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Solving the Bethe-Salpeter equation in real frequencies at finite temperature
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Self-consistent Hartree-Fock approximation combined with solutions of the Bethe-Salpeter equation offers
a powerful tool for studies of strong correlation effects arising in condensed matter models, nuclear physics,
quantum field theories, and real materials. The standard finite-temperature approach would be to first solve the
problem in the Matsubara representation and then apply numerical analytic continuation to the real-frequency
axis to link theoretical results with experimental probes, but this ill-conditioned procedure often distorts
important spectral features even for very accurate imaginary-frequency data. We demonstrate that the ladder-
type finite-temperature Bethe-Salpeter equation in the Hartree-Fock basis for the three-point vertex function
and, ultimately, system’s polarization can be accurately solved directly on the real frequency axis using the
diagrammatic Monte Carlo technique and series resummation. We illustrate the method by applying it to the
homogeneous electron gas model and demonstrate how multiple scattering events renormalize Landau damping.
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I. INTRODUCTION

The Bethe-Salpeter equation (BSE) was initially in-
troduced to study two-particle Green’s function and the
corresponding bound states in nuclear physics [1]. Later on
it was formulated for studies of optical spectra in solids [2,3]
and molecules [4,5]. In material science/quantum chemistry
methods one often starts by establishing the Hartree-Fock
(HF) basis and proceeds with the electronic structure calcu-
lations and solutions of the BSE for the two-particle Green’s
function and related properties [6–8]. In strongly correlated
models and quantum field theories BSE is used to calculate
the effect of vertex corrections [9,10]. This is especially im-
portant in the case of polarization when looking at charge and
spin responses because neglecting vertex corrections leads to
wrong results [11].

The standard finite-temperature approach is to first solve
the problem in the Matsubara domain [12] and then ap-
ply a numeric analytic continuation procedure to obtain real
frequency results for comparison with experimental obser-
vations. However, even if original data is known with high
accuracy, the final step distorts, or even fails to resolve, im-
portant spectral features unless one imposes constraints on
how the result is supposed to behave [13]. Until recently, this
problem standing in the way of accurate theoretical descrip-
tions of experimentally relevant observables was considered
unavoidable.

The breakthrough development done in the context of
the diagrammatic Monte Carlo (diagMC) for Fermi-Hubbard
model in Refs. [14–16] (see also Refs. [17,18]) was that
one can automatically express real-frequency answers for an
arbitrary diagram using the so-called algorithmic Matsubara
integration (AMI) protocol and, thus, completely eliminate
the need for numeric analytic continuation. It works best for
expansions in terms of “bare” (noninteracting) Green’s func-
tions and frequency-independent interactions. However, for
strongly correlated regimes, when diagrammatic expansions

in terms of original potentials diverge—a typical example
would be the fundamental homogeneous electron gas (HEG),
or jellium, model—expansions should be performed in terms
of “dressed” propagators and screened potentials, which
include some interactions effects nonperturbatively. The cor-
responding generalization of the AMI protocol was described
in Ref. [11] but its implementation for high-order diagram-
matic simulations poses significant technical challenges.

Current applications of the AMI protocol for jellium are
based on expansion in terms of the Yukawa potential, Y =
4πe2/(q2 + κ2), with optimally chosen screening momentum
κ and self-consistent HF single particle propagators, G; see
Refs. [19–21] and the text below Eq. (1). In brief, the AMI
technique lists all diagrams of order N for an observable of in-
terest, eliminates all sums over internal Matsubara frequencies
for every listed diagram by an exact analytic transforma-
tion, and stochastically samples the remaining momentum
integrals. However, it remains biased because all poles are
regularized by adding a small but finite imaginary part to the
external frequency, � → � + iη. The exact answer is recov-
ered by taking the η → +0 limit, which requires extremely
long computation times for high-order diagrams [19].

In this work, we apply the AMI and series resummation
techniques for solving the ladder-type finite-temperature BSE
equation for the three-point vertex function �(3) convoluted
with two Green’s functions to obtain the system’s polarization
directly on the real-frequency axis. We take the crucial new
step of implementing the limit of η → +0 explicitly; the same
procedure may be used for any model with instantaneous in-
teraction. The resulting scheme is not only numerically exact,
it is also very efficient and allows one to reach expansion
orders high enough for performing reliable resummations
of divergent series. The same expansion orders cannot be
reached if simulations are performed with appropriately small
finite-η regularization.

