mechanisms. Other than the asymmetry
in the peaks, both phonons and plasmons show a relatively
hard superconducting gap consistent with s-wave supercon-
ductivity. It is worth noting that both mechanisms yield similar
spectral features, making them potentially challenging to dif-
ferentiate directly through STM measurements. Moreover, our
calculations do not account for scattering from impurities,

which has been shown to potentially dampen the spectral mea-
surement and consequently soften the superconductivity gap.
In general, we observe that the superconducting gap for the
plasmonic mechanism is bigger than the phonon mechanism.
This is partially because the electron-electron interaction is
stronger than the electron-phonon interaction in the flat band
system.

VI. CONCLUSIONS

In this work, we focus primarily on superconductivity
in MATBG mediated by electron-electron interaction within
the framework of Eliashberg theory. We show that in the
absence of an external screening layer, the plasmonic super-
conductivity is well-described by a Lorentzian model giving
a nonmonotonic dependence of the transition temperature on
experimentally tunable parameters, such as doping and twist
angle, consistent with some of the features observed exper-
imentally. With external screening, this approximation no
longer works, and our computationally intensive calculation
shows that critical temperature is insensitive to the external
screening gate unless this gate is closer than l ≈ 3 nm. We
qualitatively understand this result as equivalent to l � LM ,
implying that for a gate at fixed separation, its screening will
become more visible at smaller twist angles.

At present, we are unable to conclude definitively the mi-
croscopic nature of the superconducting pairing in MATBG.
The higher transition temperature and the dome feature in both
angle and filling predicted by the plasmon mechanism are both
favorable features when compared to experimental observa-
tions. However, there is much that this mechanism also gets
incorrect, including a hard gap of the spectral function, and a
second domelike feature at low angles that is robust to relax-
ation effects. Theoretically, there are properties not included
in the Eliashberg theory. For example, it has been argued that
it is important to consider the superfluid weight as a criterion
for determining the superconducting phase in the strongly
correlated regime [50,51]. Moreover, it has been shown that
the geometry of the band structure may also contribute to the
superfluid weight [52,53]. This interplay between transition
temperature and superfluid weight for the plasmon-mediated
pairing mechanism is an interesting question that we leave for
future work.
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APPENDIX A: PROOF OF NONMONOTONICITY
FOR EQ. (3)

In this Appendix, we will prove that the solution of Eq. (3)
is nonmonotonic. We first noticed that the coupling strength
in Eq. (1) becomes a constant value in the limit of (i) μ →
0, (ii) �̃b → 0, and (iii) �̃b → ∞. We assume λnm = λ0 
= 0
without loss of generality, which allows us to rewrite Eq. (3)
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as

�n = −2T̃cλ0

∞∑
m=−∞

1

Zmω̃m
arctan

1

Zmω̃m
�m. (A1)

In those limits, Eq. (A1) becomes a decoupled equation:
the summation on the right-hand side is independent of n,
indicating that the order parameter on the left-hand side is
constant. Considering the nontrivial solution �n = �0 
= 0,
�n can be safely canceled from both sides:

1 = −2T̃cλ0

∞∑
m=−∞

1

Zmω̃m
arctan

1

Zmω̃m
. (A2)

However, the summation on the right-hand side always
gives a negative value. To reconcile the signs on both sides,
Eq. (A2) only allows the trivial solution T̃c = 0.

In the limit of (iv) μ → ∞, we obtain the following limit:

lim
μ→∞

1

Znω̃n
→ 1

μ�̃b
ω̃n

arctan ω̃n

ω̃2
n+�̃b(1+�̃b)

→ 0,

lim
μ→∞

μ

Znω̃n
→ 1

�̃b
ω̃n

arctan ω̃n

ω̃2
n+�̃b(1+�̃b)

> 0, (A3)

where we have used the analytical solution of Zn derived in
Eq. (D8) (see also [16]). By substituting Eq. (4) into Eq. (3),
we obtain

�n = −2T̃c

∞∑
m=−∞

μ

Zmω̃m
arctan

1

Zmω̃m

×
(

1 − �̃2
b

�̃2
b + (ω̃n − ω̃m)2

)
�m. (A4)

Using the expressions listed Eq. (A3), we find that
limμ→∞ arctan ((Znω̃n)−1) = 0. Consequently, the summa-
tion over index m gives a zero contribution in Eq. (A4),
leading to a trivial solution, T̃c = 0.

