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Motivated by recent experiments that observed low-frequency second-order optical responses in doped striped
superconductors, here we investigate the nonlinear electrodynamics of systems exhibiting a charge density wave
(CDW) order parameter. Due to the Bragg scattering off the CDW order, an incoming spatially homogeneous
electric field in addition to zero momentum current generates umklapp currents that are modulated in space
at momenta of the reciprocal CDW lattice. In particular, here we predict and microscopically evaluate the
umklapp shift current, a finite momentum analog of the regular shift current which represents the second-order
optical process that downconverts homogeneous AC electric field into low-frequency, zero momentum current.
Specifically, we evaluate real-time response functions within mean-field theory via the Keldysh technique and
use the Peierls substitution to compute observables at finite momenta in lattice models. We find that systems
with certain lattice symmetries (such as inversion symmetry), where the regular shift current is disallowed, may
give rise to the umklapp one. We apply our framework to investigate lattice symmetries in layered materials with
helical-like stripes and show that both types of shift currents provide insight into the nature of intertwined phases
of matter. Finally, we discuss the relation of our findings to recent experiments in striped superconductors.
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I. INTRODUCTION

Strongly correlated materials, such as high-Tc cuprate
superconductors, typically feature a rich phase diagram, ex-
hibiting a complex interplay of superconducting, spin, charge,
and structural orders [1]. A canonical example is the family
of La2−xBaxCuO4 cuprates that exhibit both stripe charge
and superconducting orders [2–4]. Interestingly, in these
systems, the stripes have no clear signatures in the lin-
ear optical measurements [5]. However, the interplay of the
two orders can lead to unique nonlinear electromagnetic re-
sponses, and, in particular, the emergence of a giant third
harmonic in the out-of-plane nonlinear terahertz reflectivity
was suggested as evidence for superfluid stripes [5]. Moti-
vated to explore peculiar responses in the electrodynamics
of cuprates, there has been a renewed effort in developing
and applying nonlinear and pump-probe spectroscopies, and
recent experimental progress has lead to the detection of in-
version symmetry breaking via second-harmonic generation
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[6,7], observation of charge density wave sliding motion [8],
and detection of terahertz emission in photoexcited striped
superconductors [9].

This experiment in Ref. [9] on the doped striped cuprate
superconductor La2−xBaxCuO4 poses several puzzles that re-
quire careful theory examinations. The experimental findings
can be summarized as follows. Upon strong photoexcitation at
optical frequency, coherent outgoing radiation was observed,
with the frequency being sharply peaked at the Josephson
plasma resonance, which is at least two orders smaller in
magnitude than the pump pulse frequency. Notably, this effect
is present only in the phase where both superconducting and
stripe orders coexist. It was argued in Refs. [9,10] that behind
the experiment is a second-order optical nonlinearity in the
form of photocurrent, which is activated due to the stripe or-
der. More precisely, under the assumption that stripes give rise
to such a shift current, it was demonstrated in Ref. [10] that
the interplay between this current and low-momenta surface
Josephson plasmons results in radiation that is sharply peaked
in frequency, consistent with the experiment. However, while
stripes in cuprates are known to exhibit various linear and non-
linear optical effects [11–19], in accordance with symmetry
considerations, one does not expect the emergence of shift
currents, at least for the simplest models of stripes [20–23].
Motivated to resolve this issue, we develop a general theory
for the nonlinear electromagnetic response of materials with
a charge density wave (CDW) order parameter. We subse-
quently apply this formalism to investigate layered systems
with stripes.
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A special feature of materials with a CDW order, which
will be crucial to our subsequent discussion, is that zero
momentum pump pulse can generate not only homogeneous
currents but also the umklapp ones at momenta of the CDW
lattice, resulting in unique signatures in nonlinear responses.
Therefore nonlinear processes in CDW systems are charac-
terized not only by frequency mixing [24–33] but also by
Bragg momenta mixing. Remarkably, as the semiphenomeno-
logical analysis of Ref. [10] indicated, regular homogeneous
shift current is insufficient to explain the terahertz emission
experiment [9], and an appreciable umklapp shift current is
required. Motivated to provide a microscopic foundation be-
hind the discussions of Refs. [9,10], here we develop a general
microscopic theory for such low-frequency umklapp shift cur-
rent, the central focus of the paper. By investigating various
charge order patterns of striped materials, we argue that the
umklapp shift current brings insight into the understanding of
intertwined phases of matter. We note that this current can be
experimentally detected (we briefly discuss this in Sec. IV B),
even with far-field measurements.

The paper is structured as follows: In Sec. II, we formulate
a general theory for perturbative evaluation of electrodynamic
properties in CDW materials, where the effects of the elec-
tronic bandstructure back folding play a crucial role. Then, in
Secs. III and IV, we evaluate linear and second-order electro-
magnetic responses, respectively, and, in particular, provide
the expression (26) for the umklapp shift current. In Sec. V,
we apply the developed framework to investigate various lat-
tice symmetries and their implications for the second-order
response in layered materials with helical-like stripes. Intrigu-
ingly, we find certain patterns of stripes cannot give rise to
the regular shift current, but can host the umklapp one. We
point out that the putative shift currents observed in the recent
photoexcitation experiments in striped superconductors [9]
provide insights into the structure of CDW and superconduct-
ing orders in these systems [34]. Finally, we briefly summarize
our findings and discuss the outlook for future directions in
Sec. VI.

II. THEORETICAL FRAMEWORK

In this section, we set up the formalism for evaluating the
nonlinear electromagnetic response of systems exhibiting a
CDW order parameter. We remark that our derivation closely
follows the diagrammatic approach of Ref. [29]. We differ
essentially in two aspects. The first one is that we employ
the Keldysh technique to evaluate various real-time response
functions; this generalization, in addition to its convenience,
provides a more transparent and physical structure of the
perturbative expansion. More essential is that we extend the
previous work to evaluate the responses at a finite momentum,
such as the umklapp shift current, which we discuss in the
following sections.

