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Theory of excitonic polarons: From models to first-principles calculations
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Excitons are neutral excitations that are composed of electrons and holes bound together by their attractive
Coulomb interaction. The electron and the hole forming the exciton also interact with the underlying atomic
lattice, and this interaction can lead to a trapping potential that favors exciton localization. The quasiparticle thus
formed by the exciton and the surrounding lattice distortion is called excitonic polaron. Excitonic polarons have
long been thought to exist in a variety of materials, and are often invoked to explain the Stokes shift between the
optical absorption edge and the photoluminescence peak. However, quantitative ab initio calculations of these
effects are exceedingly rare. In this manuscript, we present a theory of excitonic polarons that is amenable to
first-principles calculations. We first apply this theory to model Hamiltonians for Wannier excitons experiencing
Fröhlich or Holstein electron-phonon couplings. We find that, in the case of Fröhlich interactions, excitonic
polarons only form when there is a significant difference between electron and hole effective masses. Then,
we apply this theory to calculating excitonic polarons in lithium fluoride ab initio. The key advantage of the
present approach is that it does not require supercells, therefore it can be used to study a variety of materials
hosting either small or large excitonic polarons. This work constitutes the first step toward a complete ab initio
many-body theory of excitonic polarons in real materials.
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I. INTRODUCTION

Excitons are composite quasiparticles formed when an
electron and a hole in a crystal bind together under the effect
of their attractive Coulomb interaction [1]. These quasiparti-
cles constitute one of the cornerstones of condensed matter
physics, as they encode a wealth of information on quantum
many-body effects and emergent phenomena in solids [2]. In-
vestigations of exciton photophysics range from the coherent
manipulation of exotic quantum phases in moiré quasicrystals
[3] to Floquet engineering of time crystals [4].

In some materials, the spatial fluctuations of the electric
charge density of the exciton can polarize the surrounding
crystal lattice, and this distortion can promote in turn the spa-
tial localization of the exciton (Fig. 1). In analogy to charged
polarons, where an electron or hole will be self-localized via
induced lattice distortions [5,6], the new type of quasiparticle
formed by the feedback loop between exciton and crystal lat-
tice is called excitonic polaron [7–9]. Intuitively, an excitonic
polaron can be understood as as an exciton accompanied by a
phonon cloud. In materials where the interaction between ex-
citons and phonons is very strong, the same mechanism leads
to the emergence of self-trapped excitons, which can be un-
derstood as intrinsic defectlike excited states of an otherwise
perfect lattice [10–12]. Self-trapped excitons in solids exhibit
intriguing optical properties, such as distinctive vibronic line-
shapes that are typically observed in molecular chromophores
and light-harvesting complexes [10,12–14]. We note that the
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names “excitonic polarons” and “self-trapped excitons” refer
to the same physical mechanism of polaronic stabilization
of the exciton. The difference between these two concepts
resides in the strength of the electron-phonon coupling, the
resulting phonon-induced localization of the exciton wave
function, and the magnitude of the hopping barrier for exciton
migration. Therefore, in this paper, we use the two naming
conventions interchangeably.

Unlike polarons, which can be described to a good approx-
imation within a single-particle picture [15–18], excitons are
inherently of many-body character, thus making the theoreti-
cal description of excitonic polarons much more challenging
than for polarons.

In early work on excitonic polarons, Iadonisi and Bas-
sani considered the Wannier exciton model and Fröhlich
electron-phonon interaction [9]. They wrote the Hamiltonian
of the excitonic polaron by including the kinetic energies of
electrons and holes, their mutual Coulomb attraction, their
respective interaction with phonons, and the energy of bare
phonons. Within this model, they discussed solutions based on
a trial wave function with parameters optimized variationally.
This work contributed to shaping the key conceptual aspects
of the physics of excitonic polarons; however, since the dis-
persions of the exciton bands were not taken into account, this
formalism is biased to find localized solutions.

In the area of ab initio calculations, excitonic polarons
have been investigated using the �SCF (self-consistent field)
method to obtain excited-state forces [19,20]. The limitation
of this approach is that it misses electron-hole correlations in
the excitonic state [1,21]. Coupled-cluster calculations have
also been reported, namely for the self-trapped excitons in
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FIG. 1. Schematic illustration of an excitonic polaron. The exci-
ton is a neutral excitation, but spatial fluctuations of its net charge
density interact electrostatically with the ionic lattice. In some ma-
terials, these interactions are sufficiently strong to cause a lattice
distortion, which in turn stabilizes the exciton, leading to the for-
mation of an excitonic polaron.

quartz [22], but the high computational cost limits the size
of the clusters that can be investigated, and this leads to
numerical uncertainty due to convergence issues. The first
attempt to compute self-trapped excitons within a many-body
Green’s function framework was reported by Ismail-Beigi and
Louie [12], who succeeded to compute forces in the excited
state by differentiating the Bethe-Salpeter equation (BSE)
Hamiltonian with respect to the atomic displacements. This
method was demonstrated for the self-trapped triplet exciton
in quartz. Depite being conceptually elegant and numerically
accurate, this approach requires performing BSE calculations
in large supercells for all but the smallest excitonic polarons,
making the computational cost prohibitive in many systems of
interest.

In previous work, some of us demonstrated that it is possi-
ble to compute small and large polarons using the Kohn-Sham
band structures, phonon dispersions, and electron-phonon ma-
trix elements, and without using supercells [6,15,16]. The key
concept of that approach is that the wave function and atomic
displacements of the polaron can be expressed as linear su-
perpositions of Kohn-Sham states and normal modes obtained
from unit-cell calculations. In this manuscript, we expand on
this idea by tackling the calculation of excitonic polarons
and self-trapped excitons using a combination of the BSE
approach and linear-response calculations of exciton-phonon
couplings [23,24]. Our aim is to provide a formalism and
computational method to compute excitonic polarons using
solely information calculated in the crystal unit cell. A short
summary of this methodology is reported in the companion
manuscript [25].

The manuscript is organized as follows. In Sec. II, we
derive the main formalism to compute excitonic polarons, and
establish the connection with BSE calculations and with the
calculation of electron and hole polarons. We also present
two alternative formulations of the theory, which are most
useful in the context of model Hamiltonians and ab initio
calculations, respectively. In Sec. III, we apply the present
theory to model Hamiltonians in order to analyze the quali-
tative aspects of the solutions in simple cases. In particular,
we discuss the Wannier exciton in the presence of Fröhlich

or Holstein electron-phonon couplings. Section IV presents
first-principles calculations of excitonic polarons for LiF as a
first application of this methodology. Here, we also discuss the
gauge invariance of the theory, implementation details, and
convergence tests. In Sec. V, we draw our conclusions and
propose possible avenues for future work.

Throughout this manuscript, “electron-phonon coupling”
will generally denote the interaction between a phonon and
an electronic state, either occupied or empty. However, in
those cases where we need to differentiate between valence
and conduction bands, we will use “hole-phonon coupling” or
“electron-phonon coupling,” respectively.

II. AB INITIO THEORY OF EXCITONIC POLARONS

We begin our derivation by expressing the total energy of a
distorted lattice in a neutral excited state as the sum of its total
energy in the electronic ground state and the BSE excitation
energy, following Ref. [26]:

E [�(re, rh ), {�τκαp}] = EDFT[{�τκαp}]

+
∫

sc
�∗(re, rh )HBSE(re, rh; r′

e, r′
h )

× �(r′
e, r′

h )dr. (1)

In this expression, we use the subscript “DFT” to indicate that
the total energy of the electronic ground state is computed
at the level density functional theory (DFT). The formalism
remains unchanged if this total energy is computed using more
accurate techniques. In Eq. (1), HBSE is the BSE Hamiltonian
for the distorted structure [1,27]; �(re, rh ) is the exciton wave
function, with re and rh denoting the electron and hole coor-
dinates, respectively. The integral extends over the Born-von
Kármán (BvK) supercell, and the integration variable dr is
a short-hand notation for dredrhdr′

edr′
h. For small atomic

displacements, EDFT can be expressed in terms of the matrix
of interatomic force constants Cκαp,κ ′α′ p′ ,

EDFT[{�τκαp}] = E0 + 1

2

∑
καp

κ ′α′ p′

Cκαp,κ ′α′ p′�τκαp�τκ ′α′ p′ , (2)

where E0 denotes the ground-state energy of the undistorted
structure, and �τκαp is the displacement of the atom κ in
the unit cell p along the Cartesian direction α, with respect
to the undistorted structure. The second term in this equa-
tion is the elastic energy associated with the lattice distortion.
As in Ref. [6], the energy is truncated to the second order
in the displacements; despite the neglect of anharmonicity,
which is included in previous works based on supercells
[17,18], this approximation proved successful in calculations
of both small and large polarons, comparing well with direct
hybrid-functional calculations [6,15–18]. Note that, in this
work, we describe nuclei within the adiabatic and classical
approximation, as in DFT calculations. Strictly speaking, this
choice makes our formalism best suited to described the
strong coupling limit, as in the Pekar polaron model [17].
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Combining Eqs. (1) and (2), we can write the total energy as

E [�(re, rh ), {�τκαp}] = E0 +
∫

sc
�∗(re, rh )HBSE(re, rh; r′

e, r′
h )�(r′

e, r′
h )dr + 1

2

∑
καp

κ ′α′ p′

Cκαp,κ ′α′ p′�τκαp�τκ ′α′ p′ . (3)

To obtain excitonic polarons, we require that the exciton wave function and the atomic displacements minimize the total energy
in Eq. (3). We use the method of Lagrange multipliers, and set to zero the functional derivatives of E [�(re, rh ), {�τκαp}] with
respect to �(re, rh ) and {�τκαp}, subject to the normalization constraint

∫
sc |�(re, rh )|2dredrh = 1. By expanding HBSE up to

linear order in �τκαp and after some straightfoward algebra, we arrive at the following coupled nonlinear eigenvalue problem:

∫
sc

H0
BSE(re, rh; r′

e, r′
h ) �(r′

e, r′
h ) dr′

edr′
h +

∑
καp

∫
sc

∂Ĥ0
BSE(re, rh; r′

e, r′
h )

∂τκαp
�(r′

e, r′
h ) dr′

edr′
h �τκαp = ε �(re, rh ), (4)

�τκαp = −
∑
κ ′α′ p′

C−1
καp,κ ′α′ p′ ×

∫
sc

�∗(re, rh )
∂Ĥ0

BSE(re, rh; r′
e, r′

h )

∂τκ ′α′ p′
�(r′

e, r′
h ) dr, (5)

where H0
BSE is the BSE Hamiltonian for the undistorted system, and the eigenvalue ε is the Lagrange multiplier.