In summary, we have demonstrated that T̃c approaches zero
in the limits of μ → 0 and μ → ∞, as well as �̃b → 0 and
�̃b → ∞. If there exists a nonzero solution for the critical
temperature in T̃c(μ, �̃b) space, the solution for the gap equa-
tion must exhibit nonmonotonic behavior.

APPENDIX B: DETAILS OF THE CONTINUUM MODEL

Here we provide a brief review of the continuum model
introduced by Ref. [10]. We begin with AA-stacked bi-
layer graphene with rotation −θ/2 and θ/2 for layers 1
and 2. The lattice vector before rotation is defined as a1 =
a(1, 0) and a2 = a(1/2,

√
3/2), where a = 2.46 Å is the lat-

tice constant for monolayer graphene. The corresponding
reciprocal-lattice vectors are a∗

1 = (2π/a)(1,−1/
√

3) and
a∗

2 = (2π/a)(0, 2/
√

3). After we apply the rotation, the lat-
tice vectors and reciprocal-lattice vectors are given by a(l )

i =
R(∓θ/2)ai and a∗(l )

i = R(∓θ/2)a∗
i , with ∓ for l = 1, 2, re-

spectively, where R(±θ/2) is the rotation matrix. The Dirac
points for rotated graphene are located at K(l )

ξ = −ξ [2a(l )∗
1 +

a(l )∗
2 ]/3 for layer l , where ξ = ±1 is the valley index.

In the case of a small twist angle, the commensurate
structure can be approximately defined. The reciprocal-lattice
vectors for the moiré Brillouin zone are given by GM

i = a(1)
i −

a(2)
i for i = 1, 2. The effective Hamiltonian of the continuum

model in valley ξ takes the form

H (ξ ) =
(

H1 U
U † H2

)
, (B1)

in the basis of (A1, B1, A2, B2) site. Here Hl is the intralayer
Hamiltonian for layer l ,

Hl = −h̄vF
[
R(±θ/2)

(
k − K(l )

ξ

)] · (ξσx, σy), (B2)

and U is the interlayer coupling,

U =
(

wAA wAB

wAB wAA

)
+

(
wAA wABω−ξ

wABωξ wAA

)
eiξGM

1 ·r

+
(

wAA wABωξ

wABω−ξ wAA

)
eiξ (GM

1 +GM
2 )·r, (B3)

where ω = e2iπ/3, and LM = a/2 sin (θ/2) is a lattice constant
for real space. In this paper, we use the parameters h̄vF =
5250 meV Å, wAA = 79.7 meV, and wAB = 97.5 meV due to
the relaxation effect [54]. For a more detailed analysis of the
origin of the Hamiltonian, we refer the reader to Refs. [54,55].
For a given Bloch vector k in the moiré Brillouin zone, there
are many states associated with each other by the interlayer
coupling matrix U , which can be mapped by q = k + nGM

1 +
mGM

2 , where n and m are integers. To ensure convergence, we
select the state inside the circle |q − q0| < qc, where q0 is the
midpoint between K(1)

ξ and K(2)
ξ , and qc is set to 4GM(GM =

|GM
1 | = |GM

2 |). The calculation is done independently for each
valley.

APPENDIX C: MIGDAL-ELIASHBERG THEORY

The Eliashberg theory was built within the framework of
the Nambu-Gorkov formalism [56–61]. The two-component
electron spinor within the formalism is written down as

ψk =
(

ck↑
c†
−k↓

)
, ψ

†
k = (c†

k↑ c−k↓), (C1)

where the operator ck↑ (c†
−k↓) destroys (creates) an electron of

Bloch state in momentum k (−k) and spin up (down). By this
definition, the Green function of the electron is a 2 × 2 matrix

Ĝ(k, τ ) = −
[

〈T ck↑(τ )c†
k↑(0)〉 〈T ck↑(τ )c−k↓(0)〉

〈T c†
−k↓(τ )c†

k↑(0)〉 〈T c†
−k↓(τ )c−k↓(0)〉

]
,

(C2)
where T is the time-ordering operator, and the angular brack-
ets indicate a grand-canonical thermodynamic average. Here
the diagonal term is the conventional electron Green function,
and the off-diagonal terms represent Gorkov’s anomalous
Green functions F (k, τ ) and F ∗(k, τ ), which describe the en-
ergy properties of a superconducting state. The Green function
can then be expanded using the Fourier series:

Ĝ(k, τ ) = T
∑
iωn

e−iωnτ Ĝ(k, iωn), (C3)

