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Transferable empirical pseudopotenials from machine learning
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Machine learning is used to generate empirical pseudopotentials that characterize the local screened interac-
tions in the Kohn-Sham Hamiltonian. Our approach incorporates momentum-range-separated rotation-covariant
descriptors to capture crystal symmetries as well as crucial directional information of bonds, thus realizing
accurate descriptions of anisotropic solids. Trained empirical potentials are shown to be versatile and transferable
such that the calculated energy bands and wave functions without cumbersome self-consistency reproduce
conventional ab initio results even for semiconductors with defects, thus fostering faster and faithful data-driven
material researches.
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I. INTRODUCTION

First-principles calculations based on the density func-
tional theory (DFT) [1,2] have become standard tools for
studying the physical properties of materials [3–6]. Recently,
applications of machine learning (ML) techniques to various
computational methodologies based on the DFT has brought
forth a new set of tools for investigating materials at the quan-
tum scale [7–11]. Such novel approaches have given rise to
a rapidly growing field, offering new insights and significant
potential for prediction and analysis of materials properties
[12–27].

One of popular applications in those developments has
been the accelerated computations of physical quantities such
as total energies and atomic forces [12–14,16–21,27]. By
circumventing a part of various computationally demanding
processes involved in DFT calculations, the ML techniques
provide efficient ways for improving various simulation meth-
ods such as molecular dynamics. On the other hand, the
integration of ML has also brought improvements to the
exchange-correlation functionals within DFT [15,22–26,28],
which are central to describing the many-electron effects in
quantum systems.

Despite these strides, applications of ML to obtain precise
quantum mechanical electronic structures for entire phase
space of interests remain relatively unexplored [29–35]. Previ-
ous studies have utilized ML to study the electronic structures
of one-dimensional [29], slab [30], and molecular [31–33]
systems. We also note that the neural network was used
to generate better transferable local pseudopotentials [36].
Only recently, a general ML framework to construct DFT
Hamiltonian in the tight-binding approach has been devel-
oped [34,35]. Accurate quantum properties of solids such
as energy bands and wave functions are central to design
and discovery of new materials with desired properties.
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However, the traditional DFT methods require a large amount
of resources, partly because of the unavoidable self-consistent
condition, posing significant challenges in data-intensive ma-
terials researches. Hence, there is a pressing need for a faster
method that utilizes ML to accelerate electronic structure cal-
culations without sacrificing the accuracy of first-principles
methods.

Before the advent of ab initio methods based on the
DFT, empirical pseudopotential method (EPM) [37] has been
widely used as a fast and efficient method to calculate the elec-
tronic structure of materials because of its formal simplicity
as well as less demanding computational resources. Despite
its extensive use for various solids [37–43], the EPM has
limitations such as inaccurate wave functions [44] and trans-
ferability issues of the obtained pseudopotential [41,42,45–
47]. To improve EPM, Wang and Zunger proposed the local-
density-derived EPM, which generates pseudopotentials by
inverting the Kohn-Sham (KS) potential in DFT calculations
[48]. However, the potentials obtained from this approach still
suffer from a lack transferability to a wide range of materials,
and the use of the spherical approximation results in errors in
band structures, particularly for anisotropic crystal structures
[49].

In this paper, we propose a neural network model to gener-
ate universal empirical pseudopotentials (EPs) encompassing
the local screened interactions in solids. We demonstrate
that our EPs are versatile and transferable, reproducing con-
ventional first-principles results for energy bands and wave
functions without self-consistency. To achieve this, we intro-
duce a new set of rotation-covariant descriptors that capture
the atomic and structural characteristics of target solids,
enabling the transferability of learned EPs even to defec-
tive solids. Moreover, our model seamlessly integrates into
existing computational packages and can be extended to
use advanced ab initio methods to calculate optical and
transport properties. We also demonstrate an extension to
incorporate the nonlocal correlation effects without increasing
computational complexity and resources. Overall, our method
accurately reproduces converged KS Hamiltonians without
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self-consistency, thus providing a reliable platform for data-
intensive materials researches.

