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Armchair edge states in shear-strained graphene: Magnetic properties and quantum
valley Hall edge states
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Typically, edge states in graphene are known to exist solely along zigzag edges. However, in this paper,
we present a theoretical discovery of edge states along armchair edges in graphene under shear strain. This
phenomenon arises from shear strain causing a separation between two inequivalent Dirac cones in the Brillouin
zone (BZ) along the zigzag direction. Consequently, these armchair edge states appear as flat bands, connecting
the two Dirac points at the two edges of armchair graphene nanoribbons (AGNRs). The length of these
flat bands in the BZ and the penetration depth of the edge states are directly and inversely proportional to
the strain, respectively. In monolayer AGNRs, possible magnetic configurations of flat bands resulting from
electron-electron interactions are investigated. The edge-to-edge antiferromagnet (AFM) ground state is found
in neutral AGNRs, while the AFM to ferromagnet (FM) transition can occur and be controlled by the strain in
low-doped AGNRs. In gapped bilayer AGNRs, the armchair edge states evolve into quantum valley Hall edge
states (QVHESs), which significantly improves the conductivity of QVHESs at realistic imperfect sample edges.
These armchair edge states present a promising and tunable platform for exploring topological edge states in
graphene.
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I. INTRODUCTION

Graphene is an ideal platform to engineer ample topolog-
ical bulk phases and topological edge states (TESs) [1,2].
Even in pristine graphene, two valleys with opposite Berry
phases are connected by the zero-energy flat band along
zigzag edges. These well-known zigzag edge states (ZESs) in
graphene have a topological origin, are quite robust against
weak perturbations, and have been experimentally verified
[3–8]. The magnetic structures of zigzag-edge flat bands have
been widely studied based on the electron-electron interac-
tion [9–17]. The edge-to-edge antiferromagnet (AFM) ground
state was found in neutral narrow zigzag graphene nanorib-
bons (ZGNRs). The phase diagrams in finite-doped ZGNRs
were also reported and the magnetic phase transition was
found [18,19]. This edge magnetism of ZESs is particularly
promising for spintronic applications [13,20–22]. However,
the edge magnetism is sensitive to edge defects due to the
short penetration depth of ZESs [23].

In bilayer graphene, these ZESs evolve into quantum valley
Hall edge states (QVHESs) when a perpendicular electric field
is applied to bilayer ZGNRs to open a bulk gap [24,25]. These
QVHESs host great promise for low-dissipation transport
channels and topological transistors or devices [26–29]. Un-
fortunately, the QVHESs are only found along zigzag edges
and are fragile to edge defects.
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Usually, these edge states in graphene are believed to oc-
cur solely along zigzag edges. In fact, the separation of two
valleys is the key point to induce edge states in graphene
nanoribbons. The bare armchair nanoribbons (AGNRs) do not
host edge states due to the superposition of two valleys. But
when the three nearest hopping energies satisfy the condition
t1 < t2 < t3 with t2, the hopping energy parallel to the arm-
chair direction, the zero-energy armchair edge states (AESs)
were predicted to exist [30]. In this paper, we apply a shear
strain to AGNRs and predict the existence of these AESs,
which is consistent with the hopping energy condition [30]. It
is because the shear strain can separate two valleys along the
zigzag direction of the reciprocal space of graphene [31–34]
via the effective pseudovector potential [35,36]. The elastic
deformation can be applied to the graphene lattice beyond
20% [37]. We further find more robust edge magnetizations
of these AESs in monolayer AGNRs against edge defects
due to the strain-tunable penetration depth of AESs. An AFM
ground state is found in neutral AGNRs while the AFM to FM
transition is found and controllable by the strain in low-doped
AGNRs. In gapped bilayer AGNRs, the AESs also evolve into
QVHESs, which significantly improves the conductivity of
QVHESs at realistic imperfect sample edges.

