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Origin of the extreme and anisotropic magnetoresistance in the Weyl semimetal NbP
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The fascination with semimetals, especially Dirac and Weyl semimetals, is given by their surprisingly strong
response to magnetic fields. In particular, the extremely large magnetoresistance (XMR), i.e., the change in
electrical resistivity as a function of the applied magnetic field, has attracted interest because of its deviation by
several orders of magnitude from the behavior of normal metals, and its potential for technological applications.
To date, it is unclear if the XMR in topological semimetals is inherently correlated to the very high electron
mobility and electron-hole compensation, or to other exotic mechanisms. Here, we show that the relativistic
and topological nature of charge carriers of the Weyl semimetal niobium phosphide (NbP) are only indirect
causes of the XMR. Instead, the XMR can be explained by the very long mean free path le(4 K) ≈ 8 µm in
combination with the small cyclotron orbits emerging in the presence of a magnetic field rc(9 T) ≈ 20 nm of the
NbP’s Weyl electrons. More precisely we find MR = c le/rc, where c is a parameter independent of temperature
and angle between the magnetic field and the crystal. To demonstrate, we use temperature and angle-dependent
magnetoresistance measurements, and extract the mean free path and cyclotron radius from an analysis of the
Shubnikov–de Haas oscillation.
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I. INTRODUCTION

Since the discovery of topological semimetals, one of the
properties that drew particular attention is their extremely
large magnetoresistance (XMR), which can achieve values
up to a few million percent at low temperatures and high
magnetic fields (WP2: 4 × 106% [1], NbP: 8.5 × 105% [2],
CdAs: 1.3 × 106% [3], TaP: 1.8 × 106% [4], at 2 K and
9 T). These values are astonishing when compared to the few
percent change in resistance of conventional metals in a high
magnetic field. In addition, XMR also exceeds typical values
of giant magnetoresistance [5] or colossal magnetoresis-
tance [6], making XMR materials appealing for technological
applications [7].

The substantial deviation from normal metals suggests that
the XMR in topological semimetals originates from unusual
mechanisms [8–10], none of which has been conclusively
confirmed. Electron-hole compensation and ultrahigh carrier
mobility are common characteristics of semimetals, and their
combination is arguably the most popular explanation for the
XMR [8,11–16]. In fact, classically, the coexistence of mul-
tiple pockets with similar electron and hole carrier densities
is needed to explain the nonsaturating and nonparabolic MR
typical of semimetals. Only a perfect compensation brings
MR = ρ(B)−ρ(0)

ρ(0) ∼ B2, where ρ is the electrical resistivity and
B is the magnetic field [17,18], and the closer the system is to
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compensation and the higher the mobility of the carriers, the
larger is the MR.

The dependence of the MR on mobility is more rigorously
captured by Kohler’s rule, which states that the MR of a metal
is solely a function of the ratio B/ρ0, where ρ0 is the resis-
tivity at B = 0 [19]. The rationale is based on simple scaling
arguments to consider a shortening of the mean free scattering
distance through the application of a magnetic field, which
says that the MR is determined by le/rc, where le is the mean
free path of charge carriers and rc the cyclotron radius [17,20].
But since le ∝ ρ−1

0 and rc ∝ B−1, the MR can be considered
to depend only on the ratio B/ρ0. The validity of Kohler’s rule
MR = f (B/ρ0) has been demonstrated for XMR materials
with a relatively large Fermi energy, such as WTe2 [16].

However, when the Fermi energy is small, the mean free
path le = h̄kF

e μ = h̄kF
ne2ρ0

, where kF is the Fermi momentum, e
the elemental charge, and μ the charge mobility, depends on
the temperature by both ρ0(T ) and the temperature-dependent
carrier density n(T ). Therefore, an extended Kohler’s rule
must be used, according to which the temperature depen-
dence of le is linked to the temperature-dependent mobility
μ, rather than just ρ0, implying MR = f (Bμ) [21]. This has
been demonstrated for the XMR Weyl semimetal TaP using
density functional theory (DFT) calculations to extract the
carrier density [22].

