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Effect of electron-phonon scattering on the electronic transport of Weyl semimetal WP2
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Although the topological properties of type-II Weyl semimetal WP2 have been widely studied by both the
experiments and the theoretical calculations, the dominant electron-phonon scattering and the effect of Fermi
pockets on the electronic transport still remain elusive. In this work, we investigate the electronic transport
of Weyl semimetal WP2 by the first-principles calculations and semiclassical transport theory. The results
well reproduce the resistivity from the experiments. Carriers in the Fermi pockets favor much less scattering
rates. Holes are found to possess much lower scattering rates than electrons at low temperatures, while both
types of carriers have close scattering rates at high temperatures. At low temperatures, the scattering rates are
mainly contributed by the acoustic modes, especially the transverse acoustic mode, while the rates at high
temperatures are jointly contributed by acoustic modes and low-frequency optical modes, especially B(1)

2 and
B(2)

1 . Compared to other modes, the A1 modes are found to possess larger linewidths and exhibit significant
chemical potential dependent behaviors. The low-temperature resistivity is found to increase monotonously as
the chemical potential increases. Moreover, both the carrier density and the resistivity can be well tuned by
applying the uniaxial or volume strains. The carrier density is enhanced under the tensile strains along the a and
c axes, which leads to the decreasing resistivity. In contrast, the tensile strain along the b axis suppresses the
carrier density and thus increases the resistivity. The behaviors of carrier density and resistivity can be attributed
to the shift of Fermi pockets and the variation of electron-phonon coupling strength under the strains.

DOI: 10.1103/PhysRevB.109.045149

I. INTRODUCTION

Weyl semimetals are a kind of material whose bands
host massless and chiral fermions with nontrivial topolog-
ical invariants [1–3]. Due to the complex Fermi surfaces
and the nontrivial Berry curvatures, Weyl semimetals are
found to possess many novel transport properties [3,4]. For
instance, transport phenomena, i.e., extremely large magne-
toresistance [5,6], ultrahigh mobility [5,6], and the violation
of Wiedemann-Franz law [7], and the planar Hall effect [8,9]
have been observed in Weyl semimetals.

Recently, transition metal diphosphide WP2 has been pred-
icated to possess a robust phase of type-II Weyl semimetal
[10,11]. Experiments have shown extremely high magnetore-
sistance proportional to H1.8–1.9 in WP2 at low temperatures,
which is attributed to the chiral anomaly [12,13]. The elec-
trical conductivity is mainly contributed by hole carriers at
low temperatures, while it is dominated by electron carriers
at high temperatures [12]. Moreover, an extremely large ratio
of resistivity ρ(300 K)/ρ(2 K) has been reported in WP2
[12], indicating a large suppression of backscattering at low
temperatures. It is believed that carriers undergo large-angle

*kczhang@yeah.net
†hzhang@tmm.tu-darmstadt.de

scattering at high temperatures while they are mainly scat-
tered with small angles at low temperature. Electrons flow
in the semimetal like a fluid with viscosity, obeying the hy-
drodynamic transport [14,15]. Experiment has demonstrated
the hydrodynamic signature of electrons flowing in WP2
wires with finite widths [16]. Theoretically, the resistivity
and scattering rates of WP2 have been calculated by solving
the linearized Boltzmann transport equation (BTE) with mo-
mentum relaxation time approximation [17]. It is found that
the electron-phonon scattering dominates over the electron-
electron scattering in the carrier transport of WP2. Also,
measurements reveal that WP2 has the temperature-dependent
anisotropy of electronic transport properties [18], which arise
from the anisotropic Fermi velocity and electron-phonon scat-
tering. Recently, anomalous phonon linewidth of the A(1)

1
mode has been identified in WP2 by the Raman spectroscopy
[19], indicating significant electron-phonon scattering in the
semimetal. One may wonder what roles the phonon modes
play in carrier scattering and how the electron-phonon scat-
tering is affected by the Fermi pockets. Motivated by this
experiment [19], we want to explore the dominant phonon
modes in carrier scattering as well as the effect of shifted
Fermi pockets on the electronic transport.

In this article, we investigate the electronic transport
properties of WP2 by first-principles calculation plus the Zi-
man resistivity formula. The mode-resolved resistivity and
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scattering rates are evaluated to determine the dominant
phonon mode in carrier scattering. We calculate the chemical
potential dependent resistivity to explore the contributions of
Fermi pockets to the resistivity. Also, the phonon linewidth
and the electron-phonon coupling (EPC) strength with respect
to the chemical potential are calculated to investigate the
dependence of the electron-phonon interaction on the chem-
ical potential. Furthermore, the dependence of resistivity on
the lattice and volume deformations is investigated and the
underlying scattering mechanism is discussed. The rest of the
article is organized as follows. In Sec. II, we introduce the
calculation methods and details. The calculation results and
the discussions on the underlying physics are presented in
Sec. III. Finally, a conclusion is given in Sec. IV.