II. AESS IN AGNRS UNDER SHEAR STRAIN

A shear-deformed monolayer AGNR (S-MAGNR) with
width N is shown in Fig. 1(a). There are N A sites and N
B sites in the supercell circled by the blue dot rectangle.
The nearest-neighbor hopping energy t = 3 eV is taken as
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FIG. 1. (a) Schematic of the AGNR after shear deformation, with
the strain applied along the armchair direction. (b) BZ of shear-
deformed graphene. (c) The band structures of S-MAGNR with
N = 60 and γ = 10%/20% (black solid lines/red dot lines). (d) The
corresponding wave function distributions of the flat bands at kx = 0.

the unit of energy and the length of the C-C bond is a =
1.42 Å before deformation. With the shear strain applied along
the armchair direction, the lengths of deformed bonds are
given as dα = a

√
1 + εα , with α = 1, 2, 3 [37]. In detail, ε1 =√

3γ (
√

3γ − 2)/4, ε2 = 0, ε3 = √
3γ (

√
3γ + 2)/4 and γ is

the shear strain parameter [34]. The hopping energies after
deformation are given by tα = t exp[−β(dα/a − 1)], where
β = 3.37 is the the Grüneisen parameter [35].

The field operator at the jth row atoms can be defined
as ψ j = (a jσ , b jσ )T , where a jσ (b jσ ) is the annihilation op-
erator at the jth row A (B) site with spin σ =↑,↓. Then
we can obtain the spin-resolved tight-binding Hamiltonian of
S-MAGNR

HS
σ =

N∑
j=1

ψ
†
jσ I jψ jσ +

⎛
⎝N−1∑

j=1

ψ
†
jσ Ojψ j+1,σ + H.c.

⎞
⎠, (1)

where

I j =
(

0 t2eikxa

t2e−ikxa 0

)
, Oj =

(
0 t3e−ikxa/2

t1eikxa/2 0

)
.

I j and Oj denote the intrarow and interrow hopping, respec-
tively.

By numerically diagonalizing the Hamiltonian, two degen-
erate AESs appear as two flat bands for S-MAGNRs with N =
60 and γ = 10% and 20%, as shown in Fig. 1(c). The corre-
sponding wave function distributions at kx = 0 are shown in
Fig. 1(d) for various strain strength. The flat bands originate
from the shear strain induced separation of two valleys that
are originally superposed at kx = 0. Along the kx direction,
the separation between two valleys would be LF ≈ βγ /a,
sketched in Fig. 1(b) [34]. We also define LF as the length
of two flat bands in the momentum space, which is approved
by the results in Fig. 1(c). Note that LF is proportional to the
shear strain strength γ .

The wave functions of AESs can be solved analytically.
Consider a semi-infinite graphene with an armchair edge at

FIG. 2. (a) Schematic of the bilayer armchair graphene nanorib-
bon (left) before and (right) after shear deformation, with the strain
applied along the armchair direction. (b) The band structures of
S-MAGNR with N = 200 and γ = 2%/5% (black solid lines/red
dot lines) and (c) the corresponding wave function amplitudes of
the edge states at kx = 0. The wave functions of the edge states in
the upper, middle, and bottom panels are given by formulas (7), (5),
and (9) in the Supplemental Material [38], respectively. The wave
function at A sites αd/u = 0 [38].

j = 1, the Harper equation reads

Eα j = − t1eikxa/2β j+1 − t2e−ikxaβ j − t3eikxa/2β j−1,

Eβ j = − t1e−ikxa/2α j−1 − t2eikxaα j − t3e−ikxa/2α j+1,
(2)

where α j (β j) is the wave function of the jth row A (B) site.
At the edge with j = 1, the equation becomes

Eα1 = −t1eikxa/2β2 − t2e−ikxaβ1,

Eβ1 = −t2eikxaα1 − t3e−ikxa/2α2. (3)

At kx = 0, without lose of generality, the wave function of
zero energy flat bands can be found as

α j = 0, β j =
⎧⎨
⎩

e−λy j/2β1, j = 3n − 2
−e−λy j/2β1, j = 3n − 1
0, j = 3n,

(4)

where n ∈ N+. y j = √
3( j − 1)a/2 is the y coordinate of jth

row atoms. λ = βγ /a denotes the penetration coefficient of
the wave function, which is only determined by the strain pa-
rameter γ . Away from kx = 0, the wave functions become kx

dependent but still are restricted by the decay factor e−λy j/2 at
E = 0. Therefore, the penetration depth of edge states can be
defined as yD = 1/λ = a/βγ , which is inversely proportional
to the shear strain strength. For γ = 1%, the penetration depth
would be yD ≈ 30a, which contains 35 rows of atoms.