045404-8



THEORETICAL DETERMINATION OF THE EFFECT … PHYSICAL REVIEW B 109, 045404 (2024)

where T is temperature and ωn = (2n + 1)πTC is the Matsub-
ara frequency. Combining Eqs. (C2) and (C3), we obtain the
Green function in momentum space in imaginary frequency,

Ĝ(k, iωn) =
[

G(k, iωn) F (k, iωn)
F ∗(k, iωn) −G(−k,−iωn)

]
. (C4)

The Eliashberg theory aims to solve the generalized Green
function Eq. (C4) using the Dyson equation,

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn) − �̂(k, iωn), (C5)

where Ĝ−1
0 (k, iωn) is a noninteracting Green function given

by

Ĝ−1
0 (k, iωn) = iωnτ̂0 − ξkτ̂3, (C6)

where ξk = Ek − EF, and �̂(k, iωn) is self-energy. In general,
it is very difficult to solve exact self-energy due to the com-
plexity of the phonon propagator. However, Migdal’s theorem
states that the phonon vertex corrections are small [62]. It is
therefore a good approximation to set the phonon vertex to the
bare phonon vertex. Within the Migdal-Eliashberg approxi-
mation, one can write down self-energy as

�̂(k, iωn) = −T
∑
k′m

Vk−k′,n−mτ̂3Ĝ(k′, iωm)τ̂3. (C7)

The interaction Vk−k′,n−m is defined as

Vk−k′,n−m = {|gkk′ |2D(k − k′, iωn − iωm)

− Vc(k − k′, iωn − iωm)}|M(k, k′)|2, (C8)

where D(q, iωn) = 2ωq/[(iωn)2 − ω2
q] is the dressed phonon

propagator in momentum q, and |gkk′ |2 = h̄D2q/2Aρcph is the
electron-phonon coupling. ωq = cphq is the phonon disper-
sion, cph is the phonon velocity, D is the deformation potential,
A is the sample area, ρ is the mass density, and |ψk〉 is
the wave function for momentum k. M(k, k′) = 〈ψk|ψk′ 〉 is
the form factor, which involved the projection to the occu-
pied bands [63,64]. In this paper, we use D = 25 eV, cph =
20 000 m/s, ρ = 7.6 × 10−8 g/cm2 [65,66].

Assuming the ansatz for self-energy,

�̂(k, iωn) = iωn[1 − Zk,n]τ̂0 + χk,nτ̂3 + φk,nτ̂1 + φ̄k,nτ̂2,

(C9)
where Zk,n is the mass renormalization function, χk,n is the
chemical potential shift, and φk,n is the order parameter. If the
phase of the superconductivity gap is not important, one can
choose the gauge φ̄k,n = 0. Combining Eqs. (C5), (C6), (C7),
and (C9), we arrive at the anisotropic Eliashberg equation

iωn(1 − Zk,n) = T
∑
k′m

Vk−k′,n−m
iωmZk′,m

�k′,m
,

χk,n = T
∑
k′m

Vk−k′,n−m
ξk + χk′,m

�k′,m
,

φk,n = −T
∑
k′m

Vk−k′,n−m
φk′,m

�k′,m
, (C10)

where � is the denominator defined as

�k,n = (ωnZk,n)2 + (ξk + χk,n)2 + φ2
k,n. (C11)

APPENDIX D: LINEARIZED ISOTROPIC GAP EQUATION

To determine the critical temperature, we consider the lin-
earized Eliashberg equation by setting φ(k, iωn) = 0 in the
denominator of Eq. (C11), and we have

iωn(1 − Zk,n) = T
∑
k′m

Vk−k′,n−m
iωmZk′,m

ω2
nZ2

k′,m + (ξk′ + χk′,m)2 ,

χk,n = T
∑
k′m

Vk−k′,n−m
ξk + χk′,m

ω2
nZ2

k′,m + (ξk′ + χk′,m)2 ,

φk,n = −T
∑
k′m

Vk−k′,n−m
φk′,m

ω2
nZ2

k′,m + (ξk′ + χk′,m)2 .