II. METHODS AND CALCULATION DETAILS

A. Method of carrier transport calculation

When electrons are driven to flow in the metals by a small
electric field, the conductivity tensor can be expressed as [20]

σαβ = −e

(2π )3

∑
n

∫
d3k vα

nk∂Eβ
fnk, (1)

where vnk and fnk are the band velocity and distribution func-
tion for electrons. It is noticed that the conductivity relies on
the evaluation of ∂Eβ

fnk. The term ∂Eβ
fnk generally includes

two parts of contributions, i.e., the drift of Fermi sphere
and the excitation of quasiparticles from the Fermi sphere.
If we omit the quasiparticle excitation and only preserve the
drift of Fermi sphere, the derivative can be approximated to
∂Eβ

fnk ≈ evβ

nk(∂ f 0
nk/∂εnk )τnk, which is valid in the small field

limit. Correspondingly, the resistivity can be expressed as ρ =
m∗〈τ−1〉/(nce2), where 〈τ−1〉 is the average scattering rate
τ−1

nk weighted by
∑

n

∫
d3k

BZ

(−∂ f 0
nk/∂εnk ). Since the electron-

phonon matrix elements remain nearly constant within the
range of kBT around the Fermi level, the resistivity can be
expressed as the Ziman resistivity formula [21,22]

ρ = 4πm∗

e2h̄

2kBT

nc

∫ ∞

0

dω

ω

[h̄ω/(2kBT )]2α2
trF (ω)

sinh2[h̄ω/(2kBT )]
. (2)

In the above equation, the parameter nc, usually denoted as the
charge in the cell, is set to be 1.0 in the calculations. α2

trF (ω)
is the transport Eliashberg function [23], which can be written
as

α2
trF (ω) = 1

2h̄N (εF )

∑
mnν

∫∫
d3k d3q


2
BZ

|gmnν (k, q)|2

× δ(εF − εnk )δ(εF − εmk+q)δ(ω − ωqν ), (3)

where N (εF ) is the density of states at the Fermi level. The
electron-phonon matrix element, gmnν (k, q), can be written as
[20,24]

gmnν (k, q) =
√

h̄

2Mωqν

〈nk|∂VKS

∂uqν

|mk + q〉, (4)

which represents the hopping probability of electrons from the
state |nk〉 to the state |mk + q〉 after absorbing a phonon |qν〉.

To evaluate the carrier scattering rates, we calculated the
self-energy of carriers by the Fan-Migdal relation [24]:

�e
nk =

∑
mν

∫
BZ

dq

BZ

|gmnν (k, q)|2

×
[

nqν (T ) + fmk+q(T )

ω − (εmk+q − εF ) + ωqν + iδ

+ nqν (T ) + 1 − fmk+q(T )

ω − (εmk+q − εF ) − ωqν + iδ

]
. (5)

The k-dependent scattering rate γnk can be expressed as γnk =
2(Im�e

nk )/h̄. Since the carriers contributing to the conductiv-
ity are mainly distributed as −∂ f 0

nk/∂εnk , the scattering rate
can be evaluated as

γ =
∑

n

∫
d3k

BZ

γnk
( − ∂ f 0

nk
∂εnk

)
∑

n

∫
d3k

BZ

( − ∂ f 0
nk

∂εnk

) . (6)

In the presence of EPC interaction, the phonon spectrum
usually exhibits the finite linewidth, which can be evalu-
ated by the imaginary part of phonon self-energy, i.e., �

ph
qν =

Im(�ph
qν ). Given the phonon in the state |qν〉, the self-energy

can be expressed as [25]

�ph
qν = 2

∑
mn

∫
BZ

d3k


BZ
|gmnν (k, q)|2

× fnk(T ) − fmk+q(T )

(εmk+q − εnk ) − ωqν − iδ
. (7)

To evaluate the contribution of phonon modes to the resistiv-
ity, the EPC strength was calculated as [25]

λqν = 1

N (εF )ωqν

∑
nm

d3k


BZ
|gmnν (k, q)|2

×δ(εnk − εF )δ(εnk+q − εF ). (8)

In the calculations, the resistivity and the scattering rates
are evaluated on very dense k and q mesh (20×20×20) by
using the Wannier-Fourier interpolation technique, as imple-
mented in the ELECTRON-PHONON WANNIER (EPW) code [25].
To do this, the electron and phonon Hamiltonian and EPC
matrix elements are first calculated on the coarse k and q
mesh (4×4×4). Then they are transformed from the Bloch
representation into the Wannier representation by constructing
maximally localized Wannier functions [26]. After that, they
are transformed into the Bloch representation again by inter-
polating to the fine k and q mesh, through which the physical
quantities are evaluated.