A. Operators in the presence of the external
homogeneous electric field

Here we treat the effects of external homogeneous (zero
momentum) pump pulses perturbatively and work in the so-
called velocity gauge [29,35,36]. In systems with a CDW

order, such a pump pulse generates electric fields both at zero
momentum and at momenta of the CDW reciprocal lattice.
Below we are interested in evaluating the response of an
electric current at a finite momentum to the zero momentum
electric field only. To evaluate any observables, we first need
to provide the corresponding expressions for these observ-
ables in the presence of the external homogeneous applied
field. To this end, we consider the following microscopic
model, where the external electromagnetic field is incorpo-
rated via the Peierls substitution (throughout the paper, we set
h̄ = c = kB = 1):

Ĥ = Ĥkin + Ĥint, (1)

where the kinetic energy is given by

Ĥkin = −
∑

i j

ti j ĉ
†
i ĉ j exp

(
−ie

∫ r j

ri

dr · A(r, t )

)
. (2)

Here ti j encode hopping elements on a cubic lattice, e is the
electric charge, and A(r, t ) is the vector potential. ĉ†

i and
ĉi are the fermionic creation and annihilation operators at
site i, respectively. At this stage, we do not need to specify
the interaction Hamiltonian Ĥint; however, for the presented
framework to be consistent, one requires that the Peierls
substitution does not affect Hint (an example of an allowed
Hamiltonian is the density-density Coulomb interaction).

The electric current density can be evaluated from the
derivative of the kinetic Hamiltonian Ĥkin with respect
to the vector potential in the usual manner. Specifically, to get
the current density at a finite momentum Q = Qẑ, we write the
vector potential as A(r, t ) = A0(t ) + δAQ(r, t ), where A0(t )
is the homogeneous component and δAQ(r, t ) represents the
harmonic at momentum Q:

δAQ(r, t ) = (AQ(t )eiQz + A∗
Q(t )e−iQz )ẑ. (3)

Then the current operator at Q and pointing along the z axis is
given by

ĴQ ≡ −δĤkin

δA∗
Q

∣∣∣∣∣
AQ=0

= e

Q

∑
i j

ti j ĉ
†
i ĉ j[e

−iQ·r j − e−iQ·ri ]

× exp[−ie(r j − ri ) · A0(t )]. (4)

Importantly, Eq. (4) includes the homogeneous component
A0(r, t ) to arbitrary order, which in turn will allow us to ac-
curately evaluate the corresponding nonlinear responses. For
concreteness, below we assume A0(t ) = A0(t )ẑ. In this case,
while the zero momentum current operator can be obtained
similarly from evaluating the variational derivative with re-
spect to A0, it can also be obtained from Eq. (4) by taking
the limit Q → 0. The presented framework can be straightfor-
wardly generalized to arbitrary directions of both the external
field and electric current.

Here we primarily investigate the electrodynamic proper-
ties of layered materials. For this reason and for simplicity,
we assume that the coupling between layers takes the form of
nearest-neighbor hopping tz (the discussion below can be cor-
respondingly modified if this coupling between the layers is
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different). Aiming at evaluating the second-order response, we
now expand the kinetic Hamiltonian and the current operators

up to the second order in A0(t ) and write them in momentum
space:

Ĥkin =
∫

d3k
(2π )3

H0ĉ†
kĉk =

∫
d3k

(2π )3
ε(k)ĉ†

kĉk − 2etz

∫
d3k

(2π )3

[
A0(t ) sin kz − 1

2
eA2

0(t ) cos kz

]
ĉ†

kĉk + · · · , (5)

Ĵ0 = 2etz

∫
d3k

(2π )3

[
sin kz − eA0(t ) cos kz − 1

2
e2A2

0(t ) sin kz

]
ĉ†

kĉk + · · · , (6)

ĴQ = 4etz
Q

sin
Q

2

∫
d3k

(2π )3

[
sin

(
kz + Q

2

)
− eA0(t ) cos

(
kz + Q

2

)
− 1

2
e2A2

0(t ) sin

(
kz + Q

2

)]
ĉ†

kĉk+Q + · · · . (7)

Here the integrals are over the first Brillouin zone (BZ)
kα=x,y,z ∈ (−π, π ], associated with the cubic lattice (we set
the lattice constant to 1).

B. Inclusion of the CDW order

If the system is translationally invariant, then a zero mo-
mentum electric pump can only generate a zero momentum
electric current density. The situation becomes more interest-
ing if the translational invariance is spontaneously broken,
in which case a zero momentum electric pump can produce
currents at Q = QCDW. Here we consider a commensurate
CDW order parameter, which we describe as

Ĥkin →
∫ ′ d3k

(2π )3
ĉ†

k,m(H0 + HCDW)mnĉk,n, (8)

where the integration now is over the reduced BZ defined by
the CDW wave vectors. The commensurability condition is
encoded in the fact that HCDW is a finite-dimensional matrix
(specific examples are considered in the following sections);
for simplicity, we assume this matrix HCDW, which encodes

the strength of the CDW order parameter, comes from Ĥint

via mean-field theory. In our notations, the state |k, n〉 in the
reduced BZ corresponds to the state |k + Gn〉 in the original
BZ, where Gn is a wave vector of the reduced reciprocal
lattice. For brevity, below we often omit writing the explicit
dependence on k. The current operators in Eqs. (6) and (7)
can then be written as

Ĵ0 = e
∫ ′ d3k

(2π )3
ĉ†

m

(
J (0)

0 + eA0(t )J (1)
0

+ 1

2
e2A2

0(t )J (2)
0 + · · ·

)
mn

ĉn, (9)

ĴQ = e
∫ ′ d3k

(2π )3
ĉ†

m

(
J (0)

Q + eA0(t )J (1)
Q

+ 1

2
e2A2

0(t )J (2)
Q + · · ·

)
mn

ĉn. (10)

