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Origin and early growth of entanglement by sd exchange with gate voltage controllable outcome
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We investigate bipartite entanglement between two distant parties, A and B, comprising local magnetic
impurities (or qudits) induced by the quench through sd exchange in a field-effect transistor geometry. A
wave-function-based time-dependent formalism is employed by including non-dissipative responses that allow
for the control of entanglement via gate voltages. Our study focuses on the birth (or origin) and early growth
of entanglement, by introducing environment support states that render site- and layer-resolved logarithmic
negativity (LN) and mutual information (MI). In the minimal set, where party A (B) consists of a qubit, we
identify entanglement sudden deaths (ESDs), which are explained by a visualization picture analyzing the density
matrix. Vibrating electron currents facilitate the birth of entanglement, while they are not required for its growth
and subsistence. The LN emerges near the edge layers in A and B, while MI shows up outside these two parties
within the spacing layer. The MI is born earlier than the LN. When a gate voltage large enough to disjoint part of
the system is applied within the spacing region, it partially suppresses the entanglement, quantified by the LN.
This suppression does not appear immediately after the presence of the disjoint voltage. Applying this disjoint
voltage to the site(s) hosting the qubit(s) helps prevent the site- and layer-resolved LN from encountering ESDs.
The local impurities in parties A and B are initially of opposite spin directions in an unentangled state, as can be
prepared by two of our proposed protocols. However, the features described above do not depend on the chosen
protocols.
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I. INTRODUCTION

Entanglement, signifying that a total wave function can
not be expressed separately in the tensor product form of the
corresponding subsystem wave functions, enables distinguish-
ing quantum information processing and quantum bit (qubit)
functionality from classical counterparts. As a pure quantum
feature, entanglement underpins many cutting-edge technolo-
gies including gravitational wave detections [1,2], quantum
cryptography [3–6], and quantum computation [7–12]. Recent
study [13] illustrated that, utilizing quantum computers [14],
the formulation of entanglement-originated phenomena and
the extraction of entanglement monotone such as Rényi en-
tropies [15] is feasible. Entanglement also serves as a useful
tool for exploring fundamentals in physics. For example, in a
quantum square ring possessing non-Abelian gauge [16], van-
ished dynamic phases and discretized (into 0 or π ) geometric
phases at maximum entanglement were identified [17]. It has
also been discovered [18,19] that the entanglement plays a
crucial role for the applicability of the time-honored Landau-
Lifshitz-Gilbert (LLG) equation. Since the entanglement
shrinks the spin polarization (or magnetization) magnitude,
which is a conserved quantity in the LLG equation, a regime
where entanglement diminishes will admit the validity of this
equation. One such regime is recognized in the Kondo lattice
model with small enough sd exchange (i.e., exchange between
itinerant electron and local spins) coupling [18].
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Experimentally, inelastic neutron scattering [20–22] has
been employed to probe entanglement in spin chains by ex-
amining the quantum Fisher information. Moreover, recent
proposals based on x-ray scattering [23,24] have made en-
tanglement detection in macroscopic solids accessible. Also
has been demonstrated is that the dynamics of the von Neu-
mann entanglement entropy S [25], namely, the Rényi entropy
[15] Sr of index one r = 1, in isolated systems renders
a buildup similar to the maximization of thermodynamic
entropy, which, in the long-time limit after thermalization,
follows the volume-scaling law, i.e., is proportional to the
system size [26,27].

The initial growth of Rényi-type entropy induced by the
quench (or sudden switch) exhibits interesting behavior. With
preparing separable (or unentangled) tensor-product states,
from, for instance, the system partitioned into two inde-
pendent halves before the sudden joint coupling occurs, the
quench evokes not only bipartite entropy but also elicits local-
observable spreading. Specifically, the entanglement of a local
observable decreases its magnitude, leading to the loss of its
corresponding purity. This purity-loss information, character-
ized by the updated wave front, propagates or spreads in the
surrounding environment. In ergodic systems, the spreading is
governed by some maximum velocity, defining the so-called
light cone, and it was found that the early developed entropy
S grows linearly in time [28–31]. By contrast, in localized
systems such as the Anderson impurity model, S emerges
logarithmically [32].

Nonetheless, regarding the bipartite entanglement, only
for pure states (quantified by Sr=2), the Rényi-type entropy
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and its variant such as the mutual information [33,34] (MI)
M are faithful, i.e., nonzero S and/or M implies nonzero
entanglement and vice versa. In systems of mixed states,
by contrast, there can be classical correlations that originate
from the mixture of, or a weighted average over, pure states;
the S and M in general encode both classical and quantum
correlations (entanglements) [35–38]. However, one measure
that exists for distilling entanglement from mixed states is the
logarithmic negativity [39] (LN) L. While L > 0 in general
is a sufficient but not a necessary condition for entanglement,
in the special case of two-qubit entanglement, L and another
measure called concurrence [40–42] C are found to be faithful
[43,44]. A comparison between different entanglement mono-
tones for witnessing entanglement is examined in the recent
paper [45].

The evolution of negativity has also drawn attention in
more recent studies [46–48]. For example, consider a one-
dimensional (1D) free fermion chain cut into halves before
the quench by a defect acting as a sudden switch for the
joint hopping. The quench induces LN that initially grows
logarithmically in time [46], while eventually, in the regime
where the volume-scaling law applies, saturates at some value
characterized by the Rényi mutual information of index half.
Contrarily, in the case of a quench induced by a dissipative
impurity that absorbs the fermions [48], the negativity does
not conform to the saturation depicted by the half-indexed
Rényi mutual information. In addition, the concurrence was
employed in maximally entangled mixed states [49] to iden-
tify a peculiar phenomenon known as entanglement sudden
deaths (ESDs). In ESDs, entanglement only persists for a
finite time interval before being extinguished by the envi-
ronment [49–51]. Multiple sequential ESDs often emerge
together, and so do the corresponding rebirths.

However, only a few studies have addressed distant bi-
partite entanglement in finite-width open spintronics devices
connected to leads with finite level broadening, such as in the
geometry of field-effect transistors (FETs) [52,53]. It remains
unknown how gate voltage can affect the entanglement in
FETs. Particularly, the birth or origin of LN between distant
qudits remains unclear. Incorporating the Fermi-energy or
Fermi-Dirac distribution into the formulation of entanglement
is rarely seen. Moreover, a transparent picture to comprehend,
predict, and prevent ESDs, is especially desirable for solid-
state systems.

In this paper, we investigate entanglement between two
distant parties, A and B, consisting of local spins (or mag-
netic impurities) mediated by the environment, party C of
conduction electrons. The A and B are spaced by a few
layers, resembling the structure of nanoelectronics FETs.
Specific quench is considered by turning on the sd ex-
change coupling Jsd at time t = 0. We adopt initial separable
states of a spin-antiparallel configuration. This configuration
is known to yield significant entanglement as in antifer-
romagnets [22,23,54,55], and it ensures that the torques
exserting on parties A and B are purely quantum mechanical
[56,57]. A wave-function-based time-dependent formalism
[58] is implemented to construct density matrices (DMs) and
nonequilibrium lesser Green’s functions (GFs) for comput-
ing the concurrence C, mutual information M, logarithmic
negativity L, as well as cross-sectional charge currents. Two

protocols for preparing such initial states are offered, one
without the need for local Zeeman splitting �L applied to the
impurities and the other with the need for �L . Nevertheless,
the main characteristics identified herein do not depend on
these protocols.

