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Anomalous Nernst effect in epitaxial graphene modulated by external fields
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Under the coaction of off-resonant circularly polarized light and antiferromagnetic exchange field, epitaxial
graphene undergoes various topological phases. Considering the self-rotation of the wave packet and the Berry
curvature driving topological effect, we investigate the spin- and valley-dependent anomalous Nernst effect in
epitaxial graphene and propose two alternative methods to differentiate various topological phases. Firstly, the
charge Nernst current appears only when the light field exists, while for achieving the spin Nernst current,
two external fields must be applied simultaneously. Due to the existence of a substrate potential, a thermally
induced pure valley current can be demonstrated, and its magnitude and sign can be controlled by changing the
antiferromagnetic exchange field. Single-spin and single-valley Nernst currents can be collected in the quantum
valley Hall–quantum anomalous Hall insulator phase. Secondly, the abundant topological phases in epitaxial
graphene can be distinguished by detecting the sign change of the charge, spin, and valley Nernst conductivities
by tuning the Fermi level. Thirdly, the temperature dependence provides another efficient method to distinguish
various topological phases. After deriving an analytical expression from the semiclassical Mott relation, it is
shown that by adjusting the sample temperature, the variation trend of the spin-valley Nernst currents can be
detected. These findings are experimentally verifiable in the future and can be promising for spin and valley
caloritronic applications.
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I. INTRODUCTION

Since Novoselov and Geim et al. creatively used the me-
chanical exfoliation method to successfully prepare stable
graphene in 2004, graphene has rapidly become one of the
hottest research subjects in the fields of condensed-matter
physics and materials science [1,2]. A graphene monolayer is
a two-dimensional hexagonal honeycomb crystal. Due to the
simplicity of the lattice structure, the controllability of the ex-
ternal fields, and the potential value in theory and application,
researchers have been inspired to study the novel physical
properties of graphene, such as its electrical, thermal, optical,
mechanical, magnetic, and topological properties [3–7]. This
has also stimulated research on other single-layered materials
such as silicene, germanene, molybdenum disulfide, etc. In
momentum space, graphene has two degenerate but inequiva-
lent valleys at the corners of the first Brillouin zone. Due to the
large distance between the two valleys, intervalley scattering
is suppressed strongly [8,9]. Similar to the spin degree of
freedom, valley degree of freedom is known as pseudospins.
Based on it, a new discipline, namely, valleytronics, is also a
hot research topic now [10].

Compared with a large amount of research on the electri-
cal transport properties of graphene, thermoelectric transport
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has more potential applications in thermal energy-saving and
dissipation devices, especially regarding the spin- and valley-
dependent anomalous Nernst effect. The anomalous Nernst
effect describes a transverse current induced by a longitudi-
nal temperature gradient in the presence of Berry curvature
[11]. Under the modulation of an off-resonant light and a
substrate potential, the valley-polarized Nernst effect has been
researched [12]. However, under the coaction of the off-
resonant light and antiferromagnetic fields, which break the
time-reversal, spatial inversion, and spin-rotation symmetries,
the spin- and valley-dependent anomalous Nernst effect and
the correspondence between various topological phases and
transport properties have not been fully investigated and ex-
plored in epitaxial graphene. Based on these reasons, we
investigate the spin- and valley-dependent anomalous Nernst
effect under the modulation of external fields. The results
indicate that the charge Nernst current is observed exclusively
in the presence of a light field. The generation of spin Nernst
current requires the simultaneous application of two external
fields. Furthermore, a fundamental objective of valleytronics
is to generate and detect controllable pure valley currents. The
presence of the substrate potential enables the demonstration
of thermally induced pure valley currents whose magnitude
and sign can be controlled by adjusting the antiferromagnetic
exchange field.

Under the modulation of the off-resonant light and anti-
ferromagnetic exchange field, epitaxial graphene undergoes
a sequentially quantum valley Hall insulator (QVHI) phase,
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quantum anomalous Hall insulator (QAHI) phase, quantum
spin valley Hall insulator (QSVHI) phase, and QVH-QAHI
phase [13]. In principle, experimentally detecting whether a
material is a topological insulator can be judged by observing
the edge states of nanoribbons or by measuring the quan-
tized Hall conductivity. Some special methods can also be
used to distinguish different topological insulator phases. For
example, Ezawa has proposed that diamagnetism or optical
circular dichroism can be exploited to distinguish band insu-
lator and topological insulator phases in silicene [14,15]. For
more complex phase transitions, the discrimination methods
are relatively few. Here, based on the anomalous Nernst effect
associated with Berry curvature [12,16–21], we find an alter-
native method to characterize the abundant topological phases
by detecting the sign change of the charge, spin, and valley
Nernst conductivities by tuning the Fermi level.