II. MACHINE LEARNING FRAMEWORK

In DFT using the local approximation for exchange-
correlation functionals, the electronic structure of a solid is
obtained by solving the KS equation [2],[− 1

2∇2 + VPS,nloc + V (r)
]
ψi = εiψi, (1)

where ψi is the ith KS wave function with an energy eigen-
value of εi, VPS,nloc the nonlocal part of the pseudopotential,
and V (r) the local potential for all interactions experienced by
a single electron. Specifically, V (r) is the sum of three terms:
the local pseudopotential, Hartree potential, and exchange-
correlation potential. In the DFT approach, V (r) for a given
solid should be determined self-consistently. Instead of the
conventional way of computing converged potentials, we are
to employ ML techniques to generate atomic EPs of v(r) for
individual atoms, such that their summation equals the local
potential of V (r) in a crystal. (we use v and V to denote atomic
and crystalline potentials, respectively). If the learned EPs can
closely approximate the KS potentials, the KS Hamiltonian
can be constructed only once, eliminating the self-consistency
condition.

Specifically, let us consider a crystal structure denoted by
C, whose self-consistent local potential is VC (r). We aim to
find EPs of vα

C (r) of the αth atom in the crystal structure C
that satisfies

VC (r) =
∑

R

∑
α

vα
C (r − R − τα ), (2)

where R is the Bravais lattice vector of the crystal, and τα is
the position of the αth atom in the unit cell. In the momentum
space, Eq. (2) can be written as

VC (GC ) =
∑

α

Sα
C (GC )vα

C (GC ), (3)

where Sα
C (GC ) = 1

�C
e−iGC ·τα is the structure factor of the αth

atom, �C the unit cell volume of structure C, and GC the
reciprocal lattice vector of structure C.

For varying crystal structures, the EP of vα
C (GC ) should

depend on the local environment around the αth atom because
the local symmetry, atomic coordination, and bond character-
istics for each atom alter substantially. To account for these
factors, we introduce a descriptor of dα

C , whose specific form
will be discussed later. By incorporating this descriptor into
the EP, we express the potential as functions of dα

C and GC ,
respectively. So, resulting EPs can be written as v[dα

C](GC ).
This is the universal EP, which must be transferable across
different systems due to its ability to capture the complex local
environments through the descriptor of dα

C .
With the introduction of the descriptor, we can apply ML

to generate the EPs. Since the KS potentials from DFT calcu-
lations are to be learned, we employ a ML model, as depicted
in Fig. 1, similar to the high-dimensional neural network in-
troduced by Behler and Parrinello [12]. Our model employs a
weight-sharing neural network (denoted as EP NN in Fig. 1) to
represent the EP of v[d](G) with inputs of d and G (dropping
the indices α and C for simplicity). We optimize the ML model

FIG. 1. The structure of a ML model for EPs. From a crystal
structure having N atoms, we calculate N descriptors of di repre-
senting the local environment at each atom. These descriptors, along
with momentum G, are fed into the EP neural network (EP NN) as
input. The resulting v[di](G) are multiplied by the structure factors
of Si(G), then summed over all atoms to yield the crystal potential of
V (G).

by minimizing the loss function for various crystal structures
C. The loss function compares the DFT crystalline potential of
VC,DFT(GC ) with the corresponding ML-predicted VC,ML(GC )
for a trained structure C:

Loss = 1

ND

∑
{C}

∑
GC

|VC,DFT(GC ) − VC,ML(GC )|2, (4)

where ND is the number of the training data and {C} indicates
the summation for all training structures. Here, VC,ML(GC ) is
calculated by

VC,ML(GC ) =
∑

α

Sα
C (GC )v

[
dα
C
]
(GC ), (5)

where Sα
C (GC ) can be readily calculated using the reciprocal

lattice vectors and atomic positions. After the ML procedure,
we have the EP of v[d](G) for general d and G, which allow
us to predict band structures for various new crystal structures.