For illustration, we compute the polarization of the HEG
in the HF basis and compare it to the random-phase-
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FIG. 1. Flowchart of the technique. Calculation starts from the
self-consistent HF solution for the proper self-energy, �HF (a), with
the chemical potential, μ, constantly adjusted to keep the number
density, n, fixed. Converged solution, G, is subsequently used for
computing the system’s polarization, � (b), from the series of ladder
diagrams on the real frequency axis. The series can be written in
terms of the BSE (c) for the dressed vertex function, �(3), or as Taylor
series expansion in the number of interaction lines. Monte Carlo
simulations in the η → 0 limit are used to compute partial ith order
contributions (d). In all diagrams solid and dashed lines correspond
to G and Yukawa potential, respectively.

approximation (RPA) predictions (also in the HF basis) to
see the effects of multiple particle-hole scattering processes.
In particular, we find that the Landau damping coefficient is
significantly increased relative to the RPA prediction.

II. MODEL AND SIMULATION SETUP

The Hamiltonian of the HEG is defined by

H =
∑

i

k2
i

2m
+

∑
i< j

e2

|ri − r j | − μN, (1)

with m the electron mass, μ the chemical potential, and e the
electron charge. We use the inverse Fermi momentum, 1/kF ,
and Fermi energy, εF = k2

F /2m, as units of length and energy,
respectively; the definition of the Coulomb parameter rs in
terms of the particle number density, ρ = k3

F /3π2, and Bohr
radius, aB = 1/me2, is standard: 4πr3

s /3 = 1/ρa3
B.

For a meaningful diagrammatic expansion one has to work
with screened interactions and counterterms. In this work we
follow the setup formulated in Ref. [20] and expand in the
Yukawa potential on top of the self-consistent HF solution
for the Green’s function: G−1 = G−1

0 − �HF [G], where G0

is the bare Green’s function and �HF is the Fock proper
self-energy shown in Fig. 1(a) (Hartree diagram is absent by
charge neutrality). In the converged HF solution, G = [iωs −
k2/2m − �HF (k) + μ]−1 ≡ (iωs − εk + μ)−1, the chemical
potential is also self-consistently adjusted to keep the electron
density fixed; see upper part of Fig. 1. By incorporating Fock
diagrams into G one simplifies the expansion by omitting all
diagrams with Fock-type self-energy insertions.

FIG. 2. Real and imaginary parts of the polarization �0 in the
HF basis [see Fig. 1(b) with �(3) = 1] at rs = 2 for Q/kF = 0.09844
and �/εF = 0.2 as a function of η (the smallest value of η/εF

here is 10−5).

Formally, not only the screening momentum κ in the
Yukawa potential but the entire potential itself is arbitrary
as long as it does not feature divergent behavior at q =
0. Any difference between the Coulomb, V (q) = 4πe2/q2,
and expansion potentials is taken care of by a counterterm
C(q) = 1/V (q) − 1/Y (q), which keeps the field theoretical
representation of the model exact [20,22,23]. For example, the
physical screened interaction is given by 1/W = 1/Y − [� −
C(q)] ≡ 1/V − �, where � is the system polarization. Ulti-
mately, final results are supposed to show little dependence on
the choice of Y (q). Flexibility in reformulating the diagram-
matic expansion can, and should be, used for optimization of
series convergence properties. This is precisely how recent
work reported in Refs. [20,21] achieved unprecedented accu-
racy for single-particle and static linear response properties
of HEG.

In this work we apply the above field-theoretical setup to
explore how the polarization is modified by multiple scatter-
ing of the particle-hole pair at finite temperature. Since the
calculation is performed directly on the real frequency axis,
our results can be immediately used to obtain the Landau
damping parameter, see Ref. [24], or describe the so-called
charge loss function, ImW . The set of diagrams involved
is presented in Figs. 1(b), 1(c) and 1(d), where the ladder-
diagram series for polarization are first expressed in terms of
the BSE for the dressed three-point vertex function �(3), see
1(c), which is then convoluted with two Green’s functions; see
1(b). As noticed in Ref. [11], if the calculation is restricted
to have no more than one ladder rung, the result for � =
�0 + �1, where �i is the contribution of the diagram with
i rungs, Fig. 1(d), may violate causality. Also, an observation
that �1 is not small compared to �0 raises the question of
importance of contributions from high-order ladder diagrams.
Summation of the entire ladder series is supposed to solve
both problems.