Furthermore, the anomalous Nernst conductivity is de-
termined not only by the Berry curvature but also by the
entropy density around the Fermi level. In order to study
the thermoelectric transport properties clearly, we consider
their temperature dependence. It can be found that the sign
change of the Nernst conductivity is robust against a weak
temperature. The magnitudes of the valley Nernst conduc-
tivity in the QVHI phase, the charge Nernst conductivity in
the QAHI phase, and the spin Nernst conductivity in the
QVH-QAHI phase are enhanced significantly as the tem-
perature increases. We give an analytical expression for the
spin-valley-dependent Nernst conductivity at low tempera-
tures, and the validity of the semiclassical Mott relation is
verified in a certain temperature range. Importantly, we pro-
pose another alternative method to characterize whether a
topological phase transition occurs by probing the changes in
spin-valley-dependent Nernst currents under the adjustment
of the sample temperature.

In this work we build a theoretical framework to pop-
ulate the valleys and spins under the competition between
the staggered sublattice potential, off-resonant light, and
antiferromagnetic exchange field in graphene and give the cor-
respondence between various topological phases and Nernst
conductivity by tuning the Fermi level or temperature. In
fact, it has been investigated that the materials MnPS3 and
MnPSe3 are native antiferromagnets, which have similar low-
energy effective Hamiltonians [22]. Why not consider the
materials MnPS3 and MnPSe3 as our research object? On
one hand, the antiferromagnetism in these materials is just
a theoretical result, and on the other hand, the topological
phase transition has not been very clear in these finite-sized
materials due to complicated hopping energies. On account
of its tunability and simplicity, graphene is more suitable as
our subject of study. In addition, the focus of the previous
research in Ref. [13] is concentrated on discovering new
topological phases such as topological metal and half-metal
phases. However, here we propose two alternative methods to
differentiate various topological phases by tuning the Fermi
level or temperature. It provides a new visual angle for de-
tecting the various topological phases and is a deeper research
than the previous work.

The outline of the paper is as follows. In Sec. II, the theoret-
ical model and basic formalism are constructed and derived. In
Sec. III we investigate the spin- and valley-related anomalous

FIG. 1. Schematic of a graphene monolayer, which is irradiated
by an off-resonant circularly polarized light and epitaxially grown on
a SiC substrate. The antiferromagnetic field can be achieved by the
proximity effect from an antiferromagnet. The temperature gradient
∇T is applied in the longitudinal direction.

Nernst effect in epitaxial graphene under the modulation of
external fields. In Sec. IV an executable method to character-
ize the abundant topological phases by tuning the Fermi level
to detect the sign change of the charge, spin, and valley Nernst
conductivities is given. In Sec. V we consider the influence
of temperature on the anomalous Nernst effect and propose
another effective method to distinguish topological phases by
adjusting the sample temperature. Finally, a summary is given
in Sec. VI.

II. MODEL AND FORMULATION

The model is shown in Fig. 1, where a temperature gradient
is applied between the hot and cold electrodes, a graphene
monolayer, subjected to off-resonant circularly polarized light
and an antiferromagnetic field, is epitaxially grown on a SiC
substrate. In the low-energy approximation, the Hamiltonian
of the system can be written as

H = h̄vF(ητxkx + τyky) + λzτz + ηλωτz + λAFσzτz, (1)

where η = + (−) represents the valley K (K ′), σz and τx,y,z are
Pauli matrices of the spin and the sublattice pseudospin, re-
spectively. The first term is the Dirac Hamiltonian arisen from
the nearest-neighbor hopping energy, vF = √

3at/2h̄ � 106

m/s is the Fermi velocity with the lattice constant a = 2.46 Å,
and the nearest-neighbor hopping integral t = 2.97 eV. The
second term is the staggered sublattice potential induced by
the SiC substrate, which breaks the spatial inversion symme-
try. When graphene is epitaxially grown on a SiC substrate, in
the experiment, the energy gap λz can reach several meV to
0.26 eV [23,24]. The third term is the Haldane term induced
by the off-resonant circularly polarized light [12,13,25]. The
illumination parameter λω = 8παξ Iv2