To construct VC,ML reflecting the crystal symmetry of a
given structure C, we introduced a momentum-dependent
rotation-covariant descriptor that is modified from the atom-
density representation [50]. In the representation [50], the sum
of Gaussian functions with a variance of σ 2 is assigned as a
density of ρZ for each atomic species Z inside a cutoff radius
of rcut such as ρZ (r) = ∑

α∈Z exp[− (r−rα )2

2σ 2 ]. Here the origin
sets to the point where the local environment is evaluated.
With this density, we use two different types of descriptors
as follows.

The first type is the density coefficient (DC) descriptor,
denoted as c, of which an element of cZ

lmn is defined as
cZ

lmn = ∫
dr g∗

n(r)Y ∗
lm(r̂)ρZ (r), where gn(r) is a set of radial

basis functions, and Ylm(r̂) spherical harmonics. For practi-
cal applications, we limit the expansion using suitable nmax
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TABLE I. Unit cells of SiO2 used for the generation of machine learning data.

Materials Project ID Number of atoms Space group Materials Project ID Number of atoms Space group

mp-6922 9 P6222 (No. 180) mp-10851 9 P6422 (No. 181)
mp-6930 9 P3221 (No. 154) mp-10948 12 Pbcn (No. 60)
mp-6945 12 P41212 (No. 92) mp-546794 12 I 4̄2d (No. 122)
mp-6947 6 P42/mnm (No. 136) mp-555235 24 Cc (No. 9)
mp-7000 9 P3121 (No. 152) mp-555891 12 P21 (No. 4)
mp-7087 12 P63/mmc (No. 194) mp-556961 24 P212121 (No. 19)
mp-7648 24 C2221 (No. 20) mp-559091 12 P6322 (No. 182)
mp-7905 12 Ibam (No. 72) mp-640917 9 P3221 (No. 154)
mp-8059 24 P213 (No. 198) mp-669426 24 P21/c (No. 14)
mp-8352 24 Fd 3̄m (No. 227) mp-972808 12 P21 (No. 4)
mp-9258 12 Pa3̄ (No. 205) mp-1071820 12 Ibam (No. 72)

and lmax values. The second type is the smooth overlap of
atomic positions (SOAP) descriptor [50], denoted as p, whose

elements are defined as pZZ ′
nn′l = π

√
8

2l+1

∑
m(cZ

nlm)∗cZ ′
n′lm. With

these definitions, the descriptor d can be either c or p depend-
ing on the purpose of ML as discussed below. We note that
only the SOAP descriptor seems to be widely used because its
rotation-invariant nature may be suitable to represent scalar
quantities of solids such as energy. However, it may not be
adequate for describing the potential because it cannot reflect
directional information. We also note that, while the descrip-
tor p was originally designed for the kernel methods [50], it
can be used as an input for a neural network [51].

We use the DC descriptor for the EPs because, under
a general rotation operation of R, v[d](G) should satisfy
v[d](G) = v[Rd](RG), i.e., both d and G must be rotated
simultaneously to yield the same v. The DC descriptor cα

C is
rotation-covariant such that it is rotated by the well-defined
rules using the Wigner D matrices [50]. Therefore we can use
cα
C as a main descriptor for learning EPs that can contain all

local information for a crystal structure C. On the other hand,
with the SOAP descriptor pα

C , the EP is rotation-invariant,
only depending on a magnitude (GC) of GC such that the
resulting EP can be written as v[pα

C](GC ). In this case, instead

FIG. 2. Shape of EPs for (a) Si and (b) O in α-quartz SiO2.
Blue (orange) dots represent real (imaginary) parts of the potentials.
Here, we directly inverted Eq. (3) without a ML procedure to obtain
the potentials [52]. The vertical distribution of data points indicates
multiple momentum vectors for each momentum value, showing
the directional dependence of the potentials. For large momentum
values, real values align along a line and imaginary values are sup-
pressed, which can be also observed in other SiO2 structures.