B. Methods of electron and phonon calculations

The electronic structure of WP2 is studied by first-
principles calculation based on the method of plane waves,
as implemented in QUANTUM ESPRESSO (QE) code [27]. Opti-
mized norm-conserving Vanderbilt (ONCV) pseudopotentials
[28] of full-relativity form, together with the exchange-
correlation functional of the Perdew-Burke-Ernzerhof (PBE)
form [29], are obtained from the PseudoDojo [30]. The shell
configurations take 4 f 145s2 p6d46s2 and 3s2 p3 for W and P
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FIG. 1. (a) Crystal structure of WP2. The solid (dashed) lines mark the unit (primitive) cell. (b) Energy band of WP2 along the k path in
the Brillouin zone. The projected density of states are shown for W and P atoms, respectively. (c) Fermi surface with the color-mapped Fermi
velocity in the Brillouin zone. The purple and green surfaces represent the hole and electron pockets, respectively. The high symmetry points
are also marked in the plot. (d) Partial density of charge in the energy window of (εF − 0.1, εF ).

atoms, respectively. A k mesh of 10×10×10 is used for the
static calculation and the energy convergence criterion is set
to be 10−9 Ry. The phonon dispersion is calculated by the
density-functional perturbation theory (DFPT) and a q mesh
of 4×4×4 is used for the non-self-consistent calculations.

III. RESULTS AND DISCUSSION

A. Electronic structure and phonon dispersion

The orthorhombic phase of WP2 possesses the space group
of Cmc21 and point group of C2v with one mirror plane, one
glide plane, and one twofold screw axis. The conventional cell
contains two Wyckoff sites occupied by 4 W and 8 P atoms,
respectively. Each W atom bonds to seven nearest neighboring
P atoms. Two irreducible P atoms bond to four and three
nearest neighboring W atoms, respectively, while the nearest
P atoms covalently bond to each other, as shown in Fig. 1(a).
Bader charge analysis reveals that W loses the charge of 0.757
e, while two irreducible P atoms gain the charges of 0.435
and 0.322 e, respectively. The band structure of WP2 has been
self-consistently calculated by including spin-orbit coupling
(SOC), as shown in Fig. 1(b). It is found that the Fermi pocket
of electrons has been formed along the path of X -M, while
the Fermi pocket of holes has been formed along the paths
of �-X and �-Y . The Fermi pockets possess 0.124 holes
and electrons, respectively, which corresponds to the charge
concentration of 1.39×1021 cm−3 for holes and electrons, in
agreement with the experimental result (≈1021 cm−3) [12,18].
This means that pristine WP2 is the semimetal with compen-
sated carriers, similar to the Weyl semimetals WTe2 [31] and

MoTe2 [32]. Double degeneracies arise at the points of X and
M with the energy of 0.19 and −0.16 eV relative to the Fermi
level, respectively.

To further analyze the states near the Fermi level, we cal-
culated the projected density of states (PDOS) for W and P
atoms, respectively, as shown in Fig. 1(b). Near the Fermi
level, the 5d states of W atoms weigh much significantly over
the 3p states of P atoms, indicating the predominant role in
the band composition. To better visualize the electronic states
at the Fermi level, we calculated the Fermi surface in the Bril-
louin zone, as shown in Fig. 1(c). The hole pocket is located
around the X and Y points with the lower Fermi velocity,
while the electron pocket lies near the M point with larger
Fermi velocity. The flat nature of the Fermi pockets indicates
that carriers mainly flow in the ab plane, especially along the
a axis. As shown in Fig. 1(d), the partial charge density within
the energy window of (εF − 0.1, εF ) also shows the character-
istic of 5d orbits, indicating the dominant contribution to the
Fermi surface from W atoms.

Figure 2(a) shows the phonon dispersion along the q path
in the Brillouin zone. The phonon bands are divided into three
bunches, i.e., the low-frequency bands with the frequency
below 188 cm−1, the medium frequency of 228–432 cm−1,
and the high frequency of 482–530 cm−1. It is found that
the acoustic modes approach zero at the point �. The low-
frequency modes are mainly originated from the relative
motions between W atoms, while the medium and high fre-
quency modes arise from the relative motions between P
atoms, as demonstrated by the projected phonon density of
states in Fig. 2(b). The bunching of low-frequency modes
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FIG. 2. (a) Phonon dispersion along the q path in the Brillouin zone. (b) Projected phonon density of states for P and W atoms. (c)–(g)
Atomic displacements for the phonon modes of A(1)

1 (c), A(3)
1 (d), A(5)

1 (e), B(2)
1 (f), and B(1)

2 (g), respectively. The numbers in the brackets represent
the orders of phonon modes sequenced from the lowest optical modes in the subgroup.

along with the band gap of 40 cm−1 suppresses the phonon-
phonon scattering between acoustic and medium-frequency
optical modes.