By introducing the electron environment size ν, our results
identify the ESDs in the case of two qubits. We also give a
visualization picture explaining the ESDs. We find that the
entanglement quantified by L can exhibit oscillatory behav-
ior, similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY)
[59–61] exchange oscillations. The entanglement takes a finite
time to show up due to the fact that A and B are distant. The
birth location of L entanglement is outside the parties A and
B. Also, the charge current establishing the entanglement is
unveiled. We illustrate that the outcome of the entanglement
can be controlled by the gate voltage eVg. Particularly, eVg can
be employed to avoid ESDs. The presented paper suggests
that the qudits can be embedded in the FETs, offering alterna-
tives to formulate entanglement-related phenomena. The FET
geometry defined in the paper also provides a framework to
examine the spatial and dynamical behaviors of entanglement
between distant qudits.

The paper is organized as follows. We first describe the
studied device geometry and modeling in Sec. II A, where the
time-dependent formalism for constructing the DM is also
introduced. We briefly review the employed entanglement
monotones in Sec. II B. Starting with the minimal set of two
qubits, we inspect ESDs in Sec. III A. Section III B elucidates
the birth and growth of the entanglement beyond the minimal
set, while Sec. III C unveils how entanglement can be adjusted
by the gate voltage that disconnects or isolates part of the
system. The results are summarized in Sec. IV.

II. FORMALISM

In this section, we define our device geometry and
introduce the time-dependent formalism for evaluating en-
tanglement and charge currents. In modeling nanoelectronics
dynamics, the approaches can be categorized into two meth-
ods, the partition method [62–66] and the partition-free
method [67–71]. The former assumes that, before time t = 0,
the system is divided into decoupled subsystems in their own
thermal-equilibrium. The later considers that the whole open
system with a sample connecting to thermal reservoirs or
leads is already in equilibrium at time t = 0. Although the
two methods are equivalent [58,72], the assumption in the
partition-free formalism is often the realistic situation en-
countered, and practically it bypasses the computation needed
for simulating the system to reach the desired preparation
of global equilibrium. In the partition-free method, one can
formulate the dynamics within the framework of GFs [73–75]
or of wave functions [58,76,77]. Another approach known
as the time-dependent DM renormalization group [78–83],
truncating the number of basis to arrive at a matrix product
state, is efficient particulary for low-entangled 1D systems.
Among the above formalisms, we choose to adopt the wave-
function-based formalism [58], due to its direct and concise
relations to physical quantities; it also enables encapsulating
FET geometry via semi-infinite leads of Fermi-Dirac distribu-
tions as described below.
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FIG. 1. Studied two-terminal three-atom-wide device geometry consisting of three subsystems, parties A represented by red arrows, B by
the blue arrow, and C by the grayscale dots. Local magnetic impurities, functioning as qudits, form parties A and B of opposite spin directions
as indicated by the arrows. Conducting electrons at Fermi energy EF in party C, as the mediating environment, grow entanglement between
parties A and B via the quench by sd exchange Jsd switched on at time t = 0. Party C contains three portions, L sample layers hosting impurities,
two source layers accounting for the initial conditions of the leads, and M buffer layers to simulate open boundary conditions. We refer the
sample-source layer as the active region herein. Also, A and B are separated with D spacing layers centered at x = 0. Top (bottom) panel in the
lower-right corner represents the band-structure schematics for preparing initial impurity spin states in the protocol without (with) necessity of
the local Zeeman splitting �L; these schematics will be used to indicate which protocol is used throughout the figures herein.

A. Device geometry and time-dependent
density-matrix formalism

The device of interest comprises three parties. Party A (B)
consists of NA (NB) local impurities of magnetic moments,
each carrying an initial spin of S × h̄ in +z (−z) direction,
which acts as a qudit with dimension d = 2S + 1. For ex-
ample, S = 1/2 represents a qubit, and S = 1 represents a
qutrit. Party C consists of conducting electrons in an infinite
long, two-terminal wire with a finite width, such as the case
we focus on here with three atomic sites (z = 1, 2, and 3 in
Fig. 1). The investigated entanglement is bipartite between
parties A (indicated by the red arrows in Fig. 1) and B (blue
arrows in Fig. 1), while party C (sites in grayscale, Fig. 1)
serves as a medium or environment to foster the entanglement.
The separation distance between parties A and B is determined
by the number of D spacing layers, centered at x = 0. Party
C is divided into three portions, the sample of L layers, two
source layers, and M buffer layers. The sample segment, ex-
cluding the spacing layers, indicates the areas allowed to host
impurities. The source layers specify the sample boundary and
account for the initial conditions (ICs) of the left and right
leads. The buffer layers simulate open boundary conditions
and are elongated by detecting the wave function prorogations
to avoid any reflections back to the source and sample regions,
i.e., M in general is a time-dependent function M = M(t ).
Parties A and B are coupled with the surrounding electrons
in Party C via the sd exchange (or Kondo exchange) Jsd ,
which is switched on suddenly (leading to the quench) at
time t = 0 . Before t = 0, parties A and B are unentangled in
the anti-parallel spin configuration, as indicated by the arrow
directions in Fig. 1. To prepare these initial unentangled states,
we provide two scenarios or protocols, one with �L = 0 and
the other �L �= 0. In the �L = 0 protocol, no local Zee-
man splitting �L is required; initial impurity spin states are
measured and known to be in the antiparallel alignment. By

contrast, in the �L �= 0 protocol, party A (B) is subject to a
Zeeman splitting in +z (−z) direction, which has been and
will be turned on at all times; the �L is designed to pin the
impurity spins in the desired antiparallel state only initially,
but not after the quench; therefore, we will assign small �L

and choose a Fermi energy EF just slightly above the ground
state, in order to prevent involving other unwanted impurity
spin configurations. The schematics in the insets, lower-right
corner in Fig. 1, exhibits the two protocols regarding impurity-
electron band structures; they will serve as marks to indicate
the used protocols throughout all results/figures herein. Note,
however, that both protocols adopt unpolarized electron spins
as the ICs, i.e., �L is locally applied to parties A and B but not
to C. The device mimics the FET geometry in that the gate
voltages can be introduced, particularly within the spacing
region, to tune the entanglement.

The time-dependent Hamiltonian for the device in Fig. 1
reads

H (t ) = −γ
∑
〈i j〉σ

c†
iσ c jσ −

∑
i∈A

�L

2
Si,z +

∑
i∈B

�L

2
Si,z + δH (t ).

(1)

Defining H (t = 0) ≡ H0, the dynamics after t = 0 is invoked
by

δH (t ) = H (t ) − H0 = θ (t )(−Jsd )
∑

i

�σi · �Si

+ θ (t − tg,on)eVg

∑
i∗σ

c†
i∗σ ci∗σ . (2)

Here c†
iσ (c jσ ) denotes the creation (annihilation) operator

creating (annihilating) an electron of spin-z, σ =↑e for spin-
up and σ =↓e for spin down, at site i. θ (t ) is the unit step
function. Party C contains electrons with kinetic hopping γ

between two nearest sites 〈i j〉 and with spins �si = �σi h̄/2 at
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site i. Party A (B) consists of local impurity spins �Si, in unit
of h̄, at site i with i ∈ A (i ∈ B). The impurities or qudits
can be subject to local magnetic field, which induces Zeeman
splitting �L in ±z direction. The sd exchange coupling of
strength Jsd , present at t = 0, introduces quench dynamics.
An additional gate voltage can be applied at time tg,on and at
sites i∗ to the electrons. Although the dimension of the Hilbert
space is not shown explicitly in Eqs. (1) and (2), note each
term lives in the space of dimension same as IC ⊗ IA ⊗ IB.
Here IC is the identity operator in the electron spin-1/2 Fock
space, while IA (IB) the identity in the spin space of dimension
(2S + 1)NA [(2S + 1)NB ] with NA (NB) being the number of
impurities in party A (B). Below, the operators and wave func-
tions all can be enlarged to match the dimension IC ⊗ IA ⊗ IB

by proper tensor products with identities. However, to keep
the notation simple, we will imply the dimension implicitly in
the following expressions.