Alternatively, the set of equations Eqs. (4) and (5) can formally be combined in a single nonlinear problem for the exciton
wave function: ∫

sc
dr′

edr′
h

[
Ĥ0

BSE(re, rh; r′
e, r′

h ) −
∫

sc
dr′�∗(r′′

e , r′′
h )K ({r})�(r′′′

e , r′′′
h )

]
�(r′

e, r′
h) = ε�(re, rh), (6)

with the kernel K ({r}) being defined as

K ({r}) =
∑
καp

κ ′α′ p′

∂Ĥ0
BSE(re, rh; r′

e, r′
h )

∂τκαp
C−1

καp,κ ′α′ p′
∂Ĥ0

BSE(r′′
e , r′′

h ; r′′′
e , r′′′

h )

∂τκ ′α′ p′
, (7)

and {r} stands for (re, rh; r′
e, r′

h; r′′
e , r′′

h ; r′′′
e , r′′′

h ).

A. Transition basis approach

By solving Eq. (6), in principle we can obtain the wave function �(re, rh) of the excitonic polaron. However, in this
form, a large BvK supercell is still needed in order to describe this quasiparticle. To circumvent this difficulty, we follow the
standard approach employed for solving the BSE equations: we expand �(re, rh) in a transition basis within the Tamm-Dancoff
approximation [1,21]:

�(re, rh) = 1√
Np

∑
vc

Ãvcψ
0
c (re)ψ0∗

v (rh). (8)

In this expression, ψ0
n denotes Kohn-Sham eigenstates of the undistorted structure, and Np is the number of primitive cells in

BvK supercell. The subscripts v and c denote valence and conduction states, respectively. For notation brevity, we temporarily
suppress the dependence of all quantities on the crystal momentum; we will restore the momentum in the final equations. Using
Eq. (8), we rewrite Eq. (6) as

∑
v′c′

[
〈vc|Ĥ0

BSE|v′c′〉 −
∑
v′′c′′
v′′′c′′′

∑
καp

κ ′α′ p′

Ã∗
v′′c′′ Ãv′′′c′′′C−1

καp,κ ′α′ p′ 〈vc|∂Ĥ0
BSE

∂τκαp
|v′c′〉〈v′′c′′| ∂Ĥ0

BSE

∂τκ ′α′ p′
|v′′′c′′′〉

]
Ãv′c′ = εÃvc. (9)

In the above expression, brakets have the following meaning:

〈vc|Ô|v′c′〉 =
∫

sc
drψ0∗

c (re)ψ0
v (rh)Ô(re, rh; r′

e, r′
h )ψ0

c′ (r′
e)ψ0∗

v′ (r′
h), (10)

where Ô is an operator that depends on the electron and hole coordinates. The first term of Eq. (9) corresponds to the matrix
elemens of the BSE Hamiltonian in the undistrorted structure, and can be computed using any package that implements the BSE
method [28,29]. To evaluate the second term in the square brackets, we rewrite the matrix elements in the sum follows:

〈vc|∂Ĥ0
BSE

∂τκαp
|v′c′〉 = − 〈(∂τv)c|Ĥ0

BSE|v′c′〉 − 〈v(∂τ c)|Ĥ0
BSE|v′c′〉 − 〈vc|Ĥ0

BSE|(∂τv
′)c′〉 − 〈vc|Ĥ0

BSE|v′(∂τ c′)〉 + ∂τ 〈vc|Ĥ0
BSE|v′c′〉,

(11)
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with ∂τ being understood as ∂/∂τκαp . The first four terms on
the right-hand side share the same structure, therefore, we
focus on the first term as a representative case. To recast
this term in a manageable form, we express the variation of
the Kohn-Sham wave functions using first-order perturbation
theory [30], and we use the definition of the BSE Hamiltonian
〈vc|Ĥ0

BSE |v′c′〉 = (εc − εv )δcc′δvv′ + 〈vc|K̂0
BSE|v′c′〉, where εn

denote quasiparticle energies of the undistorted structure and
K̂0

BSE is the BSE kernel [27]. We find

〈(∂τv)c|Ĥ0
BSE|v′c′〉 = 〈v′|∂τV̂SCF|v〉

εv − ε′
v

(εc − ε′
v )δcc′

+ 〈(∂τv)c|K̂0
BSE|v′c′〉. (12)

Now we consider the fifth term on the right-hand side of
Eq. (11),

∂τ 〈vc|Ĥ0
BSE|v′c′〉 = ∂τ (εc − εv )δcc′δvv′ + ∂τ 〈vc|K̂0

BSE|v′c′〉
(13)

and we combine Eqs. (12) and (13). By neglecting the
change of the BSE kernel upon lattice distortion as in
Refs. [23,24,26], we obtain

〈vc|∂Ĥ0
BSE

∂τκαp
|v′c′〉 = −〈v′|∂V̂SCF

∂τκαp
|v〉δcc′ + 〈c′|∂V̂SCF

∂τκαp
|c〉∗δvv′ .

(14)

The final set of equations is obtained by restoring the depen-
dence of all quantities on the crystal momentum:

�(re, rh) = 1√
Np

∑
vckQ

ÃQ
vckψ

0
ck+Q(re)ψ0∗

vk (rh), (15)

where k is the crystal momentum of the electron or hole, and
Q is the crystal momentum of the exciton. Since we require
the normalization condition

∫
sc |ψnk(r)|2dr = 1, we have the

sum rule N−1
p

∑
vckQ |ÃQ

vck|2 = 1. In Eq. (15) and in the fol-
lowing, summations over crystal momenta run over uniform
Brillouin zone grids with Np points. We employ the following
standard relations for the matrix of interatomic force constants
and the electron-phonon coupling matrix elements [15]:

(C−1)καp,κ ′α′ p′ = 1

N

∑
qν

eκα,ν (q)e∗
κ ′α′,ν (q)√

MκMκ ′ω2
qν

eiq·(Rp−Rp′ ), (16)

gmnν (k, q) =
∑
καp

√
h̄

2Mκωqν

eκα,ν (q)eiq·Rp

× 〈
ψ0

mk+q

∣∣∂V̂SCF

∂τκαp

∣∣ψ0
nk

〉
, (17)

where Mκ is the mass of atom κ; eκα,ν (q) is the polarization
vector of the phonon with momentum q, branch ν, and fre-
quency ωqν ; Rp is the lattice vector of the p-th unit cell in
the BvK supercell [30]. Using Eqs. (14)–(17), Eq. (9) can be

rewritten as follows:

∑
v′c′k′

Q′

ÃQ′
v′c′k′

[(
H0

BSE

)
vkck+Q,v′k′c′k′+Q′δQ,Q′

− 2

Np

∑
qν

B̃ν G̃qν

vck,v′c′k′ (Q, Q′, q)

]
= εÃQ

vck, (18)

B̃qν = 1

Nph̄ωqν

∑
vck
Q

ÃQ∗
vck

[ ∑
c′

ÃQ+q
vc′k gcc′ν (k + Q + q,−q)

−
∑
v′

ÃQ+q
v′ck−qgv′vν (k,−q)

]
, (19)

G̃ν
vck,v′c′k′ (Q, Q′, q) = gcc′ν (k′ + Q′, q)δq,Q−Q′δvv′δk,k′

− gv′vν (k, q)δq,k′−kδcc′δq,Q−Q′ , (20)

Equation (18) defines an eigenvalue problem for the co-
efficients ÃQ

vck which make up the excitonic polaron wave
function. The matrix to be diagonalized depends on the atomic
displacements via the coefficients B̃qν given by Eq. (19), and
the ÃQ

vck and B̃qν coefficients are coupled by the coupling
matrix elements G̃ν

vck,v′c′k′ (Q, Q′, q) given in Eq. (20). The
ingredients required to solve Eqs. (18)–(20) can be obtained
from existing packages that implement the BSE method and
packages that calculate electron-phonon couplings.

Equations (18)–(20) are most convenient to investigate
excitonic polarons within model Hamiltonians, as we show
in Sec. III C for the Wannier exciton model with Fröhlich
electron-phonon interactions. However, these equations are
not optimal for ab initio calculations, because the dimension
of the coefficients ÃQ

vck is Nk × NQ × Nv × Nc, where Nk is
the number of electron and phonon crystal momenta, NQ is
the number of exciton crystal momenta, Nv is the number of
valence bands, and Nc is the number of conduction bands. This
scaling can be prohibitive even for relatively coarse Brillouin
zone grids. The origin of this problematic scaling is that
Eqs. (18)–(20) are designed to construct excitonic polarons
starting from Kohn-Sham electron and hole wave functions,
therefore they accomplish two goals simultaneously: (i) to
describe exciton formation out of noninteracting electron-hole
pairs and (ii) to describe phonon-induced localization of these
excitons. An alternative and computationally more convenient
strategy would be to first build excitonic states, and then to
incorporate their interactions with the atomic lattice. This al-
ternative strategy, which we call the “exciton basis approach,”
is described in the next section.