According to the symmetry of mechanical representation,
the phonon modes of WP2 at � can be decomposed as

� = 6A1 ⊕ 3A2 ⊕ 3B1 ⊕ 6B2 (9)

among which three acoustic modes belong to B1, B2, and A1

and the left ones are the optical modes with Raman activity.
Except for the acoustic modes, we name the optical modes by
sequencing the frequencies of the modes in their symmetry
subgroups. For instance, the optical mode A(1)

1 means that it
is the optical mode with the lowest frequency in the A1 sub-
group. As listed in Table I, our calculation gives the phonon
frequencies of 172.0, 346.0, 497.7, 314.7, and 168.0 cm−1

for the optical modes A(1)
1 , A(3)

1 , A(5)
1 , B(2)

1 , and B(1)
2 , respec-

tively, in good agreement with the experiment results [18,19].
Compared to the A1 modes, the calculated frequencies of
B2 modes generally show slightly larger deviation from the
experimental data. As shown in Figs. 2(c)–2(g), the atomic

displacements are plotted for these optical modes, which play
an important role in the carrier scattering and phonon self-
energy. The vibrations of low-frequency modes A(1)

1 and B(1)
2

mainly come from the opposite motions between the nearest
W and P atoms, while the vibrations of A(3)

1 , A(5)
1 , and B(2)

1
originate from the relative motions between nearest neighbor
P atoms. Recently, Raman spectroscopy measurement on WP2

has revealed that the A1 modes exhibit anomalous phonon
linewidths [19], which arise from significant electron-phonon
coupling. The A1 mode corresponds to the antiparallel and
parallel motions along the b and c axes, respectively, between
two irreducible atoms occupied Wyckoff positions (0, y, z)
and (0,−y, z + 1/2), as shown in Fig. 2. We will discuss their
anomalous linewidths in the following sections.

B. Mode-resolved electrical resistivity and scattering rates

The temperature dependence of resistivity has been cal-
culated by using the Ziman resistivity formula, as shown in
Fig. 3(a). At 300 K, the resistivity ρtheory takes 65.0 µ
 cm,
slightly above the experimental value of 52.5 µ
 cm [13].

TABLE I. Calculation results of optical phonon frequency ν (cm−1) and phonon linewidth �ph (meV) at q = 0. The experimental values
νexpt and �

expt
ph .

A(1)
2 B(1)

2 A(1)
1 A(2)

2 B(1)
1 A(3)

2 A(2)
1 B(2)

2 B(2)
1 A(3)

1 B(3)
2 A(4)

1 B(4)
2 A(5)

1 B(5)
2

ν 158.9 168.0 172.0 251.7 251.7 278.1 278.1 284.5 314.7 346.0 349.5 380.8 431.5 497.7 525.6
νexpt 159.2a 173.3b 168.4a 261.0b 256.3a 282.2a 284.1a 297.9b 326.2b 359.9a 367.0c 392.4a 440.0c 511.7a 550.0c

�ph 0.03 0.02 0.32 0.07 0.07 0.20 0.20 0.02 0.06 0.45 0.18 0.17 0.06 0.11 0.06
�

expt
ph 0.07b 0.09b 0.36b 0.08b 0.08b 0.28b 0.28b 0.08b 0.07b 0.31b 0.23b 0.15b 0.21b 0.18b 0.20b

aReference [18].
bReference [19].
cReference [33].

045149-4



EFFECT OF ELECTRON-PHONON SCATTERING ON THE … PHYSICAL REVIEW B 109, 045149 (2024)

(a) (b)

(c) (d)

1×10-5

1×10-7

FIG. 3. (a) Temperature dependence of resistivity for WP2. The solid dots are the experimental data from Refs. [12], [13], and [18].
The empty triangle dots are the theoretical data from Ref. [17]. The crossing symbols represent the solution of IBTE along the a axis.
The inset shows the numerical fittings of low-temperature resistivity according to the functions of ρ = ρ0 + aT 2 + bT 5(olive), ρ = ρ0 +
ce−T0/T (orange), ρ = ρ0 + bT 5(cyan), and ρ = ρ0 + aT 2 + bT 5 + ce−T0/T (blue). (b) Mode-resolved resistivity as the function of temperature.
Both the acoustic phonon modes of TA, ZA, and LA, and the bundles of phonon modes, i.e., low-frequency (LF), medium-frequency (MF), and
high-frequency (HF) modes, are considered separately. (c) Color-mapped EPC strength along the q path. (d) Color-mapped phonon linewidth
(in the unit of meV) along the q path in the Brillouin zone.

At 10 K, ρtheory takes 3.6 n
 cm, close to the experimen-
tal value of 4.0 n
 cm [12]. As the temperature approaches
zero, the resistivity decays more rapidly compared to the
experimental value, which remains a small value due to
the impurity scattering effect. At the mediate temperatures,
the calculated resistivity deviates from the experiment data.
For instance, the calculated resistivity gives 6.4 µ
 cm at
temperature 75 K, in contrast to the experiment value of 3.5
µ
 cm [13]. Note that the Ziman resistivity formula inversely
depends on the free parameter nc, which can be used to ad-
just the initial resistivity. Taking the initial ratio of resistivity
ρtheory(300 K)/ρexpt (300 K) = 1.24 into account, the calcu-
lated resistivity at 75 K will be renormalized to 4.3 µ
 cm.

