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Gapless fluctuations and exceptional points in semiconductor lasers
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We analyze the spectrum of spatially uniform, single-particle fluctuation modes in the linear electromagnetic
response of a semiconductor laser. We show that if the decay rate of the interband polarization, γp, and the
relaxation rate of the occupation distribution, γ f , are different, a gapless regime exists in which the order
parameter �(0)(k) (linear in the coherent photon field amplitude and the interband polarization) is finite but
there is no gap in the real part of the single-particle fluctuation spectrum. As the laser is an open, pumped, and
dissipative system, this regime may be considered a nonequilibrium analog of gapless superconductivity. We
analyze the fluctuation spectrum in both the photon laser limit, where the interactions among the charged particles
are ignored, and the more general model with interacting particles. In the photon laser model, the order parameter
is reduced to a momentum-independent quantity, which we denote by �. We find that, immediately above the
lasing threshold, the real part of the fluctuation spectrum remains gapless when 0 < |�| <

√
2/27 |γ f − γp| and

becomes gapped when |�| exceeds the upper bound of this range. Viewed as a complex function of |�| and the
electron-hole energy, the eigenvalue set displays some interesting exceptional point (EP) structure around the
gapless-gapped transition. The transition point is a third-order EP, where three eigenvalues (and eigenvectors)
coincide. Switching on the particle interactions in the full model modifies the spectrum of the photon laser model
and, in particular, leads to a more elaborate EP structure. However, the overall spectral behavior of the continuous
(noncollective) modes of the full model can be understood on the basis of the relevant results of the photon laser
model.
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I. INTRODUCTION

A semiconductor quantum well (QW) microcavity laser is
microscopically a highly coherent, driven-dissipative phase of
electrons, holes, and photons. While a microcavity laser may
operate similar to an edge-emitting laser where the Coulomb
interaction between the charge carriers only affects properties
like the line shape of the gain spectra, but is not essential
for the understanding of the fundamental lasing process (e.g.,
Ref. [1]), there are other lasing regimes for which concepts
constructed in theories of condensed phases of quantum fluids
are commonly adapted to explain the basic laser properties.
One example is that of Bose-Einstein condensates (BECs)
of exciton polaritons [2–18], where exciton polaritons have
properties similar to point bosons that can condense due to the
nature of their bosonic quantum statistics. Another example
is that of the so-called polaritonic Bardeen-Cooper-Schrieffer
(BCS) state [19–26], where the Coulomb interaction together
with the light field in the cavity leads to bound electron-hole
(e-h) pairs similar to Cooper pairs in superconductors, but
unlike Cooper pairs there is a strong coupling between the
Coulomb-correlated e-h pair and the cavity field.

An important concept in the original BCS theory [27] for
superconductors in thermal equilibrium is that of an energy
gap in the excitation spectrum of the superconducting state.

*binder@optics.arizona.edu

The BCS gap, �, which is related to the (attractive) inter-
action between electrons of opposite spin and the resulting
electron pairing (Cooper pairs), can be used for an intuitive
explanation of the absence of electrical resistivity. In common
textbook treatments [28–32], the Hamiltonian models used for
the electrons lead to the result that the energy gap opens at
the normal-to-superconductor transition temperature, and the
energy gap is proportional to the order parameter (anomalous
Green’s function). However, there are also classes of elec-
tron Hamiltonians [33] for which this identification of the
energy gap with the order parameter is not valid. For example,
in superconductors with dilute magnetic impurities [33–38],
there is a gapless regime in which the order parameter is
finite and the system is superconducting, but the energy gap
is zero.

In semiconductors interacting with strong electromagnetic
fields that are tuned to interband transitions, an analogous gap
is expected to open in the single-particle spectrum [39,40].
We show in this paper that a gapless regime, analogous to
that in superconductors, is present, quite generically, in a QW
microcavity laser.

Since the laser is a nonequilibrium system, we need to
define its spectral gap more precisely. For BCS supercon-
ductors at equilibrium, the gap is the minimum energy of
single-particle excitations above the ground state. We consider
a laser in a steady state, which is a driven-dissipative state,
possibly far from equilibrium. As an analogy to the equilib-
rium case, we consider the fluctuation frequency spectrum of
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the steady-state laser and possible gaps in the spectrum. The
fluctuation matrix is obtained in a formulation of the laser’s
linear response to a weak probe (Sec. II and Appendix A).
Since the laser is dissipative, the fluctuation spectrum gener-
ally has a decay component, taking it off the real axis in the
plane of the complex energies of the fluctuation modes. The
gap we consider is the minimum finite frequency difference
between two continuous fluctuation branches.

There has been increased interest in exceptional points
(EPs) recently, which are a common feature of non-Hermitian
physics (see, e.g., Refs. [42–59]). An EP is a point in the
parameter space of a parametrized matrix where multiple
eigenvalues and their eigenvectors coalesce and the matrix
is nondiagonalizable (defective) [42,59,60]. Some prior work
focused on optical systems similar to the model in this pa-
per, but with some key differences. References [61,62], for
example, discuss EPs in the Bloch equations that describe
the time evolution of a coherently driven two-level system.
Our work differs in studying the Bloch equations for two
energy bands (i.e., allowing for inhomogeneous broadening
of the medium) instead of two discrete energy states. Equiv-
alently, for a collection of two-level quantum systems, there
is a single transition frequency, while in our case we are
studying a continuous range of laser-transition detunings.
The physical difference between energy bands and generic
broadening is more pronounced when we allow for Coulomb
interactions among the energy-band states. Nonetheless, we
find that our key conclusions hold for both the interacting
and noninteracting systems. The cavity regime, i.e., where
there is feedback on the photonic component from the matter
component, has been investigated in Refs. [52,63–65] and
elsewhere. However, in this paper, we have focused on the
matter component, taking the semiclassical laser amplitude as
an externally set constant. The spectra we study can be probed
optically [56] or in the terahertz (THz) [66] by optically
pumping a semiconductor sample outside a cavity. The spectra
may also be sampled by a THz probe of a microcavity laser
[67]. This latter thought experiment was the inspiration for
this paper.

Our aim in this paper is to establish the conditions for a
gapless regime to occur and analyze the fluctuation spectrum,
in particular, the EP structure, in detail. Before presenting
the theory and its analytical and numerical evaluation in the
sections and Appendixes below, we believe it is useful to first
give a relatively detailed summary of our results.

The unperturbed state to be probed is a lasing steady
state, which we characterize by an energy order parame-
ter �(0)(k) = �ehE (0)

� + �k′Vk−k′ p(0)
eh (k′). It is a combination

of a photonic part (Rabi frequency) �ehE (0)
� , where �eh

is the coupling that governs the transition from a cavity
photon to an electron-hole pair and vice versa, and E (0)

�

is the steady-state laser field, and an electronic part (BCS
gap function) �k′Vk−k′ p(0)

eh (k′), where Vk−k′ is the electron-
electron (electron-hole) Coulomb interaction, and p(0)

eh (k) is
the interband polarization. k denotes the electron (and hole)
momentum. In this paper, we refer to �(0)(k), and also E (0)

�

and p(0)
eh (k), as order parameters. In our analysis, we first

consider the photon laser limit of the laser probed at THz
frequencies (e.g., Refs. [68–70]; for the THz response in the

BEC limit see Ref. [11]). The Coulomb interactions between
the charged particles are ignored in this limit, and the electron-
hole pairing is mediated by the coupling to the laser photon
field. The THz probe drives intraband motion of the charges.
The relative simplicity of this model allows analytic derivation
of the most important results (Sec. III and Appendix B).
We find that a necessary condition for a gapless regime to
occur is that the decay rate of the single-particle occupation
fluctuations, γ f , and that of the order parameter (interband po-
larization) fluctuations, γp, must be different. The difference
of the two decay rates, γ̄ = γ f − γp, is the critical parameter
[71]. [We assume in this paper that γ f � γp (γ̄ � 0). Similar
conclusions hold for the case of γ̄ < 0.] With Vk−k′ being set
to zero, the order parameter �(0)(k) is reduced to the Rabi
frequency �(0)(k) → � = �E (0)

� , which is a k-independent
constant. We follow the changes in the fluctuation spectrum
as the magnitude of � increases. The limit γ̄ = 0 is the con-
ventional case, where there is no gapless regime: the threshold
of lasing and the onset of the spectral gap coincide. More
generally, when γ̄ > 0, the spectrum is gapless immediately
above the lasing threshold. The onset of a gap occurs when |�|
reaches a value of

√
2
27 γ̄ . Around the transition, the spectrum

shows some interesting behavior, which is illustrated in Fig. 1,
in which the real part of the spectrum is plotted as a function of
|�| and the single-pair energy measured from the lasing fre-
quency ξ . The plot shows that the spectrum has three branches
[for each coordinate pair (|�|, ξ ), there are three eigenvalues].
Two lines of second-order EPs bound a region where all three
eigenvalues have zero real parts (but their imaginary parts
may be different). The two lines meet at a third-order EP
at (|�|/γ̄ , ξ/γ̄ ) = (

√
2/27,

√
1/27), which is the transition

point between the gapless and the gapped regimes. There
are thresholds in |�| other than the gapless-gapped transition
which are of interest. These are shown in Fig. 2. The features
in these two figures are explained and discussed in Sec. III and
Appendix B.

