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Quantum plasmons in double layer systems
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Plasmons are fundamental excitations of metals which can be described in terms of electron dynamics, or
in terms of the electromagnetic fields associated with them. In this work we develop a quantum description of
plasmons in a double layer structure, treating them as confined electromagnetic modes of the structure. The
structure of the resulting bosonic Hamiltonian indicates the presence of virtual plasmons of the individual layers
which appear as quantum fluctuations in the ground state. For momenta smaller than the inverse separation
between layers, these modes are in the ultrastrong coupling regime. Coherence terms in the Hamiltonian indicate
that modes with equal and opposite momenta are entangled. We consider how in principle these entangled modes
might be accessed, by analyzing a situation in which the conductivity of one of the two layers suddenly drops
to zero. The resulting density matrix has a large entanglement entropy at small momenta, and modes at ±q
that are inseparable. More practical routes to releasing and detecting entangled plasmons from this system are
considered.
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I. INTRODUCTION

In metals, Coulomb interactions among carriers yield
self-sustained collective charge density oscillations, which,
when quantized, are called plasmons [1–5]. In three
dimensions, because of the long-range nature of the
interaction, the plasmon spectrum is gapped, and in the
long wavelength limit its energy is given by h̄�, where �

is the classical plasma frequency. Two-dimensional (2D)
realizations of plasmons can also be found at the surface of
a metal [6] or in 2D conducting materials [7–10]. In these
systems the plasmon spectrum is gapless, vanishing as ∼√

q,
where q is the 2D momentum. An interesting distinction
between three- and two-dimensional plasmons is that in the
latter, the electric field associated with the density oscillations
exists outside the material, allowing strong coupling to other
electromagnetic sources and modes. Indeed, in such systems
the collective modes may be described completely in terms
of electromagnetic degrees of freedom, so that the plasmons
may be understood as confined light modes and are known as
surface-plasmon-polaritons [11–14].

Among systems that support 2D plasmons, graphene has
emerged as a particularly remarkable platform. Graphene
is a single layer of carbon atoms arranged in a honey-
comb network; in pristine form it is a semimetal, but it
can easily be made metallic using the electric field ef-
fect [15,16]. It is an interesting material in the context of
plasmons because it is open to the environment, allowing
their direct visualization in near-field microscopy experi-
ments [17–19]. Moreover, graphene may be patterned or gated
to create plasmonic metamaterials [20], and is particularly
attractive for photonics and nanooptoelectronics [17,21,22]
because it supports long propagation lengths [23], and can be
tuned such that the relevant frequencies are in the terahertz
range.

As with light, many interesting and useful physical
phenomena associated with plasmons in graphene can be
understood in a purely classical framework [17–20,24–33].
However, as in optics [34,35], the underlying quantum struc-
ture of the plasmons allows for behaviors that are purely
quantum mechanical in nature. For example, a quantum
treatment of surface plasmons is necessary for modeling
stimulated emission of quantum emitters [36], quantum cor-
relations between plasmons [37–39], or coupling effects
mediated by plasmons [40–42].

In this work we investigate the quantum properties of plas-
mons in a double layer (DL) graphene system, as illustrated
in Fig. 1(a). The layers, labeled T (top) and B (bottom),
are separated by an insulator barrier thick enough to prevent
electron tunneling, but thin enough for the interlayer Coulomb
interaction to be important [43–45]. The qualitative behavior
of collective plasmon modes in such double layer systems
has been well-known for some time [46], in particular that
they support in-phase optical modes and out-of-phase acoustic
modes [see Fig. 1(b)]. We demonstrate that in a quantum de-
scription, the ground state contains a finite number of virtual
plasmons in the T and B layers, as illustrated in Fig. 1(c).
Energy conservation dictates that these virtual excitations can-
not be withdrawn from the system directly [37]; however, in
the presence of time dependence in the Hamiltonian, their
presence can have highly nontrivial consequences. We con-
sider a protocol in which the electron density in one layer is
dropped suddenly to zero. Because of the presence of the vir-
tual plasmons, plasmons that emerge in the remaining charged
layer have strong quantum correlations. In particular, we find
a large entanglement entropy among these plasmons. More-
over, we show that the density matrices for plasmons with
momenta ±q are generically inseparable [47,48] so that cor-
relations between these two modes are intrinsically quantum
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FIG. 1. (a) Scheme of the DL system. (b) Dispersion of the
acoustic, E2, and optical plasmons, E1, of a DL for the parame-
ters indicated in the figure. The plasmons do not overlap with the
electron-hole continuum, shadow region, indicating they have a long
lifetime. (c) Population and intralayer coherence of virtual plasmons
in T or B layers as function of qd . (d) Entropy associated with the
entanglement of plasmons in T and B layers.

in nature, i.e., they cannot be explained within any classical
description.