We now introduce unitary operators Uk such that the matrix
U †

k (H0 + HCDW)Uk becomes diagonal. In the new basis, the
operators read

Ĥ =
∑

a

∫ ′ d3k
(2π )3

εaâ†
aâa + V̂E , V̂E = −eA0(t )

∑
ab

∫ ′ d3k
(2π )3

â†
a

(
h(0) + 1

2
eA0(t )h(1) + · · ·

)
ab

âb, (11)

Ĵ0 = e
∑

ab

∫ ′ d3k
(2π )3

â†
a

(
h(0) + eA0(t )h(1) + 1

2
e2A2

0(t )h(2) + · · ·
)

ab

âb, (12)

ĴQ = e
∑

ab

∫ ′ d3k
(2π )3

â†
a

(
h̃(0) + eA0(t )h̃(1) + 1

2
e2A2

0(t )h̃(2) + · · ·
)

ab

âb, (13)

where ĉn = Unmâm and h(0) ≡ U †J (0)
0 U , h̃(0) = U †J (0)

Q U , etc.
We remark that, in practice, the eigenvalues εa(k), which rep-
resent the new Bloch bands in the presence of the CDW order
parameter, and unitaries Uk are found numerically. Equa-
tions (11)–(13) represent our starting point for evaluating both
linear and nonlinear electromagnetic responses perturbatively.
Below we omit writing the prime sign that indicates the inte-
gration is over the reduced BZ.

We remark that, in developing the presented framework,
we are guided by the experiments of Ref. [9]. Notably, there,
photoexcitation of the cuprate system with a stripe order
occurs at optical frequency (�pump ≈ 375 THz), which is
much greater than all energy scales associated with collective
modes; at the same time, the resulting outgoing radiation is

in the terahertz range (�out 	 1 THz). It implies that this
downconversion from high to low frequencies should be un-
derstood from the perspective of mobile electrons rather than
slow collective modes.

C. Keldysh formulation of the perturbative expansion

The evaluation of arbitrary response functions of interest
can be conveniently carried out using the Keldysh technique
[37]. To this end, we write the partition functional as a path
integral in real time:

Z[A0] =
∫

D(�̄,�) exp(iS[�̄,�; A0]). (14)
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The action is given by

S[�̄,�; A0] = S0[�̄,�] − Tr(�̄VE γ̂ cl�)

= S0[�̄,�] −
∫ ∞

−∞
dt

∫
d3k

(2π )3

× �̄a(t )[VE (t )]abγ̂
cl�b(t ), (15)

where �a=cl, q(k, t ) and �̄a(k, t ) encode the two-component
fermionic fields that live in the real-time Keldysh space. In
the second line, we indicated that the trace operation in-
volves the integration over both time and momentum and
summation over the Bloch bands. Here S0[�̄,�] is the un-
perturbed quadratic action, fully characterized by the bare
Green’s function Ĝαβ (t, t ′) ≡ −i〈�α (t )�̄β (t ′)〉0, which can
be conveniently written in the Keldysh space as

Ĝαβ (t, t ′) =
(

GR(t, t ′) GK (t, t ′)
0 GA(t, t ′)

)
. (16)

Here GR, GA, and GK are the usual retarded, advanced,
and Keldysh Green’s functions, respectively. In the basis of
Eq. (11), they are given by

GR(A)
a (ω) = 1

ω − εa ± iη
, (17)

GK
a (ω) = −2π iF (ω)δ(ω − εa), (18)

where F (ω) = 1 − 2nF (ω), nF (ω) is the Fermi-Dirac func-
tion. Below, we are interested in computing observables of the
type O(t ) = 〈Oabâ†

a(t )âb(t )〉, which in the Keldysh technique
are understood as

O(t ) =
∫

D(�̄,�) exp(iS[�̄,�; A0])
1

2
Oab�̄a(t )γ̂ q�b(t ).

In the equations above, γ̂ cl = Î and γ̂ q = σx are the standard
2 × 2 matrices in the Keldysh space.

We proceed perturbatively in the amplitude of the external
pump field A0(t ) and primarily focus on evaluating the umk-
lapp current JQ(t ):

JQ(t ) = e

2

〈
�̄(t )

(
h̃(0) + eA0(t )h̃(1) + 1

2
e2A2

0(t )h̃(2) + · · ·
)

γ̂ q�(t )

×
(

1 − i Tr(�̄VE γ̂ cl�) − 1

2
[Tr(�̄VE γ̂ cl�)]2 + · · ·

)〉
0

, (19)

where the average here is with respect to the bare action S0[�̄,�]. Since the latter is only quadratic in the fermionic fields �

and �̄, the expectation values of any observables can be computed using Wick’s theorem.

III. LINEAR RESPONSE

The above framework formally allows us to compute the linear-response umklapp current, which might be interesting on its
own. To the leading order in A0(t ), we get two contributions from Eq. (19):

J (1)
Q (t ) = e2A0(t )

2
〈�̄(t )h̃(1)γ̂ q�(t )〉0 − ie

2

〈
�̄(t )h̃(0)γ̂ q�(t ) Tr(�̄V (1)

E γ̂ cl�)
)〉

0

= e2A0(t )
∑

a

∫
d3k

(2π )3
fah̃(1)

aa + e2
∫

dt ′ �(t, t ′)A0(t ′), (20)

where

�(t, t ′) = i

2

∑
ab

∫
d3k

(2π )3
h(0)

ab h̃(0)
ba

[
GR

a (t, t ′)GK
b (t ′, t ) + GK

a (t, t ′)GA
b (t ′, t )

]
. (21)

Using E0(t ) = −∂t A0(t ), we obtain the linear conductivity [J (1)
Q (ω) = σ

(1)
Q (ω)E0(ω)]:

σ
(1)
Q (ω) = e2

iω

(∑
a

∫
d3k

(2π )3
fah̃(1)

aa + �(ω)

)