Similarly, the calculated ρtheory takes 0.076 µ
 cm at
20 K, in contrast to 0.016 µ
 cm from the experi-
ment [12]. Taking ρexpt (300 K) = 25.0 µ
 cm [12] and
ρtheory(300 K)/ρexpt (300 K) = 2.6 into account, the calcu-
lated resistivity will be renormalized to 0.029 µ
 cm, closer
to the experiment data. Overall, our results are close to the
experiment data [12,13,18]. Moreover, our results also agree
well with the theoretical data from the linearized BTE [17],
indicating the validation of our method. We also calculated the
resistivity by iterative Boltzmann transport equation (IBTE)
with the smearing parameter δ = 0.01 eV in the electron-
phonon scattering process. The result of IBTE agrees well
with the experiment data at high temperatures. However, as
the temperature decreases, it begins to overestimate the resis-
tivity due to the spurious temperature arising from the finite

smearing. At low temperatures, it is very hard to achieve the
convergence of IBTE.

Previously, two type of scattering mechanisms, namely,
the electron-phonon and phonon drag scattering, were pro-
posed to explain the resistivity behavior of WP2 at low
temperatures [12]. The resistivity typically favors T 2 and
T 5 behaviors for electron-electron and electron-phonon scat-
tering, respectively, while the scattering of phonon drag
leads to the exponential decay of resistivity. As shown in
the inset of Fig. 3(a), both the functions ρ = ρ0 + aT 2 +
bT 5 and ρ = ρ0 + ce−T0/T cannot well fit the resistivity at
low temperatures, while the function ρ = ρ0 + aT 2 + bT 5 +
ce−T0/T fits the resistivity quite well, similar to the case of
Ref. [12]. However, the good fitting cannot be taken as mul-
tiple scattering mechanisms weighted equally in the transport
since the latter function has more free parameters. We find
that the function ρ = ρ0 + bT 5 can fit the data much bet-
ter than the functions ρ = ρ0 + aT 2 + bT 5 and ρ = ρ0 +
ce−T0/T , indicating the dominant role of electron-phonon
scattering in the transport. To find out the phonon modes
dominating in the carrier scattering, we calculate the mode-
resolved resistivity for the longitudinal acoustic mode (LA),
transverse acoustic mode (TA), and flexible acoustic mode
(ZA), as shown in Fig. 3(b). Moreover, the resistivity con-
tributed by the bundles of phonon modes, i.e., low-frequency,
medium-frequency, and high-frequency modes, are also cal-
culated. Compared to the resistivity of medium-frequency and
high-frequency modes, the resistivity mainly comes from the
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carrier scattering of low-frequency modes. For instance, the
low-frequency modes contribute to 58.3% of the resistivity at
300 K, while their contribution nearly increases to 100% at
10 K. This means that the resistivity at low temperature mainly
originates from the carrier scattering of low-frequency modes.

Further, the mode-resolved resistivity of TA and ZA takes
1.82 and 1.50 n
 cm at 10 K, respectively, which accounts
for 50.6% and 41.7% of the total resistivity, while LA only
contributes 7.5% of the resistivity. This means that the resis-
tivity mainly arises from the scattering of TA and ZA modes.
To further illustrate the contribution of phonon scattering to
the resistivity, we calculate the EPC strength λep along the
q path in the Brillouin zone, as shown in Fig. 3(c). Generally,
λep takes small values for medium- and high-frequency modes
while it has large values for low-frequency modes, especially
near the � point, since λep is inversely proportional to the
phonon frequency. This means the acoustic modes with small
q contribute heavily to the resistivity. Also, λep has larger
values along the path �-X -M-Y -� than R-Z . Because the
Fermi pockets are mainly distributed along the former path,
electrons can successfully be scattered to other states near the
Fermi level. In other words, electrons are scattered in larger
phase space along the former path, which results in larger
λep. The optical phonon mode B(1)

2 is found to possess large
λep at M point, indicating the additional contribution to the
resistivity.

In the semimetal, besides the phonon-phonon interaction,
EPC interaction usually reduces the phonon lifetimes by ad-
sorbing or emitting phonon and hence leads to the finite
linewidth, as illustrated in Fig. 3(d). The phonon modes
with medium and high frequency are found to have large
phonon linewidth (about 0.1–0.3 meV), which is mainly
distributed along the path of �-X -M-Y -�, while the low-
frequency modes have small values of linewidth. The larger
linewidth along the preferred path can be attributed to the
larger phase space for successful electron-phonon scattering,
similar to the case of λep. The magnitude of phonon linewidth
is comparable to that of the metal Al [34]. We list the calcu-
lated phonon linewidths of �ph at q = 0 in Table I, together
with the experimental data, for all the optical modes. Overall,
the A1 modes have much larger linewidths than other modes,
consistent with the experimental observation [19]. Compared
to the B2 modes, the linewidths of the A1 modes are close to
the experimental values. Due to the weak Raman intensity,
the phonon linewidths of B2 modes have much larger error
bars than those of A1 modes [19]. Therefore, larger deviation
of �ph from the experimental data can be expected for the B2