Our proposal to generate correlated plasmons from vacuum
quantum fluctuations of the double layer system by tem-
poral perturbation of the Hamiltonian has similarities with
studies of time-varying systems in which electromagnetic
vacuum fluctuations can result in the generation of real pho-
tons [49,50]. These dynamical vacuum effects are generically
known as dynamical Casimir effects, and have been studied
extensively for their potential applications as quantum light
sources. For example, there are proposals for the excitation of
quantum radiation and photon generation by temporal modu-
lation of the dielectric constant of a medium [51,52]. Photons
can also be generated from a cavity with an effective time-
dependent mirror [53]. Moreover, in monolayer graphene, the
generation of plasmon pairs from vacuum fluctuations by a
periodic modulation of the substrate permittivity has been
proposed [54,55].

II. PRELIMINARIES: 2D PLASMONS AS CONFINED
ELECTROMAGNETIC MODES

In what follows we model 2D metals as dissipationless
conductors, characterized by an optical conductivity that,
for small momenta and frequencies, takes the form [56–58]
σ (ω; EF )=i D

ω
, where D = e2EF

h̄2π
is the Drude weight and EF is

the Fermi energy. In graphene, EF is related to the density of
carriers, n0, through the relation EF = h̄vD

√
πn0, with vD the

velocity of the graphene Dirac points [8,15,16]. Semiclassi-

cally, in 2D the plasmon frequency, ωq=
√

D
2εd ε0

q (with εd is

the dielectric constant of the surrounding medium), and the
corresponding electric and magnetic fields can be obtained
from Maxwell’s equations, with proper matching of the fields
across the 2D metal sheet, taking into account the optical
conductivity σ (ω; EF ) [11,59].

We proceed to write a quantum Hamiltonian for the
electromagnetic field associated with plasmons, making
some simplifying assumptions. Specifically we assume the
semistatic limit, which is appropriate when the plasmons
wavelength is much smaller than the light wavelength at the
same frequency. In this situation the magnetic field contribu-
tion to the electromagnetic energy is negligible (see the SM).
Our Hamiltonian then becomes [59–64]

Ĥ = ε0εd

2

∫∫
drdzÊ(r, z)Ê(r, z)

+ 1

2

∫∫
drdzDδ(z)Â(r, z)Â(r, z)

=
∑

q

h̄ωq

2
(âqâ†

q + â†
qâq), (1)

where the operator âq annihilates a plasmon with 2D momen-
tum q and frequency ωq. In terms of âq, â†

q the electric field
and vector potential operators associated with plasmons have
the form

Ê(r, z) =
√

h̄ωq

2ε0εd S
eiqru(q, z)âq + H.c.,

Â(r, z) = −i

√
h̄

2ε0εd Sωq
eiqru(q, z)âq + H.c., (2)

where S is the sample area and the vectors u(q, z) are given
by

u(q, z) = e−q|z|
√

q

2

(
i
q
q

− z

|z| ẑ
)

. (3)

In Eq. (1) the first term is the energy stored in the electric
field energy and the second term, which is nonzero only in the
conducting layer, represents the kinetic energy of the charge
carriers.

III. PLASMONS IN DOUBLE LAYER SYSTEM

Consider two metallic sheets, T and B, located at z = d
2

and z = − d
2 , respectively. The separation d is assumed large

enough that electron tunneling between the layers can be
neglected. The layers are connected to metallic contacts that
define their Fermi energies, as illustrated in Fig. 1(a). We
assume both layers have the same density of carriers and so
the same plasmon dispersion ωq when isolated.