= e2

iω

( ∑
a

∫
d3k

(2π )3
fah̃(1)

aa +
∑

ab

∫
d3k

(2π )3

h(0)
ab h̃(0)

ba fab

ω − εab + iη

)
. (22)

Here fab = fa − fb is the difference in the fermionic occupa-
tion numbers; εab = εa − εb is the energy difference between
the corresponding Bloch bands. Equation (22) is the central
result of this section, and it states that in systems with a
CDW order parameter, zero momentum electric field can gen-
erate a nonzero umklapp current; within linear response, the

frequency of this current is the same as that of the external
perturbation. Strictly speaking, following the philosophy out-
lined in the previous section, the result in Eq. (22) is valid only
at large frequencies; at low frequencies, one will have to take
into account collective charged excitations and go beyond the
mean-field approach. We remark that the regular conductivity
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σ
(1)
0 (ω), associated with the zero momentum electric current,

is obtained from Eq. (22) by replacing h̃ with h. In the
next section, we turn to computing the second-order umklapp
current.

IV. SECOND-ORDER RESPONSE AND THE UMKLAPP
SHIFT CURRENT

A. General results

To the second order in A0(t ), Eq. (19) gives four terms:

J (2)
Q (t ) = e3A2

0(t )

4
〈�̄(t )h̃(2)γ̂ q�(t )〉0 − ie2A0(t )

2

〈
�̄(t )h̃(1)γ̂ q�(t ) Tr

(
�̄V (1)

E γ̂ cl�
)〉

0

− ie

2

〈
�̄(t )h̃(0)γ̂ q�(t ) Tr

(
�̄V (2)

E γ̂ cl�
)〉

0 − e

4

〈
�̄(t )h̃(0)γ̂ q�(t )

[
Tr(�̄V (1)

E γ̂ cl�)
]2〉

0. (23)

In the frequency domain, one can introduce the second-order umklapp conductivity σ
(2)
Q (ω; ω1, ω2) as

J (2)
Q (ω) =

∫
dω1

2π

∫
dω2

2π
(2π )δ(ω − ω1 − ω2)σ (2)

Q (ω; ω1, ω2)E0(ω1)E0(ω2). (24)

Proceeding similarly to the above and using Wick’s theorem, we obtain

σ
(2)
Q (ω; ω1, ω2) = e3

iω1iω2

∑
abc

∫
d3k

(2π )3

[
fah̃(2)

aa + h(0)
ab h̃(1)

ba fab

ω2 − εab + iη
+ h(0)

ab h̃(1)
ba fab

ω1 − εab + iη
+ h(1)

ab h̃(0)
ba fab

ω − εab + iη

+ h(0)
ab h(0)

bc h̃(0)
ca

1

ω − εac + iη

(
fab

ω1 − εab + iη
+ fab

ω2 − εab + iη
− fbc

ω1 − εbc + iη
− fbc

ω2 − εbc + iη

)]
. (25)

Equation (25) is the most generic answer for the second-order electromagnetic response, from which, in particular, we get the
conductivity associated with the umklapp shift current (for linearly polarized incoming light that we consider here and within
the set of approximations we employ, only the shift current is found to be nonzero; see also Ref. [38]):

σ
(2)
Q (0; ω,−ω) = e3

ω2

∑
ab,c �=a

∫
d3k

(2π )3

[
fah̃(2)

aa + h(0)
ab h̃(1)

ba fab

ω − εab + iη
+ h(0)

ab h̃(1)
ba fab

−ω − εab + iη
− h(1)

ab h̃(0)
ba fab

εab

− h(0)
ab h(0)

bc h̃(0)
ca

1

εac

(
fab

ω − εab + iη
+ fab

−ω − εab + iη
− fbc

ω − εbc + iη
− fbc

−ω − εbc + iη

)]
. (26)

Equation (26) is the main result of this section, which states
that a high-frequency zero momentum pump electric field can
be downconverted to a low-frequency umklapp shift current.
We remark that in obtaining Eq. (26), i.e., when taking the
limit of the outgoing frequency to zero in Eq. (25), it is under-
stood that the limit η → 0 is taken first. Phenomenologically,
η partially accounts for the effects of the short-range quenched
disorder in the sample. When the disorder is notable and the
spectral width of the incident radiation is narrow, one instead
might want to consider the limit of the outgoing frequency to
zero first. In this case, one starts from Eq. (25) and carefully
carries out the corresponding evaluation.

The expression for the regular shift current [29] is obtained
from Eq. (26) via replacing all matrices h̃ with h. In the
literature [39–41], a more standard, well-known expression
was derived using the length gauge:

σ
(2)
αββ (0; ω,−ω) = 2πe3

∫
d3k

(2π )3

∑
ab

fab

× Im
(
rβ

barβ

ab;α

)
δ(εab − ω), (27)

where indices α and β represent the Cartesian direc-
tions; rα

ab(k) = vα
ab(k)/iεab(k) for a �= b and zero otherwise;

vα
ab(k) = 〈a|∂kα

H (k)|b〉 encodes the velocity operator matrix

elements. We also introduced [39–41]:

rα
ab;β = − rα

ab�
β

ab + rβ

ab�
α
ab

εab
+ w

αβ

ab

iεab

− 1

εab

∑
c �=a,b

(
vα

acrβ

cb − rβ
acv

α
cb

)
for a �= b,

where �α
ab = vα

aa − vα
bb and w

αβ

ab (k) = 〈a|∂kα
∂kβ

H (k)|b〉. Of
course, the two expressions for the regular zero momentum
shift currents in the two gauges agree with each other (we
numerically checked this statement), but to see this explicitly
requires a nontrivial application of sum rules that relate the
two gauges to each other (see, for example, Appendix B of
Ref. [42] for details).

B. Relation to experiments

We turn to discuss how the umklapp shift currents can be
observed in experiments. The momentum of such currents is
set by the period of the CDW order, while their frequency is
close to zero. This puts them far outside the light cone, and, as
such, one expects radiation generated by these currents to be
evanescent outside the sample. The decay length of the elec-
tric field in the air should be comparable to the wavelength.
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Thus generically, detection of an umklapp current requires
local probes, such as scanning near-field optical microscopy
(SNOM) detectors [44].