(D1)

Combining the first two equations of Eqs. (D1), we get

Rk,n = iωn(1 − Zk,n) + χk,n

= T
∑
k′m

Vk−k′,n−m
iωmZk′,m + ξk + χk′,m

ω2
nZ2

k′,m + (ξk′ + χk′,m)2

= −T
∑
k′m

Vk−k′,n−m

iωmZk′m − ξk′ − χk′,m

= −T
∑
k′m

Vk−k′,n−m

iωm − ξk′ − [iωm(1 − Zk′,n) + χk′,m]

= −T
∑
k′m

Vk−k′,n−m

iωm − ξk′ − Rk′,m
, (D2)

thus Eq. (D2) is a self-consistent equation containing all in-
formation about mass renormalization and chemical potential
shift. The first-order self-energy correction can now be evalu-
ated by setting Rk′,m = 0 on the right-hand side of Eq. (D2),

Rk,n = −Tc

∫ 1

−1
dẼ

∑
m

λn,m

iω̃m − Ẽ
. (D3)

Following Refs. [11,16], we consider the isotropic
Coulomb interaction:

N (0)Vk−k′,n−m = λn,m�(kc − |k|)�(kc − |k′|), (D4)

where λn,m is dimensionless coupling and kc = 2kF repre-
sents the momentum cutoff. The gap equation under isotropic
approximation takes the form

φn = −2T̃c

∞∑
m=−∞

1

Zmω̃m
arctan

1

Zmω̃m
λn,mφm, (D5)

which is Eq. (3) in the main text. In general, the function
form of mass renormalization function Zn depends strongly
on the form of coupling interaction λn,m, which needs to be
determined numerically. Here we adopt the Lorentzian ap-
proximation with the Coulomb interaction described by the
Lorentzian form

λn,m = μ

(
1 − �̃2

b

�̃2
b + (ω̃n − ω̃m)2

)
, (D6)

where we have defined thee dimension quanti-
ties �̃b = �b/EF . In this case, Eq. (D3) can be

045404-9



PENG, YUDHISTIRA, VIGNALE, AND ADAM PHYSICAL REVIEW B 109, 045404 (2024)

FIG. 8. Numerical results for superconducting critical temper-
ature with a double screening gate. (a) Critical temperature as a
function of filling factor ν for different separation distances l . As
l decreases, the bimodal structure disappears and is replaced by a
single peak near Van Hove singularity (VHS). (b) Critical tempera-
ture vs separation distance l at fixed filling. The dashed lines show
the value for an infinite gate separation. Parts (c) and (d) show the
extracted parameters μ and �̃b for the Lorentzian model, where the
dashed lines here show the value in the static screening limit.

evaluated analytically,

Rk,n = −μ

(
EF + i�b arctan

ω̃n

ω̃2
n + �̃b(1 + �̃b)

)
, (D7)

which gives the solution of renormalization

Zn = 1 + μ
�̃b

ω̃n
arctan

ω̃n

ω̃2
n + �̃b(1 + �̃b)

. (D8)

The procedures to determine critical temperature are the
following: (i) Discrete the Brillouin zone and compute the
band structures. We choose a 100 × 100 mesh to ensure
convergence. (ii) For a given temperature T , we generate a
Matsubara frequency grid by setting the energy cutoff Ec =
2000 meV. (iii) The dynamic screened Coulomb interaction
is therefore computed via Eq. (2), and the coupling strength is
given by Eq. (1). (iv) To compute critical temperature beyond
the Lorentzian approximation, we compute the mass renor-
malization Zm function numerically by integrating Eq. (D3).
(v) The gap equation [Eq. (3)] is then solved by the power
method to reduce computational time. (vi) We repeat the
above procedures and find the critical temperature Tc when
the largest eigenvalue is exactly equal to 1.

APPENDIX E: RESULTS FOR DOUBLE-GATE SCREENING

Similar to single-gate screening, we consider the double-
gate screening structure where the MATBG sample is placed
between two external metal gates with the same separations l .
The bare Coulomb interaction can be obtained in the limit of

2, κt , κb → ∞:

V (q) = 2πe2

κmq
tanh dgq. (E1)

Figure 8(a) shows the critical temperature as a function of
the filling factor ν for various separation distances l . Similar
to single-gate screening, the bimodal feature disappears and

is replaced by a single peak near the Van Hove singularity as
l decreases. We found that double metal gates will provide
a lower critical temperature due to the extra screening from
other metal gates. In Fig. 8(b), a nonmonotonic transition is
also observed for fixed filling-factor cases. This nonmono-
tonicity can also be understood by mapping to the Lorentzian
model, as shown in Figs. 8(c) and 8(d). Again, we noted that
the critical temperature remains relatively constant across a
wide range of separations but experiences a significant drop
when l � 3 nm.