In the double layer system, the total electric field is the
sum of fields generated by the plasmons in the T and B layers.
The total electric field operator becomes Ê(r, z) = ÊT (r, z) +
ÊB(r, z), with

ÊT (B)(r, z) =
∑

q

√
h̄ωq

2ε0εd S
eiqru

(
q, z ∓ d

2

)
âT (B)

q + H.c.,

(4)
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where âT (B)
q annihilates a plasmon with momentum q in the

T(B) layer. Coupling between plasmons in the T and B lay-
ers appears in the cross term of the electric field energy,
V̂ = ε0ε

∫
drdz ÊT (r, z)ÊB(r, z). By performing the integral

of this contribution, the DL Hamiltonian becomes

Ĥ = ĤT + ĤB + V̂ (5)

with

ĤT (B) =
∑

q

h̄ωq

(
âT (B)

q
† âT (B)

q + 1

2

)

and

V̂ =
∑

q

h̄ωq

2
e−qd

(
âT

q
†âB

q + âB
q

†âT
q − âT

q âB
−q − âB†

q âT †
−q

)
.

Equation (5) represents a system of four quantum harmonic
oscillators, modes of momentum ±q for each of the top
and bottom layers, which are all admixed by the interlayer
coupling V̂ . The normal mode frequencies of this coupled
system of oscillators can be obtained before quantizing, with
the result ω1(2)(q) = ωq

√
1 ∓ e−qd . These excitations are the

acoustic and optical plasmons of the DL system [46,65].
The present formulation allows one to go beyond a classical
treatment to analyze the quantum properties of the coupled
plasmon system. The first two terms of the coupling V̂ are the
resonant part of the interaction, and describe the creation of a
plasmon in one layer and the annihilation of a plasmon in the
other, while conserving momentum. The last two terms corre-
spond to processes which are nonconserving in the number
of plasmons: they simultaneously create or annihilate pairs
of plasmons with opposite wave vectors. In quantum optics,
such contributions to the Hamiltonian are known as counter-
rotating (CR) terms [34–36,66–68]. The coupling coefficient
�q ≡ ω(q)

2 e−qd is the q-dependent Rabi frequency of the DL
plasmon system.

In problems involving coupling of matter and light, CR
terms are often neglected. This rotating wave approximation
(RWA) works well when the coefficients of the CR terms
are sufficiently small [34–36,66–68]. (Note that this form of
the RWA involves dropping a time-independent term from
the Hamiltonian because we are working in the Schrodinger
picture. In the Heisenberg picture one may work with equa-
tions of motion, in which case the RWA is implemented by
dropping rapidly oscillating terms). For the present problem
the RWA yields plasmon frequencies ω

1(2)
RWA = ω(q)(1 ∓ e−qd

2 ),
which is a good approximation to the normal mode frequen-
cies when qd � 1, but fails significantly when qd � 1. The
former can be understood as representing the eigenfrequen-
cies of the DL system to first order in perturbation theory in
e−qd . At this level of approximation, self-consistency in the
electric fields associated with the plasmons is not fully imple-
mented. The importance of the CR terms at long wavelengths
is an indication that this system is in the ultrastrong coupling
limit, defined as situations in which the Rabi frequency is
not small compared to the uncoupled oscillator frequencies
[36,67], in this case ω(q).

For long wavelength plasmons, it is necessary to diag-
onalize the Hamiltonian including the CR terms. Because
the Hamiltonian is bilinear in the field operators, it can

be diagonalized through a Bogoliubov-Hopfield transforma-
tion [37,69]. This involves a symplectic transformation of
the T and B creation and annihilation operators, which
maintains the bosonic commutation relations of the opera-
tors while bringing the Hamiltonian, Eq. (5), into diagonal
form (see the SM [59]). Explicitly, with a transformation of
the form

b̂1(2)(q) = 1√
2

( cosh θ1(2)(â
T (q) ∓ âB(q))

+ sinh θ1(2)(â
T †(−q) ∓ aB†(−q))), (6)

where e−2θi = ωi(q)/ωq, the transformed Hamiltonian be-
comes

Ĥ =
∑

q,i=1,2

h̄ωi(q)

(
b̂†

i (q)b̂i(q) + 1

2

)
. (7)

The frequencies ωi(q) are identical to the normal mode fre-
quencies obtained in a classical calculation [59].