Before proceeding, let us elaborate on the importance of
considering very small values of η when using it for regular-
ization of poles. Even the lowest order diagram demonstrates
significant finite-η correction at low temperature; see Fig. 2.
At T/εF = 0.02 the finite-η effect in �0 is as large as 20% for
η/εF = 0.005. One may attempt to extrapolate results towards
η = 0, but this procedure is not guaranteed to work for all
higher-order contributions because the η dependence is not
necessarily monotonic.
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III. BSE IN THE η → +0 LIMIT

As discussed above, physical results may not depend on the
choice of Y (q) for setting up the expansion. This, in particu-
lar, implies that good approximations should produce results
nearly independent of the choice of the screening momentum
in Y (q); any significant dependence would be a clear sign of
the approximation bias. This is precisely why � = �0 + �1

needs to be supplemented with additional diagrams which
are supposed to restore causality and change the function
shape. In what follows we demonstrate that summation of
the entire ladder series produces results with relatively weak
dependence on κ2 when the latter is changed by more than a
factor of two in the vicinity of the Thomas-Fermi momentum
κT F = 6πρe2/εF . In this work we perform all calculations for
rs = 2 when κT F ≈ 1.15kF .

The ith order contribution to the ladder diagram series for
�, see Figs. 1(b) and 1(c), is given by (in what follows we
treat � and Q as external parameters and do not mention them
explicitly as function variables)

�i = −2

⎛
⎝ i+1∏

j=1

∫
dp j

(2π )3

⎞
⎠ i+1∏

j=1

Fp j

i∏
j=1

Y (p j+1 − p j ), (2)

where

Fp = np+Q − np

� − εp+Q + εp + iη
, (3)

with np = (eεp−μ + 1)−1. While this setup is immediately
suitable for Monte Carlo simulations with small finite η, it
quickly becomes too expensive as i increases. The reason is
the severe sign problem coming from Monte Carlo sampling
of the principle part integrals around poles of F functions.

This problem can be eliminated by taking the limit of η →
+0 explicitly with the help of the limη→+0

1
x+iη = −iπδ(x) +

P 1
x formula where P stands for the principal part value. In

practice it means that integrals featuring simple poles can be
transformed identically as∫ b

a
dx

h(x)

� − g(x) + iη
=

∫ b

a
dx[α(x, x0) + iγ (x, x0)], (4)

where x0 is the solution of the g(x0) = � equation and

γ (x, x0) = −π
h(x0)

|g′(x0)|N (x, x0) if x0 ∈ (a, b),

γ (x, x0) = 0 otherwise, (5)

α(x, x0) = 1

2

[
h(x)

� − g(x)
+ h(xr )

� − g(xr )

]
if (x0, xr ) ∈ (a, b),

α(x, x0) = h(x)

� − g(x)
otherwise, (6)

with xr = 2x0 − x. Here N (x, x0) is an arbitrary function
normalized to unity on the (a, b) interval—it may explicitly
depend on x0. By construction, the α + iγ function is not sin-
gular at the pole location. In our case, we choose variables x =
cos p̂Q to regularize poles. For a given spherically symmetric
dispersion relation εp the location of the pole x0(p, Q,�) as
a function of p is tabulated on a fine grid at the start of the
simulation and subsequently is treated as a known function.

However, taking the limit η → +0 also involves “splitting”
the contribution of the diagram with variable x into up to
three contributions from variables x, x0, and xr if (x0, xr ) ∈
(a, b). As the ladder diagram order increases, one now faces
the problem of computing up to 3i+1 contributions for some
multidimensional momentum points {p j} because momentum
variables are linked by potentials Y ; see (2). This remaining
problem is solved by “decoupling” momentum integrals using
Fourier transforms of Yukawa potentials

Y (p j+1 − p j ) =
∫

dr jY (r j ) ei(p j+1−p j )·r j , (7)

where Y (r) = (e2/r) e−κr . Now

�i = −2

⎛
⎝ i∏

j=1

∫
dr jY (r j )

⎞
⎠ i+1∏

j=1

∫
dp j

(2π )3
F̃p j ,r j−1−r j , (8)

with

F̃p,R = eiR·p np+Q − np

� − εp+Q + εp + iη
. (9)

Here we assume that r0 = ri+1 = 0 for convenience of com-
pact notations. According to (8), for a given set of integration
variables the integrand is a product of functions which de-
pend only on one momentum variable. When the η → +0
limit is taken, each F̃ function may be split into up to three
contributions, but the computational cost of evaluating the
total contribution is now reduced to 3(i + 1) instead of 3i+1.
Additional real space integrals do not pose any technical or
efficiency problems for Monte Carlo simulations, which all
can be performed on a single laptop.