B. Exciton basis approach

The heavy computational cost related to Eqs. (18)–(20)
can be effectively avoided by performing a basis set transfor-
mation, from the transition basis of Eq. (8) to the following
exciton basis:

�sQ(re, rh) =
∑
vck

asQ
vckψck+Q(re)ψ∗

vk(rh), (21)
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with the inverse transform:

ψck+Q(re)ψ∗
vk(rh) =

∑
s

asQ∗
vck �sQ(re, rh). (22)

In these expressions, �sQ(re, rh) denotes exciton states of the
undistorted structure, asQ

vck are the BSE eigenvectors for the
undistorted structure, s is the index of the exciton bands, and
Q is the exciton momentum. The coefficients asQ

vck fulfill the
normalization condition

∑
vck |asQ

vck|2 = 1. In writing Eq. (21),
we made use of the Tamn-Dancoff approximation, so that
for each exciton momentum Q, the number of exciton states
equals the number of electron-hole pairs in the BvK supercell
[1,21].

Using the transformation given by Eq. (21), the excitonic
polaron state can be expressed as a linear superposition of
excitons in the undistorted structure:

�(re, rh) =
∑
sQ

AsQ�sQ(re, rh). (23)

Accordingly, the coefficients AsQ can be understood as the
contributions of each excitonic state (of the undistorted struc-
ture) to the excitonic polaron. In this representation, exciton
self-localization and breaking of translational symmetry are
possible because we allow for coherent superpositions of de-
localized exciton states with finite momenta.

To see how the basis transformation in Eq. (21) reduces
the computational cost, we define AsQ = ∑

vck ÃQ
vckasQ∗

vck , and
substitute Eq. (22) into Eqs. (18)–(20). After some algebraic
manipulations, we find∑

s′Q′

[
E0

sQδss′δQQ′ − 2

Np

∑
ν

BQ−Q′νGss′ν (Q′, Q − Q′)
]

× As′Q′ = εAsQ, (24)

BQν = 1

Nph̄ωQν

∑
ss′
Q′

A∗
s′Q′AsQ′+QG∗

ss′ν (Q′, Q), (25)

where E0
sQ are the BSE eigenvalues of the undistorted struc-

ture, and Gss′ν (Q′, Q) denote exciton-phonon coupling matrix
elements as in Refs. [23,24]:

Gss′ν (Q, q) =
∑
vck

asQ+q∗
vck

[ ∑
c′

gcc′ν (k + Q, q)as′Q
vc′k

−
∑
v′

gv′vν (k, q)as′Q
v′ck+q

]
. (26)

From Eq. (26), we see that the three grids for crystal mo-
mentum k, phonon wavevector q, and exciton center-of-mass
momentum Q should be commensurate. Moreover, the k grid
should be equal to or denser than the Q grid, while the Q grid
should be equal to or denser than the q grid. For simplicity,
in this work we use the same grid for k, q, and Q sampling
in all first principles calculations. For later reference, we call
the quantity in the square bracket of Eq. (24) as the “excitonic
polaron Hamiltonian.”

As compared with Eqs. (18)–(20), Eqs. (24)–(26) can
greatly reduce the cost of computing excitonic polarons. In
fact, the dimension of the solution vectors of the eigenvalue

problem in Eq. (24) is Ns × NQ, where Ns is the number
of included exciton bands, which can be much smaller than
Nc × Nv × Nk if only a small number of low-energy exciton
bands contribute most significantly to the excitonic polarons.
In practical calculations, convergence tests with respect to
the number of exciton bands must always be performed. This
size is thus orders of magnitude smaller than in the transition
basis (Nk × NQ × Nv × Nc, cf. Sec. II A), making the problem
tractable in ab initio calculations. Also in this case, the ingre-
dients required to solve Eqs. (24)–(26) are the BSE solutions
for the undistorted structure and the electron-phonon matrix
elements. Both sets of quantities are evaluated using unit-cell
calculations, and no supercells are required.

Equations (24)–(26) also allow us to make the formal
connection with the previously developed ab initio po-
laron equations [15]. In fact, if we formally replace the
BSE Hamiltonian by the Kohn-Sham Hamiltonian, and the
exciton-phonon coupling matrix elements Gss′ν (Q, q) by
the electron-phonon coupling matrix elements gmnν (k, q),
Eqs. (24)–(26) reduce precisely to the polaron equations of
Ref. [15]. Finally, we would like to emphasize again that
our approach does not need supercells in real space. This is
because by using a uniform grid of, for example, N × N × N
wavevectors in the Brillouin zone, we will have Kohn-Sham
states, vibrational eigenmodes, and excitons that are defined
on an equivalent Born-von-Kármán supercell of size N × N ×
N primitive cells. Since all our calculations (except for the
final visualization) are carried out in reciprocal space, there is
no need for explicit supercells.

C. Total energy and displacement pattern

The present formalism allows us to compute the total en-
ergy of the excitonic polaron Exp. To do so, we first substitute
Eq. (5) into Eq. (3), and then we write the total energy in the
transition basis with the help of Eqs. (16) and (17):

Exp = 1

Np

∑
vck

v′c′k′

∑
Q,Q′

ÃQ∗
vckÃQ′

v′c′k′

×
[(

H0
BSE

)
vkck+Q,v′k′c′k′+Q′δQ,Q′

− 1

Np

∑
qν

B̃qν G̃ν
vck,v′c′k′ (Q, Q′, q)

]
. (27)

The corresponding expression in the exciton basis is

Exp = 1

Np

∑
ss′

QQ′

A∗
sQAs′Q′

[
E0

sQδss′δQQ′

− 1

Np

∑
ν

BQ−Q′νGss′ν (Q′, Q − Q′)

]

= ε + 1

Np

∑
qν

|Bqν |2h̄ωqν . (28)

Furthermore, by combing Eqs. (5), (15)–(17), and (22),
we can write the atomic displacements accompanying the
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FIG. 2. Schematic illustration of the Wannier model for excitons.
(a) In the Wannier model, there is one parabolic valence band and one
parabolic conduction band, separated by the quasiparticle band gap
Eg. Both bands are described by the effective mass approximation,
and there is attractive Coulomb interaction between electrons and
holes screened by the electronic dielectric constant ε∞. (b) The
Wannier model for excitons is analytically solvable. Upon changing
the electron and hole coordinates into the center-of-mass reference
frame, the components of the eigenstates in the relative coordinate
are hydrogenic wave functions, whose energies are indicated by grey
horizontal lines. The components of the eigenstates in the center-
of-mass coordinate are plane waves, whose energies are indicated by
the black parabola (for the 1s exciton). Accordingly, the free excitons
are fully delocalized in the center-of-mass coordinate, and localized
in the relative coordinate.

excitonic polaron as

�τκαp = − 2

Np

∑
qν

Bqν

(
h̄

2Mκωqν

)1/2

eκα,ν (q)eiq·Rp . (29)

Based on this expression, the coefficients Bqν can be inter-
preted as the contributions of each normal vibrational mode
to the excitonic polaron. This expression is also found in the
case of the electron and hole polarons [15].

III. MODEL SYSTEMS

To gain insight into the nature of the solutions of Eqs. (18)–
(20) and (24)–(26), we start by considering the Wannier
exciton model [31,32] in the presence of Fröhlich electron-
phonon interactions [33] or Holstein electron-phonon interac-
tions [34]. This analysis will allow us to identify qualitative
trends and to rationalize the ab initio calculations presented in
Sec. IV.

A. Wannier exciton model

In the Wannier model for excitons [32], the electronic
structure is composed of one valence band and one conduc-
tion band, both of which are described in the effective mass
approximation, as shown in Fig. 2(a). The electron and hole
interact via an effective kernel that is given by the Coulomb in-
teraction screened by the macroscopic dielectric constant ε∞.
With these choices, the effective Hamiltonian of the Wannier

exciton reads [35,36](
H0

BSE

)
vkck+Q,vk′ck′+Q

=
(

h̄2|k + Q|2
2me

+ h̄2|k|2
2mh

+ Eg

)
δkk′

− e2

ε0ε∞
1

Np�

1

|k′ − k|2 . (30)

In this expression, � is the volume of the primitive cell, e is
the electron charge, ε0 is the permittivity of vacuum, me and
mh are the electron and hole effective masses, respectively,
and Eg is the fundamental gap of the system.

Equation (30) admits exact solutions [35]. To see this,
we transform the exciton eigenvector aQ

k into the Wannier
representation:

�(Re, Rh) = 1

Np

∑
kQ

ei(k+Q)·Re e−ik·Rh aQ
k , (31)

having omitted the subscripts vc and s because we only have
one valence band and one conduction band. With this transfor-
mation, the exciton wave function �(re, rh) can be expressed
as a linear combination of electron and hole Wannier func-
tions, wcRe (re) and w∗

vRh
(rh):

�(re, rh) = 1√
Np

∑
kQ

aQ
k ψck+Q(re)ψ∗

vk(rh)

= 1√
Np

∑
ReRh

�(Re, Rh)wcRe (re)w∗
vRh

(rh). (32)

We can now introduce the center-of-mass coordinate R and
the relative coordinate r:

R = meRe + mhRh

me + mh
, r = Re − Rh, (33)

as well as the total mass M and the reduced mass μ:

M = me + mh,
1

μ
= 1

me
+ 1

mh
, (34)

so as to recast the eigenvalue problem of the Wannier exciton
into an hydrogenic Schrödinger equation [35] [Fig. 2(b)]. The
ground-state solution of this equation is the hydrogenic 1s
wave function:

�1s(Re, Rh) =
√

1

πa3
0

eiQ·Re−|r|/a0 , (35)

E1s = Eg + h̄2|Q|2
2M

− μ

2

(
e2

4πε∞ε0h̄

)2

, (36)

where a0 = 4πε∞h̄2/μe2 is the exciton Bohr radius. Going
back to the Bloch representation, we obtain the BSE coeffi-
cients for this wave function:

aQ
k = 8

√
πa3

0

�

1(
a2

0|k + mhQ/M|2 + 1
)2 . (37)

B. Fröhlich and Holstein electron-phonon couplings

The Fröhlich interaction is a widely used analytical model
to describe electrons coupled to long-wavelength longitudinal
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optical modes in polar materials [33]. The Fröhlich electron-
phonon matrix element is given by [15,17]

g(q) = i

|q|

√
e2

4πε0

4π

�

h̄ωLO

2

1

κ
, (38)

where κ = (1/ε∞ − 1/ε0)−1 [37], ε0 is the static dielectric
constant including the ionic contribution, and ωLO is the fre-
quency of the longitudinal optical mode. This model considers
only intra-band couplings, and the coupling strength depends
only on the phonon wave vector q [38,39]. Thus, in the case
of the Wannier exciton model, the electron-phonon and hole-
phonon coupling have exactly the same form as given by
Eq. (38).