To model the dynamics of open systems, we employ the
formalism developed in Ref. [58], where detailed calculations
explained with physical content can be found. We summarize
the calculations below. Before t = 0, the system is in a steady
state characterized by the stationary wave function in the
source and sample region as

	st
α (E ) = GR(E )ξα (E )

√
vα . (3)

Here α denotes the modes in both the left p = Le f t and
right p = Right leads of the transverse wave function ξα with
group speed vα . The ξα and vα are obtained by solving a
generalized eigenvalue equation {cf. Eq. (35) in Ref. [58]}
and selecting half (for example, right-propagating and/or
right-decaying) of the modes. The retarded GF at energy
E reads GR(E ) = [E − H0 − �R(E )]−1. The retarded self-
energy �R(E ) = ∑

p=Le f t,Right �R
p (E ), assigned in the source

layers, takes into account the semi-infinite leads. Specifically,
if there are totally W modes, in the matrix form by defining

Z =
(

|√
v1ξ1(E )

|
,

|√
v2ξ2(E ),

|
· · ·

|√
vW ξW (E )

)
(4)

and the diagonal matrix, of Fermi-Dirac distribution fα (E ) =
1/{1 + exp[(E − EF )/kBT ]},

F =

⎛
⎜⎝ f1(E ) 0

. . .

0 fW (E )

⎞
⎟⎠, (5)

one has finite level broadening ZZ† =  = i[�R − (�R)†]
and the lesser self-energy �<(E ) = iZFZ†. In other words,
Eqs. (3)–(5) yield the Keldysh equation of the lesser GF
[66,84]

G<(E ) = i
∑

α

fα (E )	st
α (E )

[
	st

α (E )
]†

= GR(E )�<(E )GA(E ),

with the advanced GF GA(E ) = [GR(E )]†. We note that in
both of the above mentioned protocols, the 	st

α (E ) can be
expressed in the separable form,

	st
α (E ) = ψe

α (E ) ⊗ χA ⊗ χB,

by the electron ψe
α (E ) wave function in party C and the local

spin χA (χB) wave function in party A (B).

After t = 0, the quench renews the wave function with
the additional dynamical wave function 	d that satisfies the
differential equation,

ih̄
∂

∂t
	d

α (E , t ) = [
H (t ) + HMα (t ) − E

]
	d

α (E , t )

+ δH (t )	st
α (E ), (6)

of the IC, 	d
α (t = 0) = 0. Thus, the dynamical wave function

is invoked only when δH (t ) is present. The total wave function
contributed from mode α can then be computed via

	α (E , t ) = [
	d

α (E , t ) + 	st
α (E )

]
e−iEt/h̄ . (7)

Here HMα
in Eq. (6) describes the buffer Hamiltonian at

mode α in the left (if α ∈ Le f t) and right (if α ∈ Right) leads.
Each buffer layer has the same Hamiltonian, and the hopping
γ between adjacent layers are also identical. Also, the Mα (t )
increases with time. When solving the differential Eq. (6), the
	d

α prorogation is monitored; for a given solution at time t ,
if the last/farthest buffer contains nonzero 	d

α , then increase
Mα , return to the previous time step, and resolve the differ-
ential equation with the enlarged Mα . One can, in practice,
conveniently set Mα (t = 0) = 1 as the IC. In our simulations
on Eq. (6), the Dormand-Prince method is implemented, with
tolerances obtained by comparing the fifth-order solution with
the fourth order, making the step size adaptive. Meanwhile,
the used buffer Mα is extrapolated at a future time; we find
fitting for Mα (t ) with quadratic polynomials will be feasible.
With Eq. (7), at a given time t and energy E , the DM incorpo-
rated with the distribution fα (E ) can then be computed by

�(E , t ) =
∑

α

fα (E )	α (E , t )	†
α (E , t ), (8)

and the lesser GF by

G<(E , t ) = i�(E , t ),

which is used to evaluate {via Eq. (31) in Ref. [85]} elec-
tron bond currents that amount to the cross-sectional currents
shown in this paper.

We discuss the behavior in the long-time limit and address
how dissipations will lead to a new steady state. Despite
the main focus of the paper being on the early growth of
the entanglement, the limit 	α (E , t → ∞) provides valu-
able insights and references for choosing parameters to avoid
numerically unobservable small entanglement. Additionally,
as demonstrated later, this limit is also relevant to the fate
of entanglement. Assume first that, whatever time-dependent
Hamiltonian presents in our sample, δH eventually ends up as
a time constant δH (t → ∞) = K . According to Eq. (6), the
generic form arises, with all Mα = M → ∞,

	d
α (E , t → ∞) ≈ e−i[H0+K+HM→∞−E ]t/h̄X

+ GR
K (E )K	st

α (E ). (9)

Here X and K are generally spatially varying but time-
independent matrices. If any imaginary energy E �→ E + iη
is assigned with finite η > 0 quantifying any dissipation pro-
cesses, e.g., originating from finite quasi-particle life time, the
first term in Eq. (9) then depicts the transient response since it
dies out in the long-time limit. Accordingly, the new (with K)

045308-4



ORIGIN AND EARLY GROWTH OF ENTANGLEMENT BY … PHYSICAL REVIEW B 109, 045308 (2024)

steady state is described by

	d
α (E , t → ∞) ≈ GR

K (E )K	st
α (E ). (10)

We are interested in the sample-source region, where the
new steady retarded GF GR

K (E ) = [E − H0 − K − HM→∞]−1

reduces to

GR
K (E ) = [E − H0 − K − �R(E )]−1, (11)

provided that in the above Eq. (11), one sets Mα = 0 and
restores �R(E ) back to the source layers, same as adopted in
the wide-band-limit approximation where HMα (t ) is replaced
with �R(E ) in Eq. (6). Equations (10) and (11) allow us to
reach the new lesser GF as well as the DM � by noting

	α (E , t → ∞) = [
	d

α (E , t → ∞) + 	st
α (E )

]
e−iEt/h̄

≈ [
GR

K (E )K + GR
K (E )GR

K (E )−1
]

×	st
α (E )e−iEt/h̄

= GR
K (E )GR(E )−1	st

α (E )e−iEt/h̄. (12)

For finite η in the t → ∞ limit, using Eqs. (8) and (12) we
eventually arrive at

�(E , t → ∞) = GR
K (E )ZFZ†GA

K (E )

= GR
K (E )�<(E )GA

K (E )/i

= G<
K (E )/i,

with the lesser GF G<
K (E ) = GR

K (E )�<(E )GA
K (E ) at the new

steady state. The corresponding K for our present system
can be readily identified by referring to Eq. (2). Although
dissipations play an important role in determining the fate
of entanglement, here except in Figs. 3 and 4, all our fig-
ures retain the transient X term in Eq. (9). Therefore, the main
focus of this paper is on the early-time responses, including
the birth and early growth of entanglement, as well as the
non-dissipative responses.