The analytical results obtained for the case without inter-
action also help us to identify similar phenomena of gapless
lasing and the appearance of EPs, in particular, a third-order
EP, in the case where electron-hole interaction is taken into
account at the Hartree-Fock level, as discussed in Sec. IV. The
spectra are complicated by the steady-state order parameter
�(0)(k) then being a function of k. The results in the latter
case are obtained from numerical solutions of the relevant
equations of motion. We note that the THz linear response
of the laser was formulated and studied both at the photon
laser limit in Ref. [66] and with the more general model with
interacting electrons and holes in Ref. [67], but the issue of
spectral gap opening is not discussed in those papers.

In Sec. II, we summarize our treatment of the THz linear
response of the semiconductor laser. The fluctuation spectrum
of the photon laser model (noninteracting electrons and holes)
is analyzed through the gapless and gapped regimes in Sec. III.
In Sec. IV, this treatment is applied more generally to interact-
ing electrons and holes. Appendix A contains the equations of
motion of the fluctuating fields and their reduction to the
photon laser limit. Appendix B contains the algebraic detail of
analytic results in the analysis of the photon laser fluctuation
spectrum.
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FIG. 1. 3D plot of the (a) real and (b) imaginary parts of the fluctuation spectrum in the photon laser model (in which the interactions among
charges are set to zero) as a function of the steady-state order parameter |�| and the electron-hole energy measured from the laser frequency
ξ . � = (λ + iγp)/γ̄ , where λ is the eigenvalue, γ̄ = γ f − γp, γp is the dephasing rate of the interband polarization, and γ f is the decay rate
of the occupation fluctuation. All the energy variables are scaled to γ̄ . For each coordinate pair (|�|, ξ ), there are three eigenvalues, which
make up the three branches (surfaces) of the displayed spectrum. In the limited range of |�| plotted in the figure, two lines of second-order
exceptional points (EPs) meet at a third-order EP at (|�|/γ̄ , ξ/γ̄ ) = (

√
2/27,

√
1/27), which is the gapless-gapped transition point. γ̄ is the

critical parameter for the existence of a gapless regime: the range 0 < |�| <
√

2/27γ̄ collapses to zero when γ̄ → 0. Data set available at
Ref. [41].

II. TERAHERTZ FLUCTUATIONS OF THE
QUANTUM-WELL MICROCAVITY LASER

We summarize here the dynamical model of the semicon-
ductor microcavity laser on which we base our discussion.
The model system is a QW microcavity, in which electrons
and holes in a single pair of conduction and valence bands
in one or more QW(s) are coupled to a near-resonant optical
field in the microcavity. The system is first prepared in a spec-
ified steady lasing state, and the fluctuations in this state are
obtained as the linear response to a weak external probe. The
band gap is set at the scale of ∼1 eV. The probe is set in the
THz frequency range and so predominantly drives intraband
motions rather than interband transitions. The optical conduc-
tivity of the THz probe, commonly chosen to characterize the
linear response, is governed by the fluctuation eigenmodes
of the laser. The eigenmodes and the optical conductivity
were investigated numerically and their properties discussed
in Refs. [66,67].

We treat the electron, hole, and photon dynamics at the
level of the semiconductor Bloch equations (SBE). The
photons are approximated as classical fields, and Coulomb
correlations beyond the SBE, as well as interactions with
the environment such as phonons are modeled phenomeno-
logically as dephasing, relaxation and other gain/loss rates.
The probe considered here is directed at normal incidence to
the QW and so does not transmit any in-plane momentum

FIG. 2. Schematic drawing showing several threshold values of
the order parameter |�| in the photon laser model. ξ is the electron-
hole energy measured from the laser frequency. ξ = 0 is the value at
which the sum of the electron and hole band energies is in resonance
with the laser frequency. See the caption of Fig. 1 for the definition
of γ̄ . See Sec. III for a detailed discussion.

to the fluctuations it creates. The dynamical fields, with this
momentum restriction, are the electron distribution fe(k, t ) ≡
〈â†

ek(t )âek(t )〉, the hole distribution fh(k, t ) ≡ 〈â†
hk(t )âhk(t )〉,

the interband polarization peh(k, t ) ≡ 〈âh(−k)(t )âek(t )〉, and
the uniform cavity photon field E�(t ). âek is the annihilation
operator of an electron in the conduction band orbital of mo-
mentum k and âhk annihilates a hole in the valence band.

The SBE-type equations governing the dynamical fields
and their expansion around a steady lasing state up to linear
order in the probe are discussed in Refs. [66,67]. For ease
of reference, we include in Appendix A the linear response
equations and summarize the algebraic derivation in their
reduction to an eigenvalue problem. For simplicity, we as-
sume the electrons and holes have the same physical attributes
(effective mass, relaxation rates to quasiequilibrium, etc.) so
fe(k, t ) = fh(−k, t ) (if the two distributions are the same ini-
tially). We use fe(k, t ) to represent both distributions. We also
assume that the laser steady state is set in a circularly polarized
state and suppress the spin and polarization direction labels.
Each field is written as a sum of two terms:


(k, t ) = 
 (0)(k) + 
 (1)(k, t ) , 
 = fe, peh ,

E�(t ) = E (0)
� + E (1)

� (t ), (1)

where the (0) superscript denotes the lasing steady state and
the (1) superscript denotes the fluctuation response of the laser
to the probe. As stated above, we expand the field equations up
to first order in the probe. The unperturbed zeroth-order equa-
tions yield the steady-state fields which are used as input to
the first-order fluctuation equations. The fields f (1)

e (k, t ) and
p(1)

eh (k, t ) are expanded in an orbital angular momentum basis
with the quantization axis being normal to the QW’s plane,


 (1)(k, t ) =
∑
m∈Z


 (1)(k, m, t )eimθk , (2)

k = (k, θk ), 
 (1) = f (1)
e , p(1)

eh . Since the electric field fluc-
tuation E (1)

� (t ) is independent of k, its m = 0 component
is the only nonzero term in such an expansion. The nor-
mally incident probe is assumed to be a plane wave.
If it is tuned to the optical frequency range and so
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drives interband transitions, only the m = 0 components,
( f (1)

e (k, 0, t ), p(1)
eh (k, 0, t ), E (1)

� (t )), participate in the response
[56]. For THz-frequency probes considered in this paper,
which mainly drive intraband electronic motion, it is shown
in Ref. [67] that only the m = ±1 angular components
( f (1)

e (k,±1, t ), p(1)
eh (k,±1, t )) are triggered. (Here, the linear

polarization of the probe breaks the in-plane rotational sym-
metry of the medium; the results discussed in the following do
not depend on the absolute direction of the linear probe polar-
ization.) Compared to the case of optical-frequency probes,
the absence of the photon component in the THz fluctuations
is a substantial simplification technically, allowing a much
more thorough analysis. The insight obtained here is also
helpful for the interpretation of the fluctuation spectra ob-
tained numerically for optical-frequency probes [56]. In the
next two sections, we analyze the THz fluctuation spectra
in the photon laser model, where the interactions among the
charges are turned off, and the continuum part(s) of the spectra
in the fully interacting model.

III. THz FLUCTUATION SPECTRUM IN THE PHOTON
LASER LIMIT: GAPLESS REGIME AND EXCEPTIONAL

POINTS STRUCTURE

In this section, we analyze the THz fluctuation spectrum in
the photon laser limit, where the Coulomb interaction among
the charge carriers are ignored. The algebraic steps in reduc-
ing the response equations to this limit are summarized in
Appendix A. As stated above, the angular momentum chan-
nels, labeled by m and defined in Eq. (2), are block decoupled,
and only the m = ±1 channels are accessed by a (plane-wave)
THz probe. The response equations for different k = |k| val-
ues are also block decoupled. The equations for each k, in a
three-dimensional column vector form, are (Appendix A)

ih̄
∂

∂t

x(k, 1, t ) = M(k)
x(k, 1, t ) + 
S(k, 1, t ), (3)

where


x(k, 1, t ) =

⎛
⎜⎝

p(1)
eh (k, 1, t )

p(1)∗
eh (k,−1, t )

f (1)
e (k, 1, t )

⎞
⎟⎠ ,


S(k, 1, t ) =
⎛
⎝ S(k, 1, t )

−S∗(k,−1, t )
0

⎞
⎠, (4)

and the matrix M is

M =
⎛
⎝ξ (k) − iγp 0 2�

0 −ξ (k) − iγp −2�∗
�∗ −� −iγ f

⎞
⎠ ,

ξ (k) = h̄2k2

me
+ Eg − h̄ω� , � = �ehE (0)

� . (5)

The m = ±1 components of the photon field vanish,
E (1)

� (k,±1, t ) = 0, leaving only the electron and hole fields
in the response. In the matrix M, me is the common effective
mass of the conduction band and the valence band, Eg is the
band gap, ω� is the lasing frequency, γp is the dephasing rate

of the polarization peh, and γ f is the relaxation/loss rate of the
density distribution fluctuation f (1)

e .
�eh is the coupling that governs the transition from a cavity

photon to an electron-hole pair and vice versa, E (0)
� is the

steady-state laser field, and their product gives the steady-state
order parameter �. ξ (k) is the electron-hole energy measured
from the laser frequency. S(k, 1, t ) denotes the THz probe
field.