modes.
To study the carrier scattering in WP2, we calculate the

hole and electron scattering rates by the Fan-Migdal self-
energy approximation, as shown in Fig. 4(a). We use the
adaptive smearing [35] instead of the Gaussian smearing in
the calculation to avoid the spurious temperature brought by
the constant smearing. At 10 K, electrons have the scattering
rate of 0.55 ps−1, which is about twice the rate of 0.26 ps−1

of holes. Below 10 K, the ratio γe/γh further increases, in-
dicating a predominant role of holes at low temperatures. In
contrast, both carriers get close rates at 300 K, i.e., 59.3 and
52.4 ps−1 for holes and electrons, respectively. According to
μ = e/(m∗γ ), the mobility can be estimated to be 2166 and

(a)

(b)

(c)

FIG. 4. (a) Temperature dependence of scattering rates for hole
and electron carriers. The average scattering rates are also plotted.
(b) Mode-resolved scattering rates versus the temperature. (c) Elec-
tron linewidth (in the unit of meV) along the k path for WP2 at 10 K.

1528 cm2/V s for holes and electrons, respectively, by taking
the scattering rates γh = 0.67 and γe = 0.95 ps−1 at 20 K
and m∗ = 1.21m0 from the experiment [16]. Compared to the
experimental mobilities [13], i.e., about 1830 cm2/V s for
holes and 1270 cm2/V s for electrons at 20 K, our results
are close to the experimental values. The carrier scattering
mainly occurs to the Fermi pockets which have much less
linewidth within the energy window of ±0.5 eV, as shown in
Fig. 4(c). This results in small scattering rates when carriers
are scattered within the Fermi pockets.

As shown in Fig. 4(b), the mode-resolved scattering rates
reveal that the acoustic modes play an important role in
the carrier scattering. Among the phonon modes, the TA
mode predominately scatters carriers in the whole temperature
range, followed by the modes of ZA and LA. It is found
that the scattering rate of B(1)

2 mode increases rapidly as the
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(a) (b)

(c) (d)

FIG. 5. (a) Chemical potential dependent resistivity at 10, 150, and 300 K. The resistivity at 10 K has been multiplied by 2000. (b) Mode-
resolved EPC strength λep as the function of chemical potential. (c) Mode-resolved phonon linewidth �ph(q = 0) as the function of chemical
potential. (d) Frequency-dependent transport Eliashberg function α2

trF (ω) and integrated EPC strength λep for �μ = −0.1, 0, and 0.1 eV.

temperature increases. For instance, at 140 K, the scattering
rate of B(1)

2 already exceeds the rate of the ZA mode. Sim-
ilarly, the contribution of B(2)

1 also increases rapidly as the
temperature increases. At 300 K, the scattering rate of B(2)

1
is close to that of the LA mode. The rapid increases of both
B(1)

2 and B(2)
1 modes can account for the sharp decreases of

resistivity ratio ρc/ρa at 100 K observed in the experiments
[18]. According to the band structures in Fig. 1(c), the Fermi
pocket along the path of �-X hosts the holes, which are more
inclined to flow along the a axis than the c axis. As the
temperature increases, the scattering enhancement of B(1)

2 and
B(2)

1 significantly increases the resistivity along the a axis and
thus decreases the resistivity ratio of ρc/ρa.

C. Chemical potential dependent resistivity

In semimetals and semiconductors, the carrier concentra-
tion as well as the Fermi level can be affected by impurity even
with low concentration. For doped WP2, the shift of Fermi
level makes the carrier uncompensated and hence changes the
resistivity. Figure 5(a) shows the chemical potential depen-
dent resistivity at three discrete temperatures. At 10 K, the
resistivity is found to monotonously increase as the chemical
potential increases from −0.1 to 0.1 eV. The ratio of �ρ(μ =
εF ± 0.1)/ρ(εF ) takes 67.6%, indicating a strong dependence
on the chemical potential. At the temperatures 150 and 300 K,
the resistivity is observed to decrease whenever the chemical
potential deviates from pristine WP2. The maximum �ρ(μ =
εF ± 0.1)/ρ(εF ) only takes 17.8% and 16.3% at the tempera-
tures 150 and 300 K, respectively. The behaviors of chemical

potential dependence of resistivity may come from the carrier
scattering predominated by the phonon modes at different
temperatures. For example, the acoustic modes dominate at
the low temperatures while both the acoustic and optical
modes heavily scatter the carriers at high temperatures.

