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Pair correlations in the two-orbital Hubbard ladder: Implications for superconductivity
in the bilayer nickelate La3Ni2O7
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Motivated by high-temperature superconductivity in pressurized La3Ni2O7, we investigate the pair correla-
tions in the two-orbital Hubbard ladder, which consists of the nearly half-filled and nearly quarter-filled orbitals.
By employing the density matrix renormalization group method, we demonstrate that the pair correlation exhibits
a power-law decay against the distance while the spin correlation decays exponentially. The decay exponent
of the pair correlation of the nearly half-filled orbital is comparable to the exponent of the quasi-long-range
superconducting correlation in the doped single-orbital Hubbard ladder, which suggests the importance of the
d3z2−r2 orbital in La3Ni2O7.
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I. INTRODUCTION

Bilayer systems exhibit rich electronic properties unreal-
ized in single-layer systems. A representative example is the
twisted-bilayer system, where twist-angle engineering enables
us to create a new platform of correlated electron physics
[1,2]. In terms of an unconventional pairing of supercon-
ductivity, bilayer and ladder lattice are intriguing structures.
Intuitively, when interlayer couplings are strong, doped holes
in a nearly half-filled bilayer prefer to form interlayer pairs in
order to avoid breaking electronic rung spin-singlet bonds [3].
Theoretical studies predict possible strong pairing meditated
by the interlayer magnetic coupling in doped bilayer/ladder
Mott insulators [3–5], and recently the magnetically medi-
tated pairing has been demonstrated by ultracold atoms in the
optical ladder lattice [6]. Hence, bilayer and ladder systems
have been considered to be promising hosts of unconventional
pairing for superconductivity.

The recent discovery of high-temperature (high-Tc) super-
conductivity in La3Ni2O7 under pressure [7–11] has opened
up a new avenue of investigation in the field of condensed-
matter physics. This bilayer Ruddlesden-Popper nickelate has
been theoretically proposed in 2017 as a good starting point
for seeking high-Tc superconductivity by one of the present
authors [12]. The aim in Ref. [12] was to realize in an actual
material a nearly half-filled bilayer Hubbard model with the
hopping between the layers t⊥ being several times larger than
the in-plane hopping t‖, a model which has been suggested
to exhibit high-Tc superconductivity with strong interlayer
pairing [12–17]. La3Ni2O7 indeed possesses nearly half-filled
d3z2−r2 bands, which are largely split into bonding and anti-
bonding bands due to t⊥ within the d3z2−r2 orbitals. However,
the material deviates from an ideal bilayer Hubbard model
in that the d3z2−r2 orbital hybridizes with the dx2−y2 orbital,
which forms a nearly quarter-filled band [12,18,19]. Another
point that should be noted is that t⊥ in this material is so large
that the antibonding d3z2−r2 band does not intersect the Fermi

level, so that the nesting (in the strict sense of the term) of
the Fermi surfaces arising from the bonding and antibonding
d3z2−r2 bands does not exist and hence cannot be the origin of
superconductivity.

In a recent paper by three of the present authors, a two-
orbital bilayer (four orbitals in a unit cell) model derived
from first-principles calculation was studied within the fluc-
tuation exchange (FLEX) approximation [20], which showed
that superconductivity in La3Ni2O7 can still be considered
as a consequence of a manifestation of the bilayer Hubbard
model comprising the d3z2−r2 orbitals [21]. However, FLEX
is basically a weak-coupling approach and has its limitations,
especially when it is applied to strongly correlated systems
such as those consisting of the d3z2−r2 orbitals of La3Ni2O7.
In fact, there are various theoretical studies regarding the
electronic structure and/or mechanism of superconductivity
in La3Ni2O7 [22–45], some of which suggest the importance
of not only the d3z2−r2 orbital but also the dx2−y2 orbital
[28,33,37].