We note that the density fluctuation relaxation rate γ f is
larger than the dephasing rate γp, since it is defined as γ f =
γF + γpump + γnr , where γF is the rate at which carrier-carrier
scattering drives the distribution functions toward a Fermi
function (quasithermalization rate), γpump is the incoherent
pump rate, and γnr is the nonradiative recombination rate.
While γp and γF are phenomenological parameters whose
values can be adjusted independently, they represent the same
physical processes and hence need to be chosen to have sim-
ilar values. Commonly used choices are γp = γF /2 (which is
what we are using here) and γp = γF , both leading to γ f > γp.
Note also that the numerical values of γp and γF depend on the
excitation conditions and therefore are, in general, different
from the values in the low density regime below threshold,
which govern polariton dynamics.

In the following, we discuss the behavior of the eigenmode
spectrum of M as a function of the parameters. The eigen-
value is denoted generically by λ. The eigenvalues satisfy the
equation

det[λ − M] = (λ̄2 − ξ 2)(λ̄ + iγ̄ ) − 4|�|2λ̄ = 0, (6)

where we have used the notation

λ̄ = λ + iγp , γ̄ = γ f − γp. (7)

We treat the loss rate difference γ̄ , the magnitude of the order
parameter |�|, and the electron-hole energy ξ as parameters
to be varied. The other parameters, h̄ω�, Eg, and γp, are fixed.
The steady state is prepared to have the lasing frequency larger
than the band gap, h̄ω� − Eg > 0. Equation (6) is a complex
cubic equation and explicit (though rather cumbersome) solu-
tions are available (e.g., Ref. [72]).

We show some computed spectra in Figs. 3 and 4. In each
panel in the figures, three sets of eigenvalues λ̄ are plotted
in the complex plane for a fixed value of the ratio |�|/γ̄ , γ̄

being assumed to be positive. Each set is a continuous curve
of an eigenvalue parameterized by ξ (or equivalently k). (The
λ spectrum is obtained by shifting the λ̄ spectrum down by
−iγp.) Some analytic results on the properties of the spectrum
are also derived to organize our understanding of the displayed
features in the figures. These analytic results are used here,
and the algebraic details of their derivation are collected in
Appendix B.

A. The special case of equal decay rates: γ̄ = γ f − γp = 0

When the decay rates of the single-particle occupation
fluctuation and the interband polarization fluctuation are set
to be equal: γ f = γp ⇒ γ̄ = 0, the spectrum is simply

λ̄(γ̄ = 0) = 0,±
√

ξ 2 + 4|�|2. (8)

λ̄ is real for all ξ . The gap in the spectrum, denoted by Egap
eh ,

is given by the minimum magnitude of the nonzero branches
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FIG. 3. Fluctuation eigenvalue spectra in the gapless regime for the noninteracting electron-hole model. The eigenvalue λ̄ = λ + iγp is
scaled to the decay rate difference γ̄ = γ f − γp: � = λ̄/γ̄ . Each panel shows the spectrum calculated with the value of the order parameter
|�| given in the panel. The spectrum consists of three continuous branches color-coded as red, blue, and green. Each branch traces an eigenvalue
when ξ , the electron-hole energy measured from the lasing frequency, changes. See Eqs. (5) for the definitions of � and ξ . The solid circles
mark the eigenvalues at ξ = 0, and the arrows indicate the directions of increasing ξ . The spectrum contains one second-order exceptional
point (EP) when |�|/γ̄ < 1/4 [(b), (c)], and a second EP emerges when |�|/γ̄ exceeds 1/4 [(d)].
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FIG. 4. Transition from the gapless regime to the gapped regime (see Fig. 1 for the meanings of symbols). (a) The transition at |�|/γ̄ =√
2/27. At this point, the two second-order EPs shown in Fig. 3(d) coincide to form a third-order EP. At higher values of |�| [(b)–(d)], a gap

appears in Re�. When |�|/γ̄ � √
1/8 [(c), (d)], the gap equals the value of Re� at ξ = 0, where the free electron-hole energy is at resonance

with the lasing frequency.
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of λ̄, which is the magnitude of the eigenvalue at ξ = 0:

Egap
eh = 2|�|. (9)

So, there is no gapless regime, where the system is lasing (|�|
is finite) but Egap

eh = 0 in this case.

B. Overall distribution of the eigenvalues

It can be readily verified that if λ̄ is a solution to the eigen-
value Eq. (6), then so is −λ̄∗ (see Ref. [67], Appendix A).
This implies that, for each k, either all three eigenvalues λ

are imaginary or one eigenvalue is imaginary and the other
two have finite real parts and are symmetrically placed, one
on each side of the imaginary axis. This symmetry about the
imaginary axis also applies to the eigenvalue set of the more
general case with interacting electrons and holes [67].

When γ̄ > 0, λ̄(k) on the imaginary axis are confined to
the interval [−iγ̄ , 0] for all k. For λ̄(k) off the imaginary axis,
Imλ̄(k) ∈ [−γ̄ /2, 0] for all k. These bounds are derived in
Appendix B (Property 1). We note that these bounds collapse
the area containing the eigenvalues to a horizontal line when
γ̄ goes to zero.

C. The gapless regime for γ̄ > 0

Immediately above the lasing threshold, the order parame-
ter |�| increases, starting from zero, with the pump intensity.
The fluctuation spectrum is gapless within the range

0 <
|�|
γ̄

<

√
2

27
. (10)

Figures 3 and 4(a) show in detail the changes in the spec-
tra as |�| increases within this regime. The solid circles in
each panel are the three eigenvalues at a k value, denoted
by k�, such that ξ (k�) = h̄2k2

� /me + Eg − h̄ω� = 0 where the
electron-hole band energy is at resonance with the laser fre-
quency. Since Eq. (6) depends on ξ 2, the parametrization of
the eigenvalues goes from ξ = 0 upwards, and so the solid
circles are the starting points of the three eigenvalue curves on
the plots. The general behavior of the eigenvalues at the limits
ξ = 0 and ξ → ∞ are derived in Appendix B (Properties 2
and 3). When |�| < γ̄ /4, all three solid circles stay on the
imaginary axis [Fig. 3(b)]:

λ̄(ξ = 0) = 0,−i

⎡
⎣ γ̄

2
±

√(
γ̄

2

)2

− 4|�|2
⎤
⎦for |�| <

γ̄

4
.

(11)

As |�| increases, the last two solutions move towards each
other and coincide at the value of −iγ̄ /2 when |�| = γ̄ /4
[Fig. 3(c)]. When |�| > γ̄ /4, the two solid circles move out
in opposite directions along the line Imγ̄ = −γ̄ /2:

λ̄(ξ = 0) = 0,±
√

4|�|2 −
(

γ̄

2

)2

− i
γ̄

2
for |�| >

γ̄

4
.

(12)

Before |�| reaches
√

2/27γ̄ ≈ 0.272γ̄ , there is still no gap
in Reλ̄ even though two eigenvalues at ξ = 0 leave the imag-
inary axis. Figure 3(d) shows the spectrum at |�| = 0.27γ̄

as an example. Starting from the two solid circles with finite
real parts, the two eigenvalue branches move towards and
meet on the imaginary axis as ξ increases. Beyond that point,
one eigenvalue moves up while the other moves down the
imaginary axis. The upward-going eigenvalue then meets with
the third eigenvalue and the two move off the imaginary axis.
If we view the matrix M as a complex matrix function of ξ

and �, then the two points where two eigenvalues meet are
second-order EPs [44,48,63].

As |�| increases, the two second-order EPs in the spec-
trum shift toward each other and coincide at |�| = √

2/27 γ̄ .
This value of |�| also marks the threshold for transition
from the gapless regime to the gapped regime. The spec-
trum at this threshold is shown in Fig. 4(a). It is verified in
Appendix B (Property 4) that the three eigenvalue branches
coincide at the parametric point ξ = γ̄√

27
with the value λ̄ =

−i γ̄

3 . This point where the three eigenvalues meet is a third-
order EP. To see this, we check that the eigenvectors of the
three branches are also the same, and the common eigenvec-
tor is self-orthogonal (the inner product of the left and right
eigenvectors equals zero). The right and left eigenvectors at
the EP are denoted by 
φR and 
φL, respectively [the left eigen-
vector satisfies 
φ †

L (λ − M ) = 0]. They are given by (without
normalization)


φR =
⎛
⎝ 1

ei2(π/3−θ )

− 1√
2
ei(π/3−θ )

⎞
⎠ , 
φL =

⎛
⎝ 1

e−i2(π/3+θ )

−√
2e−i(π/3+θ )

⎞
⎠,

(13)

where θ is the phase of �: � = |�|eiθ . It can be checked that

φ †

L

φR = 0. The EP structure of the spectrum near the gapless-

gapped transition point is shown in a 3D plot in Fig. 1.

D. Gapped regime

A gap appears in Reλ̄ when |�| exceeds
√

2/27 γ̄ . As
shown in Fig. 4(b), two branches separate from the imaginary
axis. The minimum value of |Reλ̄|, which gives the value
of the gap, is obtained at a nonzero ξ . As |�| increases
further, this minimum value gains on |Reλ̄(ξ = 0)|, and from
|�| = γ̄√

8
on, the resonance points ξ = 0 (solid circles) give

the value of the gap [Figs. 4(c) and 4(d)], which is

Egap
eh =

√
4|�|2 −

(
γ̄

2

)2

for |�| >
γ̄√

8
(14)

≈ 2|�| when |�| � γ̄

4
. (15)

Equation (15) shows that the result of the case of γ̄ = 0
(Sec. III A) is recovered in the limit of large |�|

γ̄
, as would

be expected. That |�| = γ̄√
8

is the transition value is proved
in Appendix B (Property 5).