As shown in Fig. 5(b), the mode-resolved EPC strength λep

is found to reach the maximum at the Fermi level for most
phonon modes as the chemical potential increases. Generally,
the low-frequency modes, especially the acoustic modes, have
larger λep than the high-frequency modes. Besides, the B(1)

2

and B(2)
1 modes are found to possess abnormal λep, which is

comparable to those of acoustic modes. Also, the modes of
A(1)

1 and A(3)
1 possess considerably large λep, which contributes

to the carrier scattering at high temperatures. The different
behaviors of ρ(�μ) at low and high temperatures can be
attributed to the carrier scattering of the optical modes, which
are switched on at high temperatures.

Figure 5(c) shows the chemical potential dependent
phonon linewidth at q = 0. Compared to other modes, the
A1 group modes are found to possess larger linewidths and
show strong dependence on the chemical potential. In con-
trast, the low-frequency modes B(2)

1 and B(1)
2 , which have

larger mode-resolved λep, have much less phonon linewidths
at q = 0. The A(1)

1 mode at the Fermi level has the linewidth
of 0.32 meV, close to the experimental value of 0.36 meV.
Also, the mode of A(3)

1 is found to have larger linewidth than
the modes of A(4)

1 and A(5)
1 , in agreement with the experiment

result [19,33]. As seen from Eq. (7), the phonon linewidth is
proportional to the integral of [ fnk(T ) − fmk+q(T )]δ(εmk+q −
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(a) (b)

(c) (d)

FIG. 6. (a) Hole density with respect to the uniaxial and volume strains. The uniaxial strain is applied along the a, b, and c axis, respectively,
while the volume strain is applied with homogeneous volume deformation. (b) Electronic bands variation under the uniaxial (±2.5%) and
volume (±3.0%) strains. The red and blue lines represent the bands with the tensile strain and the compressive strain, respectively. (c) The
strain dependence of resistivity at 10 K. (d) The strain dependence of EPC strength for the TA mode.

εnk − ωqν ), which is the difference of occupation probabili-
ties between two states |nk〉 and |mk + q〉. If |εmk+q − εF |,
|εnk − εF |, and h̄ωqν are less than kBT (300 K), the phonon
linewidth will reach maximum at room temperature. It means
that the electrons are scattered within the energy windows
of kBT (300 K) by absorbing a low-energy phonon. When
the electrons are scattered far beyond the energy window of
kBT (300 K) by absorbing a high-energy phonon, the phonon
linewidth will show monotonous increasing with respect to the
temperature. Since phonon energy of A(1)

1 (h̄ω = 21.3 meV)
is less than kBT (300 K), its phonon linewidth will inevitably
reach the maximum at room temperature. For those modes
of A(3)

1 (42.9 meV), A(4)
1 (47.2 meV), and A(5)

1 (61.7 meV),
a monotonous increase of phonon linewidth can be expected.

Figure 5(d) shows the transport Eliashberg function α2
trF

and the integrated EPC strength λep with the chemical po-
tential variations of −0.1, 0, and 0.1 eV. α2

trF is found to
have two gaps at 200 and 450 cm−1, which correspond to
the phonon band gaps. The peaks emerging at 170 and 330
cm−1 correspond to the modes of B(1)

2 and B(2)
1 , which con-

tribute to the resistivity at high temperatures. As the chemical
potential deviates from the Fermi level, both the peaks are
found to decrease, indicating the reduced contributions to the
carrier scattering. Nevertheless, the spectrum below 80 cm−1

is found to increase as the chemical potential increases from
−0.1 to 0.1 eV. Since the low-frequency modes contribute
predominantly to the carrier scattering at low temperature,
the resistivity will increase with increasing chemical potential.

The integrated EPC strength λep takes 0.23 for WP2, which is
close to the strength of Au (0.22) but larger than Cu (0.14)
and Ag (0.16) [34]. When the chemical potential changes by
±0.1 eV, λep decreases to 0.21 and 0.19, respectively.

D. Strain tuned carrier density and resistivity

Theoretically, the electronic transport of Weyl semimetals
is predicted to be susceptible to lattice deformation due to
the chiral anomaly of Weyl fermions in the Brillouin zone
[36]. Experimentally, the resistivity is observed to decrease
continuously, while the mobility and carrier density are en-
hanced for Weyl semimetal WTe2 with increasing pressure
[37]. Moreover, opposite behaviors of magnetoresistance have
been observed when the strain is applied along the a and b
axes of MoTe2, respectively [38]. So far, the strain dependence
of electronic transport has been seldom studied for WP2. By
using first-principles calculations and the Ziman resistivity
formula, we calculate the strain effect on the electronic trans-
port and carrier density of WP2, as shown in Fig. 6. The
uniaxial (volume) strain is defined as δa/a (δV/V ). Positive
value means it is a tensile strain and vice versa. Our results
reveal that the strain can effectively affect the carrier density
in WP2. However, the system still remains to be carrier com-
pensated when the strain varies from −5% to 5%. The hole
density generally increases when the tensile strain is applied
along the a and c axes, while it decreases almost linearly when
the tensile strain is along the b axis, as shown in Fig. 6(a).
For the strain along the a axis, the hole density changes from
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(a) (b)

(c) (d)

FIG. 7. (a) Mode-resolved EPC matrix elements for the LA, TA, and ZA mode along the k path in the Brillouin zone. The shaded green
area represents the average value per mode. (b)–(d) The mode-resolved EPC matrix elements for the TA mode under the uniaxial strain along
the a (b), b (c), and c (d) axis. The red (blue) curves represent the EPC matrix elements under tensile (compressive) strain.