Similarly, AESs can also emerge as flat bands in shear-
deformed bilayer AGNR (S-BAGNR) [38]. The BAGNR is
shown in Fig. 2(a). There are N Ad/u atoms (black/red dot)
and N Bd/u atoms (red/white dot) in the supercell, which
is circled by the blue dot rectangle in Fig. 2(a). Ad/u (Bd/u)
denotes the A atoms (B atoms) of the bottom/upper layer. The
nearest-neighbor hopping energy t and the interlayer hopping
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energy between Bd and Au atoms is t ′ = 0.1t . Note that the
interlayer hopping energy remains the same with the shear
strain applied.

The field operator at jth row atoms can be defined as
	 j = [ad ( j), bd ( j), au( j), bu( j)]T , where ad ( j) [bd ( j), au( j),
bu( j)] denotes the annihilation operator at Ad ( j) atom [Bd ( j),
Au( j), Bu( j) atom]. Then we can obtain the tight-binding
Hamiltonian of S-BAGNR

HB =
N∑

j=1

	
†
j IB

j 	 j +
⎛
⎝N−1∑

j=1

	
†
j OB

j 	 j+1 + H.c.

⎞
⎠, (5)

where

IB
j =

⎛
⎜⎜⎝

−V0 t2eikxa 0 0
t2e−ikxa −V0 t ′ 0

0 t ′ V0 t2eikxa

0 0 t2e−ikxa V0

⎞
⎟⎟⎠,

OB
j =

⎛
⎜⎜⎝

0 t3e−ikxa/2 0 0
t1eikxa/2 0 0 0

0 0 0 t3e−ikxa/2

0 0 t1eikxa/2 0

⎞
⎟⎟⎠.

IB
j and OB

j denote the intrarow and interrow hoppings, respec-
tively. V0 in IB

j is introduced by the perpendicular electric field.
When V0 = 0, the AESs appear as flat bands and the cor-
responding wave function amplitudes at kx = 0 are obtained
and shown in Figs. 2(b) and 2(c), respectively. The length
of flat band in momentum space is LB

F ≈ βγ /a [38], which
is consistent with the results in Fig. 2(b). The flat band is
constructed within |kx| < βγ /2a, determined by the strain.

AESs emerge in all metallic S-MAGNRs and S-BAGNRs
with N = 3p − 1 and p ∈ N+. For S-MAGNRs and S-
BAGNRs with N �= 3p − 1, AESs only emerge after the strain
is strong enough to close the finite-size-induced gap. The
details are presented in the Supplemental Material [38].

III. SPONTANEOUS FERROMAGNETISM OF AES

Similar to ZESs, the AESs can induce spontaneous
magnetic order in S-MAGNRs by considering the electron-
electron interaction within the Hubbard model. The Hamil-
tonian can be written as H = ∑

σ [HS
σ + HU

σ ]. HU
σ =

U
∑

j[〈n jσ̄ 〉 − 1/2]n jσ [39] represents the on-site repulsive

interaction, where n jσ = ψ
†
jσ ψ jσ is the density operator of

electron with spin σ at the jth row atoms and 〈njσ 〉 denotes the
corresponding expectation value. σ̄ denote the opposite spin
to σ . Without lose of generality, U = 3.24 eV [9] stands for
the magnitude of the on-site Coulomb repulsion in this paper.

By setting an initial magnetic configuration, the band struc-
ture and the magnetic moment 〈M〉 at Aj atom (Bj atom), i.e.,
〈MAj 〉 = 〈a†

j↑a j↑〉 − 〈a†
j↓a j↓〉 (〈MBj 〉 = 〈b†

j↑b j↑〉 − 〈b†
j↓b j↓〉),

can be obtained by self-consistent iterations, in units of μB.
Both edge-to-edge AFM and FM configurations are stable.
For simplicity, we consider only the situation of zero tempera-
ture. Note that this spontaneous edge ferromagnetism of AESs
should be more robust against edge defects than that of ZESs.
This is because the penetration depth of AESs is much larger
than that of ZESs and strain tunable, while ZESs are mainly
localized at the outermost edge atoms.