F/ω
3, with α � 1/137

as the fine-structure constant, I as the laser intensity, ω as the
light frequency, and ξ = + (−) as the right (left) circulation
of light. For the off-resonant light, it does not directly excite
electrons but effectively changes the energy band structure
through photon absorption and emission processes [26]. Its
photon energy needs to be much higher than the bandwidth
of graphene, which requires that off-resonant light should
satisfy h̄ω � t , i.e., the frequency is not less than 3500 THz.
We adopt the lowest frequency of about 3500 THz, so when
the range of laser intensity is from 1010 to 1.5×1012 W/cm2,
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the illumination parameter |λω| can range from 0.0026 to
0.39 eV [27]. The last term is the antiferromagnetic exchange
term [28,29]. For the antiferromagnetic exchange field, it
was proposed theoretically [30] that a honeycomb lattice
antiferromagnet can be attached to the graphene monolayer
to produce an antiferromagnetic field by the proximity ef-
fect. Recently, more first-principles calculations show that
the layered antiferromagnetic semiconductor MnPSe3 is a
good candidate [22], which can serve as the substrate of
graphene and induce an antiferromagnetic exchange field
[31,32]. The antiferromagnetic field can be tuned by changing
the interlayer distance between graphene and MnPSe3. In the
experiment, proximity-induced ferromagnetism in graphene
has been demonstrated [33], and antiferromagnetic exchange
coupling can be realized between two ferromagnets mediated
by a layer of graphene [34]. Although the proximity-induced
antiferromagnetic exchange field has not been observed in
our experiment at present, the proposed theoretical model
is expected to be possible in the future with the advanced
experimental techniques.

Solving the Schrödinger equation for H, we can obtain the
dispersion related to the spin and valley, which is written as

En
η,sz

(k) = n
√

(h̄vFk)2 + Δ2
η,sz

, (2)

where n = +(−) represents the conduction (valence) band,
sz = +(−) denotes the spin-up (down), k =

√
k2

x + k2
y is the

modulus of wave vector k, and Δη,sz = λz + ηλω + szλAF is
equivalent to an effective mass. We can fully control the
effective mass of each spin and valley independently, enabling
spin-valley electronics in graphene. By solving the eigen-
states and using the definition of Berry curvature �n(k) =
∇×〈un(k)|i∇k|un(k)〉, where un(k) is the periodic part of the
Bloch wave function of the nth Bloch band with wave vector
k, we obtain the analytical expression of the spin-valley-
dependent Berry curvature. It is written as

�n
η,sz

(k) = nη
h̄2v2

FΔη,sz

2
[
(h̄vFk)2 + Δ2

η,sz

]3/2 . (3)

The integral of the Berry curvature over the Brillouin zone
is the Chern number. The topological insulator phase can be
characterized by four independent Chern numbers, i.e., the
charge Chern number Cc, the spin Chern number Cs, the valley
Chern number Cv, and the spin-valley Chern number Csv.

If the symmetry of spatial inversion or time reversal of the
system is broken, a nonzero Berry curvature will be produced.
When the system has a nonzero Berry curvature, the Bloch
electrons will obtain a transverse velocity perpendicular to
the direction of the external electric field, i.e., ṙ = 1

h̄
∂En(k)

∂k +
e
h̄E×�n(k), where En(k) is the nth band energy, E is the exter-
nal electric field, and �n(k) is the Berry curvature. The Berry
curvature is equivalent to a magnetic field in the wave-vector
space, and it will bring about very unique physical phenom-
ena, such as the anomalous Nernst effect [35–37], anomalous
Hall effect [38–40], etc. Considering the topological effect
and the Berry curvature, the spin- and valley-dependent trans-
verse Nernst current induced by the longitudinal temperature

gradient field can be written as

Jη,sz = − ∇T

T
×

∑
n

e

h̄

∫
dk

(2π )2
�n

η,sz

{[
En

η,sz
(k) − EF

]
f n
η,sz

(k)

+ kBT ln
[
1 + e− En

η,sz (k)−EF
kBT

]}
, (4)

where f n
η,sz

(k) = 1/{1 + exp[(En
η,sz

(k) − EF )/kBT ]} is the
Fermi distribution function for valley η, spin sz, and band
n, kB is the Boltzmann constant, and EF is the Fermi level.
According to the definition of anomalous Nernst conductivity
Jy = N (−∇xT ), the spin-valley-dependent Nernst conductiv-
ity can be written as

Nη,sz = ekB

h̄

∑
n

∫
dk

(2π )2
�n

η,sz
Sn

η,sz
(k), (5)

where Sn
η,sz

(k) = − f n
η,sz

(k) ln f n
η,sz

(k) − [1 − f n
η,sz

(k)] ln[1 −
f n
η,sz

(k)] is the entropy density. The entropy density has a
peak at EF. When the energy is beyond the range of [EF −
5kBT, EF + 5kBT ], the entropy density is basically zero. The
charge, spin, and valley Nernst conductivities can then be
defined as

Nc =
∑
η,sz

Nη,sz , Ns =
∑
η,sz

szNη,sz , Nv =
∑
η,sz

ηNη,sz . (6)

In the experiment, the charge Nernst conductivity can be di-
rectly measured by using an amperometer, and the spin and
valley Nernst currents can be measured by a Hall bar geometry
through the inverse spin or valley Hall effect [41–43].