Given this background, in this article we investigate
the problem using an alternative approach that can cope
with strong correlation effects with accuracy, namely, we
adopt the density matrix renormalization group (DMRG)
method to study a two-orbital Hubbard ladder model, a one-
dimensional analog of the two-orbital bilayer Hubbard model.
In one-dimensional ladderlike structures, a hallmark of su-
perconductivity is given by quasi-long-range pair correlation,
which decays as a power law against the distance (due to the
Mermin-Wagner theorem) [46–48]. We find that when one of
the two orbitals is nearly half-filling with strong t⊥ and the
other orbital is nearly quarter-filling with weak rung coupling,
as expected in the bilayer nickelate, the correlation function
of the rung pairing shows a power-law decay while the spin
correlation exhibits an exponential decay. The decay exponent
of the rung pairing in the nearly half-filled ladder (i.e., d3z2−r2

orbital) is comparable to the exponent of the quasi-long-range
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FIG. 1. Two-orbital Hubbard ladder at 3/8 filling. The dashed
rectangle indicates the unit cell. The a and b orbitals correspond to
the d3z2−r2 and dx2−y2 orbitals, respectively, in the bilayer nickelate.

superconducting order realized in the doped single-orbital
Hubbard ladder [48]. Our numerical demonstrations suggest
that the d3z2−r2 orbital that makes the strong interlayer bond in
La3Ni2O7 plays a key role in superconductivity.

II. MODEL

To address a similar situation to the bilayer nickelate in a
one-dimensional system, we consider a two-orbital Hubbard
ladder at 3/8 filing, i.e., three electrons per unit cell, which
consists of two sites with two orbitals on each site (see Fig. 1).
The Hamiltonian of the two-orbital Hubbard ladder reads

Ĥ = −
∑

j,l

∑

μ,ν

∑

σ

tμν

‖ (ĉ†
j,l,μ,σ

ĉ j+1,l,ν,σ + H.c.)

−
∑

j

∑

μ

∑

σ

tμμ

⊥ (ĉ†
j,1,μ,σ ĉ j,2,μ,σ + H.c.)

+
∑

j,l

∑

μ

∑

σ

εμn̂ j,l,μ,σ + U
∑

j,l

∑

μ

n̂ j,l,μ,↑n̂ j,l,μ,↓.

(1)

ĉ†
j,l,μ,σ

(ĉ j,l,μ,σ ) is the creation (annihilation) operator of an
electron at site j in chain l (= 1, 2), where μ (= a, b) and
σ (=↑,↓) denote the orbital and spin degrees of freedom,
respectively, and n̂ j,l,μ,σ = ĉ†

j,l,μ,σ
ĉ j,l,μ,σ . Considering this

model as a one-dimensional version of that of the bilayer
nickelate, orbitals a and b correspond to the d3z2−r2 and dx2−y2

orbitals, respectively. tμν

‖ is the hopping integral between the
nearest neighboring μ and ν orbitals along the chain direc-
tion, and tμμ

⊥ is the interchain hopping integral of the orbital
μ. εμ is the energy level of the orbital μ, and the energy-
level difference is denoted by �E = εb − εa. U (> 0) is the
on-site repulsive interaction. We set �E > 0 at 3/8 filling,
where the lower-energy a orbital can be nearly half-filling
while the higher-energy b orbital is nearly quarter-filling, as
shown in Fig. 1. In order to make correspondence to the
bilayer nickelate, we assume that the a (= d3z2−r2 ) orbitals
have strong interchain bonding via t aa

⊥ , while the interchain
bonding of the b (= dx2−y2 ) orbitals is very weak (where we
set t bb

⊥ = 0 for simplicity). Note that we set t ab
⊥ = 0, because

the hopping integral between the d3z2−r2 and dx2−y2 orbitals
along the z (rung) direction is zero in the high-symmetry
structure (without tilt) of the pressurized bilayer nickelate.
On the other hand, we assume all tμν

‖ are nonzero, where
the correspondence with the bilayer nickelates requires the
relation |t bb

‖ | > |t ab
‖ | > |t aa

‖ | because the dx2−y2 (d3z2−r2 ) orbital
is elongated in the in-plane (out-of-plane) direction. Note that

our model neglects the interorbital repulsion U ′ for simplicity.
However, if we keep electron filling 3/4 < na < 1 for the a
orbital at U > U ′ (including the Hartree energy shift), U ′ may
not qualitatively change the single-site electron configuration
and effective magnetic interactions. We will comment on the
roles of Hund’s coupling JH later.