IV. SERIES CONVERGENCE

The convergence of the ladder series strongly depends on
the R = �/QvF ratio with vF the Fermi velocity; see panels
(a) and (b) in Fig. 3 where we plot partial contributions to
polarization � from ladder diagrams in �(3). For large and
small R we observe excellent convergence for all values of
κ considered in this work. However, in the R ∼ 1 region the
series start diverging for κ � 1 and the problem is getting
progressively more severe as κ is reduced. At Q/kF ≈ 0.1,
the series for κ = 0.8 are already visibly beyond the conver-
gence radius. The dimensionless parameter controlling series
convergence can be estimated from

g ∼ ρF
4πe2

κ2
∼ κ2

T F

2κ2
, (10)

where ρF is the Fermi-energy density of states per spin. When
the screening momentum is increased to κ = 1.2, the series
start to converge for any value of R [similar to what is ob-
served for larger momentum and higher temperature in panels
(a) and (b) in Fig. 4].

If we formally consider ladder diagrams as Taylor series
expansion in powers of parameter ξ with the physical result
corresponding to ξ0 = 1, see the lower-right block in Fig. 1,
then series resummation can be performed with the help of
the conformal map transformation, z = ξ f (ξ ) � ξ = zs(z) ≡∑∞

m=1 cmzm. By substituting ξ (z) into the expression for �

in Fig. 1(e), one generates Taylor series in powers of z with
the physical result corresponding to z0 = ξ0 f (ξ0). The map is
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FIG. 3. Partial Im�i (a) and Re�i (b) contributions to polariza-
tion from ladder diagrams with i rungs for Q/kF = 0.09844, rs = 2,
T/εF = 0.02, and κ/kF = 0.8. Results for the final answer after
series resummation (see text) are shown in panels (c) and (d) for Im�

and Re�, respectively. The thin dashed lines in panels (c) and (d) are
the zeroth-order �0 results for κ/kF = 0.8. Error bars are smaller
than symbol sizes.

FIG. 4. Partial Im�i (a) and Re�i (b) contributions to polar-
ization from ladder diagrams with i rungs for Q/kF = 1.0, rs = 2,
T/εF = 0.1, and κ/kF = 1.2. Results for the final answer after sum-
ming up the series are shown in panels (c) and (d) for Im� and
Re�, respectively. The thin dashed lines in panels (c) and (d) are
the zeroth-order �0 results for κ/kF = 0.8. Error bars are smaller
than symbol sizes.

designed to have z0 within the convergence radius so that the
new Taylor series in powers of z0 converge. We find that all
our data can be successfully resummed by using a simple-pole
map, z = ξ/[ξ + ξp(R)], with ξp(R = 1) ∼ 1 and increasing
away from the R = 1 point. The final results for three values
of the Yukawa screening are shown in panels (c) and (d)
in Figs. 3 and 4. Remarkably, despite substantial differences
from the zeroth-order RPA-type results, there is extremely
close agreement between the final curves for different values
of κ (note that κ2 was changed by more than a factor of 2). Re-
summation of Taylor series, as opposed to self-consistent and
skeleton sequences, does not lead to multivalued solutions of
the type observed in Ref. [25], not to mention that resummed
and converged “as is” curves end up on top of each other.

At large momentum Q/kF = 1 and higher temperature
T/εF , the series converge well for all values of κ/kF consid-
ered and can be summed up “as is.” The final converged results
are shown in panels (c) and (d) in Fig. 4. The dependence on
the Yukawa screening is barely detectable in this parameter
regime. While Figs. 3 and 4 present results for rs = 2, we did
not see any notable differences in efficiency of calculations
either for rs = 1 or for rs = 4, in agreement with Eq. (10),
which predicts that for κ ∼ κT F one has g ∼ 1.

Within the RPA, the slope of Im� ∝ �/Q dependence is
determined by the electron dispersion near the Fermi surface.
Multiple scattering changes this result by nearly 100%, which
has direct implications for accuracy of Landau damping (and
other energy losses in metals) estimates based on the RPA-
type calculations (for more details on Landau damping, see
Ref. [24]).

V. CONCLUSIONS

We presented an efficient technique for computing ladder-
diagram series for polarization on the real frequency axis
at finite temperature, or, equivalently, for solving the Bethe-
Salpeter equation for the three-point vertex function in the
ladder approximation and convoluting it with two Green’s
functions in the Hartree-Fock basis. Our method is nu-
merically exact once all approximations at the level of
diagrams involved are specified, i.e., it does not involve the
ill-conditioned numerical analytic continuation, finite regu-
larization of the poles, or momentum grids for evaluating
multidimensional integrals.

Remarkably, final results are nearly independent of the
Yukawa screening used to set up the expansion, indicating
small bias coming from this auxiliary parameter. We find that
multiple scattering of the particle-hole pair results in signif-
icant changes of the polarization dependence on the �/Q
ratio and, correspondingly, of the Landau damping. We expect
that our scheme can be adapted for analogous simulations of
realistic materials and further advanced to include retardation
effects for effective interaction potentials.
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