IV. VIRTUAL PLASMONS AND ENTANGLEMENT

For finite layer separation the ground state of the sys-
tem is not the vacuum |0〉 of the uncoupled DL system, for
which âB(q))|0〉=âT (q))|0〉=0, but rather the vacuum |G〉
of coupled modes, which satisfies b̂1(q))|G〉=b̂2(q))|G〉=0.
Because the bi(q) annihilation operators are linear com-
binations of annihilation and creation operators aT,B(q)
and aT,B †(q) associated with individual layers, the DL
vacuum contains a nonvanishing number of plasmons in
the T and B layers with inter and intralayer coherence.
Explicitly, inverting Eq. (6) one finds the expectation
values

〈âT (B)†(q)âT (B)(q)〉 = sinh2 θ2+sinh2 θ1
2 ,

〈âT †(q)âB(q)〉 = sinh2 θ2−sinh2 θ1
2 ,

〈âT (q)âT (−q)〉 = sinh 2θ1+sinh 2θ2
4 . (8)

In Fig. 1(c) we plot 〈âT †(q)âT (q)〉 and 〈âT (q)âT (−q)〉 as
functions of qd . These plasmons in the vacuum state are
virtual and cannot be extracted from the isolated DL sys-
tem. Note that these expectation values are nonvanishing
because of the presence of CR terms in the Hamiltonian,
Eq. (5). Since the Rabi frequency decreases exponen-
tially with qd , the average number and the coherence of
single-layer plasmons decreases rapidly with qd . Results
in Fig. 1 correspond to EF =50 meV; qualitatively simi-
lar results are obtained for other Fermi energies provided
they are in the range of energies for which the electronic
properties of graphene are well described by the Dirac
equation.

Because the system is translationally invariant, |G〉 is a
state with well-defined, vanishing total in-plane momentum.
The presence of intralayer coherence between plasmons
of opposite wave vector is then an indication that they are
entangled: they must be introduced into the ground state in
equal and opposite pairs, as can be seen explicitly in the
CR terms of Ĥ . We quantify the degree of entanglement as
follows. The Hamiltonian [Eq. (5)] is expanded in the number
state basis [59,70,71] |nT

q , nB
q , nT

−q, nB
−q〉, where nν

q is the
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number of plasmons with momentum q in layer ν, and then
diagonalized to obtain the coefficients 〈nT

q , nB
q , nT

−q, nB
−q|G〉.

These are the probability amplitudes which encode different
numbers of single layer plasmons in the ground state. We
then compute the reduced density matrix for the subsystem of
plasmons in layer T with momentum q,

ρ (q)
(
nT

q ; n′T
q

)
=

∑
nB

q ,nB−q,nT−q

〈
nT

q , nB
q , nT

−q, nB
−q

∣∣ρ̂∣∣n′T
q , nB

q , nT
−q, nB

−q

〉
, (9)

where ρ̂ is the density operator for the full system. The
von Neumann entropy associated with ρ (q) quantifies the
entanglement between plasmons of wave vector q in the top
layer and all other plasmon modes (in both the top and bottom
layer) [72],

ST,q = −
∑

i

|λi|2 ln |λi|2, (10)

where the sum is over the eigenvalues λi of the reduced
density matrix, ρ

(q)
nT

q ,n′T
q

. In Fig. 1(d) we plot the entropy

ST,q as a function of the parameter qd . This entropy is
nonvanishing because the virtual excitations in the vacuum
of the DL involves quantum entanglement among plasmons
in the four subsystems (±q for T and B layers.) Again,
note that inclusion of the CR terms is crucial to obtaining a
nonvanishing entanglement entropy.