This 3/8-filled two-orbital ladder model consists of a
lightly doped Mott insulator in the a-orbital network and a
nearly quarter-filled itinerant electron system in the b-orbital
network (see Fig. 1), coupled by the intrachain hopping t ab

‖ .
In the single-orbital Hubbard (or t-J) ladder, it is known
that the lightly doped ladder is in the Luther-Emery liquid
(spin-gapped) state with power-law decays of the pair and
charge-density correlation functions [48,49]. In the lightly
doped regime, doped holes in the ladder prefer to form in-
terchain pairs in order to avoid the destruction of electronic
rung spin-singlets. In particular, the strong interchain coupling
(optimal ratio t⊥/t‖ ∼ 1.5 [50–53]) favorably leads to the
quasi-long-range pair correlation overwhelming the charge-
density correlation [48,53]. On the other hand, the nearly
quarter-filled single-orbital ladder is in a Tomonaga-Luttinger
liquidlike state, where the pair correlation is no longer domi-
nant [49]. In this context we may expect that the lightly doped
a (i.e., d3z2−r2 ) orbital ladder is promising for superconduc-
tivity rather than the b (i.e., dx2−y2 ) orbital network. However,
the dominance of the pair correlation in the present two-orbital
model is highly nontrivial, because the a- and b-orbital ladders
are coupled via t ab

‖ .
In our calculation we set t bb

‖ = th as the unit of energy
and use t aa

‖ = 0.25th and t ab
‖ = 0.5th corresponding to the

ratios of the intralayer hoppings in La3Ni2O7 estimated by the
first-principles calculation [21]. On the other hand, we employ
the interchain hoppings t aa

⊥ = 0.7th and t bb
⊥ = 0. Although the

ratio t aa
⊥ /t aa

‖ in our model is nearly half of its ratio estimated
in the bilayer nickelate [21], the absence of the overlap be-
tween bonding and antibonding bands is maintained in our
one-dimensional model. This parameter choice is because, by
doubling tμν

‖ against tμμ

⊥ in the one-dimensional model, the
width of each band becomes comparable to the corresponding
bandwidth in the two-dimensional bilayer system [54]. Here,
based on the intrachain component t bb

‖ that gives the widest
energy band, we set U/th = 8 corresponding to the values
suggested in the previous studies [21,27]. Since we modify the
ratio of the hopping parameters, we adjust �E in order to meet
the electron filling of the a orbital with the electron filling of
the d3z2−r2 orbital expected in the bilayer nickelate [21]. In
the present calculation, we adopt �E/th = 1, which gives a
reasonable electron filling of the a orbital, as we shall see.
We employ the DMRG method [55–57] to obtain the ground
state of the model. Our DMRG calculations were performed
using the ITensor library [58]. We use the Lx × 2 site ladder
with open boundary conditions. The bond dimension of the
DMRG calculations is up to m = 10 000, where the truncation
error is of the order 10−6. Unless otherwise specified, we plot
the results for m = 10 000.

III. RESULTS

In Fig. 2(a) we show the calculated local electron den-
sity nμ( j) = (1/2)

∑
l,σ 〈n̂ j,l,μ,σ 〉 for Lx = 64. For the present
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FIG. 2. (a) Local electron density nμ( j) and (b) interchain spin
correlation 〈Ŝ j,1,μ · Ŝ j,2,μ〉 for Lx = 64.

parameter set, the a orbital is close to half filling (na ∼ 1 − δ

with δ ∼ 0.075) while the b orbital is close to quarter fill-
ing (nb ∼ 1/2 + δ), in good correspondence with the bilayer
nickelate. We do not find a clear charge-density-wave–like
signature in the local electron density of the a orbital na( j).
Since t aa

⊥ > t aa
‖ , two singly occupied electrons in the a-orbital

ladder prefer to make the rung spin-singlets. To verify this, we
plot the interchain spin correlation 〈Ŝ j,1,μ · Ŝ j,2,μ〉 in Fig. 2(b),
where Ŝγ

j,l,μ = (1/2)
∑

σ,σ ′ ĉ†
j,l,μ,σ

(σγ )σσ ′ ĉ j,l,μ,σ ′ and σγ is
the Pauli matrix of γ = x, y, z. The interchain spin correlation
of the a orbital is negative due to the antiferromagnetic spin
exchange Jaa