The Fröhlich model is designed to describe long-range po-
lar interactions, and does not capture short-range interactions
[38]. To qualitatively analyze short-range electron-phonon
couplings, we consider the Holstein model. In this model,
the matrix elements are taken to be constant throughout the
Brillouin zone [34]:

gc(q) = 1√
�

gc, gv (q) = 1√
�

gv, (39)

with gc and gv being two materials-dependent parameters. In
the following, we study how the Fröhlich interaction and the
Holstein interaction as defined by Eqs. (38) and (39) influence
the formation of excitonic polarons.

C. Total energy in the transition basis approach

The transition basis approach outlines in Sec. II A is par-
ticularly useful in the case of the Fröhlich interaction to gain
insight into the mechanisms that lead to the formation of the
excitonic polaron. To see this, we evaluate the total energy of
the excitonic polaron in by combining Eq. (15) with Eq. (31):

Exp = − 1

Np

∑
Re,Rh

�∗(Re, Rh)
h̄2∇2

Re

2me
�(Re, Rh)

− e2

8πε0

1

κ

∑
Re,R′

e

ne(Re)ne(R′
e)

|Re − R′
e|

− 1

Np

∑
Re,Rh

�∗(Re, Rh)
h̄2∇2

Rh

2mh
�(Re, Rh)

− e2

8πε0

1

κ

∑
Rh,R′

h

nh(Rh)nh(R′
h)∣∣Rh − R′

h

∣∣
− 1

Np

∑
Re,Rh

e2

4πε0ε∞
|�(Re, Rh)|2
|Re − Rh|

+ 2
e2

8πε0

1

κ

[ ∑
Re,Rh

nh(Rh)ne(Re)

|Rh − Re|

]
+ Eg, (40)

having defined the electron and hole densities as

ne(Re) = 1

Np

∑
Rh

|�(Re, Rh)|2, (41)

nh(Rh) = 1

Np

∑
Re

|�(Re, Rh)|2. (42)

In Eq. (40), terms are arranged in a such a way that direct
comparison with the Landau-Pekar model of polarons can be
made [15,40,41]. The first line and the second line describe
the energetics of an electron polaron, and the third line and the
fourth line describe the energetics of a hole polaron. The fifth
line, which contains purely electronic screening, describes
the Coulomb attraction between the electron and hole, which
binds the electron and hole polarons together. The last line,
which contains the ionic contribution to the screening, de-
scribes the weakening of the electron and hole interactions
with the lattice resulting from charge compensation in the
exciton state. Thus the formation of excitonic polaron can be
thought of as a two-step process, in which the first step is the
formation of independent electron polaron and hole polaron,
and the second step involves the binding of these polarons by
their mutual Coulomb attraction, accompanied by the weak-
ening of the lattice distortion from the partial cancellation of
the electron and hole charge densities.

An alternative way to interpret Eq. (40) is obtained by
combining together all terms proportional to 1/κ:

Exp = − 1

Np

∑
Re,Rh

�∗(Re, Rh)

[
h̄2∇2

Re

2me
+ h̄2∇2

Rh

2mh

]
�(Re, Rh)

− 1

Np

∑
Re,Rh

e2

4πε0ε∞
|�(Re, Rh)|2
|Re − Rh|

− e2

8πε0

1

κ

∑
R,R′

�n(R)�n(R′)
|R − R′| + Eg, (43)

where �n(R) = ne(R) − nh(R) is the net charge density of
the exciton. Note that this charge density can be positive or
negative at different regions, leading to partial cancellation in
the last term of Eq. (43) and a weakening of the polaronic
stabilization mechanism. This indicates that it might be harder
to form excitonic polarons than charged polarons. In this form,
the first line and the second line describe the standard Wannier
exciton energy, in the absence electron-phonon interactions.
The third line describes the stabilization energy provided by
the interaction of the net charge density of the exciton with
the ionic lattice, as in the Landau-Pekar model of polarons.
We note that in both Eqs. (40) and (43), the total energy
does not depend on the phonon frequency ωLO in the Fröhlich
electron-phonon coupling [Eq. (38)]. This is because the ωLO

is canceled out by the prefactor in BQν [Eq. (20)]. The absence
of the phonon frequency in the energy is a consequence of the
adiabatic approximation, and is similar to what is found in
the strong-coupling solution of the Fröhlich polaron problem
[5,15].

Overall, Eqs. (40) and (43) show that we can think of ex-
citonic polarons in the Wannier-Fröhlich model in one of two
ways: (i) a particle formed from the binding of electron and
hole Pekar polarons; (ii) a particle formed from the interaction
of a Wannier exciton with the ionic lattice.

D. Total energy in the exciton basis approach

1. Fröhlich electron-phonon interactions

While Eqs. (40) and (43) are useful to conceptualize
the formation of excitonic polarons in the Wannier-Fröhlich

045202-7



ZHENBANG DAI et al. PHYSICAL REVIEW B 109, 045202 (2024)

FIG. 3. Fröhlich and Holstein exciton-phonon couplings for
Wannier excitons. For Fröhlich type interactions (purple line), the
exciton-phonon matrix element vanishes as q → 0. This trend is
in contrast to the Fröhlich electron-phonon interaction, which di-
verges in the same limit. In the case of the Holstein exciton-phonon
interaction (green line), the matrix element shows little dispersion
throughout the Brillouin zone, and remains finite in the limit q → 0.
The parameters used for this plot are summarized in Table I.

model, they are not a good starting point to find an exact
solution to the problem. In fact, unlike in the Landau-Pekar
model, where a hydrogenic variational ansatz yields quantita-
tively accurate solutions for the ground state [15], identifying
a useful variational ansatz for �(Re, Rh) to be used in Eq. (40)
is challenging.

To overcome this difficulty, we move to the exciton basis
representation of Sec. II B and include a single 1s exciton band
in Eq. (23). For the case of Fröhlich interactions, we substitute
Eqs. (37) and (38) into Eq. (26), to find the Fröhlich exciton-
phonon coupling matrix element:

GF(Q, q) = g(q)

[
1(

a2
0b2|q|2/4 + 1

)2 − 1(
a2

0a2|q|2/4 + 1
)2

]
,

(44)

where g(q) is the Fröhlich electron-phonon coupling
matrix element from Eq. (38), a = me/(me + mh), and
b = mh/(me + mh).

From Eq. (44) and Fig. 3 one can see that, unlike the
standard Fröhlich electron-phonon interaction which diverges
as q → 0, the Fröhlich exciton-phonon interaction tends to
vanish in the long wavelength limit.

In order to evaluate the total energy according to Eqs. (25)
and (28), we need an ansatz for the coefficients AsQ of the ex-
citonic polaron. We consider the following hydrogenic ansatz:

AQ = 8

√
πr3

p

�

1(
r2

p|Q|2 + 1
)2 . (45)

With this choice, a large rp indicates that the excitonic po-
laron is mostly formed by excitons near the zone center and
vice versa. In the extreme case rp → ∞, the exciton polaron
is completely delocalized and reduces to a �-point Wannier
exciton.

TABLE I. Parameters used to solve the excitonic polaron equa-
tions for the Wannier exciton model with Fröhlich or Holstein
electron-phonon couplings. The effective masses are given in units
of the bare electron mass m0. The unit cell volume � is in Å3. All
other quantities are in meV.

me mh ε∞ ε0 � gc/
√

� gv/
√

� h̄ωLO

0.88 4.4 2.04 10.62 27 50 200 77

Using Eq. (45), we find the following analytical expression
for the total energy of the Wannier-Fröhlich excitonic polaron:

Exp = Eel + EF
ph, (46)

where

Eel = h̄2

2(me + mh)r2
p

, (47)

EF
ph = −1

4

1

π2

e2

ε0κ

a4
0(a − b)2π

16(aa0 + rp)7(ba0 + rp)7

10∑
i=1

ti. (48)

The explicit expressions for the terms ti in the last equation are
provided in Appendix A. These terms only depend on the
coefficients a, b, and on the variational parameter rp. As
expected, the kinetic energy contribution is positive for all
values of rp, and tends to favor delocalization; conversely, the
phonon contribution is negative and favors localization. Using
Eqs. (47) and (48), we can find the radius rp that minimizes
the total energy numerically.

If we choose parameters that are typical for lithium flu-
oride, as summarized in Table I [15], which correspond to
the ratio mh = 5me, we find that the localization energy Eph

is too small to overcome the delocalization energy Eel. As a
result, the total energy remains positive for all values of rp,
and reaches its minimum for the fully delocalized solution
[solid line in Fig. 4(a)]. In this case, there is no excitonic
polaron.

Since EF
ph in Eq. (48) is controlled by me, mh, and κ , in

Fig. 4(a), we also explore what happens when we artificially
increase the hole effective mass to mh = 15me (dashed line).
In this case, we find a local minimum in the total energy land-
scape indicating the formation of an excitonic polaron. This
observation indicates that, in the case of Fröhlich interactions,
there exists a critical condition that me, mh, and κ must fulfill
for excitonic polarons to form. Intuitively, this is understood
on the grounds that the driving force for localization is the
electrostatic interaction between the net exciton charge and
the ionic lattice [cf. Eqs. (40) and (43)], therefore localization
requires a large difference in effective masses, or a large ionic
contribution to the dielectric screening, or both.