B. Entanglement monotone

Tracing out environmental electron spin degrees of free-
dom in Eq. (8) yields the reduced DM

ρ = Trs(�),

which can be used to calculate different monotones for the A-B
entanglement. Only for pure states, Trρ2 = 1, the monotones
addressed below are faithful, namely, nonzero monotones⇔
entanglements. On the other hand, for mixed states
ρ = ∑

n wnρn, with Trρ2 < 1 and Trρ2
n = 1, as encountered

presently after the quench, both classical correlations (due to
the weighting constraint

∑
n wn = 1) and quantum entangle-

ments can manifest. The monotone dubbed MI

M(ρ) = S (ρA) + S (ρB) − S (ρAB)

including both the classical correlations and quantum entan-
glements via the von Neumann entropy S (�) = −Tr(� ln �).
Here ρA = TrĀ(�) stands for the reduced DM by tracing out
all other degrees of freedom Ā not belonging to A. Similarly,
the conventional notation ρ = ρAB is used with

ρAB = TrĀB̄(�)

denoting the DM ρAB by tracing out all other degrees of free-
dom ĀB̄ not belonging to AB, A + B, or A ∪ B. As an example,
the equal-weight mixing of the two pure unentangled states,
ρ = | ↑↑〉〈↑↑ |/2 + | ↓↓〉〈↓↓ |/2, is still unentangled, while
it renders nonzero, M(ρ) = ln 2, classical correlations.

In the case of two-qubit entanglement, regardless of
whether the states are pure or mixed, the concurrence C(ρ)
faithfully detects the entanglement by finding the maximum

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4)

with eigenvalues λ1 � λ2 � λ3 � λ4 of the matrix√√
ρρ ′√ρ. Here ρ ′ is constructed by the conjugate ρ∗ of the

four-by-four DM and the square product σ⊗2
y = σy ⊗ σy of

the Pauli spin σy matrix as

ρ ′ = σ⊗2
y ρ∗σ⊗2

y .

Another monotone, which also faithfully reflects the two-
qubit entanglement, is the LN

L(ρ) = ln(Tr
√

(ρTA )†
ρTA ),

by probing the negative eigenvalues in the partial transpose,

(ρTA )ab,a′b′ = ρa′b,ab′ .

Here subscripts a and a′ (b and b′) denote the indices
belonging to A (B). Note Tr

√
(ρTA )†ρTA = Tr

√
(ρTB )†ρTB in-

dependent of what party is transposed. Also, note that if A
and B are unentangled even in a mixed state, then the sys-
tem depicted by the partial transpose ρTA remains physical,
i.e., having nonnegative eigenvalues. Nevertheless, for mixed
states beyond two qubits (SNA > 1/2 or SNB > 1/2), the
converse statement does not always hold. That is, L(ρ) > 0
in general is a sufficient but not a necessary condition for
entanglement, namely, nonzero L(ρ) > 0 ⇒ entanglement;
zero L(ρ) = 0 says nothing about the entanglement beyond
two qubits in mixed states.

To locate the birth of A-B entanglement, we introduce the
environment support states (ESSs), which we conveniently
label as |Cν, A, B〉. Here |A, B〉 represents the collective im-
purity spin state. The ESSs tailor the environment size ν

(electron degrees of freedom in the present system) support-
ing the A-B entanglement. We interpret ν-resolved C(ρν ),
L(ρν ), and M(ρν ) as the amount, quantified by their cor-
responding monotones, of A-B entanglement donated by the
environmental electrons when staying at ν. The normalization
ρν �→ ρν/Trρν is ensured so that the ν-resolved monotone can
then be computed. As an example, if ν comprises only one
site ν = i, then ρi is the DM ρ projected onto the Ci + A + B
subspace. This subspace is spanned by the state vectors in-
corporating the local electron site of the form |Ci, A, B〉. C(ρi )
quantifies the entanglement contributed from electrons at site
i. As shown later, the site-resolved C(ρi ) and L(ρi ) help grasp
ESDs in the two-qubit case. Similarly, we can extend the ESSs
to encompass a layer ν = l . The layer-resolved Ll = L(ρl )
and Ml = M(ρl ) uncover their corresponding layers of birth.
The monotones below, unless further specified, are computed
via the DM projected onto the sample-source region, which
we refer to as the active region. Another approach known
as the hydrodynamic limit is often useful for predicting the
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FIG. 2. (a) Two-qubit entanglement probed by site-resolved concurrence C and logarithmic negativity (LN) L as a function of time t .
Schematics in (a) exhibits the location of the qubits in parties A and B distant by D = 6 spacing layers. It also indicates the examined
environment sites i and i′. Inset in (a) shows the zoom into t ≈ 2.45h̄/γ . (b) Real and imaginary values of the elements of the site-resolved
density submatrix Q defined in Eq. (15). (c) Matrix determinant of Q from site i (Qi) and from site i′ (Qi′ ) as well as sites i ∪ i′ (Qi+i′ ).
(d) Schematics in the complex plane illustrating the diagonal ρd and off-diagonal ρo in Eq. (15) supported by i, i′, and both, denoted by ρoi,
ρoi′ , and ρoi+i′ = (ρoi + ρoi′ )/2, respectively. In (d), if the length of arrow representing ρo exceeds the dashed circle set by ρd , entanglement
L > 0 emerges.

long-time behavior. In this limit, the wave front of the en-
tanglement or light-cone spreading of the entanglement [31]
is monitored, and one increases the sample L to follow the
light-cone, so that L/t remains finite as t → ∞. Here, to study
the birth and early growth, we will consider entanglement
primarily supported by the active region of fixed L, while the
entanglement growth after saturation can be predicted using a
similar volume-scaling law [26,27].

III. RESULT AND DISCUSSION

Our findings are presented and analyzed in this section.
In the following simulations, all energy parameters are in
units of hopping energy γ . Time is measured in units of h̄/γ ,
which corresponds to approximately 0.66 picoseconds when

adopting γ = 1 meV. In the (first) �L = 0 protocol, we set
EF = −γ . In the alternative (second) protocol with �L =
10−3γ , Fermi-energy EF is chosen to be EF = Emin + 10−4γ ,
slightly above the ground-state energy Emin to avoid involv-
ing any excited energy bands. Without loss of the general
characteristics of the entanglement dynamics depicted below,
we will focus on contributions only from the Fermi-surface
electrons at zero temperatures. Specifically, we will consider
�(t ) = �(EF , t ) and ρ(t ) = ρ(EF , t ). As will be demon-
strated, this specific focus with E = EF permits observing the
electron motions leading to the formation of the A-B entan-
glement. We employ L = 100 sample layers, each possessing
a width of three atomic sites. Unless otherwise specified, the
following default parameters are used, Jsd = 0.9γ for the �L-
free protocol and Jsd = 0.18γ for the protocol requiring �L.
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FIG. 3. Logarithmic negativity L as a function of sd exchange Jsd and local Zeeman splitting �L with finite dissipation η > 0 in long-time
t → ∞ limit. In (a), (b), and (c), Fermi energy EF = −γ is fixed. In (d), (e), and (f), EF is adjusted according to EF = Emin + 10−4γ , and
a minimum �L = 10−3γ is introduced. The black dots in the schematics indicate the corresponding positions of the impurities in different
parties. The S = 1/2 labels a qubit, and S = 1 a qutrit. For example, in (a) and (d), party A consists of two qubits, while party B of one. Parties
A and B are separated by D = 6 spacing layers.

Spacing layers are set at D = 6. Note that except in Figs. 3 and
4, the transient term in Eq. (9) is included in all figures below
with η = 0. Figures 3 and 4 depict the entanglement in the
Jsd -renewed steady state after the transient response has com-
pletely disappeared.