⊥ via t aa
⊥ . This implies that the a-orbital ladder

contains the rung spin-singlet sites. While the presence of hole
sites suppresses the spin-singlet correlation, 〈Ŝ j,1,a · Ŝ j,2,a〉 

−0.54 in Fig. 2(b) is comparable to the value 〈Ŝ1 · Ŝ2〉 =
−3/4 for a spin-singlet state of a two-site system. On the
other hand, the interchain spin-singlet correlation of the b
orbitals is very weak. This is because we assume t bb

⊥ = 0 as
in the bilayer nickelate. Note that if Hund’s coupling JH is
taken into account, the spin-singlet nature of the b orbital
may be promoted by JH using the interorbital ferromagnetic
spin alignment within the single ion and the rung spin-singlet
correlation of the a orbitals by Jaa

⊥ [28,37].
In Fig. 3 we show the intrachain spin-correlation func-

tion F zz
μ (r) = (1/2)

∑
l 〈Ŝz

j,l,μŜz
j+r,l,μ〉 in the Lx = 64 system,
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FIG. 3. Left panel: Comparison of the decays of the spin-
correlation function F zz

μ (r) and pair-correlation function Pμ(r) for
Lx = 64 in a log-log plot. Right panel: The same data of F zz

μ (r) in a
semilog plot. As a guide to the eyes, the exponential and power-law
decays are indicated by the solid and dashed thin lines, respectively.

where we set j = jref = 18 as the reference site. Interestingly,
we find that the spin correlations of both a and b orbitals
exhibit an exponential-like decay against the distance r, i.e.,
the spin correlation cannot be dominant in the long-range part.
This decay tendency is a signature of a spin-gapped state.
The exponential decay of F zz

a (r) can be interpreted by the
presence of the rung spin-singlet in the a-orbital system as
shown in Fig. 2(b). On the other hand, while the rung spin-
singlet correlation of the b orbital is small, the intrachain spin
correlations of the b orbital show an exponential decay. The
a and b orbitals are entangled via the intrachain hopping t ab

‖ ,
which synthesizes the intrachain spin correlations and could
be the origin of the exponential decay of F zz

b (r).
The tendency of the spin-singlet formation in the a-orbital

network can be a good ingredient for a magnetically medi-
tated interchain pairing. To discuss superconductivity in the
two-orbital Hubbard ladder, we consider the interchain spin-
singlet pair of the μ orbital given by �̂ j,μ = (ĉ j,1,μ,↑ĉ j,2,μ,↓ −
ĉ j,1,μ,↓ĉ j,2,μ,↑)/

√
2 and compute the pair-correlation function

Pμ(r) = 〈�̂†
j,μ�̂ j+r,μ〉. In Fig. 3 we compare the calculated

Pμ(r) (where j = jref = 18) with the spin-correlation func-
tion F zz

μ (r). In contrast to the spin correlations, the pair
correlations of both a and b orbitals exhibit a power-law-like
decay (∝ r−Kμ). At short distances, Pb(r) is larger than Pa(r).
This is because the b-orbital ladder is close to quarter filling
and contains many carriers. In one-dimensional systems, how-
ever, the decaying behavior of the correlation at long distances
is more crucial than magnitudes at short distances. As seen in
Fig. 3, the decay of Pa(r) at r > 10 is slower than the decay
of Pb(r), implying that the interchain pairing of the a-orbital
component can importantly contribute to superconductivity.