E. Discussion

As shown above, the essential condition for the the pres-
ence of a gapless regime is that the fluctuations in the order
parameter p(1)

eh and those in the single-particle occupation f (1)
e

decay at different rates: γ f �= γp. (We show this only for γ f >

γp, but it is also valid for γ f < γp.) This condition bears some
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similarity to the condition for gapless superconductivity in
alloys with magnetic impurities [33–38], where the spin-orbit
term in the Hamiltonian leads to a gapless regime by causing
a difference in the relaxation rates in the order parameter
and the single-particle propagator. Another possible point for
comparison is time-reversal invariance breaking. In the case of
the superconductor with magnetic impurities, the fact that the
spin-orbit term breaks time-reversal invariance is considered
an important factor for gaplessness [33]. Time reversal invari-
ance is obviously broken in our laser system. However, the
nature of the invariance breaking is different in the two cases.
In the superconductor case, one considers the ground state
or a thermal equilibrium state. The Hamiltonian containing
the spin-orbit term is Hermitian, and the Schrödinger equa-
tion containing it does not have a preferred time direction. In
contrast, the equations of motion in our laser case distinguish
between going forward and backward in time. The EPs in our
spectra are present because of the non-Hermitian nature of the
laser system.

IV. INTERACTING ELECTRONS AND HOLES

The Coulomb interaction not only models the charge
carriers more realistically; it also provides an even clearer
mathematical analogy to superconductivity than the other
source of electron correlation, the coherent field, does alone.
To account for the presence of electrostatic interactions
among and between electrons and holes requires, in general,
that the full fluctuation Eq. (A14) be used. The response
matrix function Gm(k, k′) cannot generally be assumed to be
block diagonal in k, as in Eq. (A16), because of the terms con-
taining the order parameter fluctuation �̃(1)(k, m, t ) Eq. (A10)
and the Hartree-Fock fluctuation �

(1)
HF(k, m, t ) Eq. (A12),

which correlate the p(1)
eh and f (1)

e at different k’s. One impor-
tant effect caused by these k-mixing terms on the fluctuation
spectrum is the possible formation of collective modes, where
multiple k states are excited simultaneously and which appear
as discrete points in the complex plane. These have been
studied in our previous work [56,67]. In this paper, we ex-
amine order parameters smaller than those necessary for the
emergence of the THz collective T modes found in Ref. [67].

To calculate the fluctuation continua for the exact response
function Gm(k, k′), we numerically diagonalize the full 3Nk ×
3Nk matrix. Here Nk = 600 is the number of k grid points
used. (Otherwise, the parameters used for the numerical calcu-
lations are the same as in Ref. [56], with effective Bohr radius
aB = 14 nm, electron temperature T = 50 K, and screening
wave number κ0 = 9.0 × 10−3a−1

B .) Using a weakly screened
Coulomb interaction [56,67], the eigenvalues are plotted as
dots in Figs. 5 and 6. The EPs, as well-defined transition
points, are very sensitive to the order parameter. To obtain
the clear identification of the onset of an EP, as rendered in
Figs. 5 and 6, requires a precision on the order of 1 in 105.

We use an evenly spaced k grid for the diagonalization of
the fluctuation matrix with Coulomb interactions. This does
not map to an even spacing of points along the line, and
gives a numerically discrete representation of the eigenvalue
continua close to the EPs. The following analysis identifies the
spectral continua to which the (numerically discrete) eigen-
values belong. Remarkably, our numerical evidence indicates

that the k-mixing terms have little effect on the continuous
branches of the fluctuation spectra. Thus, for our purpose
of investigating the parametric dependence of the eigenvalue
continua, �̃(1) and �

(1)
HF can be very well approximated as 0.

(The k-mixing terms significantly affect the eigenvectors, in
that they are delta functions in k in their absence, while in their
presence they contain a range of k values [67]. This modifica-
tion corroborates that the linear response is not simply weakly
interacting.) Under this approximation, the response matrix is
block diagonal in k and is similar in structure to the matrix M
[Eqs. (5)] in the free electron-hole model:

Mint(k) =
⎛
⎝ξ̃ (k) − iγp 0 2�̃(0)(k)

0 −ξ̃ (k) − iγp −2�̃(0)∗(k)
�̃(0)∗(k) −�̃(0)(k) −iγ f

⎞
⎠.

(16)

The fluctuation spectra calculated by diagonalizing the 3 × 3
matrix Mint in Eq. (16) for each k are plotted as solid lines in
Figs. 5 and 6. We see clearly that the dots, which represent the
numerical eigenvalues in the continuous part of the spectrum,
always overlap with the solid lines. This invariance of the
continuous spectrum under the action of the k-mixing terms
is analogous to the invariance of the kinetic energy spectrum
under the action of the scattering interaction Hamiltonian in
quantum mechanics [73].

Unlike in the noninteracting case, including Coulomb in-
teractions generally means that the effective Rabi frequency,
i.e., the order parameter, �̃(0)(k) [defined in Eq. (A9)] is
k dependent. However, let us consider a schematic contact
potential, which is constant in k, up to a high-momentum
cutoff km: V (k, k′) = Vc θ (km − k)θ (km − k′), where θ is the
unit step function. Then the order parameter simplifies to a
k-independent effective Rabi frequency �̃(0). In this case, Mint

in Eq. (16) simplifies to the M of Eqs. (5), with the only differ-
ence being the Rabi frequency �(0) and electron-hole energy
ξ in Eqs. (5) are replaced in Eq. (16) by the effective Rabi
frequency k-constant �̃(0) and the Hartree-Fock electron-hole
energy ξ̃ [defined in Eq. (A8)]. Thus, for a contact potential,
the exact same continuous fluctuation spectra are obtained as
in the free electron-hole model, and can be calculated and
analyzed in the same way as in Sec. II for the same choices
of γ̄ , ξ = ξ̃ , and |�| = |�̃(0)|.

For a more realistic screened Coulomb interaction [56,67],
the eigenvalue curves are excellently approximated by diag-
onalization of Eq. (16) with its k-dependent �̃(0)(k), but the
spectra are incomplete if approximated by Eq. (6) with a
k-independent effective Rabi frequency �̃(0). To show this,
we have plotted the latter as dashed lines and (as stated pre-
viously) plotted the former with solid lines in Figs. 5 and 6.
To pick the most appropriate k-constant �̃(0) values, which
we call the effective �̃(0), �

(0)
eff , we simply varied �

(0)
eff and

re-plotted the dashed lines until they were visibly indistin-
guishable from the solid lines or no visible improvement in
the match between the two could be made. We have plotted
�̃(0)(k) against k in Fig. 7, with the �

(0)
eff shown as dashed

lines. The identity of the �
(0)
eff lines to portions of the �̃(0)(k)

lines in most of Figs. 5 and 6 shows that the Mint(k) spectra
contain the noninteracting spectra as a limiting case. These
dashed lines clearly reveal how the interacting case would

045306-7



KWONG, SPOTNITZ, AND BINDER PHYSICAL REVIEW B 109, 045306 (2024)

(0) 0.259eff γΔ =

(c)-0.2

-0.4

-0.6

-0.8

-1

0

Im
(Ω

)

0.2 0.4-0.2-0.4-0.6 0.60
Re (Ω)

(b)

(0) 0.2472eff γΔ =

-0.2

-0.4

-0.6

-0.8

-1

0

Im
(Ω

)

0.2 0.4-0.2-0.4-0.6 0.60
Re (Ω)

(d)

(0) 0.2642eff γΔ =

-0.2

-0.4

-0.6

-0.8

-1

0

Im
(Ω

)
0.2 0.4-0.2-0.4-0.6 0.60

Re (Ω)

First third
order EP

(a)

(0) 0.191eff γΔ =

-0.2

-0.4

-0.6

-0.8

-1

0

Im
(Ω

)

0.2 0.4-0.2-0.4-0.6 0.60
Re (Ω)

Crosses : solu�ons for 0k =
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FIG. 5. Fluctuation eigenvalue spectra in the gapless regime for the electron-hole model with screened Coulomb interactions. The
eigenvalue λ̄ = λ + iγp is scaled to the decay rate difference γ̄ = γ f − γp: � = λ̄/γ̄ . In each panel, the dots are eigenvalues calculated
by numerical diagonalization on a discretized k grid. The solid curves are calculated neglecting the k-mixing terms in the matrix. The
noninteracting electron-hole model with an effective constant order parameter |�(0)

eff | is used to fit the eigenvalue curves. The best-fit value
of |�(0)

eff | is given in each panel as a measure of the overall strength of the k-dependent order parameter |�̃(0)(k)|. The functions |�̃(0)(k)| for
the cases in this figure and Fig. 6 are plotted in Fig. 7. The best-fit eigenvalues of the noninteracting model are plotted as dashed lines. The
crosses mark the three eigenvalues at k = 0, and the arrows point in the direction of motion of the eigenvalues when k increases. The brown
arrows are for k < k� and the purple arrows are for k > k�, where k� is the value at which ξ̃ (k�) = 0. There are two second-order exceptional
points (EPs) in (b) and four EPs in (c). In (d), the EP structure consists of a third-order EP between two second-order EPs. The dashed purple
arrow indicates the flow of the green branch between the two second-order EPs. The third-order EP results from the merging of the two inner
EPs in (c). (See text for further details.)

reduce to the noninteracting case if the Coulomb interaction
were to be turned off.