Remarkably, in certain systems, it can also be detected
with far-field experiments, similarly to how the regular shift
current has been observed in noncentrosymmetric materials
[15,45–49]. A possible recent example of such a situation is
the terahertz emission experiments in striped superconductors
[9]. Specifically, under the assumption that strong photoex-
citation gives rise to nonzero umklapp shift current, it was
theoretically predicted [10] that this current acts as a drive
to long-wavelength surface Josephson plasmons. These exci-
tations, in turn, can emit light, and the far-field experimental
observation of this emission was suggested as evidence for the
umklapp shift current [9,10].

V. ANALYSIS AND DISCUSSION
OF STRIPED LAYERED MATERIALS

A. Stripes patterns with the lowest momentum harmonics

Here we apply the results of the previous section and
investigate the regular and umklapp shift currents in layered
materials with stripes. For concreteness, we consider the fol-
lowing microscopic model:

Ĥ = Ĥ0 + ĤCDW, (28)

where Ĥ0 is the effective kinetic energy of the system without
stripes. We choose the simplest possible dispersion, which in
momentum space reads

E0(k) = −2t (cos kx + cos ky) − 2tz cos kz − μ. (29)

One instead could choose this dispersion to better mimic
cuprates, such as the one in Ref. [50]; in this work, we aim
to understand the electrodynamics of striped systems from
the generic perspective of lattice symmetries rather than to
match a specific model of high-temperature superconductors.
We remark that while below we investigate stripe patterns, our
framework can be equally applied to analyze checkerboards
[22,43,51–56]. We write the CDW part of the Hamiltonian
as ĤCDW = Ĥb + Ĥs, where Ĥb and Ĥs encode bond-centered
and site-centered modulations [see Fig. 1(a)], respectively. We
concentrate on commensurate CDWs, relevant for hole doping
close to 1/8, in which case the stripes have period 4 in each
direction [43,57–62]. In particular, the most generic Hamil-
tonian for stripes corresponding to the lowest momentum
harmonics, with Qx = Qy = Qz = π/2, takes the following
form:

Ĥb = Vb

∑
i jk

{
sin

(
π

2
k

)
sin

(
π

2
i + ϑx

b

)
ĉ†

i, j,k ĉi+1, j,k

+ cos

(
π

2
k

)
sin

(
π

2
j + ϑ

y
b

)
ĉ†

i, j,k ĉi, j+1,k + H.c.

}
,

(30)

Ĥs = Vs

∑
i jk

{
sin

(
π

2
k

)
sin

(
π

2
i + ϑx

s

)

+ cos

(
π

2
k

)
sin

(
π

2
j + ϑy

s

)}
ĉ†

i, j,k ĉi, j,k . (31)

FIG. 1. (a) Schematic of period-4 helical-like stripes in layered
materials [43]. A bond-centered pattern is described by alternating
weak (blue), unmodulated (solid black), and strong (orange) bonds.
Likewise, a site-centered pattern is characterized by alternating sites
with depleted (blue), unmodulated (grey), and accumulated (orange)
electron density. (b) Illustration of a symmetry that hinders the de-
velopment of the regular z-axis shift current J0. The shown symmetry
corresponds to the reflection with respect to layer 2 (dashed line) with
subsequent translation by two lattice sites along the x axis. Here we
consider a site-centered pattern, where different letters encode local
charge density modulation. Blue arrows indicate the direction of J0.
(c) An example of a symmetry, consisting of three lattice translations
along x, y, and z axes, that hinders the development of the umklapp
shift current JU (its direction is shown with red arrows).

Here the phases ϑ
x/y
b/s can be arbitrary. As illustrated in

Fig. 1(a), a system with such a pattern forms a chiral structure,
which in turn breaks inversion symmetry, except for special
cases such as ϑx

b = πm (ϑx
s = πm) or ϑ

y
b = π

2 + πn (ϑy
s =

π
2 + πn), where m, n ∈ Z.

The question we want to address is whether the system
with such a modulation can host regular and/or umklapp shift
currents:

Jshift,z = J0 + JU (z) = J0 + (JQeiQz + c.c.), Q = π

2
.

The answer to this question is negative: while the stripe pat-
terns in Eqs. (30) and (31) can break inversion symmetry, they
still have remnant symmetries that enforce J0 = JU = 0. An
example of such a symmetry for the regular shift current is
shown in Fig 1(b): Under the action of S = T x

2 ◦ Rz, both Ĥb

and Ĥs or their arbitrary superposition remain unchanged, but
J0 → −J0 changes sign, which is compatible with S being
a symmetry only if J0 = 0. We defined Rz as the reflection
with respect to the xy plane (so that k → −k) and T x

2 as the
translation operator by two sites along the x axis (i → i + 2).
An example of a symmetry, T z

2 ◦ T y
2 ◦ T x

2 , that hinders the
umklapp shift current JU is illustrated in Fig. 1(c). We remark
that, to be a little bit more precise, one should also take into
account the presence of the external zero momentum electric
field. For the linear response conductivities, this electric field
can be thought of as a source that breaks inversion symmetry
and, as such, allows for nonzero electric currents. In contrast,
the shift currents are second-order processes [cf. Eq. (24)],
and, as such, do not depend on whether the external electric
field points upwards or downwards so that the above lattice
symmetry analysis becomes highly relevant.
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B. The role of higher momentum harmonics

Does this mean that stripes alone cannot give rise to the
shift current Jshift,z? While the patterns with the lowest mo-
mentum harmonics cannot give nonzero Jshift,z, we find that
the inclusion of higher momentum harmonics will be suffi-
cient to break all the hindering symmetries, as we turn to
discuss. We remark that these higher momentum harmonics
are expected to be generically present; however, diffraction
and STM experiments in cuprates [22,57,60,61,63,64] indi-
cate that their amplitudes are expected to be weak.