FIG. 4. Logarithmic negativity L as a function of number of
spacing layers D with finite dissipation η > 0 in t → ∞ limit. The
�L = 10−3γ protocol is employed. The black dots in the schematics
indicate the impurity locations. In the figure legend, the z positions
for the impurities in parties A and B, are also indicated by zA and zB,
respectively. In (a), both impurities are on the surface. In (b), at least
one of the impurities is within the bulk (z = 2).

In the following sections, we first examine the case without
the gate voltage in Secs. III A and III B. We begin with the
minimal set, which consists of the smallest total spin in parties
A and B . Then, we explore entanglement beyond the minimal
set, where at least one of the parties, A or B, possesses a total
spin SNA/B > 1/2 (e.g., a qutrit or more than two qubits). We
then further introduce the gate voltage in Sec. III C to unveil
its influence on entanglement. Without further specification,
both protocols share the same features described below.

A. Entanglement in minimal set of two qubits

Consider the minimal set containing two qubits, one
qubit in each party A and B. Before delving into our sys-
tem, it is insightful to mention an example illustrating how
enlarging ν can eliminate the entanglement. In this exam-
ple, let ν comprise two sites, i and i′. We assume that
i and i′, supporting ρi and ρi′ , are described by the two
Bell states |�+

i 〉 = (| ↑↑〉 + | ↓↓〉)/
√

2 and |�−
i′ 〉 = (| ↑↑〉 −

| ↓↓〉)/
√

2, respectively. Here |SA, SB〉 indicates the qubit spin
state SA in party A and SB in party B . Both ρi = |�+

i 〉〈�+
i |

and ρi′ = |�−
i′ 〉〈�−

i′ | are entangled pure states. However, with
the equal-weight mixture that includes both i and i′ to ν, one
turns the two entangled states into a ρi+i′ = (ρi + ρi′ )/2 =
(| ↑↑〉〈↑↑ | + | ↓↓〉〈↓↓ |)/2 unentangled one. It is worth not-
ing that this example has a small likelihood of occurring, as it
necessitates a highly specific, namely equal-weight, mixture.
In our two-qubit system, the suppression of entanglement is
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more pronounced, for it takes place over a wide range of
mixtures.

Returning to our present system, for ν contains the whole
active region, no entanglements are found, C(ρ) = 0 and
L(ρ) = 0. Narrowing ν down to a layer ν = l still yields
zero Cl = C(ρl ) = 0 and Ll = 0. Shrink the ESSs until ν

comprises only one site, nonzero C(ρi) and L(ρi ) are even-
tually captured. Figure 2 shows the site-resolved quantities by
choosing i at the qubit location z = 3 in party B and i′ in the
same layer at z = 2 below i. The C(ρi ) and L(ρi ) in Fig. 2(a)
illustrate four ESDs (three rebirths) within the chosen time
window 0 � t � 10(h̄/γ ). The two-site supported C(ρi+i′ ) =
0 and L(ρi+i′ ) = 0 all vanish. Although specific distribution
of the two qubits is adopted, as shown in the schematics of
Fig. 2(a), the features mentioned above do not depend on
the distribution. The two-qubit entanglement appears to favor
support from a smaller environment, which is intriguing.

To comprehend this behavior, we analyze the negativity in
the partial transpose. In the present spin-z antiparallel config-
uration, the spin-transfer torques by Jsd are purely quantum
[56,57], rendering zero impurity spin-x SA/B

x and spin-y SA/B
y

expectation values, Tr(ρSA/B
x ) = Tr(ρSA/B

y ) = 0. Hence, the
time-dependent DM takes the form

ρ(t ) =

⎛
⎜⎜⎝

ρd↑ 0 0 0
0 ρ↑↓ ρ∗

o 0
0 ρo ρ↓↑ 0
0 0 0 ρd↓

⎞
⎟⎟⎠. (13)

For the above matrix representation (13), the impurity spin-
z basis is arranged in the following order, |SA

z , SB
z 〉 = | ↑↑〉,

| ↑↓〉, | ↓↑〉, and | ↓↓〉. For instance, the diagonal ρd↑ ≡ ρ↑↑
is on the basis operator | ↑↑〉〈↑↑ | and off-diagonal mixed
ρo ≡ ρ↓↑,↑↓ = ρ∗

↑↓,↓↑ is on the basis operator | ↓↑〉〈↑↓ |. The
IC enters through ρ↑↓; as time progresses, we find that all the
other nonzero elements in Eq. (13) undergo development of
similar magnitudes.

Note that the partial transpose

ρTB (t ) =

⎛
⎜⎜⎝

ρd↑ 0 0 ρ∗
o

0 ρ↑↓ 0 0
0 0 ρ↓↑ 0
ρo 0 0 ρd↓

⎞
⎟⎟⎠ (14)

is block diagonal, i.e., the block submatrix

Q =
(

ρd↑ ρ∗
o

ρo ρd↓

)
(15)

in Eq. (14) is decoupled from ρ↑↓ and ρ↓↑. Since all diagonals
in matrix (14) consist of positive real numbers, any negative
eigenvalues of ρTB , if they exist, originate solely from Q. The
eigenvalues of Q are given by (TrQ ±

√
(TrQ)2 − 4|Q|)/2.

Thus, if the matrix determinant is negative |Q| < 0, then there
will be negative eigenvalues of ρTB , which results in nonzero
L(ρ) > 0. In other words, the condition for the presence of
entanglement is having larger off-diagonal elements satisfying

|ρo| >
√

ρd↑ρd↓ ≡ |ρd |
or

|Q| < 0.

This condition by comparing the magnitude between
off-diagonal ρo and diagonal ρd in the complex plane is
schematically shown in Fig. 2(d). Note that ρo can generally
lie in any direction (of various phases), while diagonal ρd

always stays in the positive real axis (of zero phase). If we as-
sign ν = i at the qubit location, the site-resolved off-diagonal
ρoi(t ) can sometimes be greater than the diagonal ρdi(t ), and
at other times smaller, leading to sequential ESDs. On the
other hand, if we assign ν = i′ next to the qubit location,
two noteworthy characteristics emerge. First, ρoi′ (t ) is smaller
than ρdi′ (t ) yielding |Qi′ (t )| > 0 in Fig. 2(c). Second, ρoi′ (t )
is in a direction quite different from ρoi(t ), i.e., they are out
of phase; see Figs. 2(b) and 2(d). As a result from these two
characteristics, when we increase the environment degrees of
freedom ν = i + i′, then off-diagonal ρoi+i′ = (ρoi + ρoi′ )/2
gets decreased (smeared out or averaged out), as indicated
by the black arrow in Fig. 2(d). The decreasing leads to
|Qi+i′ (t )| > 0 in Fig. 2(c). On the contrary, since both ρdi

and ρdi′ stay in the same real axis at all times, the addition
ρd = (ρdi + ρdi′ )/2 in Fig. 2(d) does not encounter the same
smearing. Actually, apart from the qubit site, most of the i′
sites exhibit |Qi′ (t )| > 0 and thus fail in building up A-B en-
tanglement. This elucidates why the two-qubit entanglement
prefers a smaller environment ν and also provides insight into
the ESDs. In line with our findings, indeed, we find that most
of the existing research on ESDs pertains to the two-qubit case
[49–51,86–89]. ESDs have also been experimentally observed
in the nitrogen-vacancy center in diamond [89], as well as in
quantum optics experiments [51]. Motivated by the arguments
above, we will revisit the two-qubit entanglement later for
avoiding ESDs.