The increased complexity of Figs. 5 and 6 relative to 3 and
4 suggests that these figures require additional explanation of
the calculation and plotting methods. All computations are
done with a discretized k grid, with bounds 0 � k � km and
number of k points Nk . Due to the discretized k grid, the con-
tinuous eigenvalues are calculated as a set of points distributed
along the spectral continuum. As the Nk increases, these points
shift and (usually—see below for more discussion) become
denser. A discrete eigenvalue, in contrast, remains isolated and
reaches convergence in position relatively fast with k-grid re-
finement. We have previously found these discrete eigenvalues
to represent collective modes [56,67], and do not study them
in this paper. Eigenvalue computations with k mixing (i.e., for
the complete response matrix) scale as O(N3

k ), while those
without scale as O(Nk ). This performance improvement meant
that it was feasible to use a large enough Nk such that the
k-block-diagonal eigenvalues could be plotted as lines, with
effectively unbounded resolution, while this resolution was
relatively infeasible with k mixing, and thus those results are
plotted as points. An additional limitation is that the k-mixing

matrix was diagonalized numerically, while the eigenvalues
of M(k) and Mint(k) were calculated by the cubic formula.
A matrix is not diagonalizable (defective) at an EP [59,60],
while, in contrast, the multiplicity of roots poses no issue for
solutions of a cubic equation.

Due to the complexity of the branches in the interacting
case, it is clarifying to explicitly state how the continuous
branch curves and their colors are chosen. As each eigenvalue
triplet is a solution of an independent k equation, it is arbitrary
how triplets from consecutive k values are connected together
to form branches or whether this is even done at all. We have
decided to form the branches and assign the branch color
by insisting on continuity of each branch in the Re�–Im�

plane. The assignments of branches leaving EPs are arbitrary
with respect to the branches entering them, so these were also
chosen to ensure continuity, and with consistency across the
different plots in mind. We kept the color assignments con-
sistent between the different Re�–Im� plots as (the actual,
or for the Coulomb case, effective) |�(0)| value was varied
by having the same colors assigned to the k = 0 eigenvalues
as they evolved smoothly across the plane. The k = 0 points
have been labeled with x’s. The branch assignment (colors)
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FIG. 6. Transition from the gapless regime to the gapped regime (see Fig. 5 for the meanings of the dots, the curves, the arrows, and |�(0)
eff |).

Partly visible here, but covered entirely by the solid lines in Fig. 5, are dashed lines, which are the noninteracting eigenvalue spectra calculated
using |�(0)

eff |. Panel (a) shows that, when |�(0)
eff | exceeds the value in Fig. 5(d), two branches separate from the imaginary axis, leaving two

second-order EPs in the spectrum. These two EPs merge in (b) to form a second third-order EP, which marks the gapless-gapped transition.
Beyond this point, two gapped branches of the spectrum appear [(c), (d)].

of the numerically-obtained eigenvalues (dots) were chosen to
match that of the nearest k-block-diagonal fluctuation energies
(nearest solid lines).

FIG. 7. Solid lines: Order parameter |�̃(0)(k)| in the model with
screened Coulomb interactions among the charged particles [defined
by Eq. (A9)] plotted as a function of the electron momentum k, in
units of inverse effective Bohr radius a−1

B , for the eight cases shown
in Figs. 5 and 6. The key gives the corresponding subfigure number.
Dashed lines: Values of the effective constant order parameter |�(0)

eff |
used in the noninteracting electron-hole model to fit the eigenvalues
of the interacting electron-hole model.

The Coulomb potential is k dependent, which yields a
k-dependent �̃(0)(k), examples of which are shown in Fig. 7.
In the free electron-hole model, a constant |�| leads to a
degeneracy between eigenvalues with ξ � 0 for k < k� and
eigenvalues with ξ � 0 for k > k� (the low-k and high-k
branches, respectively [67]), where k� is the momentum at
which ξ̃ is zero, ξ̃ (k�) = 0. This is illustrated in Fig. 8. This
degeneracy is lifted by a k-dependent �̃(0)(k). The effect is
visible in Figs. 5 and 6 as hooklike separations of branches
that meet at the eigenvalue for k�.

In Figs. 5 and 6, the paths of the low-k branches with
increasing k are denoted by brown arrows. The transition from
low k to high k occurs at the ξ̃ (k�) = 0 points, which are not
explicitly marked in Figs. 5 and 6 but which occur at roughly
the same positions as marked by small circles in Figs. 3 and
4. Then, in Figs. 5 and 6, the evolution of the high-k branch is
shown with purple arrows.

Increasing the number of branches makes the spectral
features more complex than those in Figs. 3 and 4. As in
Figs. 3 and 4, Figs. 5(a)–5(d) correspond to increasing overall
strength of �̃(0)(k), followed by the four panels of Fig. 6. The
k � k� eigenvalues correspond very closely to the noninter-
acting case. This is confirmed from the match of the solid
lines for these k values with the entirety of the dashed lines,
for most of Figs. 5 and 6. In fact, this match is so precise
that the dashed lines are very difficult to distinguish from the
solid lines in these cases. The new behavior comes from the
low-k branch. Most notably, the lifted degeneracy of the low-k
branch creates a second set of second- and third-order EPs.
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FIG. 8. Schematic showing two k values with equal ξ (k) in the
case without Coulomb interaction. This results in a degeneracy of
the eigenvalues (but not eigenvectors). The degeneracy is lifted if the
Coulomb interaction is taken into account.

In Figs. 5(a)–5(c), the red and green curves have been split
into low- and high-k branches. Their intersection now consists
of two second-order EPs, one for each branch. A similar effect
occurs with the green and blue curves in Figs. 5(b) and 5(c), so
these panels now have four second-order EPs. The two low-k
branch EPs move towards each other on the imaginary axis
until they merge to form the first third-order EP in Fig. 5(d).
This first third-order EP marks a gapless-gapped transition for
the low-k branch, but the spectrum as a whole is still gapless.
As the pump density is marginally increased, the red and
green branches separate from the imaginary axis, as shown in
Fig. 6(a). (To maintain continuity in this panel, it is necessary
to have both the red and blue curves occupy a portion of the
imaginary axis.)

Subsequently, as the pump density is further increased, the
remaining pair of second-order EPs, which are in the high-k
branch, also move towards each other along the imaginary
axis. They merge, as shown in Fig. 6(b), to form the high-
k third-order EP. A marginal increase of the effective Rabi
frequency |�̃(0)|, shown in Fig. 6(c), prompts the red and
green branches to fully separate from the imaginary axis,
completing the transition from a gapless to a gapped spectrum.
Further increases in the order parameter, as shown in Fig. 6(d),
increase the magnitude of the gap and move the location of
minimal gap closer to the ξ̃ (k�) = 0 points.

Thus, the screened Coulomb interaction does not fun-
damentally modify the spectra. Its effect is to create a k
dependence in the order parameter |�̃(0)

k |. This variation lifts
the low-k–high-k degeneracy. The separated low-k branch
widens the spectra and introduces a second set of EPs, which
also leads to a two-stage gapless-gapped transition with two
third-order EPs, near to order parameters where in the nonin-
teracting case there is only a single transition.

V. CONCLUSION

We have shown that there is, in general, a gapless regime
in the single-particle (continuum) part of the THz fluctuation
spectrum of a semiconductor microcavity laser. The gap refers
to the separation of two branches of the spectral continuum
from the imaginary axis. This gapless regime is an analog,
in a driven-dissipative system, of the gapless regime in the
single-particle excitation spectrum in some classes of super-
conductors. The condition for the gapless regime considered
here to exist is that the loss/relaxation rate γ f of the electron
and hole occupation distribution is different from the dephas-
ing rate γp of the interband polarization. The conventional
picture of the lasing order parameter �(0)(k) = �ehE (0)

� +
�k′Vk−k′ p(0)

eh (k′) and the spectral gap having the same onset
threshold is valid only in the limit γ f = γp. In general, when
γ f �= γp, the spectral gap opens at a finite value of |�(0)(k)|.
As complex functions of |�(0)(k)| and the electron-hole en-
ergy ξ (k), the fluctuation eigenvalues show an interesting EP
structure, which we have analyzed in detail in both the photon
laser limit and in the full model with Coulomb interactions
among the charges. The gapless-gapped transition point is a
third-order EP.

The difference in dissipative rates, γ̄ = γ f − γp, which
controls the gapless regime, is a phenomenological param-
eter in this paper. These rates sum up the effects of many
microscopic processes such as electron collisions and phonon
emission/absorption. More insight into the physics of the
gapless fluctuations may be gained by considering extensions
of the current model that include microscopic descriptions of
the dissipative processes. Other interesting directions for fur-
ther studies include generalizing the theory to accommodate
fluctuations with finite momentum (driven by obliquely inci-
dent probes) and analyzing analogous gapless spectra in the
m = 0 angular channel driven by optical-frequency interband
probes.