APPENDIX F: BARE COULOMB POTENTIAL

Here we derive the general form of the Coulomb inter-
action for the hybrid structure mentioned in the main text.
The bare Coulomb interaction can be obtained by solving the
displacement field D to satisfy

∇ · D = 0 (F1)

everywhere in space. Here, the displacement field is related to
the electric field by D = κE. The material in each slab divides
the space into several parts,

κ1 for z > d1,

κ2 for 0 < z < d1,

κ3 for − l < z < 0, (F2)

κ4 for − l − d2 < z < −l,

κ5 for z < −l − d2,

where we have set the 2D layer at z = 0 and the MATBG at
z = −l . The corresponding Poisson equation can be obtained
by invoking the relation between electric field and electric
potential E = −∇φ,

κi∇2φi = 0; i = 1, 2, 3, 4, 5. (F3)

The solution of the Poisson equation is given by the form
of

φ1(r, z) = Aeiq·re−qz, z > d1,

φ2(r, z) = eiq·r(Beqz + Ce−qz ), 0 < z < d1,

φ3(r, z) = eiq·r(Deqz + Ee−qz ), −l < z < 0, (F4)

φ4(r, z) = eiq·r(Feqz + Ge−qz ), −l − d2 < z < −l,

φ5(r, z) = Heiq·reqz, z < −l − d2,

where we have use shorthand r = (x
y), q = (qx

qy
), and q =

|q|. This form has been chosen such that the potential
does not diverge towards z = ±∞. The undetermined coef-
ficients can be obtained by matching the electric potential
at the boundary between each layer/slab [67]. The solution
of the Poisson equation can be written down as a linear
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equation,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−qd1 −eqd1 −e−qd1 0 0 0 0 0
0 1 1 −1 −1 0 0 0
0 0 0 e−ql eql −e−ql −eql 0
0 0 0 0 0 e−q(l+d2 ) eq(l+d2 ) −e−q(l+d2 )

−κ1e−qd1 −κ2eqd1 κ2e−qd1 0 0 0 0 0
0 κ2 −κ2 −κ3 κ3 0 0 0
0 0 0 κ3e−ql −κ3eql −κ4e−ql κ4eql 0
0 0 0 0 0 κ4e−q(l+d2 ) −κ4eq(l+d2 ) −κ5e−q(l+d2 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
B
C
D
E
F
G
H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

4πe/q
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (F5)

which can be inverted to give us the undetermined coefficients. The intralayer bare Coulomb potential for the first layer is given
by V11 = −eφ3(0, 0) = −e(D + E ), and the interlayer bare Coulomb potential is given by V12 = −eφ3(0,−l ) = −e(De−ql +
Eeql ).

Due to the symmetry of the system, the intralayer bare Coulomb potential V22 can be obtained from V11 by interchanging
κ1 ↔ κ5, κ2 ↔ κ4, and d1 ↔ d2. Similarly, the interlayer bare Coulomb potential V12 can be obtained from V21 using the same
procedure. Finally, we obtain the bare Coulomb potential matrix elements

V11(q) = 4πe2

c0q
e2lq f1[κ3(e2lq + 1) f2 + κ4(e2lq − 1) f3],

V12(q) = V21(q) = 8πe2

c0q
e3lqκ3 f1 f2, (F6)

V22(q) = V11(κ1 ↔ κ5, κ2 ↔ κ4, d1 ↔ d2),

where

c0 = (κ1 + κ2)(κ2 − κ3)(κ3 − κ4)(κ4 + κ5)e2q(d1+d2+l ) + (κ1 + κ2)(κ2 + κ3)(κ3 + κ4)(κ4 + κ5)e2q(d1+d2+2l )

+ (κ1 + κ2)(κ2 + κ3)(κ3 − κ4)(κ4 − κ5)e2q(d1+2l ) + (κ1 + κ2)(κ2 − κ3)(κ3 + κ4)(κ4 − κ5)e2q(d1+l )

+ (κ1 − κ2)(κ2 + κ3)(κ3 − κ4)(κ4 + κ5)e2q(d2+l ) + (κ1 − κ2)(κ2 − κ3)(κ3 + κ4)(κ4 + κ5)e2q(d2+2l )

+ (κ1 − κ2)(κ2 − κ3)(κ3 − κ4)(κ4 − κ5)e4lq + (κ1 − κ2)(κ2 + κ3)(κ3 + κ4)(κ4 − κ5)e2lq, (F7)

and

f1 = e2d1q(κ1 + κ2) − κ1 + κ2, f2 = e2d2q(κ4 + κ5) + κ4 − κ5, f3 = e2d2q(κ4 + κ5) − κ4 + κ5. (F8)