of Eq. (5), we use the ML potential written as

V̄C,ML(GC ) =
∑

α

S̄α
C (GC )v

[
pα
C
]
(GC ), (6)

where S̄α
C (GC ) is the spherically averaged quantity of Sα

C (GC ).
Then, in the loss function, we compare V̄C,ML(GC ) with the
spherical averaged V̄C,DFT(GC ). To ensure both efficiency and
accuracy of our ML model, we adopt a hybrid approach using
two distinct ML models that treats the directional dependency
of the EP differently depending on the momentum values.
For large G, the detailed directional information is found to
be less relevant so that the spherical symmetric form suffices
to construct EPs (see Fig. 2). Therefore the descriptor p is
adopted to represent the potential for large G. For small G,
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FIG. 3. Band structures of two representative SiO2 structures, C1
and C2 (see text). Gray solid and blue dashed lines represent the
DFT and EPM results, respectively. Ki(i = 1, . . . , 6) are reduced
coordinates in reciprocal space, representing (0, 0, 0), (0.5, 0,0), (0.5,
0.5, 0), (0, 0, 0), (0.5, 0.5, 0.5), (0.5, 0, 0) in their corresponding
crystal structures, respectively. EF denotes the Fermi energy. The
full-spherical approximation results for (a) C1 and (b) C2. The hybrid
model results for (c) C1 and (d) C2.
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FIG. 4. Band structures for SiO2 with Material Project IDs ranging from mp-6922 to mp-1071820 (see Table I), where the length of the
lattice vectors and internal coordinates for each structure are randomly disturbed within 5% (denoted as “-dis” in labels). Ki (i = 1, . . . , 6) are
reduced coordinates in reciprocal space, representing (0, 0, 0), (0.5, 0,0), (0.5, 0.5, 0), (0, 0, 0), (0.5, 0.5, 0.5), (0.5, 0, 0) in their corresponding
crystal structures, respectively. Solid gray and dashed blue lines represent the DFT and the EPM results, respectively.

however, the directional information becomes crucial so that
the descriptor c is used. Formally, in the hybrid ML process,
the form v[p](G) is used for G > Gcut, while v[c](G) for
G � Gcut, where Gcut = 3 a−1

0 (a0 is the Bohr radius).

III. APPLICATIONS TO SIO2

Having established the universal EPM, we demonstrate a
few examples showing the versatility of our ML model. We

choose silicon dioxide (SiO2) or silica as an example owing
to its diverse crystal structures and wide-ranging applications
[53]. To generate data for the ML model, we prepared 22
stable polymorphs of SiO2 from the Materials Project [54] as
listed in Table I. For each sample, we constructed p × q × r
supercells (p, q, and r are integers) limiting the maximum
number of atoms in the supercell to 24. We then randomly
perturbed the length of the supercell lattice vectors and the
internal coordinates of the atoms within 5% to increase the
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diversity of the generated data. For 10% of the learning sam-
ples, we create arbitrary defective structures by randomly
removing atoms in the unit cell. In total, we prepared 10,224
inputs for DFT calculations. For each input C, we calculated
VC,DFT, Sα

C , cα
C , and pα

C , which were used to train the ML
model. We implemented our universal EPMs in the QUANTUM

ESPRESSO package [55], which we also used for performing
reference DFT calculations. Norm-conserving LDA pseu-
dopotentials from the PSEUDODOJO [56] were utilized. The
k-point mesh was set with approximately 1,000 k points per
reciprocal atom and the cutoff energy for the plane-wave basis
set was 84 Ry.

We used an in-house modified version of the DSCRIBE pack-
age [57] to calculate descriptors. Gaussian functions with σ =
1 Å were employed for the density. For the basis functions,
we used Gaussian type orbitals and real spherical harmonics
as implemented in the package. The DC descriptor c was
calculated with rcut = 10 Å, nmax = 7, lmax = 7, resulting in
a total of 896 features. For the SOAP descriptor p, we used
rcut = 10 Å, nmax = 6, lmax = 6, and applied a weighting func-
tion of the form c(1 + 2( r

r0
)3 − 3( r

r0
)2)m with c = 1, m = 2,

r0 = 10 Å [58], leading to a total of 546 features.
For the EP NN (see Fig. 1), we employed fully connected