III. SPIN- AND VALLEY-RELATED
ANOMALOUS NERNST EFFECT

In the numerical calculations, we set the temperature T =
300 K, the staggered sublattice potential λz = 0.1 eV, and the
irradiated off-resonant light to be right circularly polarized.
The unit for the Nernst conductivity is ekB/h ≈ 3.33 nA/K,
and the energy unit (EF, λω, and λAF) is electronvolts. Before
studying the property of the anomalous Nernst effect, we
first discuss the characteristics of the Berry curvature of the
conduction band. In Fig. 2 we chose four sets of parameters
to display the Berry curvature, and the four sets of parameters
were selected from different topological phases. The red solid
(blue dashed) lines denote the Berry curvatures with spin-up
(-down). It is observed that when there are no external fields,
in the K (K ′) valley, the Berry curvatures with spin-up and
spin-down are all positive (negative), as shown in Fig. 2(a).
The Chern numbers are (0, 0,−2, 0), corresponding to the
QVHI phase. When a light field is applied with λω = 2λz,
both the time-reversal and the sublattice pseudospin sym-
metries are broken. Compared with those in Fig. 2(a), the
Berry curvatures in the K valley decrease, and the reversal of
Berry curvature occurs in the K ′ valley, as shown in Fig. 2(b).
The QVHI phase undergoes a topological phase transition
to the QAHI phase with Chern numbers (−2, 0, 0, 0). In
Fig. 2(c) only the antiferromagnetic exchange field exists, and
it satisfies λAF = 2λz. Compared with those in Fig. 2(a), the
Berry curvatures with spin-up decrease in both the K and
K ′ valleys, while the reversal of Berry curvature occurs with
spin-down, which is in the QSVHI phase with Chern numbers
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(b) QAHI (λω = 2λz, λAF = 0)
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(d) QVH-QAHI (λω = 2λz, λAF = 2λz)
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FIG. 2. Berry curvatures of the conduction-band electrons in dif-
ferent topological phases. The Berry curvature in the vertical axis
is in units of a2; the wave vector in the horizontal axis is in units
of 1/a. (a)–(d) Berry curvatures of the K and K ′ valleys. The red
solid (blue dashed) line represents the Berry curvature with spin-up
(-down). The staggered potential λz is fixed at 0.1 eV.

(0, 0, 0,−2). When both the light field and antiferromagnetic
exchange field exist with λω = 2λz and λAF = 2λz, the exter-
nal fields and staggered sublattice potential compete with each
other. In the K valley, the Berry curvatures with spin-up and
-down are all positive, while in the K ′ valley the Berry cur-
vature with spin-up is negative but the one with spin-down is
positive, as shown in Fig. 2(d). Due to the changed Berry cur-
vatures, the Chern numbers become (−1, 1,−1,−1), which
correspond to the QVH-QAHI phase. Therefore we can tune
the amplitude and sign of the Berry curvature by manipulating
the off-resonant light and the antiferromagnetic field.

The spin-valley-dependent Nernst conductivity is calcu-
lated from Eq. (5) by integrating the Berry curvature; then the
charge, spin, and valley Nernst conductivities can be obtained
from Eq. (6). In Fig. 3 we plot the charge, spin, and valley
Nernst conductivities as functions of the Fermi energy EF.
The parameters of the external fields correspond exactly to
those in Fig. 2. When there are no external fields, due to the
fact that the signs of the Berry curvatures are opposite in dif-
ferent valleys, satisfying �K,↑ = �K,↓ = −�K ′,↑ = −�K ′,↓,
the spin-valley-dependent Nernst conductivities are related
by NK,↑ = NK,↓ = −NK ′,↑ = −NK ′,↓. Hence, Nc = Ns = 0,
where Nv is finite, as shown in Fig. 3(a). In Fig. 3(b) when
only a light field exists, the Berry curvatures in the same valley
from different spins are equal, i.e., �K,↑ = �K,↓ and �K ′,↑ =
�K ′,↓; therefore the Nernst conductivities satisfy NK,↑ = NK,↓
and NK ′,↑ = NK ′,↓. Comparing with those in Fig. 3(a), the Ns is
still zero, but Nc and Nv can be obtained at the same time, and
the sign change of Nv occurs as EF varies. In Fig. 3(c) when
only an antiferromagnetic field exists, the Berry curvatures for
the same spin but different valleys satisfy �K,↑ = −�K ′,↑ and
�K,↓ = −�K ′,↓. Therefore the Nernst conductivities have the
relations NK,↑ = −NK ′,↑ and NK,↓ = −NK ′,↓. In this case both
the Nc and Ns are zero, and Nv is finite. In Fig. 3(d), when the
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FIG. 3. Charge, spin, and valley Nernst conductivities as func-
tions of the Fermi level. The parameters of external fields are chosen
exactly as those in Fig. 2.

light field and the antiferromagnetic field coexist, Nc, Ns, and
Nv are all nonzero. The signs of Nc and Nv are the same but
are opposite to Ns. So if we want to obtain the spin Nernst
current, a light field and an antiferromagnetic field must be
applied simultaneously.