We note that a difference in electron and hole masses
as large as that considered in Fig. 4(a) is unrealistic for
most materials. However, we expect that in the presence of
multiple longitudinal optical phonons and multiple bands,
the contributions from these different channels should add
up to enable the formation of excitonic polarons even when
the difference between electron and hole masses is not as
pronounced.
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FIG. 4. Formation energy of the excitonic polaron relative to the total energy of the free exciton, for various model systems. (a) Wannier
exciton with Fröhlich electron-phonon interactions. When mh = 5me, the minimum energy solution corresponds to a fully delocalized exciton
(solid line). When the hole mass is much larger (mh = 15me), the minimum energy corresponds to a localized solution (dashed line). This
observation indicates that a large difference in effective masses between electrons and holes favors the formation of the excitonic polaron.
(b) Wannier exciton with both Fröhlich electron-phonon and Holstein electron-phonon interactions. With the help of short-range Holstein-type
interactions, localized solutions emerge when there is a significant difference in electron-phonon coupling and hole-phonon coupling (in this
example, 50 meV and 200 meV, respectively). (c) Wannier exciton with artificially enhanced Fröhlich exciton-phonon interaction. In this
example, the electron-phonon coupling matrix element gcc′ν (k + Q, q) in Eq. (26) is manually set to zero. This observation provides us with a
strategy to initialize the iterative minimization of the ab initio excitonic polaron equations.

2. Holstein electron-phonon interactions

In the case of the Holstein electron-phonon interaction
[Eq. (39)], the exciton-phonon matrix elements take the
following form:

GH(Q, q) = 1√
�

[
gc(

a2
0b2|q|2/4 + 1

)2 − gv(
a2

0a2|q|2/4 + 1
)2

]
.

(49)

A plot of these matrix elements for parameters corresponding
to LiF is shown in Fig. 3.

By using the same hydrogenic wave function ansatz as
in Eq. (45), we obatain the phonon contribution to the total
energy of the excitonic polaron as

EH
ph = − 1

2h̄ωLO

1

π2

∫ ∞

0
dQ

Q2(
r2

pQ2/4 + 1
)4

×
[

gc(
a2

0b2Q2/4 + 1
)2 − gv(

a2
0a2Q2/4 + 1

)2

]2

. (50)

Evaluating this integral is cumbersome but possible, we pro-
vide the explicit expression in Appendix B. As in the case of
Fröhlich interactions, it is possible to determine numerically
the radius rp that minimized the total energy for a give choice
of the parameters me, mh, gv , gc, and ωLO.

Using the same effective masses as for LiF in the previ-
ous section, we have found that typical values of coupling
constants, such as gc/

√
� = 50 meV and gv/

√
� = 200 meV

do not lead to the formation of excitonic polarons. However,
as we show in Fig. 4(b), in the presence of both Fröhlich
and Holstein interactions, the total energy landscape exhibits
a local minimum, signaling the formation of excitonic po-
larons. This finding indicates that, for materials where both
the long-range and short-range electron-phonon interactions
play a role, the formation of excitonic polarons is possible

under realistic parameters for the electron-phonon cou-
plings matrix elements, band effective masses, and dielectric
constants.

E. Implications for first-principles calculations

Close inspection of Figs. 4(a) and 4(b) reveals that, when
an excitonic polaron solution exists, there is also a barrier
between this localized solution and the fully delocalized
exciton solution. Such a barrier may pose a challenge to
first-principles calculations, because if the initial guess for
the self-consistent calculation is far away from the localized
solution, then the minimization procedure is likely to fall back
to the fully delocalized solution. Thus devising an effective
strategy to identify potential localized solutions is crucial
when performing first-principles calculations.

To address this challenge, we go back to the definition of
the exciton-phonon coupling matrix element Eq. (26). There,
we see that first two terms on the right-hand-side appear with
opposite signs, hence they tend to cancel each other. This
partial cancellation reflects the fact that it is the net charge of
the exciton that generates forces on the ions. This cancellation
also echoes the difficulty of finding localized solutions in the
Fröhlich model, as discussed in Sec. III D 1.

Based on the above observation, it should be easier to find
localized solutions of Eqs. (24)–(26) if we artificially set to
zero the first term in Eq. (26). Figure 4(c) shows that, indeed,
with this modification of the matrix elements, the potential
energy landscape exhibits a single minimum at the localized
solution in the case of the Wannier-Fröhlich model. While
this alteration of the matrix elements has no physical meaning
per se, it offers a simple and useful strategy to initialize the
self-consistent solution of Eqs. (24) in ab initio calculations.
In practice, we can solve Eqs. (24) in two steps: (i) first, we
obtain an artificially localized solution by setting electron-
phonon interaction or hole-phonon interaction to zero; (ii)
second, we use this artificially localized solution as a seed for
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a second run with the correct matrix elements including both
electron-phonon and hole-phonon interactions. In Sec. IV, we
show how this two-step approach allows us to find excitonic
polaron solutions in first-principles calculations of real mate-
rials.

IV. FIRST-PRINCIPLES CALCULATIONS

To implement the methodology described in Sec. II, we
choose to proceed with Eqs. (24)–(26) since they show a more
favorable scaling with the number of bands and grid points
in the Brillouin zone. In this section, we first discuss the
gauge invariance of our formalism and the hermicity of the
effective excitonic polaron Hamiltonian. Second, we briefly
touch upon calculations of finite-momentum excitons. Third,
we discuss our results for lithium fluoride (LiF). An additional
application of this methodology is presented in the companion
manuscript [25], for the vacancy-ordered double perovskite
Cs2ZrBr6.

A. Gauge invariance and hermiticity

The present formalism carries gauge freedoms in sev-
eral points, namely the Kohn-Sham wave functions, the
phonon eigenvectors, and the BSE eigenvectors, which are all
obtained by matrix diagonalization. In the absence of degener-
acy, all these quantities are defined modulo a complex phase;
in the presence of degeneracy, any unitary transformation
within the degenerate subspace is admissible. As a physical
observable, the total energy of the excitonic polaron and its
associated eigenvalue must be invariant with respect to these
freedoms. Thus we need to make sure that our formalism is
indeed gauge-invariant.

We first analyze the case of a system without any degener-
acy. We consider a change of phase of the Kohn-Sham wave
functions: ψnk(r) → eiφn (k)ψnk. With this change, the BSE
eigenvectors asQ

vck acquire a corresponding complex phase:

asQ
vck → eiφv (k)e−iφc (k+Q)asQ

vck. (51)

Similarly, the electron-phonon matrix elements also acquire a
complex phase:

gmnν (k, q) → e−iφm (k+q)eiφn (k)gmnν (k, q). (52)

These phases cancel out when the BSE eigenvectors and
the electron-phonon matrix elements are used in Eq. (26),
therefore the exciton-phonon coupling matrix elements are
independent of the phase of Kohn-Sham states.

A similar reasoning applies to the vibrational eigen-
modes. Upon introducing a complex phase via eκα,ν (q) →
eiφν (q)eκα,ν (q), the electron-phonon matrix elements and
therefore the exciton-phonon matrix elements acquire a cor-
responding phase:

gmnν (k, q) → eiφν (q)gmnν (k, q),

Gss′ν (Q, q) → eiφν (q)Gss′ν (Q, q). (53)

At the same time, the coefficients BQν in Eq. (25) also acquire
a phase through the exciton-phonon couplings G∗

ss′ν (Q, q):

BQν → e−iφν (Q)BQν . (54)

Thus the phase factor φν (q) cancels out in Eq. (24), making
the present formalism independent of the phases of vibrational
eigenmodes.

In the case of the BSE eigenvectors, the change of phase
asQ

vck → eiφs (Q)asQ
vck leads to the following modification of the

exciton-phonon matrix elements:

Gss′ν (Q, q) → e−iφs (Q+q)eiφs′ (Q)Gss′ν (Q, q). (55)

As a result, the coefficients BQν remain unchanged:

BQν → 1

Nph̄ωQν

∑
ss′Q′

eiφs′ (Q′ )e−iφs (Q′+Q)A∗
s′Q′AsQ′+Q

× eiφs (Q+Q′ )e−iφs′ (Q′ )G∗
ss′ν (Q′, Q)

= BQν, (56)

and from Eq. (24) we see that the eigenvector of the trans-
formed excitonic polaron Hamiltonian becomes e−iφs (Q)AsQ:

∑
s′Q′

[
E0

sQδss′δQQ′ − 2

Np

∑
ν

BQ−Q′νGss′ν (Q′, Q − Q′)
]

× As′Q′e−iφs (Q) = εAsQe−iφs (Q). (57)

Clearly this change of phase of the solution coefficients does
not alter the eigenvalue and the total energy of the excitonic
polaron.

We now analyze how the formalism is affected by unitary
transformations within degenerate subspaces. We notice that,
in Eq. (26), the indices of electron bands are always repeated
twice. That is, whenever we have the band index n in the ket
|nk〉, we also have a bra 〈nk| in the same expression, and
these indices are summed over. The summation over these
indices yields the resolution of identity within the degenerate
subspace,

∑
j |n jk〉〈n jk| = În, which is gauge invariant. The

same reasoning can be carried out for degeneracies in the
phonon eigenvalues and in the BSE eigenvalues. The result
is that the eigenvalue and the total energy of the excitonic po-
laron are gauge-invariant under unitary transformations within
degenerate subspaces of electrons, phonons, and excitons.

It remains to show that the excitonic polaron Hamiltonian
is Hermitian. To this end, we swap the exciton band indices
and exciton momenta:

Hs′Q′,sQ = E0
s′Qδs′sδQ′Q − 2

Np

∑
ν

BQ′−QνGs′sν (Q, Q′ − Q).