FIG. 3. (a) The band structure of edge-to-edge antiferromagnetic
S-MAGNR with N = 60 and γ = 15%. (b) The band gaps as func-
tions of nanoribbon width N with γ = 15%/20%. (c) The local
magnetic moment of N = 60 S-MAGNR with γ = 15%/20%.

According to Lieb’s theorem [9], the total magnetism of
the ground state is zero in a half-filled bipolar lattice. The
results of the AFM ground state for half-filling S-MAGNRs
are shown in Fig. 3. The band structure is spin degenerate and
the on-site repulsive interaction opens a band gap 
1 separat-
ing the valence and conduction band. In the original flat-band
region |kx| < βγ /2a, the gap changes with kx, with the mini-
mal value 
1 at around kx = ±βγ /2a and the maximal value

2 at kx = 0, as shown in Fig. 3(a). As shown in Fig. 3(b),

1 decreases with increasing width and decreasing strain. By
contrast, 
2 barely changes with nanoribbon width, but is
sensitive to the strain. The local magnetizations of N = 60
S-MAGNRs exhibit AFM edge magnetizations as shown in
Fig. 3(c). The maximal on-site magnetic moment increases
with increasing strain. When γ = 15% (20%), the maximal
magnetic moment 〈MA/B〉 is around 0.11 µB (0.17 µB).

The edge-to-edge FM configuration can also be obtained,
but with a slightly higher energy than the AFM one, for the
neutral S-MAGNR. The energy difference per carbon atom
between the AFM and FM orders decreases with increasing
width N . Figure 4(a) shows the spin-split band structure of
N = 60 S-MAGNRs. The corresponding local magnetizations
are shown in Fig. 4(b).

In the case of finite doping, the FM order can also be
the ground state. By doping nD electrons per supercell to
the neutral S-MAGNR, the transition between AFM and FM
orders becomes possible. In the case of low-doping, the band
structures for both the AFM and FM orders barely change.
But the total energy of electrons is sensitive to the doping.
The total energy for the FM/AFM order reads

EFM/AFM
tot = 1

Nkx

Occ∑
mkxσ

εmkxσ , (6)

where Nkx = 2000 is taken as the number of kx points in
the BZ without loss of generality. εmkxσ denotes the eigenen-
ergy of kx state at the mth occupied band, with spin σ . The
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FIG. 4. (a) The band structure of edge-to-edge ferromagnetic S-MAGNR with N = 60 and γ = 15%. (b) The local magnetic moment of
N = 60 S-MAGNR with γ = 15% and 20%. (c), (e) The phase diagram of the magnetic order as functions of nD and N with (c) γ = 15% and
(e) /20%. (d), (f) The corresponding energy difference between the FM and AFM orders is the function of nD with N = 40 and 60. (g) The
phase diagram as functions of γ and nD with N = 60. (h) The corresponding energy difference as the function of γ with fixed nD = 10−2 and
2 × 10−2 .

energy difference between the FM and AFM orders, i.e.,

E = EFM

tot − EAFM
tot , determines the ground state. The doped

electrons will occupy the states at the bottom of the conduc-
tion band above the neutral point. The AFM order is gapped
while the FM order remains gapless. Therefore, the doped
electrons in the AFM order will increase more energies than
those in the FM order. As a result, 
E > 0 at nD = 0 may
turn into 
E < 0 for finite electron doping, which leads to
the AFM to FM transition.

The phase diagrams of the magnetic order as functions of
nD and N are shown in Figs. 4(c) and 4(e). It is seen that the
the doping-induced AFM to FM transition only occurs in a
narrow width range for γ = 15%, but occurs in a much wider
width range for γ = 20%. Figures 4(d) and 4(f) show the
corresponding energy difference between the FM and AFM
orders as the function of nD with N = 40 and 60. Naturally, at
fixed width N and doping nD, the AFM to FM transition can
be controlled by the applied strain, which can be seen in the
phase diagram shown in Figs. 4(g) and 4(h). Interestingly, the
AFM-FM-AFM transition can also be realized with increasing
strain for suitable width and doping.