Details of how the predicted effects can be observed exper-
imentally still need to be worked out. One possibility might be
related to laser line-shape analysis. The line shape is affected
by spontaneous emission in the direction of the laser emis-
sion. Since, in our case, the laser emission is s wave (m = 0)
and the fluctuations are p wave (m = ±1), the fluctuations
do not directly affect the emission, but they can affect the
luminescence and hence the line shape. This is because the
luminescence involves the product of two distribution func-
tion operators, â†

ekâekâ†
h(−k)âh(−k) (see p. 337 of Ref. [74]),

from which it follows that, in second order, two fluctua-
tion modes, one with m = 1 and the other with m = −1,
contribute to the luminescence. A similar argument applies
to the so-called diffusion coefficients in a Langevin theory,
which involve the product of two interband polarizations, p.
349 of Ref. [74]. We hypothesize that effects from p-wave
fluctuations change qualitatively upon the gapless-to-gapped
transition.

In addition to the influence on the line shape, future work
may address the question of how the gapless regime, p-wave
fluctuation modes, and their EPs affect other relevant quantum
optical characteristics of the laser, e.g., temporal coherence
properties and laser performance.
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We also mention that experimentally observing the gapless
regime in the superconductor case (e.g., Refs. [35,38]) is also
still challenging, with new THz techniques being developed
only recently [38].

We finally note that the physics discussed above is not
necessarily restricted to our example of semiconductor lasers.
Future extensions of our work may include studies of optical
quantum gases (e.g., Ref. [55]), polymer lasers (e.g., [75]),
fiber-optic lasers (e.g., [76,77]), and other physical systems
that can be described in terms of interacting or noninteracting
two-level systems.
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APPENDIX A: DYNAMICAL EQUATIONS OF THE LINEAR
FLUCTUATIONS OF THE LASER

In this Appendix, we write the linear response equa-
tions of the semiconductor laser under irradiation by a weak
electromagnetic probe. Our general model equations to de-
scribe the laser dynamics are a set of semiconductor Bloch
equations with phenomenological gain (pump) and loss (re-
laxation, dephasing, nonradiative decay) terms added, and a
probe is applied. The equations are expanded around a steady
lasing state to first order in the probe. These equations are
discussed in Refs. [66,67]. We reproduce the first-order equa-
tions here.

The dynamical fields are the electron distribution
fe(k, t ) ≡ 〈â†

ek(t )âek(t )〉, the interband polarization
peh(k, t ) ≡ 〈âh(−k)(t )âek(t )〉, and the uniform cavity photon
field E�(t ). The hole distribution is assumed to be the same as
the electron distribution. We assume that the laser steady state
is set in a circularly polarized state and suppress the spin and
polarization direction labels. The probe is a normally incident
plane wave. Each field is written as a sum of two terms:


(k, t ) = 
 (0)(k) + 
 (1)(k, t ) , 
 = fe, peh ,

E�(t ) = E (0)
� + E (1)

� (t ), (A1)

where the (0) superscript denotes the lasing steady state and
the (1) superscript denotes the fluctuation response of the laser
to the probe. The k-dependent fluctuation fields are expanded
in angular harmonics [k = (k, θk )]:


 (1)(k, θk, t ) =
∑
m∈Z


 (1)(k, m, t )eimθk ,


 (1)(k, m, t ) = 1

2π

∫ 2π

0
dθk


(1)(k, θk, t )e−imθk , (A2)

where 
 (1) stands for p(1)
eh , f (1)

e . Being independent of k,
E (1)

� is circularly symmetric. The equations for individual m

components of the charge carrier fields are

ih̄
∂

∂t
p(1)

eh (k, m, t ) = (ξ̃ (k) − iγp)p(1)
eh (k, m, t )

+ 2p(0)
eh (k)�(1)

HF(k, m, t ) − [
1 − 2 f (0)

e (k)
]

× �̃(1)(k, m, t ) + 2�̃(0)(k) f (1)
e (k, m, t )

+ Sp(k, m, t ), (A3)

−ih̄
∂

∂t
p(1)∗

eh (k,−m, t ) = (ξ̃ (k) + iγp)p(1)∗
eh (k,−m, t )

+ 2p(0)∗
eh (k)�(1)∗

HF (k,−m, t )

− [
1 − 2 f (0)

e (k)
]
�̃(1)∗(k,−m, t )

+ 2�̃(0)∗(k) f (1)∗
e (k,−m, t )

+ S∗
p(k,−m, t ), (A4)

ih̄
∂

∂t
f (1)
e (k, m, t ) = �̃(0)∗(k)p(1)

eh (k, m, t )

+ p(0)
eh (k)�̃(1)∗(k,−m, t )

− �̃(0)(k)p(1)∗
eh (k,−m, t )

− p(0)∗
eh (k)�̃(1)(k, m, t )

− iγ f f (1)
e (k, m, t ) + S f (k, m, t ), (A5)

and the equations for the cavity laser field are

ih̄
∂

∂t
E (1)

� (t ) = (h̄ωcav − h̄ω� − iγcav )E (1)
� (t )

− NQW

∫ ∞

0

kdk

2π
�∗

eh(k)p(1)
eh (k, 0, t ), (A6)

−ih̄
∂

∂t
E (1)∗

� (t ) = (h̄ωcav − h̄ω� + iγcav )E (1)∗
� (t )

− NQW

∫ ∞

0

kdk

2π
�eh(k)p(1)∗

eh (k, 0, t ).

(A7)

The symbols in these equations are defined as follows: ξ̃ (k) is
the sum of the electron and hole single-particle energies and
is given by

ξ̃ (k) = h̄2k2

2mr
+ Eg + 2�

(0)
HF(k) − h̄ω�, (A8)

where mr = me/2 is the reduced mass (me being the common
effective mass of the electron and the hole), Eg is the band
gap, and ω� is the lasing frequency. �̃(0)(k) and �̃(1)(k, m, t )
are the steady-state and fluctuation components of the order
parameter, and �

(0)
HF(k) and �

(1)
HF(k, m, t ) are the components

of the Hartree-Fock energy. They are given by

�̃(0)(k) = �eh(k)E (0)
� +

∫ ∞

0

k′dk′

2π
V 0

k,k′ p(0)
eh (k′), (A9)

�̃(1)(k, m, t ) = �eh(k)E (1)
� (t )δ0,m

+
∫ ∞

0

k′dk′

2π
V m

k,k′ p(1)
eh (k′, m, t ), (A10)

�
(0)
HF(k) = −

∫ ∞

0

k′dk′

2π
V 0

k,k′ f (0)
e (k′), (A11)

045306-11



KWONG, SPOTNITZ, AND BINDER PHYSICAL REVIEW B 109, 045306 (2024)

�
(1)
HF(k, m, t ) = −

∫ ∞

0

k′dk′

2π
V m

k,k′ f (1)
e (k′, m, t ). (A12)

�eh(k) is the coefficient of the coupling that transforms a
cavity photon into an electron-hole pair. V m

kk′ is the component
with angular momentum m of the electron-electron interaction
with incoming relative momentum k′ and outgoing relative
momentum k. A statically screened Coulomb potential is
usually chosen to be the interaction. For our definition of V m

kk′
here, we only need to assume that the interaction depends on
k − k′ instead of k and k′ separately, which implies a depen-
dence on only the three scalars k, k′, θ , where θ is the angle
between k and k′. If the interaction is denoted by V (k, k′, θ ),
the angular component is given by

V m
kk′ = 1

2π

∫ 2π

0
dθe−imθV (k, k′, θ ). (A13)

γp, γ f , and γcav are the loss/relaxation rates of the interband
polarization, the occupation, and the cavity field, respectively.
ωcav is the resonance frequency of the cavity mode and NQW is
the number of QWs in the cavity. S(k, m, t ) represents the m
angular component of the source terms linear in the external
probe field. For an optical-frequency probe, which effects
interband transitions, the m = 0 component is dominant, and
the other components are negligibly small: S(k, m, t ) ∼ δm0.
For a THz probe, which drives intraband motion, S(k, m, t ) is
nonzero only for m = ±1. More detailed discussion of these
equations can be found in Refs. [66,67].

Equations (A3)–(A7) can be rewritten more compactly in
the form of a matrix integral equation

ih̄
∂

∂t

x(k, m, t ) =

∫ ∞

0
dk′Gm(k, k′)
x(k′, m, t ) + 
S(k, m, t ),

(A14)

where 
x(k, m, t ) is the five-dimensional column vector


x(k, m, t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p(1)
eh (k, m, t )

p(1)∗
eh (k,−m, t )

f (1)
e (k, m, t )

E (1)
� (t )δm0

E (1)∗
� (t )δm0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A15)

and 
S(k, m, t ) is the column vector containing the probe terms.
The response function Gm(k, k′) is a 5 × 5 matrix with each
element being a function of k and k′. Its eigenmodes are
the fluctuation modes of angular momentum m. Its spectrum
consists of one or more continuous curve(s) in the complex
plane and possibly also a set of discrete points (collective
modes).

1. The photon laser limit

The matter components of the fluctuations, p(1)
eh (k, m, t )

and f (1)
e (k, m, t ), at different k values are in general cor-

related. In Eqs. (A3)–(A5), this correlation lies in terms
carrying the order parameter fluctuation �̃(1)(k, m, t ) [defined
in Eq. (A10)] and density fluctuation �

(1)
HF(k, m, t ) [defined in

Eq. (A12)]. In cases where these terms vanish, decoupling in
k space occurs and simplifies the mode analysis significantly.

In the photon laser limit, where the interaction effects can
be neglected, �

(1)
HF(k, m, t ) = 0 and the order parameter fluc-

tuation is reduced to the coupling to the photon fluctuation:
�̃(1)(k, m, t ) = �eh(k)E (1)

� (t )δ0,m, which is nonzero only in
the m = 0 sector. So, specifically, the k correlation is present
for optical probe perturbations (m = 0) of a photon laser but
absent for THz probe perturbations m = ±1.