B. Entanglement beyond minimal set: Birth and early growth

We examine the system where at least one of the parties A
and B possesses a total spin NA/BSh̄ greater than h̄/2. In such
a system beyond the minimal set, the DM ρ is a matrix of di-
mension greater than four. Therefore, our arguments regarding
ESDs in Sec. III A are not applicable, or they require modifi-
cations based on a more intricate matrix analysis. However,
we find that the established entanglement beyond the minimal
set is, in fact, robust; we cannot identify any ESDs. Even in
the presence of dissipations, the entanglement can persist in
the long time t → ∞.

This long-time limit under dissipations of finite η is equiv-
alent to assigning X = 0 and K = (−Jsd )

∑
i �σi · �Si in Eq. (9).

With this assignment, we compute the L[ρ(t → ∞)] as a
function of Jsd and �L in Fig. 3. Figures 3(a)–3(c), show the
LN in the first IC protocol with fixed Fermi energy EF = −γ .
Also, Figs. 3(d)–3(f), illustrate the LN in the second IC proto-
col with varying EF = Emin + 10−4γ slightly above the band
minimum Emin. Note that in Fig. 3, the splitting �L can be ap-
plied at any finite time. Also, in Figs 3(d)–3(f), the minimum
value �L = 10−3γ in the �L axis is adopted. Since larger
Zeeman splitting �L implies wider energy gaps, in this case
it becomes less likely for excited states to be involved in our
system. As a result, the system tends to stay in the anti-parallel
spin configuration that is described by our initial unentangled
ground state. Conversely, Jsd tends to drive the system towards
an entangled state indicated by reducing the impurity spin-z
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magnitudes as in the quantum spin-transfer torques [56,57].
Indeed, Fig. 3 shows that Jsd �= 0 is essential for having
nonzero L, i.e., all L = 0 vanishes at Jsd = 0. We also see that
for both protocols L is subject to an overall decay with �L.
Furthermore, L also exhibits oscillatory behavior, more rapid
in the second protocol than in the first. Being worth noticing,
in our scan across different values of Jsd and �L (Fig. 3), the
majority of the regions actually exhibit only small values of L;
larger Jsd does not necessarily render larger L. In the presence
of dissipations, one also expects that far-distant impurities will
have difficulties communicating through mediating electrons.
Accordingly, one anticipates that the entanglement decays
with the distance D between the two parties A and B. It is
also known that a local magnetic impurity with magnetization
along the z-axis within the bulk of an electron gas will induce
a steady oscillatory spin sz distribution via the Jsd exchange,
referred to as the RKKY [59–61] oscillations. This electron
spin imbalance sz diminishes when its distance to the im-
purity increases, weakening the exchange coupling. Hence,
a decaying entanglement as D increases is expected. These
features are depicted in Fig. 4. The RKKY oscillations also
manifest through entanglement LN, particularly when one of
the impurities is situated within the bulk Fig. 4(b). Notably,
after long enough separations, D � 40, the information about
the impurity z position within each corresponding layer is lost,
as if the system is a 1D chain (without width). That is, all L
curves in Fig. 4 almost coincide after D � 40.

By restoring the transient X term responsible for the non-
dissipative responses in Eq. (9), we examine the birth and the
early growth of the entanglement. As mentioned previously,
M encodes both the classical and quantum correlations, while
L only quantum entanglements. Thus, the birth of M will
occur no later than the birth of L. In fact, as seen in Fig. 5,
M is born earlier than L. Nevertheless, we can only specu-
late but cannot definitively conclude that the entanglement is
born earlier than the classical correlation. After all, L serves
merely as a sufficient condition for entanglement. In Fig. 5,
which illustrates the development of qutrit entanglement, we
also observe that both L and M take some time to appear.
This reflects the finite spatial separation between parties A
and B. In other words, after the quench, it takes time for
their corresponding light cones (new wavefronts) to overlap.
Furthermore, one intuitive feature can be noted. When more
qutrits are added to the parties, larger L and M are obtained.
Also, in Fig. 5, at around t ≈ 50h̄/γ , L and M nearly saturate
in the first protocol of chosen Jsd = 0.9γ , while they grow
much more slowly in the second protocol of Jsd = 0.18γ .

Interestingly, shortly after the quench, Jsd induces electron
vibrating-like motions even before the presence of LN and
MI. Figure 6 illustrates how electrons promptly engage in
forming vibrating or oscillating currents to establish the entan-
glement. These cross-sectional currents vibrate with respect
to the center at x = 0 of the spacing layers. When party
A has a different impurity distribution from party B, a net
cross-sectional current can be identified through the cross
section at x = 0 (green lines in the middle panels of Fig. 6).
To determine whether charge currents are essential for the
long-term survival of entanglement, we return to Eq. (9) with
assigning finite η. As t → ∞, the only remaining K term does
not produce any charge currents but still yields nonzero L

FIG. 5. Developments of logarithmic negativity L and mutual
information M for qutrit entanglement in the case of (a) �L = 0
protocol of Jsd = 0.9γ and (b) �L = 10−3γ protocol of Jsd = 0.18γ .
The distance between parties A and B is D = 6 layers. Solid lines
represent one qutrit in each party, dotted lines represent two qutrits
(one) in party A (B), and dashed lines represent two qutrits in each
party. Schematics in the inset indicates the locations of the qutrits.
Each qutrit is positioned at a distance of D = 6 layers from its nearest
neighbor.

(Fig. 3). Therefore, the persistence of entanglement does not
rely on charge currents. However, during the initial phase after
the quench, as our results suggest, vibrating currents play a
crucial role in initiating the birth of entanglement.

Surprisingly, the birth locations of LN and MI are quite
distinct. By assigning ν = l to comprise a layer, Ll and Ml

reveal their corresponding layers of origin. Figure 7 presents
the snapshots captured right after the birth. Again, since Ml

faithfully includes all, classical and quantum, correlations,
and Ll is not a necessary condition for entanglement, namely,
Ll ∈ Ml , we similarly observe that Ml shows up earlier than
Ll . Remarkably, MI is born within the spacing layers outside
parties A and B. On the contrary, LN is born near the edge
layers, adjacent to the spacing region, hosting parties A and B.
This birth-location feature is general in that it is independent
of the number of impurities and impurity distributions, as
illustrated in all panels of Fig. 7. It also distinguishes LN from
MI. By the same token, with Ll ∈ Ml , we can conjecture that
classical correlations are born within the spacing layers where
the communication between A and B takes place via mediating
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FIG. 6. With the same parameters used in Fig. 5, cross-sectional
electron currents Ix flowing through the plane at x = −1 (red lines),
x = 0 (green lines), and x = 1 (blue lines), as a function of time
in (a) �L = 0 protocol and (b) �L = 10−3γ protocol. Here x = 0
(−1 and 1) indicates the cross-section at (next to) the spacing center,
as depicted in Fig. 1. The right-flowing currents are of sign Ix > 0.
Schematics represents the locations of the qutrits.

electrons. On the other hand, the two Ll in parties A and B are
born at a distance. It is intriguing to find out, after the birth,
whether the spacing layers for the communication are still a
requirement for the persistence of entanglement. To answer
this, we introduce the disjoint gate voltage in the next section.