neural networks with the following structures. For the input
(c, G) comprising the DC descriptor c and the vector G, we
employed three hidden layers, each consisting of 1024 neu-
rons with rectified linear unit (ReLU) activation function. The
output layer was composed of two neurons, representing the
real and imaginary parts of the potential v[c](G), respectively.
Similarly, for the input (p, G) comprising the SOAP descrip-
tor p and the scalar G, we utilized three hidden layers, each
consisting of 512 neurons with ReLU activation function. The
output layer consisted of a single neuron representing the
potential v[p](G). TENSORFLOW [59] with the Keras API [60]
was utilized to implement the entire ML process.

Figure 3 shows the band structures of two SiO2 structures
denoted as C1 and C2, which were created by randomly
perturbing the unit cell vectors and internal coordinates of
stishovite (space group P42/mnn) and fibrous (space group
Ibam) polymorphs, respectively. We compare the band struc-
tures obtained using the full-spherical approximation and the
hybrid model. In the full-spherical approximation, we as-
sumes the form v[p](G) for all momentum values as opposed
to the hybrid model. Figures 3(a) and 3(b) show the band
structures using the full-spherical approximation for C1 and
C2, respectively. For C1, the full-spherical approximation
yields satisfactory agreement with its DFT band dispersions,
but for C2, we observe discrepancies in the band structures
because of its anisotropic crystal structure. Figures 3(c) and
3(d) show the energy bands of C1 and C2, respectively, using
the hybrid model. The hybrid model significantly improves
the accuracy of the EPM predictions of bands, being identical
to those from DFT. These results emphasize the importance
of incorporating directional information in the EPs to accu-
rately describe the band structure, especially for anisotropic
materials.

For the crystal structures listed in Table I, the EPM band
structures calculated from the hybrid model are displayed in
Fig. 4. Here, we adjusted each unit cell’s lattice vectors and
internal coordinates randomly perturbed by up to 5% to test
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FIG. 5. (a) The band structure of a crystal with 72 atoms in a unit
cell (see details in text). The band structures of defective cells for
(b) oxygen vacancy and (c) silicon vacancy. Solid gray and dashed
blue lines represent the DFT and the EPM results, respectively. In
(a), Eref = EF . In (b), we set Eref at the band energy of the (N − 2)th
electrons, while in (c) (N + 4)th electrons, where N is the number of
electrons in each crystal structure.

the transferability and predictive capability of our EPM. In
comparing the band structures, we observe a good agreement
between the EPM and DFT results. An exception is noted for
mp-640917 in the conduction bands, attributed to its highly
anisotropic nature.

In Fig. 5(a), we present the band structure of a crystal
having 72 atoms in its unit cell (Materials Project ID of mp-
6930 with a space group of P3221), which exhibits excellent
agreement between the EPM and DFT results. It is worth
noting that our hybrid ML model has been trained on a data
set containing no more than 24 atoms in unit cell, and yet
it accurately predicts the energy bands of a crystal with the
significantly larger cell. This finding highlights the potential
of our method in reliably predicting the electronic properties
of materials of larger cell size, even with trained EPs from
smaller cell sizes.

As shown in all bands from EPM in Figs. 3–5, we confirm
that our hybrid EPM correctly predicts the band degeneracies
at all high-symmetry points, indicating that the EP has learned
the required crystalline symmetry for the potentials. Although
our model does not include the symmetry components unlike
equivariant neural network methods [35,61–64], we were able
to learn the correct symmetry by designing a suitable rotation-
covariant descriptor, generating data, and developing a ML
model.

Figures 5(b) and 5(c) present the energy bands of SiO2 with
oxygen and silicon vacancies, respectively. We confirm that
the defective structures for our test run do not belong to the
learning set. Our EPM accurately predicts the band structures
and defect energy levels if compared with the DFT results.
Our study highlights the capability of EPM to accurately pre-
dict the defect band structure with computational efficiency
compared to DFT.