In the matrix formulation Eq. (A14), the response function
Gm(k, k′) becomes block diagonal in k for the THz-probed
photon laser. Due to angular momentum mismatch, the pho-
ton fluctuation fields E (1)

� (t ) and E (1)∗
� (t ) vanish (there is no

source S for p(1)
eh (k, 0, t ) in Eqs. (A3)–(A5), so the source term

p(1)
eh (k, 0, t ) = 0 in Eqs. (A6) and (A7) and E (1)

� (t ) and E (1)∗
� (t )

are removed from the vector 
x(k, 1, t )). Setting V m
kk′ = 0, we

obtain

Gm(k, k′) = δ(k − k′)M(k) ,

M(k) =
⎛
⎝ξ (k) − iγp 0 2�

0 −ξ (k) − iγp −2�∗
�∗ −� −iγ f

⎞
⎠ (A16)

where

ξ (k) = h̄2k2

m
+ Eg−h̄ω� , �=�̃(0)(V m

k,k′ = 0) = �ehE (0)
� .

(A17)

We assume �eh to be a constant, so the steady state order
parameter is independent of k. Equation (A14) becomes block
decoupled, with the equations for each k being

ih̄
∂

∂t

x(k, 1, t ) = M(k)
x(k, 1, t ) + 
S(k, 1, t ), (A18)


x(k, 1, t ) =

⎛
⎜⎜⎝

p(1)
eh (k, 1, t )

p(1)∗
eh (k,−1, t )

f (1)
e (k, 1, t )

⎞
⎟⎟⎠ ,


S(k, 1, t ) =
⎛
⎝ S(k, 1, t )

−S∗(k,−1, t )
0

⎞
⎠. (A19)

APPENDIX B: PROPERTIES OF THE EIGENVALUES

In this Appendix, we derive some properties of the fluctu-
ation eigenvalue spectrum of the noninteracting electron-hole
model (Sec. III), in which the order parameter � is indepen-
dent of k.

In the noninteracting model, the eigenvalue equa-
tion [Eq. (6)]

(λ̄2 − ξ 2)(λ̄ + iγ̄ ) − 4|�|2λ̄ = 0 (B1)

is a cubic equation with complex coefficients. Defining the
real and imaginary parts of the solution

λ̄ = a + ib , a, b ∈ R, (B2)

we break the eigenvalue equation into its real and imaginary
parts:

a3 − (3b2 + 2γ̄ b + ξ 2 + 4|�|2)a = 0, (B3)

b3 + γ̄ b2 + (ξ 2 + 4|�|2 − 3a2)b + γ̄ (ξ 2 − a2) = 0. (B4)
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From Eq. (B3) we express a in terms of other quantities as

a = 0 or a2 = 3b2 + 2γ̄ b + ξ 2 + 4|�|2. (B5)

Substituting these two expressions into Eq. (B4) gives the
following two sets of equations

b3 + γ̄ b2 + (ξ 2 + 4|�|2)b + γ̄ ξ 2 = 0 ; a = 0 (B6)

b3 + γ̄ b2 +
[
ξ 2

4
+ |�|2 + γ̄ 2

4

]
b + |�|2

2
γ̄ = 0 ;

a2 = 3b2 + 2γ̄ b + ξ 2 + 4|�|2. (B7)

The equations for b in both sets are cubic equations with real
coefficients. Explicit solutions for this class of equations exist
(e.g., Ref. [72]), which we use in the numerical calculations.
Generally, Eqs. (B6) and (B7) together have six solutions.
The constraint that both b (= Imλ̄) and a (= Reλ̄) must be
real numbers picks, out of the six, the three solutions that are
also solutions of Eq. (6). The condition that a is real implies
that the right-hand side of the second equation in Eq. (B7)
must be positive or equal to zero. A cubic equation with
real coefficients has at least one real solution, and the other
two solutions are either real or complex conjugates of each
other [72]. These considerations lead to the following three
groups of allowed solutions: (1) Equation (B6) yields three
real solutions for b, which together with a = 0 give the three
eigenvalues in Eq. (6). Equation (B7) does not contribute any
allowed solution. (2) Equation (B6) has one real-b solution,
and Eq. (B7) has one solution with real b and a2 > 0. The
latter gives the pair of eigenvalues off the imaginary axis. (3)
At some particular values of |�|, ξ , Eq. (B7) has one or more
solutions with real b and a2 = 0. These solutions coincide
with solutions of Eq. (B6).

As functions of a constant (k independent) |�|, ξ , and γ̄ ,
the eigenvalues of Eq. (B1) have the following properties:

Property 1. If γ̄ > 0, the eigenvalues are confined to
Imλ̄ ≡ b ∈ [−γ̄ , 0] on the imaginary axis and Imλ̄ ∈ [− γ̄

2 , 0]
off the imaginary axis.

Proof. The proof goes as follows.
Claim sign(b) = − sign(γ̄ ).
Proof. Equation (B6) can be written as

(b2 + ξ 2 + 4|�|2)b + γ̄ (b2 + ξ 2) = 0, (B8)

which gives

b

γ̄
= − b2 + ξ 2

b2 + ξ 2 + 4|�|2 . (B9)

Since the right-hand side is negative, we have sign(b) =
− sign(γ̄ ).

Equation (B7) can be written as

b

[
b2 + ξ 2

4
+ |�|2 + γ̄ 2

4

]
+ γ̄

[
b2 + |�|2

2

]
= 0 (B10)

and the same argument as above applies. �
Claim If γ̄ > 0 and a = 0, then b � −γ̄ .
Proof. Write Eq. (B6) as

(b2 + ξ 2)(b + γ̄ ) + 4|�|2b = 0. (B11)

If b < −γ̄ , both terms on the right-hand side are negative and
the equation cannot be satisfied. So, b � −γ̄ . �

Claim If γ̄ > 0 and a2 > 0, then b � − γ̄

2 .
Proof. Write Eq. (B7) as

b2(b + γ̄ ) + 1

4
(ξ 2 + γ̄ 2)b +

[
b + γ̄

2

]
|�|2 = 0. (B12)

Suppose b < − γ̄

2 . The third term on the left-hand side is
negative. Consider the sum of the first two terms and remove
the common factor b:

b(b + γ̄ ) + 1

4
(ξ 2 + γ̄ 2). (B13)

As a function of b, the first term is a parabola with a minimum
at b = − γ̄

2 . The corresponding minimum value of the parabola

is min [b(b + γ̄ )] = − γ̄ 2

4 . This gives

b(b + γ̄ ) + 1

4
(ξ 2 + γ̄ 2) � ξ 2

4
� 0. (B14)

Since b is negative by assumption, the sum of the first two
terms in Eq. (B12), which is the above expression multiplied
by b, is less than or equal to 0. So if b < − γ̄

2 , the left-hand side
of Eq. (B12) is negative and the equation cannot be satisfied.
So, the claim is proved. �

The three claims, taken together, prove the statement of the
property. �

Property 2 (Eigenvalues at ξ = 0). λ̄ = 0 is always an
eigenvalue. The other two eigenvalues are purely imaginary
when |�| � γ̄

4 . When |�| >
γ̄

4 , they have nonzero real parts
and their imaginary parts are Imλ̄ = − γ̄

2 .
Proof. When ξ = 0, Eq. (B6) becomes

(b2 + γ̄ b + 4|�|2)b = 0 , a = 0, (B15)

from which it is clear that λ̄ = 0 is a solution for all values of
|�|. The other solutions are

b = − γ̄

2
±

√(
γ̄

2

)2

− 4|�|2. (B16)

These solutions satisfy the real-b constraint when |�| ∈
[0,

γ̄

4 ]. At |�| = 0, the two solutions are b = 0,−γ̄ . As |�|
increases, they converge and coincide at the value of b = − γ̄

2

when |�| = γ̄

4 . For |�| >
γ̄

4 , the allowed solutions other than
λ̄ = 0 are given by Eq. (B7) which reduces at ξ = 0 to

b3 + γ̄ b2 +
[
|�|2 + γ̄ 2

4

]
b + |�|2

2
γ̄ = 0 ;

a2 = 3b2 + 2γ̄ b + 4|�|2. (B17)

It can be verified by direct substitution that

b = − γ̄

2
, a2 = − γ̄ 2

4
+ 4|�|2 (B18)

is a solution of Eq. (B17). Note that the b = − γ̄

2 part of the
solution is valid for all values of |�|. The requirement of a2 �
0 implies that these solutions are allowed only for |�| >

γ̄

4 .�
Property 3. At ξ → ∞, one eigenvalue tends to −iγ̄ and

the other two diverge as ±ξ .
Proof. For eigenvalues on the imaginary axis, as ξ → ∞,

the left-hand side of Eq. (B6) is dominated by the terms
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containing ξ 2 (the other terms being bounded because b ∈
[−γ̄ , 0]). The equation then reduces to

ξ 2(b + γ̄ ) = 0 ⇒ b → −γ̄ . (B19)

For eigenvalues off the imaginary axis, as ξ → ∞, Eq. (B7)
reduces to

ξ 2

4
b = 0 ⇒ b → 0 , a → ±ξ . (B20)

�
Property 4. λ̄ = −i γ̄

3 is a triply degenerate solution at

|�| =
√

2
27 γ̄ and ξ =

√
1

27 γ̄ .
Proof. Let b = b0, a = 0 be a candidate triply degenerate

solution. The cubic equation then has the following form:

(b − b0)3 = b3 − 3b0b2 + 3b2
0b − b3

0 = 0. (B21)

Identifying the coefficients of this equation with those of
Eq. (B6) gives the conditions that b0, |�|, and ξ must satisfy:

−3b0 = γ̄ , (B22)

3b2
0 = ξ 2 + 4|�|2, (B23)

−b3
0 = γ̄ ξ 2. (B24)

The first equation gives b0 = − γ̄

3 , and with this value sub-
stituted into the other two equations, they give the values
of ξ =

√
1

27 γ̄ and |�| =
√

2
27 γ̄ . These values, together with

a = 0, also satisfy Eq. (B7). �
Property 5. When |�| � γ̄√

8
, the minimum of Reλ̄ over

the set of ξ values is at ξ = 0. (The value of Reλ̄ at ξ = 0
equals the gap.)