We consider three classes of stripes with higher harmonics:
(i) those with period 2 along the z axis (Qz = π ) and period
4 within the layers (Qx = Qy = π/2); (ii) those with period
4 along the z axis (Qz = π/2) and period 2 in each of the
layers (Qx = Qy = π ); (iii) those with period 2 both in plane
and out of plane (Qx = Qy = Qz = π ). These patterns can be
represented as

Ĥ z
b = V z

b

∑
i jk

{
1 − cos(πk)

2
sin

(
π

2
i + αx

b

)
ĉ†

i, j,k ĉi+1, j,k

+ 1 + cos(πk)

2
sin

(
π

2
j + α

y
b

)
ĉ†

i, j,k ĉi, j+1,k + H.c.

}
,

(32)

Ĥ z
s = V z

s

∑
i jk

{
1 − cos(πk)

2
sin

(
π

2
i + αx

s

)

+ 1 + cos(πk)

2
sin

(
π

2
j + αy

s

)}
ĉ†

i, j,k ĉi, j,k, (33)

Ĥxy
b = V xy

b

∑
i jk

{
sin

(
π

2
k

)
sin

(
π i + βx

b

)
ĉ†

i, j,k ĉi+1, j,k

+ cos

(
π

2
k

)
sin

(
π j + β

y
b

)
ĉ†

i, j,k ĉi, j+1,k + H.c.

}
,

(34)

Ĥxy
s = V xy

s

∑
i jk

{
sin

(
π

2
k

)
sin

(
π i + βx

s

)

+ cos

(
π

2
k

)
sin

(
π j + βy

s

)}
ĉ†

i, j,k ĉi, j,k, (35)

Ĥ (2)
b = Ṽb

∑
i jk

{
1 − cos(πk)

2
sin

(
π i + ϕx

b

)
ĉ†

i, j,k ĉi+1, j,k

+ 1 + cos(πk)

2
sin

(
π j + ϕ

y
b

)
ĉ†

i, j,k ĉi, j+1,k + H.c.

}
,

(36)

Ĥ (2)
s = Ṽs

∑
i jk

{
1 − cos(πk)

2
sin

(
π i + ϕx

s

)

+ 1 + cos(πk)

2
sin

(
π j + ϕy

s

)}
ĉ†

i, j,k ĉi, j,k . (37)

In Appendix A, we compute the corresponding matrix ele-
ments used in our numerical analyses below.

TABLE I. Summary of the analysis of lattice symmetries of
various stripes patterns. Provided there is an admixture of the lowest
momenta harmonics with higher momenta ones, one can get nonzero
z axis shift currents J0 �= 0 and JU �= 0.

Qx
π

2
π

2 π π π

2
π

2 + π

Qy
π

2
π

2 π π π

2
π

2 + π

Qz
π

2 π π

2 π π

2 + π π

2
J0 ✗ ✗ ✗ ✗

√a √a

JU ✗ ✗ ✗ ✗
√ √

aRequires in addition that all screw axes are broken.

Explicit case-by-case investigation shows that, like the
charge patterns with the lowest momentum harmonics, either
of these new classes alone cannot give rise to nonzero shift
currents. An example of a symmetry that hinders J0 in the
first class is Rz and one that hinders JU is T z

2 . The other two
classes can be analyzed similarly. However, as illustrated in
Fig. 2, a generic superposition of the lowest momenta pat-
terns with either of the first two classes does break all the
remnant symmetries, resulting in both J0 �= 0 and JU �= 0.
Indeed, an example of a microscopic calculation [cf. Eq. (26)],
confirming this conclusion, is shown in Fig. 3 (left panels). We
also mention that a generic admixture of the lowest momenta
stripes with the third class is not sufficient to give rise to
either of the shift currents because it turns out that both S
and T z

2 ◦ T y
2 ◦ T x

2 are also symmetries of Eqs. (36) and (37).
Finally, we note that a generic admixture of stripes patterns
from different classes, although not very relevant for cuprates,
can give rise to both J0 �= 0 and JU �= 0. These conclusions,
which we explicitly checked numerically, are summarized in
Table I .

So far, we have considered a generic situation where the
phases that appear in Eqs. (30)–(37) are not tuned to some
specific values. Implicit in our construction of the stripes
patterns is that the CDWs in adjacent layers are orthogonal to
each other, and the corresponding momentum harmonics have
the same amplitudes. Despite this, unless the phases of those
harmonics are appropriately adjusted, the system is not C4-like
symmetric. Seeking simple patterns with a helical structure,
one might want to impose a 41-screw axis symmetry so that
the stripes in adjacent layers are obtained from each other by
a π/2 rotation around the z axis. Such a symmetry, in turn,
implies 21 screw axis so that the stripes in the next-to-nearest
layers are related to each other through rotation by π . Notably,
as we demonstrate in Fig. 4, this latter symmetry is incom-
patible with the regular shift current J0, enforcing J0 = 0. In
contrast, this symmetry does not constrain the umklapp shift
current JU so that, in principle, it can be nonzero JU �= 0, as
we show in Fig. 3 (right panels). In Appendix B, we sum-
marize all point-group symmetries that allow for the regular
shift current (the point-group symmetry of stripes in Fig. 4 is
“422”, which gives J0 = 0, although inversion symmetry can
be broken).