To examine the decay of the pair correlations quantita-
tively, we evaluate the decay exponent Kμ of the correlation
function [Pμ(r) ∝ r−Kμ]. Since we employ open boundary
conditions in the DMRG calculations, the quantities of Pμ(r)
have the jref (reference site) dependence. In order to get
rid of the jref dependence as possible [48,51], we average
Pμ(r) over six inequivalent j and j + r pairs around the
center of the chains, where the averaged pair correlation
is defined by P̄μ(r) = (1/6)

∑5
s=0 〈�̂†

i0+s,μ�̂i0+s+r,μ〉, with
i0 = (L − r + 1)/2 if r is odd and i0 = (L − r + 2)/2 if r
is even. As discussed in Ref. [48], it should be noted that
correlation functions calculated using a matrix-product state
can reproduce a power-law decay only up to certain distances,
which increase as the bond dimension m is increased, while it
exhibits an exponential-like decay at longer distances. Here,
for precise evaluation we extrapolate the data of the averaged
pair correlation P̄μ(r) with respect to the bond dimension
m, where we use a linear fitting of 1/m. Figures 4(a) and
4(b) show the m dependences of P̄a(r) and P̄b(r), respec-
tively. The long-range part of the correlations is recovered
as m is increased, and the extrapolated correlations enhance
the tendency of the power-law decay. The data drop from
a monotonic power-law decay at longer distances (r > 20)
may be caused by the lack of m used in our extrapola-
tion or the finite-size effect of Lx. In Fig. 4(c) we compare
the extrapolated pair-correlation functions P̄a(r) and P̄b(r).
We also plot the pair correlations in the Lx = 32 system,
which show good agreement with the results in the Lx = 64
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FIG. 4. m (bond dimension) dependences of the averaged pair-
correlation functions (a) P̄a(r) and (b) P̄b(r) for Lx = 64. The black
solid and dashed lines are the fitting lines for the power-law decay
of P̄a(r) and P̄b(r), respectively. (c) Comparison of the extrapolated
(m → ∞) pair-correlation functions, where the results for Lx = 32
and Lx = 64 are plotted.

system, indicating the convergence of the present calculation.
The black (solid and dashed) lines in Fig. 4 are the fitting
lines assuming Pμ(r) ∝ r−Kμ , where the data at 10 � r � 20
in the Lx = 64 system are used in the fitting. The decay
exponents of the fitting lines shown in Fig. 4 are Ka = 0.98
and Kb = 1.16 for the a and b orbitals, respectively. The expo-
nent Ka < 1 in the a-orbital ladder is comparable to the decay
exponent of the quasi-long-range pair correlation observed in
the doped single-orbital Hubbard ladder [48]. Ka < Kb indi-
cates that the a-orbital interchain pairing strongly contributes
to the quasi-long-range superconducting correlation in the
two-orbital Hubbard ladder.

The present numerical results support the scenario that
the d3z2−r2 orbital, which is nearly half-filling, in La3Ni2O7

importantly contributes to superconductivity. The interlayer

pairing in the d3z2−r2 orbital network may be interpreted
in terms of the magnetically meditated pairing discussed in
the doped single-orbital ladder and bilayer [3,13]. On the
other hand, the nearly quarter-filled ladder, i.e., the dx2−y2

orbital in La3Ni2O7, also exhibits a power-law decay in the
pair correlation, indicating that the pairing signature of the
dx2−y2 component is induced by the hybridization with the
d3z2−r2 orbital (via t ab

‖ ). As discussed in the previous studies
[28,37], Hund’s coupling JH, which can promote the inter-
layer antiferromagnetic correlation of the dx2−y2 orbitals via
the antiferromagnetic rung coupling of the d3z2−r2 orbitals,
may enhance the contribution of the dx2−y2 component to
superconductivity. The elucidation of the effect of JH on the
pairing mechanism will be an important future extension of
the present study.

IV. SUMMARY

We have studied the pair correlations in the two-orbital
Hubbard ladder at 3/8 filling, a one-dimensional analog of
the bilayer Hubbard models recently proposed for mimicking
La3Ni2O7 under pressure. Our DMRG calculations demon-
strated that the pair correlations exhibit a power-law decay
while the spin correlations decay exponentially. The decay
exponent of the pair-correlation function is comparable to
the exponent of the quasi-long-range superconducting order.
Our numerical results suggest that the 3/8-filled two-orbital
Hubbard ladder or bilayer with strong rung hopping can be a
good platform for superconductivity. For La3Ni2O7, our find-
ing provides support for the scenario that the nearly half-filled
d3z2−r2 orbital importantly contributes to superconductivity.
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