V. RELEASING ENTANGLED PLASMONS

The populations of plasmons in the individual layers,
which are present in the ground state of the system, are virtual.
In order to access them, the quantum Hamiltonian must be
perturbed or modulating in some way [37]. One protocol by
which this could be done in principle involves a nonadiabatic
time-dependent perturbation. In particular, a sudden drop in
potential, for example in the bottom layer, can deplete its
charge, leaving only the top layer as a remaining host for
plasmons. Since in our approach this involves a temporal
change in boundary conditions for the electromagnetic field,
this is a realization of the dynamical Casimir effect [49,50].
If this switch-off time is shorter than the inverse of a typical
Rabi frequency, to a first approximation this represents a sud-
den change in the Hamiltonian. The loss of mobile charge in
the bottom layer eliminates the electric field that it previously
generated, so that in Eq. (5), Ĥ → ĤT . Although the plas-
mon degrees of freedom from the bottom layer are formally
present in the Hilbert space, they no longer contribute to the
dynamics of the system. The initial state of the system after
the sudden change is an excited state of ĤT (in the Hilbert
space of both layers), and plasmons which were previously
virtual become detectable. Importantly, the intralayer coher-
ence between top layer plasmons with momenta q and −q,
〈âT (q)âT (−q)〉, indicates they will be entangled. Thus, this
geometry in principle offers a source of counter-propagating,
entangled plasmons.

In principle, we would like to quantify the degree of en-
tanglement between plasmon modes with equal and opposite
momenta. However, the state of these modes by themselves is
characterized not by a wave function but rather by a density

matrix, arrived at by tracing out all the other modes from
the pure state density matrix. In this situation one evaluates
entanglementlike correlations by examining the form of the
density matrix. To do this we define the two-mode density
matrix,

ρ (2)
(
nT

q , nT
−q; n′T

q , n′T
−q

)
=

∑
nB

q ,nB−q

〈
nT

q , nB
q , nB

−q, nT
−q

∣∣ρ̂∣∣n′T
q , nB

q , nB
−q, n′T

−q

〉
. (11)

We would like to know if ρ (2) can be written in the form

ρ (2)
(
nT

q , nT
−q; n′T

q , n′T
−q

)
=

∑
i

piρ
(q)
i

(
nT

q ; n′T
q

) ⊗ ρ
(−q)
i

(
nT

−q; n′T
−q

)
, (12)

where 0 < pi < 1 are real numbers representing probabili-
ties for different states, and ρ

(q)
i are single q mode density

matrices for the top layer. If Eq. (12) holds, then ρ (2)

represents a mixture of unentangled states. By contrast, if
ρ (2) cannot be written in this form, the two modes are
“inseparable” [48], the generalization of entanglement to a
setting where some quantum degrees of freedom have been
traced out.

A test of whether Eq. (12) holds was developed in Ref.
[47] and is implemented as follows. Writing âT

±q ≡ 1√
2
(x̂± +

i p̂±), with [x̂s, p̂s′ ] = iδs,s′ , s, s′ = ±, one can form EPR-like
quadrature operators

û = |a|x̂+ + 1

a
x̂−, (13)

v̂ = |a| p̂+ − 1

a
p̂−, (14)

where a is a nonvanishing real number. With the definition
〈Ô〉 = Tr[ρ̂ (2)Ô], one computes the fluctuations 〈(�u)2〉 =
〈(û − 〈û〉)2〉 and 〈(�v)2〉 = 〈(v̂ − 〈v̂〉)2〉. If

f (a) ≡ (〈(�u)2〉 + 〈(�v)2〉)/(a2 + 1/a2) > 1 (15)

for any choice of a, the two modes are inseparable.
Figure 2 illustrates the behavior of the fluctuation factor

f (a) for different choices of a as a function of qd . One can
see clear regions where f (a) > 1 for qd < 1, particularly for
a ∼ −1 and a ∼ 2. This demonstrates that plasmon modes ±q
with q � 1/d will necessarily have entanglement properties.
It should be noted that the criterion in Eq. (15) is a sufficient
condition for inseparability, but not a necessary one [47].
Thus, this equation yields a minimal bound on inseparable
modes, but modes outside this region may also by inseparable.
Nevertheless, the analysis shows unequivocally that some of
the plasmon modes generated by the procedure leading to ρ (2)

will be inseparable.
The density of emitted plasmons at a given energy im-

mediately after the bottom layer depletion depends on the
doping of the DL system and on the layer separation. Fig-
ure 3(a) illustrates this for different values of d . For a Fermi
energy of 50 meV, dielectric constant εd=5, and d=10 nm,
the initial population has a maximum near 10 meV and the
density of plasmons is of order 105 cm−2. This nonmonotonic
behavior is present because the density of plasmon states
vanishes at zero energy, whereas the population of a given
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FIG. 2. Fluctuation factor f (a) as function of a and qd (see text).
Contour lines indicate level sets of f (a). If f (a) > 1 for any a, ±q
modes at the corresponding qd are inseparable.