As a final example, we use both band energies and wave
functions to compute the dielectric function. Figures 6(a) and
6(b) display the imaginary part of the noninteracting dielectric
function of ε (2)

xx (ω) for a pristine SiO2 and one with an oxygen
vacancy, respectively, demonstrating the excellent agreement
between matrix elements obtained from the DFT and EPM
results.

045153-5



ROKYEON KIM AND YOUNG-WOO SON PHYSICAL REVIEW B 109, 045153 (2024)

FIG. 6. Frequency dependent noninteracting dielectric functions
calculated for (a) a pristine SiO2 structure (b) and the SiO2 structure
with an oxygen vacancy.

IV. APPLICATIONS TO SILICON

In this section, we detail calculations conducted on a few
polymorphs of silicon. While we’ve crafted separate datasets
and an ML model for Si, it’s worth noting that they could be
merged with those of SiO2 to create a unified ML model appli-
cable to both SiO2 and Si. To generate data for the ML model,
we prepared three stable polymorphs of Si as listed in Table II.
The unit cells were retrieved from the Materials Project [54].
For each sample, we constructed p × q × r supercells (p, q,
and r are integers) limiting the maximum number of atoms
in the supercell to 24. We then randomly perturbed the length
of the supercell lattice vectors and the internal coordinates of
the atoms within 5% to increase the diversity of the generated
data. In total, we prepared 2496 inputs for DFT calculations.

We employed the same parameters as those used in the
SiO2 to compute descriptors. As a result of reducing the
number of atomic species, c contains 448 features, and p
contains 147 features. For the EP NN, we utilized three hidden
layers, each containing 512 neurons, for the input of (c, G).
Similarly, for the input of (p, G), we employed three hidden
layers, each comprising 128 neurons.

The band structures corresponding to the unit cells listed
in Table II are illustrated in Fig. 7, where we used the hybrid
model for the EPM. To assess our EPM, we introduced ran-
dom variations to the lattice vectors and internal coordinates,
with perturbations up to 5%. For all three distinct structures,
there is an excellent agreement between the DFT and EPM
results, showing the reliability and accuracy of our approach.

TABLE II. Unit cells of Si used for the generation of machine
learning data.

Materials Project ID Number of atoms Space group

mp-149 8 Fd 3̄m (No. 227)
mp-165 4 P63/mmc (No. 194)
mp-1095269 24 Cmcm (No. 63)

FIG. 7. Band structures for Si with Material Project IDs mp-149,
mp-165, and mp-1095269 (see Table II), where the length of the lat-
tice vectors and internal coordinates for each structure are randomly
disturbed within 5% (denoted as “-dis” in labels). Ki (i = 1, . . . , 6)
are reduced coordinates in reciprocal space, representing (0, 0, 0),
(0.5, 0,0), (0.5, 0.5, 0), (0, 0, 0), (0.5, 0.5, 0.5), (0.5, 0, 0) in their
corresponding crystal structures, respectively. Solid gray and dashed
blue lines represent the DFT and the EPM results, respectively.

V. DISCUSSION AND SUMMARY

Before concluding, we provide a couple of remarks on
our universal EPM. Since the present ML model constructs
a converged KS Hamiltonian in momentum space, a high
energy cutoff is not necessary to converge density matrix.
The only limiting factor for the cutoff comes from the kinetic
energy. We demonstrate such an efficiency by reducing the
cutoff for energy bands calculations of silica polymorphs. As
shown in Fig. 8, in case of 40% reduction of the cutoff for
conventional DFT calculations, the almost unaltered bands
can be obtained using only about 4% of computational re-
sources used for DFT. Table III compares the time needed
for band structure calculations using DFT and EPM for three
different systems. For the unit cell of α-quartz containing nine
atoms, the self-consistent DFT calculation using a 5 × 5 × 4 k
mesh for electron density took 107 seconds, and the subse-
quent band structure calculation for 300 k points required
226 seconds. In contrast, at the same energy cutoff of 84 Ry,
the EPM computed the band structure in 47 seconds. Further
reducing the energy cutoff to 50 Ry shortened this time to
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FIG. 8. Band structures obtained with different energy cutoff
values for (a) α-quartz SiO2 (9 atoms), (b) 2 × 2 × 2 supercell (72
atoms), and (c) 3 × 3 × 3 supercell with an oxygen vacancy (242
atoms). For each figure, the solid gray lines represent the DFT results
obtained using an energy cutoff of 84 Ry, while the dotted blue (red)
lines correspond to the EPM results obtained using an energy cutoff
of 50 (40) Ry.
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TABLE III. Comparison of computation times for band structures.