C. Role of disjoint gate voltage

To simulate the effect that breaks down the communi-
cation between A and B, we consider a large gate voltage
eVg = 100γ . Specifically, we impose the gate voltage within
the spacing region at time tg,on. Since our results below are
virtually the same with further removing all hopping between
sites adjacent and sites subject to this gating, the quantum tun-
neling effects have been excluded. In other words, eVg = 100γ

is a gate voltage large enough to completely isolate or disjoint
the gated subsystem from the rest. At the same times right
after the birth as captured in Fig. 7, the gate voltages covering
four layers (ranging from x = −2 to x = 2) within the spacing
region are applied in Fig. 8. In Fig. 8 at t = 80(h̄/γ ) long after
tg,on, we see that the layer-resolved Ll is entirely inhibited
in the gated region, while outside this region, Ll develops

FIG. 7. With the same parameters used in Fig. 5, snapshots
capturing the births of layer-resolved logarithmic negativity Ll and
mutual information Ml in (a) �L = 0 protocol and (b) �L = 10−3γ

protocol. The arrangement of figure panels is the same as in Fig. 6
with vertical dotted lines here further indicate the qutrit x positions.
The time labels in red text (for Ll ) and blue text (for Ml ) indicate
the specific times in unit of h̄/γ when these snapshots are taken,
right after the births. Insets in the middle panels show the zoom into
x ≈ 3.5, the qutrit position in B.

well, exhibiting a partial suppression. Nonetheless, if the gate
voltage is applied before the birth, for example tg,on = 1(h̄/γ ),
then all negativities Ll = L = 0 are completely suppressed.
This suppression is shown by the green lines in Fig. 8 as
well as in Fig. 9. By applying the gate voltage at a later
time tg,on = 30(h̄/γ ) during the growth of the entanglement,
Fig. 9 shows the active region supported L. A similar partial
suppression in the negativity is identified after L has reached
stable saturation at some finite values.

The above features are consistent with the previous find-
ings, implying again that the charge currents are essential for
forming the birth but not required in the growing phase of the
entanglement. Being worth addressing, the suppression by eVg

does not take place immediately after tg,on . This delay is more
obvious when there are more impurities in parties A and B.
For instance, with two qutrits in each party, as depicted by the
dashed lines in Fig. 9, the suppression begins at t ≈ 35(h̄/γ ),
which is later than tg,on = 30(h̄/γ ), despite the fact that the
saturation time t ≈ 70(h̄/γ ) is nearly the same for all three
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FIG. 8. Distribution of layer-resolved logarithmic negativity Ll

in �L = 0 protocol, captured at time t = 80(h̄/γ ), with disjoint
gate voltage applied at time tg,on. The corresponding qutrit locations
are depicted in the top schematics of text labels indicating tg,on,
which is right after the births as identified in Fig. 7(a). Each qutrit
is positioned at a distance of six layers from its nearest neighbor.
The green lines represent tg,on = 1(h̄/γ ) for all three configurations.
The gray-shaded area indicates the gating zone covering four layers
within the D = 6 spacing region.

configurations with one-one, two-one, and two-two qutrits in
the A-B parties. Furthermore, the saturation values of L actu-
ally depend on the strength of the (moderate but not disjoint)
voltage eVg. Thus, the system offers a gate-voltage tunable
destiny (or outcome) of the entanglement quantified using L.

We describe the behavior (not shown here) of MI in re-
sponse to the disjoint voltage. This description also serves as
an example to pinpoint classical correlations from MI. Unlike
negativity, the growth of M remains robust against tg,on. In-
dependent of how early the voltage is applied, M grows with
time. However, the layer-resolved Ml diminishes with suffi-
ciently small tg,on. For instance, if we set tg,on = 0.04(h̄/γ ), all
Ml vanishes, while M saturates at some finite value, approxi-
mately 2.1 × 10−3 if adopting the one-one qutrit configuration
(see schematics for the red solid line in Fig. 9) of the first
protocol without �L. This implies that in the limit tg,on → 0+,
the growth of M is attributed to the classical correlation;
in other words, the resulting growth of M stems from the
classical weighted average over unentangled pure states from
each layer, characterized by Ml = 0.

The disjoint eVg is not always destructive to entanglement.
In the last part of our findings, let us revisit the case of
two-qubit entanglement. We illustrate with this case that the
destiny of entanglement is gate-voltage-controllable. Specifi-
cally, the disjoint voltage allows for the prevention of ESDs.
Recall the analysis in Sec. III A infers that the two-qubit
entanglement prefers to live in an environment of smaller
degrees of freedom. Because the above large voltage is equiv-
alent to turning off all hopping to the gated region, this
shrinking of environment happens to be the role that the

FIG. 9. Development of logarithmic negativity L in �L = 0 pro-
tocol under disjoint gate voltage applied at time tg,on = 30 indicated
by the vertical gray line. Similar to Fig. 8, top schematics represents
the corresponding qutrit locations, and the same gating zone are
adopted. An early applied voltage with tg,on = 1(h̄/γ ) is also con-
sidered, exhibited by the green lines, for all three configurations. The
corresponding growth without gate voltage can be found in Fig. 5(a).

disjoint eVg can play. Consider eVg applied to the site that
host the qubit. For example, at tg,on = 8(h̄/γ ) in Fig. 2(a)
before the third complete death of the entanglement C(ρi ) =
L(ρi ) = 0 occurs, apply the disjoint voltage to the environ-
mental electrons at the site that couples to the B qubit through
Jsd . Indeed, we see in Fig. 10, the destiny of entanglement now
does not involve any ESDs. With the same tg,on = 8(h̄/γ ), this
prevention can also be achieved if eVg is applied to both of the
sites hosting the two A and B qubits.

FIG. 10. Revival of entanglement from ESDs achieved by apply-
ing a disjoint gate voltage, eVg = 100γ , to the site hosting the qubit
party B. The voltage is turned on at time tg,on = 8(h̄/γ ), indicated by
the gray vertical line, before the two-qubit entanglement, supported
by the local site basis, dies or disappears again [refer to Fig. 2(a)].
Note the revival can also be accomplished if eVg is applied to both of
the sites hosting qubits A and B.
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It is important to clarify the scope of our findings concern-
ing the destiny of entanglement from the disjoint voltage. As
aforementioned, Jsd -induced entanglement can sustain even
in the presence of dissipation (Fig. 3). It also survives when
disjoint voltage eVg is imposed (Figs. 9 and 10). Nonetheless,
the coexistence of dissipation and disjoint voltage will turn
the survivable destiny into the fatal death of entanglement.
This death is predicted by the wave function in Eq. (9) of the
new steady state. In Eq. (9), assigning finite η results in solely
the K = (−Jsd )

∑
i �σi · �Si + eVg

∑
i∗σ c†

i∗σ ci∗σ term at t → ∞.
Accordingly, the new steady state of the system, akin to re-
setting the differential equation (6) with this steady state as
the new IC, is now described by two independent subsystems.
One subsystem containing party A and the other containing
party B are disjointed by eVg, leading to unentanglement be-
tween |CA, A〉 and |CB, B〉. Here |CA〉 and |CB〉 represent the
electron states interacting with A and B, respectively. In other
words, the herein identified tunability of the destiny through
the gate voltage is only applicable within the non-dissipative
regime.