Proof. We look for the value of |�| where the slope of a2

as a function of ξ 2 changes from negative to positive, i.e.,

∂a2

∂ξ 2

∣∣∣∣
ξ=0

= 0. (B25)

The expression for a2 in Eq. (B7) is

a2 = 3b2 + 2γ̄ b + ξ 2 + 4|�|2. (B26)

In this expression, b is also a function of ξ while γ̄ and |�|
are parameters. The derivative is

∂a2

∂ξ 2
= (6b + 2γ̄ )

∂b

∂ξ 2
+ 1. (B27)

The ξ 2 derivative of b is obtained by taking the ξ 2 derivative
of the cubic equation in Eq. (B7):[

3b2 + 2γ̄ b + 1

4
(ξ 2 + γ̄ 2) + |�|2

]
∂b

∂ξ 2
+ b

4
= 0, (B28)

giving

∂b

∂ξ 2
= −b

4

[
3b2 + 2γ̄ b + 1

4
(ξ 2 + γ̄ 2) + |�|2

]−1

. (B29)

From Eq. (B18), at ξ = 0, b = − γ̄

2 . Substituting these values
into Eq. (B29) gives

∂b

∂ξ 2

∣∣∣∣
ξ=0

= γ̄

8|�|2 . (B30)

With these values, Eq. (B27) becomes

∂a2

∂ξ 2

∣∣∣∣
ξ=0

= 1 − γ̄ 2

8|�|2 . (B31)

Setting ∂a2

∂ξ 2 |ξ=0 = 0 gives

|�|2 = γ̄ 2

8
. (B32)

�
Properties 2, 4, and 5 give critical values of |�| (= γ̄

4 ,√
2
27 γ̄ , and

√
1
8 γ̄ ), where the behavior of the eigenvalue set

changes. Together with numerical results, they produce the
qualitative picture of the eigenvalues’ dependence on |�|
summarized in Sec. III.

APPENDIX C: REMARKS ON UNEQUAL ELECTRON AND
HOLE MASSES

In this Appendix, we briefly discuss the effects of a pos-
sible extension of our theory to the case of different electron
and hole masses. While a general analysis, including numer-
ical simulations for the case with the Coulomb interaction,
is beyond the scope of this paper, the following observations
help shed some light on that case.

Different electron and hole masses will modify the theory
in several ways. First, the actual values of the masses will be
different, (i) me �= mh. That implies that the Fermi functions
governing the thermalization of the distributions are different,
(ii) fF,e(k) �= fF,h(k), which then implies different steady-
state laser solutions, (iii) f (0)

e (k) �= f (0)
h (k), and therefore also

(iv) fe(k) �= fh(k). In addition, the thermalization rates will
become different, (v) γF,e �= γF,h and, therefore, (vi) γ f ,e �=
γ f ,h. We note that the condition of equal or similar masses is
relatively well fulfilled in a number of important materials. It
is especially well fulfilled for MoS2; see Fig. 5 of Ref. [78].
In thin GaAs QWs, the difference is also not very large, with
the electron effective mass being approximately 0.067m0 (m0

begin the electron mass in vacuum), and the heavy hole mass
given on p. 157 of Ref. [79] as mhh ≈ m0/(γ1 + γ2) ≈ 0.11m0

with the Luttinger parameters γ1 = 6.85 and γ1 = 2.1, p. 150
of Ref. [79].

We consider the effects of (i)–(vi) for the case without
Coulomb interactions. The masses enter explicitly only via
the reduced mass, Eq. (A8), and therefore (i) do not contribute
qualitative changes to the fluctuation spectra. Because of (iv),
the perturbation vector contains now two different distribution
functions:


x(k, m, t ) =

⎛
⎜⎜⎜⎜⎜⎝

p(1)
eh (k, m, t )

p(1)∗
eh (k,−m, t )

f (1)
e (k, m, t )

f (1)
h (k, m, t )

⎞
⎟⎟⎟⎟⎟⎠. (C1)

Since �
(1)
HF(k,±1) and �̃(1)(k,±1) are both zero without

Coulomb interaction, the steady-state electron and hole func-
tions p0

eh, f 0
e , f 0

h do not enter the linear response equations,
hence (iii) does not contribute changes to the fluctuation spec-
tra. The fluctuation matrix corresponding to Eq. (C1) is now a

045306-14



GAPLESS FLUCTUATIONS AND EXCEPTIONAL POINTS … PHYSICAL REVIEW B 109, 045306 (2024)

4 x 4 matrix. Its characteristic equation is a quartic equation of
the eigenvalues and can be written as

(λ̃ + iγ+)R(λ̃) + (λ̃2 − ξ̂ 2)γ 2
− = 0, (C2)

with

R(λ̃) = (λ̃2 − ξ̂ 2)(λ̃ + iγ+) − 4λ̃, (C3)

where λ̃ ≡ λ+iγp

|�| , γ± = (γ̃e ± γ̃h)/2, γ̃e ≡ γ f ,e−γp

|�| , and γ̃h ≡
γ f ,h−γp

|�| , where now γ f is different for electrons and holes

(γ f ,e �= γ f ,h), and the scaled transition energy is ξ̂ ≡ ξ

|�| . Be-
ing a quartic equation, it has four solutions in the complex
plane. If we replace λ̃ by −λ̃∗, we get the complex conjugate
of the equation, which shows that if λ̃ is a solution, so is
−λ̃∗. Therefore, the solutions of the quartic equation have
the same symmetry property as the solutions of the cubic
equation in Appendix B. Hence, there are only three possible
distribution patterns: (1) all four solutions on the imaginary
axis, (2) two imaginary solutions and a pair of symmetrically
placed solutions with finite real parts, and (3) two pairs with
finite real parts. In the case of equal relaxation rates, i.e.,
γ− = 0, the left-hand side of the eigenvalue Eq. (C2) reduces
to the factorized product (λ̃ + iγ+)R(λ̃). We label the four
eigenvalues λ̃

(0)
j , j = 0, 1, 2, 3. One of the four, which we

choose to be λ̃
(0)
0 , satisfies the equation (λ̃ + iγ+) = 0, hence

λ̃
(0)
0 = −iγ+. The other three eigenvalues, λ̃

(0)
j , j = 1, 2, 3,

satisfy R(λ̃(0)
j ) = 0, which has been analyzed in Appendix B.

To gain some insight into the effects of unequal relaxation
rates, we analyze the eigenvalues in first-order perturbation
theory. We write λ̃ j ≈ λ̃

(0)
j + λ̃

(1)
j and expand Eq. (C2) to first

order in λ̃
(1)
j and γ 2

−. We obtain, after some algebra,

λ̃
(1)
j = ξ̂ 2 − λ̃

(0)2
j(

λ̃
(0)
j + iγ+

)(
3λ̃

(0)2
j + 2iγ+λ̃

(0)
j − (ξ̂ 2 + 4)

)γ 2
−. (C4)

This equation is not valid exactly at the EP, but it is valid at
parameters outside—including being infinitesimally close—
to EPs. We see that, if the unperturbed eigenvalue λ̃

(0)
j is

purely imaginary, then the first-order correction is also purely
imaginary. This implies that, to first order in γ 2

−, there exists a
gapless region. This can be seen as follows. For a fixed value
of |�|/γ+, at least two eigenvalues have finite real parts as
ξ̂ (k)2, or, correspondingly, k, goes to infinity. All eigenvalues
vary continuously as the continuous variable ξ̂ (k)2 is scanned
at fixed |�|/γ+. If there is range of ξ̂ (k)2 where all eigen-
values are imaginary, then, due to the continuity argument, at
least two will continuously emerge from the imaginary axis
as ξ̂ (k)2 goes to infinity, which means there is no gap. Since
without the perturbation we have a range of ξ̂ (k)2 where all
three eigenvalues are imaginary, and the perturbation keeps
those three eigenvalues ( j = 1, 2, 3) imaginary, and since also
the fourth eigenvalue λ̃

(0)
0 is imaginary, we find that there

exists a gapless regime in the presence of the perturbation
(to first order). Further analysis has shown that the quartic
Eq. (C2) does not have a fourth-order EP (except for un-
physical parameters ξ̂ (k)2 < 0), and that large values of γ−
(comparable to γ+) can lead to a collapse of the gapless
regime. An extended analysis including numerical simulations
for the case of unequal relaxation rates in the presence of
Coulomb interactions is desirable and planned as future re-
search.
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