Number of Number of k-mesh Number of time (second)

atoms CPUa nodes (density) k-points (band) DFT density DFT band EPM band (84 Ry) EPM band (50 Ry)

9b 1 5 × 5 × 4 300 107 226 47 26
72c 2 3 × 3 × 2 30 2,294 4,080 807 276
242d 2 2 × 2 × 2 20 31,500 85,740 14,340 6,900

aIntel(R) Xeon(R) CPU E5-2690 v2 @ 2.800GHz (10 cores).
bα-quartz SiO2.
c2 × 2 × 2 supercell.
d3 × 3 × 3 supercell with an oxygen vacancy.

26 seconds. When expanding to a larger 72-atom supercell
using, the self-consistent DFT calculation for density using
a 3 × 3 × 2 k-mesh took 2294 seconds. The band structure
calculation for 30 k points were completed in 4,080 seconds.
However, using the EPM and energy cutoffs of 84 Ry and
50 Ry, the band structure computation times were reduced to
807 and 276 seconds, respectively. We also note that, for a
Hamiltonian matrix from our EPM, a desired set of energies
and wave functions within a target energy window can be
extracted [65,66]. These merits would lead to a significant
reduction of resources in making computation-driven database
for specific materials properties.

We also tested a possible extension to include nonlocal
correlations within DFT. Recent studies [67–70] have shown
that the DFT with self-consistent intersite Hubbard interac-
tions can yield excellent many-body quasiparticle energy gaps
of semiconductors. Using the local charge density from our
EPM, we performed one-shot calculations for the nonlocal
interactions of Si and SiO2 and obtained their energy bands
shown in Fig. 9, agreeing with results from the aforemen-
tioned methods very well.
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FIG. 9. Band structures of (a) Si and (b) SiO2 incorporating the
effects of the on-site interaction U and the intersite interaction V .
In each figure, the solid gray lines represent LDA results, the solid
blue lines denote self-consistent LDA+U+V result, and the dotted
red lines show the one-shot +U+V results performed on top of the
EPM results.

We recognize certain limitations inherent in our frame-
work. First, while our model demonstrates effectiveness in
predicting electronic properties such as band structures, its
capability to accurately predict total energies is not yet fully
developed. The current accuracy of our ML model, approxi-
mately 99.9%, does not meet the criteria required for reliable
total energy predictions. Second, the training of our model
has been focused on periodic systems of a single chemical
composition, which restricts its direct inference to surfaces
or systems with varied chemical compositions. Retraining
with an expanded and more diverse dataset is required for
the reliable predictions for these systems. The refinement
of our model to improve total energy predictions and the
development of a ML architecture and dataset to enhance
extrapolation capabilities present opportunities for future re-
search.

In summary, we present a new empirical computational
method using neural network as accurate as ab initio methods
based on DFT. Our method combines the merits of EPM
with ML approaches by introducing a new hybrid descriptor
reflecting local symmetries of materials reliably even when
they have defects. We demonstrate the versatility and efficacy
of our approach by computing energy bands of polymorphs
of silica and silicon as well as their defective structures.
Since transferable empirical pseudopotentials in our study can
replace all local Hartree, atomic, and exchange-correlation
potentials in KS Hamiltonians without self-consistency, re-
sults can be applied to all post-processing computational tools
within existing first-principles calculations packages. More-
over, as demonstrated in defective SiO2, our methodology
holds promise for nonideal structures. So, we also expect
that our methods can be used to generate transferable empir-
ical pseudopotential for molecules, clusters, and disordered
systems. We anticipate that our universal EPM will play
important roles in constructing accurate computation-driven
materials database.
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