(58)

From the definition of exciton-phonon coupling matrix ele-
ment in Eq. (26), we have

Gs′sν (Q, Q′ − Q)

=
∑
vk

∑
cc′

as′Q′∗
vck asQ

vc′kgcc′ν (k + Q, Q′ − Q)

−
∑
ck

∑
vv′

as′Q′∗
vck asQ

v′ck+Q′−Qgv′vν (k, Q′ − Q). (59)

If we exchange the summation indices c and c′, as well as the
indices v and v′, define k′ = k + Q′ − Q, and change k′ into
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k at the end, we obtain

Gs′sν (Q, Q′ − Q)

=
∑
vck

asQ
vck

[ ∑
c′

gcc′ν (k + Q′, Q − Q′)as′Q′
vc′k

−
∑
v′

gv′vν (k, Q − Q′)as′Q′
v′ck+Q−Q′

]∗
eiφν (Q−Q′ )

= G∗
ss′ν (Q′, Q − Q′)eiφν (Q−Q′ ), (60)

where φν (Q − Q′) is the relative phase between an eigen-
mode and its time-reversal pair, that is eκα,ν (−q) =
[eiφν (q)eκα,ν (q)]∗. This phase factor depends on the phonon
branch ν and phonon wavevector, but it cancels out when
taking the product BQ′−QνGs′sν (Q, Q′ − Q). In fact, if we carry
out the same steps as in Eqs. (59) and (60) for the coefficients
BQ′−Qν , we find

BQ′−QνGs′sν (Q, Q′ − Q) = [BQ−Q′νGss′ν (Q′, Q − Q′)]∗.

(61)

In combination with Eq. (58), this identity shows that the ex-
citonic polaron Hamiltonian is Hermitian: Hs′Q′,sQ = H∗

sQ,s′Q′ .
We emphasize that, in the above proof, we do not re-

quire the relation eκα,ν (−q) = e∗
κα,ν (q), which is generally

not satisfied in density functional perturbation theory (DFPT)
because the calculations for q and −q are performed indepen-
dently [42].

B. Bethe-Salpeter equations with finite exciton momentum

The solution of Eqs. (24)–(26) requires the knowledge of
exciton states with finite momenta [Eq. (21)]. These eigen-
states are obtained by solving the BSE by including matrix
elements with finite momentum transfer:∫

sc
drψ∗

ck+Q(re)ψvk(rh)K0
BSE(re, rh; r′

e, r′
h )ψc′k′+Q(r′

e)

× ψv′k′ (r′
h). (62)

Finite-momentum BSE calculations have become possible
during the past decade [28,43,44]. For example, calculations
of finite-momentum excitons for 2D materials such as MoS2,
graphane, and BN have been reported [44,45]. Since each
wave vector Q is computed independently, the computational
cost scales linearly with the density of the uniform Q grid, or
equivalently with the size of the BvK supercell.

From Eq. (26), it clear that the k, q, and Q grids need
to be commensurate with each other. Since it is harder to
converge BSE calculations as compared to electronic and
phonon calculations, it is advantageous to first converge the
BSE calculations with respect to the Brillouin zone k grid, and
then to choose the size of the q grid and of the Q grid based
on the expected size of the excitonic polarons of interest.

For the analysis of gauge invariance carried out in
Sec. IV A to hold, in practical calculations it is critical to
ensure that the same set of electronic wave functions be
employed in the evaluation of the BSE kernel and of the
electron-phonon matrix elements. Were this not the case, the
phase relations used in Sec. IV A to prove gauge invariance

would not be valid, and calculations results would be incorrect
and unpredictable.

We also note that, in the implementation of Eqs. (24)–(26),
it is important to pay attention to the conventions adopted
by different ab initio software packages. For example, in the
BERKELEYGW code, the transition basis is defined as [28]

�̃sQ(re, rh) =
∑
vck

ãsQ
vckψ

∗
vk+Q(rh)ψck(re). (63)

On comparing with Eq. (21), we see that �̃sQ(re, rh) ac-
tually represents an exciton state with momentum −Q:
�̃sQ(re, rh) = �s−Q(re, rh). Thus, when implementing the
present formalism in conjunction with the BERKELEYGW
code, it is necessary to convert the exciton eigenvectors ac-
cording to the following relation:

asQ
vck = ãs−Q

vck+Q. (64)

C. Results: lithium fluoride

In this section, we demonstrate the use of the present for-
malism in ab initio calculations of excitonic polarons in LiF.
LiF is a simple cubic insulator that crystallizes in the rock-
salt structure, and exhibits strong Fröhlich electron-phonon
couplings. LiF compound hosts small hole polarons and large
electron polarons [15], and has been proposed to also host
excitonic polarons [46]. Previous work has shown that a rela-
tively coarse k grid is sufficient to converge BSE calculations
of excitons in LiF [21], making it an ideal candidate for testing
our formalism and studying the convergence behavior.

1. Computational details

To obtain the optimized structure, Kohn-Sham states
and energies, and phonon eigenmodes and frequencies, we
perform DFT and DFPT calculations using the QUANTUM

ESPRESSO package [47,48]. We employ the PBE generalized-
gradient approximation to the exchange and correlation
functional [49], norm-conserving pseudopotentials [50,51],
and a planewaves kinetic energy cutoff of 100 Ry. The conver-
gence threshold for self-consistent calculations is 10−12 Ry,
and for DFPT the convergence threshold is 10−14(Ry)2. We
use EPW [52,53] and WANNIER90 [54] to compute electron-
phonon coupling matrix elements and polarons [6], and
BERKELEYGW to perform GW/BSE calculations with finite
exciton momentum [1,28,55]. We set the kinetic energy cutoff
for the dielectric matrix to 10 Ry, and include 5 valence
bands and 195 conduction bands. To compute the self-energy,
the COHSEX approximation is used; this choice yields a
quasiparticle band gap of 14.7 eV, in good agreement with
experiments [56]. The BSE kernel is constructed using 3 va-
lence bands and 7 conduction bands; this choice is adequate
to obtain a converged absorption spectrum near the band edge,
as can be seen by comparing Fig. 5(a) with Fig. 6 in Ref. [21].
In addition, the software VESTA is used for the visualization
of the crystal structures, charge densities, and displacement
patterns [57].

Equations (24)–(26) are solved on uniform Brillouin zone
grids with increasing density, from 4 × 4 × 4 to 10 × 10 × 10
points, corresponding to equivalent BvK supercells ranging
from 128 to 2,000 atoms. We include 4 lowest-energy exciton
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FIG. 5. Optical absorption spectrum and exciton wave function
of LiF. (a) Imaginary part of the dielectric function ε2 of LiF. With
an 8 × 8 × 8 Brillouin zone grid, the lowest-energy peak is well con-
verged. This peak provides the largest contribution to the formation
of the excitonic polaron in LiF. (b) Electron charge density of the
lowest-energy free exciton state, rendered in a 8 × 8 × 8 supercell.
The hole position is fixed near a fluorine atom. Li is in green, F is in
silver. The electron charge density is relatively localized around the
fixed hole.

bands when constructing the excitonic polaron Hamiltonian,
which is sufficient to yield converged solutions [Fig. 7(a)]
The initialization of the coefficients AsQ is chosen such that
�(re, rh) is already sufficiently localized, using the approach
outlined by Sec. III E. Specifically, we first set AsQ to be a con-
stant so that the normalization condition N−1

p

∑
sQ |AsQ|2 = 1

is satisfied, and we construct the exciton-phonon coupling ma-
trix by imposing gcc′ν (k, q) = 0. Then, we evaluate BQν using
Eq. (25), and we diagonalize the matrix in Eq. (24); we repeat
this process until convergence is achieved. The converged
solution is subsequently employed to initialize a second run,
where the complete exciton-phonon coupling matrix is used
[i.e., without setting gcc′ν (k, q) = 0], and a new iterative min-
imization is carried out. An estimate of the computational cost
of our method is provided in Appendix C.

2. Convergence behavior

Figure 5(a) shows the calculated BSE absorption spectrum
of LiF as a function of the Brillouin zone mesh. We see
that, in the vicinity of the absorption onset, the lineshape

FIG. 6. Exciton-phonon coupling matrix elements of LiF. As
for the absorption spectrum, the exciton-phonon coupling matrix
elements also converges with an 8 × 8 × 8 Brillouin zone grid.
The behavior of these matrix elements resmbles the Fröhlich type
exciton-phonon interaction shown in Fig. 3, although here the ma-
trix elements are 2-3 times higher. This comparison suggests that
the Wannier-Fröhlich model captures qualitative trends but does not
carry quantitative accuracy. The discs are our calculations, the lines
are guides to the eye.

converges when a 8 × 8 × 8 k grid is used (note that the
green line for the 6 × 6 × 6 k grid and the blue line for the
8 × 8 × 8 k grid are hidden underneath the red line for the
10 × 10 × 10 k grid); this finidng agrees well with previous
studies on LiF [21]. Based on this test, in Fig. 5(b) we plot
the exciton electron density corresponding to an 8 × 8 × 8
BvK supercell, with the hole position fixed on one of the
fluorine atoms. In this panel, we see that the electron is
fairly localized relative to the hole. This observation is con-
sistent with the fact that a relatively coarse k grid yields a
well-converged absorption spectrum. We emphasize that
Fig. 5(b) shows relative localization of the electron with re-
spect to the hole, while the two-particle exciton wave function
�sQ(re, rh) is fully delocalized as well as translationally in-
variant.

Next, we investigate the exciton-phonon matrix elements
that are central to Eqs. (24) and (25). Since the first two
exciton bands of LiF are degenerate and isolated from the
other bands [Fig. 7(a), except for the � point], in Fig. 6, we
plot the gauge-invariant metric defined below:

√ ∑
s,s′=1,2

|Gss′ν (Q = 0, q)|2, (65)

where ν is chosen to be LO mode that is nondegenerate for the
most part of the Brillouin zone, and the path of q is a straight
line from � to L. We see that, as for the absorption spectrum in
Fig. 5(b), the exciton-phonon matrix elements also converge
when a 8 × 8 × 8 grid is used for k points, q points, and Q
points.