mode, nq ≡ 〈a†
T (q)aT (q)〉, vanishes at high energy. Because

the effective Rabi coupling depends on qd , as the layer sepa-
ration increases, the maximum moves to smaller wave vectors
and so lower energies. The coupling between layers decreases
exponentially with d so that the density of virtual plasmons
also decreases with increasing d . Interestingly, the density of
virtual plasmons in each layer integrated over all momentum
depends only on d , and is independent of the doping of the
layers: 1

S

∑
q nq ≈ 0.0036

d2 .

FIG. 3. (a), (b) Number of plasmon per square centimeter as a
function of the energy for different values of layer separation d . Time
dependence of the number of plasmons and intralayer coherence in
the top layer, after the bottom layer is suddenly disconnected. Inset
in (b) shows the parameters used in the calculation.

After the bottom layer depletion at time t = 0, the time
evolution of the density matrix can be modeled using a
Markovian master equation, where dissipation in the top
layer is introduced perturbatively by means of a Lindblad
operator [73],

∂t ρ̂ = − i

h̄
[ĤT , ρ̂] + γ

2
LâT

q
+ γ

2
LâT−q

, (16)

where the Lindblad operator associated with a bosonic
operator c has the form Lc ≡ 2cρ̂c† − c†cρ̂ − ρ̂c†c, where
ĤT is the Hamiltonian of the isolated top layer and γ is the
(phenomenological) plasmon decay lifetime that, in typical
graphene samples, is in the range of meV [17,18,74].

The initial (t = 0) form for ρ needed to solve Eq. (16)
is the density matrix of the coupled DL plasmon system in
the state |G〉, traced over plasmon states in the bottom layer.
Figure 3(b) plots the number of plasmons in the top layer as
a function of time as well as the coherence between oppo-
sitely propagating plasmons, as obtained from the solution to
Eq. (16). The number of plasmons decays exponentially with
rate γ , as does the coherence, the latter oscillating with the
top layer plasmon frequency ωq.

VI. SUMMARY AND DISCUSSION

In this paper we have developed the theory of plasmons in
a double layer by modeling them as confined electromagnetic
modes of the structure, an approach that is particularly ap-
propriate when the electromagnetic coupling between layers
is strong. The formalism reproduces the expected dispersion
of the plasmon modes, and moreover allows an exploration
of their quantum properties. An interesting perspective the
approach reveals is the presence of virtual plasmons asso-
ciated with each layer due to quantum fluctuations. These
plasmons are generally entangled, but cannot be released
from the ground state without some parametric change in
the Hamiltonian. We consider doing this with a form of the
dynamical Casimir effect [50,75–78], a sudden depletion of
one layer, and find that pairs of plasmons with equal and oppo-
site momenta indeed escape. Immediately after the depletion,
plasmons in the ±q modes are inseparable for qd � 1, and so
will support purely quantum correlations in their populations.
Moreover, the modes maintain coherence over a period of time
determined by environmental dissipation.

Fully depleting an electron layer on a time scale of the
order of picoseconds, for most two-dimensional materials, is
difficult. Thus, the protocol described above is, for currently
available materials, challenging to carry out [79]. Is there a
more practical way to release inseparable plasmons from this
system? One possibility would be to modulate the electron
density of one of the two layers at some frequency, and
search for plasmons released at half that frequency [39]; this
represents yet another realization of the dynamical Casimir
effect. Beyond this, it is interesting to consider how such
released plasmons could be detected along with their spec-
tral distribution. One possibility is to search for far infrared
narrow-band emission which results from their radiative de-
cay. This technique has been used in early work on traditional
semiconductor heterostructures [80–82] and more recently in
graphene [83]. Moreover, the inseparability of ±q plasmon
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modes this system can release in a dynamical Casimir effect
protocol should be detectable via correlations in fluctuations
of the electric field on either side of the system, which in prin-
ciple could be detected via near-field microscopy techniques
[17–19]. Studies of these possibilities will be addressed in
future work.
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