People may notice that the parameters used in the fig-
ure just now are only for four specific points in the phase
diagram. In order to explore the possible parameter dependen-
cies, we plot the contour plots of Nc, Ns, and Nv as functions
of λω and λAF, as shown in Fig. 4. It can be seen from Fig. 4(a)
that the charge Nernst conductivity Nc is odd in λω but even
in λAF. When λω = 0 there is no charge Nernst current. In
Fig. 4(b) the spin Nernst conductivity Ns is odd with respect to
λω and λAF, and symmetric about λω = ±λAF. When λω = 0
or λAF = 0, it is zero, so to obtain spin Nernst current, two ex-
ternal fields must exist simultaneously. In Fig. 4(c) the valley
Nernst conductivity has four symmetric axes. The value of Nv

is largest at the center. The sign of the charge and spin Nernst
conductivities can be changed by reversing the polarization
direction of light. To clarify the relation between the sym-
metries of the external fields and the Nernst conductivities,
we summarize the correspondences between the time-reversal
symmetry (TRS), spin-rotation symmetry (SRS), and sublat-
tice pseudospin symmetry (SPS) with the Nernst currents in
Table I. From it the Nernst currents corresponding to different
external fields can be seen clearly.

By using Eq. (5) we can define the spin and valley polar-
izations Ps and Pv: Ps = (|N↑| − |N↓|)/(|N↑| + |N↓|) and Pv =
(|NK | − |NK ′ |)/(|NK | + |NK ′ |). Nsz = NK,sz + NK ′,sz is the cur-
rent in the spin-sz channel, while Nη = Nη,↑ + Nη,↓ represents
the current in the η valley. As shown in Fig. 5(a), when λω = 0
and λAF = 0, NK and NK ′ flow in opposite directions and have
the same magnitude, so a pure valley current Nv with no
charge counterpart is generated. If we fix EF = 0.15 eV and
λω = 0, and adjust the antiferromagnetic field, the magnitude
and direction of the pure valley current can be changed by
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FIG. 4. Contour plots of the charge, spin, and valley Nernst conductivities as functions of λω and λAF in the reduced units using λz = 0.1 eV.
The Fermi level is set as EF = 0.15 eV.

tuning λAF, as shown in Fig. 5(b). Figures 5(c) and 5(d) show
the Ps and Pv as functions of λω and λAF, respectively. The spin
polarization Ps is odd in λAF but even in λω. Ps changes sig-
nificantly by changing the antiferromagnetic exchange field.
The valley polarization Pv is odd in λω but even in λAF.
Similar to the spin polarization Ps, the valley polarization Pv

changes dramatically by changing the light field. It can also
be seen that a full valley-polarized current can be achieved,
and the sign of valley polarization can be changed by revers-
ing the polarization of the light. In order to obtain a pure
valley-polarized Nernst current, it is necessary to adjust the
external fields to satisfy Nη,↑ + Nη,↓ = 0, i.e., �η,↑ = −�η,↓.
Through analytical analyses, the condition for generating the
pure valley-polarized Nernst current is λω = −ηλz, and the
corresponding Nernst current only comes from valley −η. In
addition, from Figs. 5(c) and 5(d) it can also be found that
relatively high spin and valley polarizations (�0.90) can be
achieved in a wide parameter region for λω and λAF. The
region where |λω| is close to λz can achieve relatively high
valley polarization currents.

IV. TOPOLOGICAL CORRESPONDENCE WITH
ANOMALOUS NERNST CONDUCTIVITY

Under the coaction of the off-resonant light and anti-
ferromagnetic field, epitaxial graphene undergoes various
topological phases, including QVHI phase, QAHI phase,

TABLE I. The relation between symmetry of external field and
Nernst conductivity. Yes (No) means to keep (break) a symmetry.√

(×) indicates the presence (absence) of a corresponding Nernst
current in the system.

External Symmetry Nernst conductivity

field TRS SRS SPS Nc Ns Nv

λz Yes Yes No × × √
λz Yes Yes No

√ × √
λω No Yes No
λz Yes Yes No × × √
λAF No No No
λz Yes Yes No

√ √ √
λω No Yes No
λAF No No No

QSVHI phase, and QVH-QAHI phase. To clarify the relation
between various topological phases and transport properties,
the relations between all topological phases and spin-valley-
dependent Nernst currents are summarized in Table II. For
the QVHI phase, the valley Nernst currents are separated. In
the QAHI phase, all four components of the Nernst current
have the same direction, achieving unidirectional spin-valley
Nernst currents. For the QVH-QAHI phase, the three com-
ponents of the Nernst current have the same direction and
the current with one valley and one spin have opposite di-
rections. By tuning the external fields to make graphene lie
in this phase, single-valley and one-spin Nernst currents can
be collected. However, in the QSVHI phase, the spin and
valley Nernst currents are mixed at one end. It is difficult to
distinguish it from QVHI and QVH-QAHI phases.