Interestingly, the momentum dependence of the exciton-
phonon couplings computed from first principles and shown
in Fig. 6 resembles the trend that we find for the Wannier-
Fröhlich model in Fig. 3. In particular, we find that the ab
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FIG. 7. Exciton band structure, convergence of the formation energy of excitonic polarons with Brillouin zone sampling, and charge
densities of polarons and excitonic polaron in LiF. (a) The contribution of each free exciton state to the formation of excitonic polarons. The
black lines denote the exciton band structure of LiF, and the yellow discs are the contribution |AsQ|2 of each exciton to the formation of the
excitonic polaron. The most significant contributions come from the three lowest exciton bands, which correspond to the lowest-energy peak in
the absorption spectrum shown in Fig. 5(a). (b) Formation energy of the excitonic polaron as a function of the inverse supercell size. The
infinite supercell limit corresponds to a fully isolated excitonic polaron. The formation energy extrapolated to this limit is −461 meV.
(c) Charge density of the hole polaron (orange isosurface). (d) Hole density of the excitonic polaron (orange isosurface). (e) Charge density of
the large electron polaron (green isosurface). (f) Electron density of the excitonic polaron (green isosurface). In (c)-(f), Li atoms are in green,
F atoms are in silver.

initio matrix elements are also linear in q at small q. However,
unlike in the Wannier-Fröhlich model which only considers
one valence and one conduction bands, here we have 10 elec-
tronic bands in total. This difference might account for the
larger magnitude of the ab initio exciton-phonon couplings
shown in Fig. 6 as compared to the model calculation of
Fig. 3. This stronger coupling may favor the formation of the
excitonic polaron in LiF.

3. Formation energy

Once the excitonic polaron equations [Eqs. (24)–(26)] are
solved, the formation energy of the excitonic polaron can
be computed from �E f

xp = Exp − E0
BSE, where Exp is given

by Eq. (28), and E0
BSE is the lowest BSE eigenvalue for the

undistorted structure. The results are shown in Fig. 7(b). First,
we find that the formation energy of the excitonic polaron is
negative, meaning that the polaron state is stable as compared
to free excitons. In addition, we notice that the formation
energy decreases when a denser Brillouin zone grid is used.
The extrapolation to infinite BvK supercell (Np → ∞) corre-
sponds to a fully isolated excitonic polaron, in analogy with
the case of electron and hole polarons [6,15].

In Table II, we show that the formation energy of the
excitonic polaron in LiF lies between the energy of electron

polaron and that of the hole polaron. This finding can be un-
derstood from Eq. (40), where the formation of the excitonic
polaron could be viewed as the combination of the electron
polaron and hole polaron attracting each other, thus making
the highly localized hole polaron stabilize the much more
diffuse electron polaron.

In the companion manuscript [25], we show that for an-
other compound, Cs2ZrBr6, both the electron polaron and the
hole polaron are highly localized. In that case the excitonic
polaron is less stable than both the electron and the hole
polaron as a result of the cancellation of the two charge densi-
ties, which reduces the electrostatic interaction with the ionic
lattice.

TABLE II. Formation energies of the electron polaron, hole po-
laron, and excitonic polaron in LiF. These values correspond to the
limit of infinite supercell. For completeness, we also report the GW
quasiparticle band gap EGW

gap and the binding energy of the lowest-
energy exciton Eex

b .

Polaron formation energy

Electron Hole Excitonic EGW
gap Eex

b

−231 meV −1980 meV −461 meV 14.7 eV 1.88 eV
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4. Charge densities

In the case of free excitons, the common practice when
plotting exciton charge densities is to fix the position of the
hole (or the electron), and then plot the electron (or the hole)
density. This is shown in Fig. 5(a) for LiF. The mathematical
expression describing this procedure is

nsQ
e

(
re; r0

h

) = ∣∣�sQ
(
re, r0

h

)∣∣2
, (66)

which gives the electron density of the exciton sQ when the
hole position is fixed at r0

h. Now, if we integrate nsQ
e (re; r0

h )
over the hole position r0

h, the resulting electron density be-
comes fully delocalized and exhibits the periodicity of the
lattice. This property can easily be seen by using Eq. (21)
inside Eq. (66).

In the case of excitonic polarons, the lattice distortion fa-
vors exciton localization, thus breaking the lattice periodicity.
To demonstrate this point, we evaluate and visualize the elec-
tron and hole charge densities of the excitonic polaron using
the following expressions:

ne(re) =
∫

drh|�(re, rh)|2 = 1

Np

∑
vk

|Lvk(re)|2, (67)

nh(rh) =
∫

dre|�(re, rh)|2 = 1

Np

∑
ck

|Lck(rh)|2, (68)

where the auxiliary functions Lvk and Lck are given by

Lvk(re) =
∑
sQ

∑
c

AsQasQ
vckψck+Q(re),

Lck(rh) =
∑
sQ

∑
v

AsQasQ
vck−Qψ∗

vk−Q(rh). (69)

Since these functions are linear combinations of Bloch states
with different crystal momenta, they do not possess lattice
periodicity in general. Therefore the charge densities obtained
from Eqs. (67) and (68) are allowed to be localized within the
BvK supercell.

We also emphasize that the localization of the excitonic
polaron as described by Eqs. (67) and (68) is closely related to
the approximation of classical nuclei that underpins all DFT,
DFPT, and GW/BSE calculations. In this context, the break-
ing of lattice-periodicity means that for a fixed displacement
pattern, the corresponding excitonic polaron wave function
will break the lattice periodicity. Shifting the displacement
pattern by a lattice vector R will yield another localized ex-
citonic polaron wave function with the same shape, but it is
shifted by R as well. In a more sophisticated, quantum treat-
ment of atomic displacements, the electron and hole charge
densities would be localized with respect to each other and
with respect to the distortion of the atomic lattice, but the
composite excitation consisting of electron, hole, and phonon
cloud would still be a delocalized entity in agreement with
Bloch’s theorem. Therefore, to be more precise, the excitonic
polaron discussed below is what might be called a “pinned”
excitonic polaron. We note that this loss of translational in-
variance is entirely analogous to what happens in calculations
of charged polarons [15,17,18,39]. Restoring full translational
invariance would require one to consider a Green’s function
that includes both electronic and vibrational degrees of free-

dom, as it is done, for example, in Diagrammatic Monte Carlo
calculations [58,59].

The charge densities for the electron polaron, hole polaron,
and excitonic polaron in LiF are shown in Figs. 7(c)–7(f). We
find that the hole density of the excitonic polaron [Fig. 7(d)]
has the shape of p-orbitals, and it is largely localized around
a fluorine atom. There are other degenerate solutions in the
same unit cell, which correspond to p-orbitals oriented to-
ward the other Cartesian directions and are accompanied by
different atomic displacement patterns. This multiplicity is a
consequence of the fact that our formalism described “pinned”
excitonic polarons. Furthermore, the hole density of the ex-
citonic polaron is very similar to that of the hole polaron
[Fig. 7(c)]. On the other hand, the electron density of the
excitonic polaron [Fig. 7(f)] is similar in shape to the elec-
tron polaron [Fig. 7(e)], but it is considerably more localized,
spanning only a couple of unit cells.

The similarity between the charge densities of the electron
and hole polaron and the charge densities of the excitonic
polaron shown in Figs. 7(c)–7(f) suggests that the formation
of the excitonic polaron in LiF might be viewed as a two-step
process: (i) the formation of an electron polaron and a hole
polaron which do not interact with each other and (ii) the
formation of the excitonic polaron as a result of the mutual
Coulomb attraction of these polarons. In this latter step, the
small hole polaron acts a pinning center for the large electron
polaron. In this case, it is not necessary to fix the hole center
as in the visualization of the free exciton in Fig. 5(b). The sim-
ilarity with Fig. 7(f) indicates that the binding of the exciton is
so strong that the lattice distortion only slightly influences the
mutual interaction between electrons and holes. The present
picture is fully consistent with the analysis of the mechanism
of formation of the excitonic polaron in the Wannier exciton
model presented in Sec. III C.

Figure 7(a) shows the contribution of each exciton state
of the undistorted structure to the formation of the excitonic
polaron, as given by the weights |AsQ|2. We find that the low-
est exciton bands carry the largest contribution, with smaller
contributions from the next two bands. The fact that only the
low-lying exciton bands contribute to the formation of the
excitonic polaron provides a posteriori support to our choice
of solving the excitonic polaron equations in the exciton ba-
sis [Eqs. (24) and (25)] rather than in the transition basis
[Eqs. (18)–(20)]. In Fig. 7(a), we also see that the coefficients
|AsQ|2 are significant throughout the entire Brillouin zone.
This “delocalization” in reciprocal space is consistent with our
observation of strong real-space localization of the excitonic
polaron.

5. Displacement patterns

Figure 8 shows the atomic displacements associated with
the electron polaron, the hole polaron, and the excitonic
polaron in LiF. These displacements are evaluated using
Eq. (29). As expected, the displacement pattern of the
excitonic polaron [Fig. 8(c)] is centered around the hole
charge density of the excitonic polaron, and it is highly lo-
calized. This pattern is very similar to what we find for the
hole polaron in Fig. 8(b), but differs considerably from the
displacements obtained for the electron polaron which is more
delocalized [Fig. 8(a)].
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FIG. 8. Displacement patterns of polarons and excitonic polaron in LiF, and corresponding phonon contributions. In (a)-(c), Li and F
atoms are in green and silver, respectively, and purple arrows represent atomic displacements. Only significant displacements are displayed for
clarity. In (d)–(f), black lines represent the phonon dispersions, and the yellow discs represent the phonon contribution |Bqν |2 to the formation
of polarons. The shadowed area on the right in each panel represents the spectral function B2(E ). They are normalized so that the top of the
range coincides with the highest peak in each case. (a) Atomic displacements associated with the electron polaron. (b) Atomic displacements
associated with the hole polaron. (c) Atomic displacements associated with the excitonic polaron. (d) Contributions of individual phonons to
the formation of the electron polaron. The acoustic branches and the LO modes around the zone center contribute the most. (e) Contributions
of individual phonons to the hole polaron. (f) Contributions of individual phonons to the formation of the excitonic polaron.