IV. QVHES IN GAPPED BILAYER AGNR

In gapped bilayer graphene under a perpendicular electric
field, QVHESs across the gap can only exist along zigzag
edges, which makes QVHESs very fragile to edge defects. As
we know, the edge states vanish in gapped bilayer graphene
with armchair termination [26,40,41]. Similar to ZESs, AESs
also evolve into QVHESs in gapped bilayer graphene. In S-
BAGNRs, AESs can emerge as fourfold-degenerate flat bands
as shown in the Supplemental Material [38]. By applying a
perpendicular electric field, S-BAGNRs open a gap and two
AESs evolve into QVHESs and cross the gap, as shown in
Fig. 5(c). The corresponding wave function distributions of a
QVHES are shown in Figs. 5(d) and 5(e).

To demonstrate the enhancement of the conductivity of
QVHESs by AESs at realistic imperfect sample edges, we
compare the conductances of QVHESs at zigzag and armchair

FIG. 5. (a), (b) Schematics of two junctions based on QVHESs
at (a) zigzag and (b) armchair edges in gapped bilayer graphene
ribbons. (c) The band structure of S-BAGNR with NW = 200,
γ = 20% and a perpendicular electric field V0 = 0.1t . (d), (e) The
wave-function distributions of the rightmost state at E = 0.02t of
S-BAGNR, with the applied strain γ = 10% and 20%. (f), (g) The
conductances of two junctions shown in (a) and (b) with NW = 200,
V0 = 0.1t , (f) NL = 800 and (g) NL = 1000. For S-BAGNRs, γ =
10% and 20%. EF denotes the Fermi energy of the junction.
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edges with edge defects. Without loss of generality, we con-
sider two junctions with defects shown in Figs. 5(a) and 5(b).
In both junctions, the leads are heavily doped. The bulk states
of scattering regions are gapped by a perpendicular electric
field (modeled by the on-site potential −V0 and V0 of the
bottom and upper layer of bilayer graphene ribbons, respec-
tively). For bilayer zigzag graphene nanoribbon (BZGNR) in
Fig. 5(a), no strain is applied. For S-BAGNR in Fig. 5(b), a
shear strain with γ = 10% and 20% is applied.

The conductances of two junctions are compared as shown
in Figs. 5(f) and 5(g) with NL = 800 and NL = 1000, respec-
tively. The calculation is carried out by the use of Kwant
[42]. It is seen that the conductance of QVHESs at zigzag
edges with defects is nearly zero. The QVHESs are almost
completely reflected by the edge defects. Even so, the tunnel-
ing between broken QVHESs can still occur at edge defects
in the device region, leading to resonance conductance thin
peaks [shown in Fig. 5(g)]. By contrast, the conductance of
QVHESs at armchair edges with defects reaches up to e2/h
for γ = 20%. It implies that the QVHESs are much less re-
flected by the edge defects. The conductance difference can be
understood roughly as follows. At armchair edges, the defect
always removes pairs of A and B sites. While at zigzag edges,
the defect removes one more A or B site. Roughly speaking,
the zigzag edge defects have a smaller size than armchair
edge defects, and thus induce heavier intervalley backscatter-
ing of QVHESs. Therefore, AESs significantly improve the
conductivity of QVHESs at realistic imperfect sample edges.
Besides, the AESs make the connectivity of QVHESs possible
from zigzag edges to armchair edges (see the Supplemental

Material for details), which much extends the application
ground of QVHESs.

V. CONCLUSION

We theoretically discovered AESs in graphene under shear
strain. For both S-MAGNR and S-BAGNR, the length of
the flat band (LF ) and the penetration depth of AES (yD)
were investigated. We found that the length of the flat band
in the BZ and the penetration depth of AESs are directly
and inversely proportional to the strain, respectively. Then
we examined the spontaneous ferromagnetism of AESs in
S-MAGNRs and found that the gaps and local magnetic mo-
ments in edge-to-edge AFM ground states for half filling can
be tuned by the strain. Furthermore, strain controllable tran-
sitions between the edge-to-edge AFM and FM were found
in low-doped S-MAGNRs. In gapped S-BAGNRs, the AESs
evolve into QVHESs with relatively large penetration lengths,
which significantly improves the conductivity of QVHESs at
realistic imperfect sample edges.
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