In principle, the most instinctive method to detect and
distinguish topological phases is to observe the edge states
of nanoribbons in addition to calculating the Chern numbers.
Here we propose to distinguish topological phases by judging
the sign change of the Nernst conductivity. In Fig. 6 we plot
charge, spin, and valley Nernst conductivities as functions of

FIG. 5. (a) Valley-resolved Nernst conductivity Nη as a function
of EF with λω = 0 and λAF = 0. (b) Valley-resolved Nernst con-
ductivity Nη as a function of λAF with EF = 0.15 eV and λω = 0.
(c) Spin polarization Ps and (d) valley polarization Pv as functions
of λω and λAF. The other parameters are EF = 0.15 eV, λz = 0.1 eV,
and T = 300 K.
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TABLE II. The relation between all topological phases and the
spin-valley Nernst conductivities. +(−) represents the direction of
the spin-valley Nernst current.

Topological Chern numbers Spin-valley Nernst conductivity

phase [Cc, Cs, Cv, Csv] NK,↑ NK,↓ NK ′,↑ NK ′,↓

QVHI [0, 0, −2, 0] + + − −
QAHI [−2, 0, 0, 0] + + + +

[2,0,0,0] − − − −
QSVHI [0, 0, 0, −2] + − − +

[0,0,0,2] − + + −
QVH-QAHI [−1, −1, −1, 1] + + + −

[−1, 1, −1, −1] + + − +
[1, −1, −1, −1] + − − −
[1, 1, −1, 1] − + − −

Fermi energy EF. It is found that by modulating EF in the
QVHI phase (λω = 0.5λz, λAF = 0.25λz ), the signs of Nc and
Ns are changed while the sign of Nv is always unchanged, as
shown in Fig. 6(a). In the QAHI phase (λω = 1.5λz, λAF =
0.25λz ), the signs of Nv and Ns are changed while the sign
of Nc always remains unchanged, as shown in Fig. 6(b). In
the QSVHI phase (λω = 0.5λz, λAF = 2λz ), the signs of Nc,
Nv, and Ns are changed, as shown in Fig. 6(c). In addition,
as shown in Fig. 6(d), in the QVH-QAHI phase (λω = 1.5λz,
λAF = 2λz ), the signs of Nc and Nv are changed while the sign
of Ns always remains unchanged.

To explore possible parameter dependencies, the light
fields λω/λz are fixed as 0.5 and 1.5, respectively, and we
calculate the charge, spin, and valley Nernst conductivities
as functions of EF and λAF, as shown in Fig. 7. The same
result can be obtained in QVHI, QAHI, and QSVHI phases,
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FIG. 6. Charge, spin, and valley Nernst conductivities as a func-
tion of EF when both the external fields exist. (a) In the QVHI phase
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0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(a)          λω = 0.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Nc

0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(b)          λω = 0.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Ns

0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(c)          λω = 0.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Nv

0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(d)          λω = 1.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Nc

0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(e)          λω = 1.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Ns

0.4 0.60.20.0

4.0

2.0

0.0

−2.0

−4.0

EF (eV)

λ A
F
/λ

z

(f)          λω = 1.5λz

−0.30
−0.40

0.20

0.30
0.40

0.00

0.10

−0.10

−0.20

Nv

QVH-QAHI

QVHI

QSVHI

QVH-QAHI

QSVHI

QAHI

QSVHI

QVH-QAHI

QVH-QAHI

QSVHI

QVH-QAHI

QVHI

QSVHI

QVH-QAHI

QSVHI

QVH-QAHI

QVHI

QSVHI

QVH-QAHI

QSVHI

QAHI

QSVHI

QVH-QAHI

QVH-QAHI

QSVHI

QAHI

QSVHI

QVH-QAHI

QVH-QAHI

QSVHI

FIG. 7. (a) Charge Nc, (b) spin Ns, and (c) valley Nv Nernst con-
ductivities as functions of EF and λAF when λω = 0.5λz. (d) Charge
Nc, (e) spin Ns, and (f) valley Nv Nernst conductivities as func-
tions of EF and λAF when λω = 1.5λz. Dashed lines represent phase
boundaries.

i.e., by modulating EF in the QVHI phase, the signs of Nc

and Ns change, while the sign of Nv is always unchanged.
In the QAHI phase, the sign changes of Nv and Ns occur,
while the sign of Nc always remains unchanged. In the QSVHI
phase, the signs of Nc, Nv, and Ns all change. However, in
the QVH-QAHI phase, the changes of the signs of Nc and
Nv become undetermined, which is related to the parameter
selection of the external fields, but the only certainty is that
the sign of Ns remains unchanged, which is a very obvious
signature different from QVHI, QAHI, and QSVHI phases.
We summarize the sign change of the Nernst conductivity in
different topological phases in Table III. Therefore, tuning the
Fermi level and detecting the sign changes of charge, spin,
and valley Nernst conductivities can provide an executable
method to distinguish abundant topological phases in epitaxial
graphene.