In the case of κ2 = κ3 = κ4 = κm, κ1 → κt , κ5 → κm, d1 = d2 = d , we obtain the following solution:

V11(q) = 4πe2

κmq

[κm cosh(qd ) + κt sinh(qd )]{κm cosh[q(l + d )] + κb sinh[q(l + d )]}
(κt + κb)κm cosh[q(l + 2d )] + (κtκb + κ2

m) sinh[q(l + 2d )]
,

V12(q) = V21(q) = 4πe2

κmq

[κm cosh(qd ) + κb sinh(qd )][κm cosh(qd ) + κt sinh(qd )]

(κt + κb)κm cosh[q(l + 2d )] + (κtκb + κ2
m) sinh[q(l + 2d )]

, (F9)

V22(q) = 4πe2

κmq

[κm cosh(qd ) + κb sinh(qd )]{κm cosh[q(l + d )] + κt sinh[q(l + d )]}
(κt + κb)κm cosh[q(l + 2d )] + (κtκb + κ2

m) sinh[q(l + 2d )]
.

APPENDIX G: EFFECTIVE COULOMB INTERACTION
FOR THE MATBG-2D HYBRID SYSTEM

The Hamiltonian that describes the MATBG-2D system
can be written as

H = H1 + H2 + Hee, (G1)

where H1 (H2) indicates the noninteracting Hamiltonian of
MATBG (2D material). The coupling Hamiltonian reads

Hee = 1

2

∑
q,� 
=�′

V��′ (q)n̂q,�n̂−q,�′ , (G2)

where n̂q,� is the density operator of the �th layer,

n̂q,� =
∑
k,α

ψ̂
†
k−q,α,�

ψ̂k,α,�, (G3)

and V��′ (q) (� 
= �′) is the 2D Fourier transform of the inter-
layer Coulomb interaction.

For convenience, we introduce the matrix

Ŵ =
(

W11 W12

W21 W22

)
, V̂ =

(
V11 V12

V21 V22

)
, (G4)

to represent the screened and bare Coulomb interaction,
respectively. The details about the bare Coulomb interac-
tion can be found in Appendix F. From the random phase
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approximation, the screened Coulomb potential matrix Ŵ is
given by

Ŵ = V̂ + V̂ 
̂V̂ + V̂ 
̂V̂ 
̂V̂ + · · · = V̂ + V̂ 
̂Ŵ , (G5)

where 
̂ is the polarizability matrix. Equation (G5) can be
rearranged into

Ŵ = (1̂ − V̂ 
̂)−1V̂ = ε̂−1V̂ , (G6)

where ε̂ is the dielectric matrix, which can be evaluated to be
ε̂−1 = (1̂ − V̂ 
̂)−1. For the system with a few nanometers’
separations, the interlayer tunneling is negligible compare
with intralayer coupling, and we assume the off-diagonal term
of 
̂ is zero, i.e., 
i j = 
iδi j . Under this assumption, the
dielectric matrix is written as

ε̂−1 =
(

1 − V11
1 −V12
2

−V21
1 1 − V22
2

)−1

= 1

ε1ε2 − V12V21
1
2

(
ε2 V12
2

V21
1 ε1

)
, (G7)

where we have defined the dielectric function εi = 1 − Vii
i.
Combining Eqs. (G6) and (G7), we obtain

Ŵ = 1

ε1ε2 − V12V21
1
2

(
ε2 V12
2

V21
1 ε1

)(
V11 V12

V21 V22

)
.

(G8)

We are particularly interested in the Coulomb interaction
in the active layer, which corresponds to the W11 element

V (q, iω) = W11 = ε2V11 + V12V21
2

ε1ε2 − V12V21
1
2
. (G9)

Equation (G9) can be rewritten in a more compact form,

V (q, iω) = Veff

1 − 
1Veff
, (G10)

where we have defined the effective bare Coulomb interaction
as

Veff (q, iω) = V11

[
1 − V12V21

V11V22

(
1 − 1

ε2

)]
, (G11)

which is Eq. (8) in the main text.
In the case of the bare Coulomb interaction,

V11 = V22 = 2πe2

q
, V12 = V21 = 2πe2

q
e−ql , (G12)

where l is the distance between the active and passive layers.
Equation (G11) then become

Veff = 2πe2

q

[
1 − e−2ql

(
1 − 1

ε2

)]
, (G13)

which is exactly the Coulomb interaction derived in [15].
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