−31% to 78% as the δa/a increases, indicating a significant
variation of carrier density tuned by strain. When the volume
strain δV/V increases from −6% to 6%, the hole density
increases, different from the behavior of WTe2 [37].

To explore the origin of carrier variation, we calculate the
evolution of electronic bands near the Fermi level under the
uniaxial and volume deformations, as shown in Fig. 6(b).
When the tensile strain is applied along the a or c axes, the
hole pocket shifts upwards, while the electron pocket moves
downwards, leading to larger charge density. Similar Fermi
pocket shifts are observed for WP2 under the volume strain.
In contrast, for the uniaxial strain along the b axis, the tensile
strain results in the downward and upward shifts for the hole
and electron pockets, respectively. This leads to the decrease
of charge density with increasing deformation.

As shown in Fig. 6(c), the resistivity at 10 K is found to
decrease under increasing uniaxial or volume strain, except
the strain along the b axis. Usually, the tensile strain decreases
the scattering potential ∂VKS/∂uqν and thus suppresses the
EPC strength, which leads to the decrease of resistivity. Note
that the resistivity also inversely depends on the density of
states at the Fermi level. For WP2 under the uniaxial strain
along the b axis, the increase of resistivity can be attributed
to the decrease of the density of states at the Fermi level due
to the shifts of Fermi pockets. Since the TA mode predom-
inately contributes to the resistivity, we calculate the strain
dependence of the EPC strength for the TA mode, as shown
in Fig. 6(d). Increasing strain causes the EPC strengths to
decrease except for the uniaxial strain along the a axis. The
decrease of EPC strength can be attributed to the suppression
of scattering potential due to the tensile strain. However, the

EPC strength is also inversely proportional to the frequency of
phonon mode, which usually is softened under tensile strain.
Therefore, the abnormal increase of EPC strength under the
strain along the a axis can be attributed to the competition be-
tween the reduced scattering potential and phonon frequency.

Figure 7(a) shows the mode-resolved EPC matrix elements
for the acoustic modes along the k path in the Brillouin zone.
Since the transport properties are mainly contributed by the
carriers from the Fermi pockets, we average the EPC matrix
elements over the q mesh for the electronic bands within
the energy window of ±0.5 eV near the Fermi level. The
EPC matrix elements oscillate greatly along the path in the
Brillouin zone and the values of acoustic modes are about
three times larger than the average. It is found that the value of
the TA mode is slightly larger than those of ZA and LA modes.
The EPC matrix elements are found to reach maximum
at the R point. Since the TA mode predominately contributes
to the electronic transport at low temperatures, we calculate
the mode-resolved EPC matrix for the TA mode under differ-
ent uniaxial strains, as shown in Figs. 7(b)–7(d). Compared
with the case of compressive strain, the EPC matrix elements
decrease largely when the tensile strains are applied along the
a and c axes, which leads to the suppression of carrier scatter-
ing at low temperatures. In contrast, the tensile strain along the
b axis brings about the enhancement of EPC matrix elements,
which results in the enlargement of carrier scattering.

IV. CONCLUSION

We have investigated the electronic transport in the Weyl
semimetal WP2 by first-principles calculation plus the Ziman
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resistivity formula. The calculated resistivity agrees well with
the experimental results. Our results reveal that the acoustic
modes, especially the TA mode, have large EPC strength and
contribute predominantly to the resistivity at low tempera-
tures. Carriers in the Fermi pockets have much less scattering
rates than those outside the pockets. At low temperatures,
holes are found to have significantly lower scattering rates
than electrons. The scattering rates of B(1)

2 and B(2)
1 modes

are found to increase rapidly as the temperature increases
and contribute significantly to the resistivity at high temper-
atures. The low-temperature resistivity is found to increase
monotonously with increasing chemical potential. In contrast,
the resistivity at high temperatures shows nonmonotonous
dependence on the chemical potential. Compared to other
modes, the A1 modes have larger phonon linewidths at q = 0
and show significant dependence on the chemical potential.
Moreover, both the carrier density and the resistivity can be
well tuned by applying the strain to WP2. The tensile strains
along the a and c axes bring about the increase of carrier
density and hence the decrease of resistivity at low temper-
ature, while the strain along the b axis leads to the opposite

behaviors of carrier density and resistivity. The strains induce
the relative shifts of Fermi pockets as well as the variation of
EPC matrix elements, which results in the variation of carrier
density and resistivity. Our work casts some light on the nature
of electronic transport properties driven by electron-phonon
interaction for WP2. We hope that our study is helpful for
future research on this material.
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