V. TEMPERATURE DEPENDENCE OF THE
ANOMALOUS NERNST EFFECT

We further calculate the effect of temperature on the
anomalous Nernst conductivity. The temperature effect is
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TABLE III. The relation between topological phase and sign
change or unchange of the Nernst conductivity. Yes (No) represents
the sign change (unchange) of the corresponding Nernst conductivity
by modulating the Fermi level EF.

Topological Nernst conductivity

phase Nc Nv Ns

QVHI Yes No Yes
QAHI No Yes Yes
QSVHI Yes Yes Yes
QVH-QAHI Yes/No Yes/No No

shown in Fig. 8, where we plot the charge, spin, and val-
ley Nernst conductivities versus EF for different various
topological phases and temperatures. The parameters of the
external fields are chosen as exactly as those in Fig. 6. Since
the anomalous Nernst conductivity is an odd function of EF,
we consider only the positive values of EF. It is shown that
the magnitudes of the valley Nernst conductivity in the QVHI
phase, the charge Nernst conductivity in the QAHI phase, and
the spin Nernst conductivity in the QVH-QAHI phase are
enhanced significantly as the temperature increases, and the
sign changes of charge, spin, and valley Nernst conductivities
are robust against the temperature.

For showing the temperature dependence of the anomalous
Nernst conductivity more clearly, we give some analytical
results. At low temperatures, the Mott relation between spin-
valley-dependent anomalous Nernst and Hall conductivity
is [21]

Nη,sz = π2k2
BT

3e

dση,sz (EF)

dEF
, (7)

where

ση,sz = e2

h̄

∑
n

∫
dk

(2π )2
�n

η,sz
f n
η,sz

(k) (8)

is the spin-valley-dependent Hall conductivity. If EF >

|Δη,sz |, i.e., the Fermi level EF lies in the conduction band,
a simplified formula can be obtained from Eq. (8), that is,

ση,sz = −e2

h

ηΔη,sz

4EF
, (9)

where EF =
√

(h̄vFkF)2 + Δ2
η,sz

. Similar results can be ob-
tained when the Fermi level EF is in the valence band due to
the symmetry. Substituting Eq. (9) into Eq. (7), an analytical
expression for the spin-valley-dependent Nernst conductivity
at low temperature can be derived, i.e.,

Nη,sz = π2

12

ek2
BT

h

ηΔη,sz

E2
F

. (10)

The Mott relation in Eq. (10) is derived from the traditional
thermoelectric transport theory. Therefore it is necessary to
verify its validity in our system. As shown in Fig. 9, we plot
the spin-valley-dependent Nernst conductivities in different
topological phases at EF = 0.5 eV as a function of the en-
vironmental temperature T by using the Mott relation and
numerical calculations. The solid line represents the result
of numerical calculation, and the dashed line represents the
result of the Mott relation. At low temperatures the results are
in good agreement, which indicates that the traditional Mott
relation is still suitable in the present situation.

However, it can be found that for the QVHI phase, the
K (K ′) valley Nernst current increases (decreases) with the
temperature, as shown in Fig. 9(a). Thus a valley electron
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FIG. 8. Charge, spin, and valley Nernst conductivities vs EF for various temperatures. The parameters of external fields correspond exactly
to those in Fig. 6.
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FIG. 9. Spin-valley-dependent Nernst conductivities vs T for
different topological phases and fixed EF = 0.5 eV. The solid
(dashed) line denotes the results of numerical (analytical)
calculations.

beam splitter with larger current can be realized with in-
creasing temperature. In Fig. 9(b), for the QAHI phase, all
four components of the Nernst current increase with tem-
perature. Therefore when the external field is fixed, in order
to obtain a larger unidirectional Nernst current, it can be
achieved by increasing the environmental temperature. For the
QSVHI phase, the spin-valley-dependent Nernst currents NK,↑
and NK ′,↓ increase with increasing temperature, while NK,↓
and NK ′,↑ decrease with increasing temperature, as shown in
Fig. 9(c). In the QVH-QAHI phase, three components of the
Nernst current increase when the temperature raises, and the
Nernst current with one valley and one spin decreases with
the increase of temperature, as shown in Fig. 9(d). The change
of spin-valley-dependent Nernst currents with increasing tem-
perature in all topological phases is summarized in Table IV.

TABLE IV. The change of the spin-valley-dependent Nernst con-
ductivities with increasing temperature in various topological phases.
↗ (↘) represents the spin-valley-dependent Nernst currents increase
(decrease) with increasing temperature.