A more detailed comparison between the atomic displace-
ment patters of electron polaron, hole polaron, and excitonic
polarons in LiF can be performed by inspecting the Bqν coef-
ficients. Indeed, according to Eq. (29), these coefficients can
be thought of as the contributions from individual phonons to
the formation of these localized quasiparticles. Figures 8(d)
and 8(e) show how the electron polaron is dominated by the
coupling with long-wavelength modes, and in particular the
LO mode; while the hole polaron draws weight from the entire
Brillouin zone. These trends are consistent with previous work
on polarons in LiF [6], and indicate that this compound hosts
Fröhlich electron polarons and Holstein hole polarons, respec-
tively. In the case of the excitonic polaron, Fig. 8(f) shows that
the contribution from the LO mode around the zone center is
much smaller than for the electron and hole polarons. This
effect can be rationalized in terms of the qualitative differ-
ence between exciton-phonon and electron-phonon couplings
to the LO mode: while Fröhlich electron-phonon coupling
goes as 1/|q| for q → 0, the exciton-phonon coupling is not
singular and goes as |q| (Figs. 3 and 6), therefore the contri-
bution of long-wavelength polar phonons is less significant
in the case of excitonic polarons. Furthermore, we notice
the significant contribution coming from the acoustic modes
in Fig. 8(f), whose contribution is typically neglected in the

model Hamiltonian approaches. In fact, by manually remov-
ing the contribution from the acoustic modes, the polaron
formation energy will be reduced from −409 to −206 meV
(on an 8 × 8 × 8 grid). This clearly demonstrates the ne-
cessity of performing full ab initio calculations to describe
excitonic polarons in real materials.

Another interesting behavior that emerges from Figs. 8 is
that the coefficients Bqν of the excitonic polaron [Fig. 8(f)]
resemble a superposition of the coefficients Bqν that we find
for the electron polaron [Fig. 8(d)] and the hole polaron
[Fig. 8(e)]. This can be further illustrated by the spectral
function in the right panels of Figs. 8(d)–8(f), defined as

B2(E ) = 1

Np

∑
qν

|Bqν |2δ(E − h̄ωqν ). (70)

We find that the hole polaron and the excitonic polaron spec-
tral functions show similar peak strengths for the LO modes,
while the electron polaron and the excitonic polaron spectral
functions shows similar peak strengths for the acoustic modes.
Since acoustic modes are mainly responsible for elastic de-
formation while optical modes usually induce out-of-phase
motion, the similarity of the spectral functions in Figs. 8(e)
and 8(f) is consistent with the similar displacement patterns
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for the hole polaron and the excitonic polaron in Figs. 8(b)
and 8(c). This observation further supports the conceptual
scenario whereby the excitonic polaron can be thought of as if
being formed from one electron polaron and one hole polaron
bound together by their mutual Coulomb attraction.

V. SUMMARY AND OUTLOOK

In this work, we presented a first-principles theory of
excitonic polarons that combines the Bethe-Salpeter equa-
tion approach for excitons with density-functional pertur-
bation theory for phonons. Our theory directly yields the
energetics, wave functions, and atomic displacements of
excitonic polarons, without requiring supercells. The only
ingredients needed for performing these calculations are the
band structures or electrons, phonons, and excitons, and the
electron-phonon matrix elements. All these quantities can be
computed from calculations in the crystal unit cell.

In the present approach, the search for excitonic polarons
is formulated as a variational minimization of the excited
state total energy, which consists of the DFT total energy and
the BSE excitation energy. Explicit supercell calculations are
avoided by expressing the excitonic polaron wave function
as a linear combination of finite-momentum excitons. This
strategy leads to a nonlinear system of two coupled equa-
tions for the exciton polaron wave function and the associated
atomic displacements, which is reminiscent of the polaron
equations introduced for charged particles [15].

We have identified two possible sets of equations to obtain
excitonic polarons, one set in the transition basis, and one
in the exciton basis. The exciton basis formulation is most
suited for ab initio calculations. The transition basis formu-
lation is useful to make contact with model Hamiltonians.
For example, using the transition basis we have shown that a
Wannier exciton model with Fröhlich electron-phonon inter-
actions leads to an excitonic polaron equation that is similar to
the Landau-Pekar equation for polarons. The analysis of this
simplified model suggests that the excitonic polaron can be
thought of as an excitation resulting from the binding of an
electron polaron and a hole polaron via their mutual Coulomb
attraction. The analysis of the Wannier exciton with Fröhlich
or Holstein electron-phonon interactions also allowed us to
identify two general criteria that must be met for excitonic
polarons to form: (i) for excitonic polarons dominated by
Fröhlich couplings, the electron and hole effective masses
should differ significantly; and (ii) for excitonic polarons
dominated by Holstein couplings, there must be a large dif-
ference between the short-range electron-phonon interactions
and hole-phonon interactions.

We applied this method to lithium fluoride, a prototypical
material that hosts small hole polarons and large electron
polarons. Our first-principles calculations reveal that the
exciton-phonon coupling matrix elements in a polar insu-
lator decrease linearly with the exciton momentum at long
wavelength. This behavior is qualitatively different from the
well-known divergence of the Fröhlich electron-phonon in-
teraction in three-dimensional materials at long wavelength,
and is reflected in the small contribution of phonon modes
around the zone center to the excitonic polaron. We also
find that the hole charge density and atomic displacements of

the excitonic polaron in LiF strongly resemble those of the
hole polaron, suggesting that the localization of the excitonic
polaron is largely dictated by the most localized quasiparticle
among the electron and the hole polaron. To quantify which
exciton states, phonon modes, and exciton-phonon couplings
contribute the most to the formation of the excitonic polaron,
we performed a spectral analysis of the wave function and
displacements in LiF, and we found that only the three lowest-
energy exciton bands play a significant role in the formation
of the excitonic polaron.

In the companion manuscript [25], we apply the same
formalism presented here to a more complex material, the
vacancy-ordered double perovskite Cs2ZrBr6. In that case, we
observe similar relations between the electron polaron, the
hole polaron, and the excitonic polaron as discussed here for
LiF, suggesting that these interrelations might be universal
features in the physics of polarons and excitonic polarons.

The present development opens several possible avenues
for future work. Firstly, it will be important to extend these
calculatios to a broad materials dataset to map out the prop-
erties of excitonic polarons across diverse materials families.
Secondly, it will be important to connect this methodology
to experimental measurements of Stokes shifts between ab-
sorption and luminescence spectra. Thirdly, applications of
the present methodology to the case of two-dimensional ma-
terials will be of considerable interest. Lastly, re-deriving the
present formalism starting from a general field-theoretic ap-
proach would be highly desirable. For example, generalizing
the many-body theory of polarons of Ref. [17] to the case of
excitonic polarons would be useful.

We hope that this work will serve as the basis for sys-
tematic ab initio calculations of excitonic polarons in real
materials, and that it will form the starting point for further
investigations of the physics of self-localization in condensed
matter systems.
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APPENDIX A: COMPLETE FORMULAS FOR EQ. (48)

The terms t1-t10 required in Eq. (48) are given below:

t1 = a6b6a9
0(5 + 4ab), (A1)

t2 = 7a5b5a8
0rp(5 + 4ab), (A2)

t3 = a4b4a7
0r2

p(101a4 + 519a3b + 848a2b2 + 519ab3

+ 101b4), (A3)

t4 = 7a3b3a6
0r3

p(1 + 2ab)(21 + 4ab), (A4)

t5 = a2b2a5
0r4

p(101a6 + 1149a5b + 3858a4b2 + 5632a3b3

+ 3858a2b4 + 1149ab5 + 101b6), (A5)

t6 = 7aba4
0r5

p(5a6 + 88a5b + 368a4b2 + 574a3b3

+ 368a2b4 + 88ab5 + 5b6), (A6)

t7 = a3
0r6

p(5a8 + 193a7b + 1404a6b2 + 4020a5b3

+ 5612a4b4 + 4020a3b5 + 1404a2b6 + 193ab7 + 5b8),

(A7)

t8 = 4a2
0r7

p(6 + 37ab), (A8)

t9 = 28a0r8
p, (A9)

t10 = 4r9
p. (A10)

APPENDIX B: COMPLETE FORMULAS FOR EQ. (50)

The integral in Eq. (50) can be written as

EH
ph = − 1

2h̄ωLO

1

π2
IH, (B1)

where the term IH has been evaluated using Mathematica [61]. This term is given by

IH = [4(aa0 + rp)7(a0b + rp)7]−1π
(
a7

0g2
c

(
a4
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0
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0

(
g2

c − 6gvgc + 5g2
v
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p

])
. (B2)

APPENDIX C: ESTIMATE OF THE COMPUTATIONAL COST

To provide an idea of the computational cost associated with our method, we take the calculation with the 8 × 8 × 8 grid
as an example, which is equivalent to a supercell containing 1024 atoms. The bottleneck is the BSE calculation, where 512
independent BSE calculations corresponding to all center-of-mass exciton momenta need to be performed. For these calculations
we use Frontera supercomputer at Texas Advanced Computing Center. Each BSE calculation takes 30 minutes to complete on
Intel Xeon Platinum 8280 “Cascade Lake” nodes, each supporting 56 compute cores. The maximum memory required for each
calculation is ≈120 MB, and ≈ 50 MB is used to store the BSE eigenvalues and eigenvectors on disk. In total, 512 node hours
are needed to complete all the BSE calculations, and ≈ 25 GB storage space is needed to store the BSE eigenvectors and
eigenvalues. Performing explicit BSE calculations for a 1024-atom supercell would be computationally prohibitive, since these
calculations scale as O(N4) [62,63]. Importantly, the present approach enables calculations of excitonic polarons extending over
tens to hundreds of crystal unit cells.
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