IV. SUMMARY

We summarize what has been fulfilled and discovered in
this paper. By implementing the time-dependent formalism
based on the wave-function dynamics satisfying differential
equation (6), the reduced DM is constructed to investigate the
bipartite A-B entanglement resulting from the quench at t = 0
by the sd exchange Jsd . The parties A and B comprise local
impurities (or qudits) of opposite spin directions hosting by
electrons in the open system of FET geometry, Fig. 1 . Two
protocols are proposed to prepare the initial separable or unen-
tangled states. However, the features of our results described
below are protocol independent. We provide the long-time
solution, Eq. (9), of the wave function and demonstrate how
it enables us to reach the expected steady state and determine
the destiny of entanglement. We mainly focus on (i) the birth
and early growth of entanglement, by introducing the ESSs
to quantify the supported environment of finite size ν, as well
as (ii) the non-dissipative η = 0 responses, by including the
X term in Eq. (9). In particular, the two-qubit entanglement
L(ρi ) in the minimal set exists with ESDs when ν contains
a single site i. The inclusion of a few sites or layers in ν

leads to the disappearance of entanglement, as explained by
the visualization picture in Fig. 2(d). Figure 2(d), depicting
ESDs, also suggests that two-qubit entanglement prefers an
environment of small ν. Beyond the minimal set, the entangle-
ment monotone L remains robust against ESDs. Even when
dissipation η > 0 is present, it is possible to find a destiny of
nonzero L(t → ∞) > 0 with proper choices of Jsd and local
Zeeman splitting �L, as shown in Fig 3. Furthermore, while,
in general, L decays with the distance D between parties A and
B, oscillatory behavior resembling the RKKY exchange can
also appear especially when the impurity resides at the bulk
site in Fig. 4. The L and M emerge at some finite (nonzero)
time after the quench, illustrated in Fig. 5, reflecting the fact
that A and B are distant.

The vibrating electron currents, Fig. 6, with respect to the
spacing center play an essential role in fostering the birth
of entanglement. However, these currents are not required to

grow or maintain entanglement. As shown in Fig. 7, the birth
of MI M takes place within the spacing layers. By contrast,
the entanglement negativity L is born near both of the edge
layers that host parties A and B, adjacent to the spacing region.
The birth of M occurs earlier than L. A large gate voltage
eVg is introduced to disjoint A and B at time tg,on. In the
non-dissipative regime, when eVg is applied within the spacing
region, partial suppression of the entanglement negativity L is
observed in Fig. 8. Particularly, when the voltage is applied
right after the birth, the gated layers do not grow Ll . The
destiny of L(t → ∞) is gate voltage controllable if a mod-
erate, instead of a disjoint, eVg is applied in non-dissipative
systems. The suppression takes some time to respond to the
disjoint voltage, especially when parties A and B possess more
impurities, in Fig. 9. In the limit of tg,on → 0+, no LN is
found, layer-resolved Ml vanishes, while M remains grow-
ing, attributing this growth to the classical correlations rather
than entanglements. In the case of the minimal set, the disjoint
voltage applied to the site(s) hosting the qubit(s) can avoid
ESDs, if tg,on is chosen at a time when L(ρi ) > 0 still survives.
However, the combination of dissipation η and the disjoint
voltage eVg alters the destiny to the fate of entanglement
death. In all the presented figures, we use qubits ( d = 2) and
qutrits (d = 3) to illustrate the above features. Nonetheless,
these features are generally applicable to qudits of d > 3, as
confirmed through several of our numerical simulations.

Although, the site-resolved L(ρi ) in Fig. 10 with disjoint
voltage eventually avoids encountering ESDs, and we ad-
ditionally find that the layer-resolved Ll similarly does not
encounter ESDs, the active-region-supported LN L = 0 un-
fortunately remains dead. Specifically, L survives only in a
small ν containing a few layers. According to Fig. 2(d), with
now letting i = l and i′ = l ′ to be two layers, it suggests that
different layers are of quite different phases of ρo, leading
to the absence of LN. However, we regard the search for
sustainable L > 0 in a larger ν to be beyond the scope of
this paper. An elaborated examination of the behavior of ρo

to discover this L is considered an extension of this work.
In particular, beyond the anti-parallel spin configurations, the
present physical picture needs to be generalized.

Nevertheless, the introduced size of environment ν herein
would provide a useful framework for analyzing and gaining
insights into entanglement. The identified characteristics of
the birth and growth of negativity and mutual information con-
tribute to our understanding of the dynamics of both classical
and quantum correlations. Furthermore, the vibrating currents
resulting from the quench by Jsd sharpen our comprehension
of the mechanisms responsible for entanglement birth. The
revealed controllability of entanglement via gate voltage of-
fers guidance in terms of designing solid-state-based quantum
computations. We believe the findings presented here will
inspire further research in the development of quantum tech-
nologies by integrating entanglement into well-established
FETs.
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[24] J. Hales, U. Bajpai, T. Liu, D. R. Baykusheva, M. Li, M. Mi-
trano, and Y. Wang, Nat. Commun. 14, 3512 (2023).

[25] J. Von Neumann, Mathematical Foundations of Quantum Me-
chanics: New edition, Vol. 53 (Princeton University Press,
Princeton, 2018).

[26] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

[27] P. Calabrese, Physica A 504, 31 (2018).
[28] P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. (2005)

P04010.
[29] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
[30] W. W. Ho and D. A. Abanin, Phys. Rev. B 95, 094302 (2017).

[31] V. Alba and P. Calabrese, Proc. Natl. Acad. Sci. USA 114, 7947
(2017).

[32] Z. He and A. J. Millis, Phys. Rev. B 96, 085107 (2017).
[33] S. Watanabe, IBM J. Res. Dev. 4, 66 (1960).
[34] A. Kumar, Phys. Rev. A 96, 012332 (2017).
[35] B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A 72,

032317 (2005).
[36] N. Laflorencie, Phys. Rep. 646, 1 (2016).
[37] G. De Chiara and A. Sanpera, Rep. Prog. Phys. 81, 074002

(2018).
[38] S. Sang, Y. Li, T. Zhou, X. Chen, T. H. Hsieh, and M. P. A.

Fisher, PRX Quantum 2, 030313 (2021).
[39] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[40] S. A. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022

(1997).
[41] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[42] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn,

Phys. Rev. A 64, 042315 (2001).
[43] V. S. Bhaskara and P. K. Panigrahi, Quant. Info. Proc. 16, 118

(2017).
[44] A. Nourmandipour, A. Vafafard, A. Mortezapour, and R. Fran-

zosi, Sci. Rep. 11, 16259 (2021).
[45] J. Schneeloch, C. C. Tison, H. S. Jacinto, and P. M. Alsing, Sci.

Rep. 13, 4601 (2023).
[46] M. Gruber and V. Eisler, J. Phys. A: Math. Theor. 53, 205301

(2020).
[47] V. Eisler, Phys. Rev. B 107, 075157 (2023).
[48] F. Caceffo and V. Alba, J. Stat. Mech.: Theory Exp. (2023)

023102.
[49] K. K. Sharma and V. P. Gerdt, Int. J. Theor. Phys. 59, 403

(2020).
[50] T. Yu and J. Eberly, Science 323, 598 (2009).
[51] M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. Wal-

born, P. S. Ribeiro, and L. Davidovich, Science 316, 579 (2007).
[52] B. E. Kane, Nature (London) 393, 133 (1998).
[53] M. Gonzalez-Zalba, S. De Franceschi, E. Charbon, T. Meunier,

M. Vinet, and A. Dzurak, Nat. Electron. 4, 872 (2021).
[54] N. B. Christensen, H. M. Rønnow, D. F. McMorrow, A. Har-

rison, T. Perring, M. Enderle, R. Coldea, L. Regnault, and
G. Aeppli, Proc. Natl. Acad. Sci. USA 104, 15264 (2007).

[55] H. F. Song, N. Laflorencie, S. Rachel, and K. Le Hur, Phys. Rev.
B 83, 224410 (2011).
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Nikolić, Phys. Rev. X 11, 021062 (2021).

[57] P. Mondal, U. Bajpai, M. D. Petrović, P. Plecháč, and B. K.
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