Topological Chern numbers Spin-valley Nernst conductivity

phase [Cc, Cs, Cv, Csv] NK,↑ NK,↓ NK ′,↑ NK ′,↓

QVHI [0, 0, −2, 0] ↗ ↗ ↘ ↘
QAHI [−2, 0, 0, 0] ↗ ↗ ↗ ↗

[2,0,0,0] ↘ ↘ ↘ ↘
QSVHI [0, 0, 0, −2] ↗ ↘ ↘ ↗

[0,0,0,2] ↘ ↗ ↗ ↘
QVH-QAHI [−1, −1, −1, 1] ↗ ↗ ↗ ↘

[−1, 1, −1, −1] ↗ ↗ ↘ ↗
[1, −1, −1, −1] ↗ ↘ ↘ ↘
[1, 1, −1, 1] ↘ ↗ ↘ ↘

It can be concluded that in the QVHI phase, the spin-valley
Nernst currents from the same valley have the same varia-
tion trend with increasing temperature. In the QAHI phase,
the four components of the Nernst current all increase or
decrease with increasing temperature. In the QSVHI phase,
the Nernst currents from different valleys and different spins
have the same variation trend with increasing temperature. In
the QVH-QAHI phase, the three components of the Nernst
current have the same variation trend with increasing temper-
ature, while the Nernst current with one valley and one spin is
the opposite variation trend with increasing temperature. The
spin- and valley-dependent Nernst conductivity can be mea-
sured by multiterminal inverse spin and valley Hall setups in
experiments [44]. Through these numerical calculations and
analytical expressions, it is found that adjusting the sample
temperature to measure the variation trend of the spin- and
valley-dependent Nernst currents can characterize whether the
topological phase transition occurs in epitaxial graphene, pro-
viding a way to distinguish topological phases and another de-
gree of freedom to modulate Nernst currents experimentally.

It should be noted that in experimental measurements,
electron-hole puddles always exist in real graphene devices
due to impurity correlations in the substrate [45]. When the
Fermi level is tuned to the vicinity of the charge neutral-
ity point, the Nernst conductivity is affected and the Mott
relation is not applicable because of the presence of elec-
tron and hole puddles [46–48]. In fact, an interesting work
on twisted bilayer graphene showed that by introducing the
electron-hole puddle parameter through the density of states,
the Seebeck coefficient is affected at different temperatures,
and the violation of the Mott relation is also observed in the
experiment [49]. Therefore the electron-hole puddles could
lead to deviations between the theoretical calculations and
experimental results near the Dirac point. Fortunately, in our
work the gap in most topological phases is larger, and the
Fermi level is away from the Dirac cone so that the influence
of the electron-hole puddles in most topological phases is
assumed to be negligible. In addition, the tendency of the
Nernst conductivities with the Fermi level or temperature
also is maintained when the Fermi level is tuned away from
this electron-hole puddle regime. The behavior of the Nernst
conductivities and the correspondence between topological
phases would be qualitatively correct.

VI. CONCLUSIONS

In summary, we have systematically investigated the
anomalous Nernst effect based on the Berry curvature in epi-
taxial graphene under the coaction of off-resonant light and
antiferromagnetic fields and propose two new methods to dif-
ferentiate various topological phases. The results have shown
that when either the light field or antiferromagnetic field is
zero, the spin Nernst current is zero. When the light field is
zero, the charge Nernst current is zero. Due to the existence
of the substrate potential, a thermally induced pure valley
current can be demonstrated, and its magnitude and sign can
be controlled by tuning the antiferromagnetic exchange field.
At room temperature, single-spin and single-valley Nernst
currents can be collected in the QVH-QAHI phase. In the
QAHI phase, a unidirectional Nernst current can be achieved.
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The abundant topological phases in epitaxial graphene can be
distinguished by detecting the sign change of the charge, spin,
and valley Nernst conductivities by tuning the Fermi level. In
addition, we have investigated the temperature dependence of
Nernst conductivity, and it is shown that the sign change of
the Nernst conductivity is robust against a weak temperature.
The magnitudes of the valley Nernst conductivity in the QVHI
phase, the charge Nernst conductivity in the QAHI phase, and
the spin Nernst conductivity in the QVH-QAHI phase are en-
hanced significantly as the temperature increases. The Nernst
conductivity can be related to the Hall conductivity via the
semiclassical Mott relation, and we have given an analytical
expression for the spin-valley-dependent Nernst conductiv-
ity at low temperature. In different topological phases, the
spin-valley-dependent Nernst currents have different trends

with increasing temperature. By probing the spin- and valley-
dependent Nernst current variation trend by adjusting the
sample temperature, we can also characterize whether topo-
logical phase transitions occur in epitaxial graphene. These
findings are expected to promote applications in spin and
valley caloritronics.
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