C. Inversion symmetry and the umklapp shift current

This observation that the regular shift current is zero in
helical stripes, but the umklapp shift current is nonzero, is
surprising. Another important such example is in systems with
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FIG. 2. Illustration that a generic superposition of the lowest momenta harmonics with higher ones can break all the hindering lattice
symmetries that do not allow for the development of a nonzero shift current Jshift,z.

inversion symmetry. Since inversion symmetry breaking is a
prerequisite for the regular shift current, we get J0 = 0. At
the same time, the umklapp current is, in general, nonzero
JU �= 0; see Fig. 5(a) for an illustration, where the CDW
amplitude is partially evaporated so that the system remains
inversion symmetric but develops nonzero umklapp currents.
The challenge one might need to resolve experimentally is
how to detect such an umklapp current, given that the pattern
of currents in Fig. 5(a), due to being even under inversion,

FIG. 3. Microscopic evaluation of the regular (top panels) and
umklapp (bottom panels) shift currents in layered materials with
stripes. We find that only in the presence of higher momentum har-
monics are those currents in general nonzero (left panels). While the
second-order conductivity associated with the regular shift current is
real [40], its umklapp counterpart can have both real and imaginary
parts be nonzero. In case there is a screw axis, it enforces the regular
shift current to be zero (top right panel); at the same time, the
umklapp component can be nonzero (bottom right panel). Parameters
used: tz = 0.25 (here we fix t = 1), Vs = 0.4, V z

s = 0.2, T = 0.1; if
a parameter is not specified, it means it is set to zero; the chemical
potential μ is such that it mimics the hole doping to be 1/8; we
choose sufficiently large system size 512 × 512 × 512 to ensure a
decent convergence of the shown results.

cannot radiate light out. In contrast, the current pattern in
Fig. 5(b), since it is odd under inversion, can emit light and,
thus, is detectable with far-field probes [9,10].

D. Implications for cuprates

While the full complexity of high-temperature cuprate su-
perconductors is well beyond the presented modeling, our
symmetry analysis still provides valuable insights about the
origin of the regular and/or umklapp shift currents in these
materials. Most importantly, we found that the stripe patterns
with the lowest momenta harmonics cannot give rise to either
of these currents. At the same time, diffraction experiments in-
dicate [57] that higher momentum stripes, illustrated in Fig. 2,
are suppressed. Therefore, one possibility is that the exper-
iments of Ref. [9] are much more sensitive to these higher
harmonics. Another aspect that should be considered is that,
in some of the compounds investigated in the experiments
[9], the CDW patterns are actually incommensurate and, as
such, all the hindering symmetries are expected to be broken
(especially given that incommensurate stripes are susceptible
to quenched disorder). Finally, an interesting alternative is that
the superconducting and charge orders intertwine to form a
putative pair density wave (PDW) order predicted in Ref. [2].
In this case, it is argued that, due to the frustrated π -Josephson

FIG. 4. Two examples where the CDW pattern has a 21 screw
axis (shown in orange). In this case, the system turns out to be
symmetric with respect to a rotation by π around an axis parallel
to the y axis (shown in green). Under such a rotation, the regular
shift current transforms as J0 → −J0 (its direction is encoded in blue
arrows), which is compatible with this rotation being a symmetry
only if J0 = 0.

045150-8



OPTICALLY INDUCED UMKLAPP SHIFT CURRENTS IN … PHYSICAL REVIEW B 109, 045150 (2024)

FIG. 5. Inversion symmetry and umklapp currents. (a) Cartoon of a situation corresponding to a distortion of the CDW amplitude, which, in
general, will lead to nonzero umklapp currents (shown with blue arrows). In this case, the resulting pattern of currents is even under inversion,
which, in turn, implies that the system will not emit light. (b) Phase distortions of the CDW order also result in umklapp currents, which can
be odd under inversion; shown pattern of currents, therefore, will emit light.

couplings inherent in the PDW state, a form of noncollinear
phase ordering emerges, which then also breaks all of the
hindering symmetries and gives rise to both shift currents.

We turn to briefly remark on the bulk origin of the shift cur-
rents in striped superconductors [9,10]. We note that despite
lattice symmetries (such as inversion symmetry) hindering
bulk optical rectification in the simplest models of stripes,
one could argue that these symmetries are broken at the
surface of the material, which potentially could provide an
alternative explanation of the experiment. In this scenario,
however, optically stimulated terahertz radiation would be
observed in LBCO samples regardless of the presence of the
stripe order. This is different from the experimental results
presented in Ref. [9], which indicate only a weak broadband
radiation above the charge transition temperature. The strong
outgoing radiation, with the frequency being sharply peaked
at the Josephson plasma resonance, was seen only below
superconducting Tc in samples with stripes. Therefore, bulk
rectification, which we study here, is an essential ingredient
in understanding the experiment.

VI. CONCLUSION AND OUTLOOK

We comment briefly on the finite momentum nature of the
response we have considered. To date, studies of nonlinear
optics have largely focused on the zero momentum response,
for two good reasons. First, the momentum transferred by an
optical photon is typically negligible compared to the Bril-
louin zone size and, second, any currents that do happen to
arise at large momenta are generally outside the light cone,
and thus are expected to decay before they may be observed.
We have shown that a CDW order may evade these restric-
tions. Bragg scattering of quasiparticles off the charge order
naturally gives rise to currents at CDW reciprocal lattice mo-
menta and, under certain lattice symmetries, the umklapp shift
current is the dominant low-frequency effect. Furthermore,
there are mechanisms, such as the surface Josephson plasmon
physics discussed above, that enable detection of the umklapp
shift current in the far-field regime [10].

For the outlook, there are several promising directions. On
the theoretical front, it would be interesting to (i) establish
whether the umklapp shift current has a topological origin,

as has been recently discussed in the context of the regular
nonlinear probes [30]; (ii) extend the presented framework to
incorporate the effects of the static short-range disorder, as
many strongly correlated materials have substantial random-
ness; (iii) include the effects of interactions beyond mean field
[34] to understand the role of low-energy collective excita-
tions better [31]; and (iv) generalize our modeling to include
such phases as PDW states. Interestingly, both disorder and
electron-electron or electron-phonon interactions can give rise
to the development of injection current (which is absent in our
simplified formalism) even for linearly polarized light [38,65]
(see also related work on the ratchet effect [66–72]). On the
experimental side, additional probes, such as Raman scat-
tering [73–76] and near-field measurements [44], that might
sense both shift currents are highly desirable, as they can help
confirm our theoretical conclusions.
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APPENDIX A: MATRIX ELEMENTS OF VARIOUS CDW PATTERNS

Here we summarize the matrix elements of the stripes patterns discussed in the main text:

〈a′, b′, c′|Ĥb|a, b, c〉 = −Vb

4

[
eiϑx

b δa−a′+1 − e−iϑx
b δa−a′−1

][
ei(kx+ π

2 a) + e−i(kx+ π
2 a′ )] × δb−b′ × [δc−c′+1 − δc−c′−1]

− iVb

4
δa−a′ × [

eiϑy
b δb−b′+1 − e−iϑy

b δb−b′−1
][

ei(ky+ π
2 b) + e−i(ky+ π

2 b′ )] × [δc−c′+1 + δc−c′−1], (A1)

〈a′, b′, c′|Ĥs|a, b, c〉 = −Vs

4

[
eiϑx

s δa−a′+1 − e−iϑx
s δa−a′−1

] × δb−b′ × [δc−c′+1 − δc−c′−1]

− iVs

4
δa−a′ × [

eiϑy
s δb−b′+1 − e−iϑy

s δb−b′−1
] × [δc−c′+1 + δc−c′−1], (A2)

〈a′, b′, c′|Ĥ z
b |a, b, c〉 = − iV z

b

8

[
eiαx

b δa−a′+1 − e−iαx
b δa−a′−1

][
ei(kx+ π

2 a) + e−i(kx+ π
2 a′ )] × δb−b′ × [2δc−c′ − δc−c′+2 − δc−c′−2]

− iV z
b

8
δa−a′ × [

eiαy
bδb−b′+1 − e−iαy

bδb−b′−1
][

ei(ky+ π
2 b) + e−i(ky+ π

2 b′ )] × [2δc−c′ + δc−c′+2 + δc−c′−2], (A3)

〈a′, b′, c′|Ĥ z
s |a, b, c〉 = − iV z

s

8

[
eiαx

s δa−a′+1 − e−iαx
s δa−a′−1

] × δb−b′ × [2δc−c′ − δc−c′+2 − δc−c′−2]

− iV z
s

8
δa−a′ × [

eiαy
s δb−b′+1 − e−iαy

s δb−b′−1
] × [2δc−c′ + δc−c′+2 + δc−c′−2], (A4)

〈a′, b′, c′|Ĥxy
b |a, b, c〉 = −V xy

b

4

[
eiβx

b δa−a′+2 − e−iβx
b δa−a′−2

][
ei(kx+ π

2 a) + e−i(kx+ π
2 a′ )] × δb−b′ × [δc−c′+1 − δc−c′−1]

− iV xy
b

4
δa−a′ × [

eiβy
b δb−b′+2 − e−iβy

b δb−b′−2
][

ei(ky+ π
2 b) + e−i(ky+ π

2 b′ )] × [δc−c′+1 + δc−c′−1], (A5)

〈a′, b′, c′|Ĥxy
s |a, b, c〉 = −V xy

s

4

[
eiβx

s δa−a′+2 − e−iβx
s δa−a′−2

] × δb−b′ × [δc−c′+1 − δc−c′−1]

− iV xy
s

4
δa−a′ × [

eiβy
s δb−b′+2 − e−iβy

s δb−b′−2
] × [δc−c′+1 + δc−c′−1], (A6)

〈a′, b′, c′|Ĥ (2)
b |a, b, c〉 = − iṼb

8

[
eiϕx

b δa−a′+2 − e−iϕx
b δa−a′−2

][
ei(kx+ π

2 a) + e−i(kx+ π
2 a′ )] × δb−b′ × [2δc−c′ − δc−c′+2 − δc−c′−2]

− iṼb

8
δa−a′ × [

eiϕy
bδb−b′+2 − e−iϕy

b δb−b′−2
][

ei(ky+ π
2 b) + e−i(ky+ π

2 b′ )] × [2δc−c′ + δc−c′+2 + δc−c′−2],

(A7)

〈a′, b′, c′|Ĥ (2)
s |a, b, c〉 = − iṼs

8

[
eiϕx

s δa−a′+2 − e−iϕx
s δa−a′−2

] × δb−b′ × [2δc−c′ − δc−c′+2 − δc−c′−2]

− iṼs

8
δa−a′ × [

eiϕy
s δb−b′+2 − e−iϕy

s δb−b′−2
] × [2δc−c′ + δc−c′+2 + δc−c′−2], (A8)

where the equalities in the Kronecker symbols are up to modulo 4. Here a, b, c ∈ {0, 1, 2, 3}; the state |a, b, c〉 implicitly encodes
momentum k in the reduced BZ, with kx, ky, kz ∈ (−π/4, π/4], and momentum k + π

2 aêx + π
2 bêy + π

2 cêz in the original BZ.
For a fixed momentum k in the reduced BZ, the size of any matrix is 64 × 64.

APPENDIX B: SYMMETRY ANALYSIS FOR OPTICAL RECTIFICATION

We analyze point groups that allow for optical rectification utilizing the tools of the Bilbao Crystallographic Database [77];
the results are summarized in Table II. In addition, there we mark point groups that can give rise to the regular zero momentum
shift current when both the incoming field and outgoing polarization are parallel to the z axis.
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TABLE II. Left: list of point groups that allow for optical rectification.
Center: number of independent elements in χ (0; ω,−ω) for each of these
groups. Right: point groups marked in green can give rise to the regular
shift current along the z axis when the incident light is also parallel to the
z axis.

Point group Number of independent elements of χ (0; ω,−ω) χ33

1 10 �
2 4 ✗

m 6 �
222 1 ✗

mm2 3 �
4 2 �
−4 3 ✗

4mm 2 �
−42m 1 ✗

3 6 �
32 2 ✗

3m 4 �
6 2 �
−6 4 ✗

6mm 2 �
−6m2 2 ✗

23 1 ✗

−43m 1 ✗
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