In order to investigate the origin of the XMR in Weyl
semimetals, here we test the validity of the more general
MR = f (le/rc) for NbP, relying exclusively on Shubnikov–
de Haas (SdH) oscillations to estimate le and rc, and taking
advantage of the anisotropic Fermi surface (FS) of NbP to go
beyond the approximation rc ∝ B−1. In particular, we show
that (a) the temperature dependence of the MR correlates
to the temperature dependence of the mean free path le, or
mobility μ; and (b) the angle-dependent MR correlates to the
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FIG. 1. Magnetoresistance and mobility. (a) Resistivity vs temperature of the NbP Hall bar shown in the inset, for B = 0 T (black) and
B = 9 T (blue). (b) MR as a function of field B, for B ‖ c at various temperatures. (c) When plotted against B/ρ0 the MR curves at various
temperatures do not collapse on a single line, i.e., the angular coefficient s in MR = sB/ρ0 is temperature dependent. (d) The temperature
dependence of s is well described by a parabolic function. Assuming that this is due to the temperature-dependent carrier density, the
experimental points are fitted according to Eq. (1) to extract the Fermi energy Es

F ≈ 33 meV. (e) Frequency spectrum of the SdH oscillations,
shown in the inset. (f) Temperature dependence of the SdH oscillation amplitude. The dotted line shows the Lifshitz-Kosevich fit from which
the effective mass is extracted, which, combined with the oscillations’ frequency, is used to estimate the Fermi energy ESdH

F ≈ 37 meV, which
in turn is used to calculate the mobility μ. (g) MR as a function of field times mobility at various temperatures. The MR curves collapse on a
single line, showing that its temperature dependence comes from temperature-dependent mobility.

length of the cyclotron radius rc, which is a function of the
cross-sectional FS area perpendicular to B. In other words, we
propose that not only the high mobility but, independently,
also the small FS of NbP are responsible for the XMR.

Importantly, despite the complicated FS of NbP and the
presence of many carrier pockets (i.e., a multitude of small
FSs) [23], the temperature and angle dependence of the MR
can be understood by considering only the carriers which
dominate quantum oscillations, ignoring trivial pockets with
larger effective mass.

II. EXPERIMENT

High-quality single bulk crystals of NbP were grown via
a chemical vapor transport reaction using an iodine transport
agent. A polycrystalline powder of NbP was synthesized by
a direct reaction of niobium (Chempur 99.9%) and red phos-
phorus (Heraeus 99.999%) within an evacuated fused silica
tube for 48 h at 800 ◦C. The growth of bulk single crystals
of NbP was then initialized from this powder by chemical
vapor transport in a temperature gradient, starting from 850 ◦C
(source) to 950 ◦C (sink) and a transport agent with a concen-
tration of 13.5 mg cm−3 iodine (Alfa Aesar 99.998%).

Microscopic bars were extracted from a single crystal
by means of focused ion beam (FIB) microstructuring [24],
which allows for high aspect-ratio samples with good con-
trol of geometry and crystalline direction, and homogeneous

magnetic field distribution along the sample. As a drawback,
the properties of a thin superficial layer are altered [25], never-
theless, bulk properties are unchanged as demonstrated by the
good match between quantum oscillations in microstructured
and bulk samples. After the milling procedure, the sample was
placed on a prepatterned chip and contacted by ion-assisted
chemical vapor deposition of platinum (contact resistance
around 15 �).

Electrical measurements were performed in a cryostat
(Dynacool from Quantum Design) using external lock-in
amplifiers (MFLI from Zurich Instruments). The electrical
current was always applied along the same crystalline direc-
tion, and for the angle-dependent measurements, the magnetic
field was rotated keeping a 90◦ orientation with respect to the
current. The results were confirmed on a second sample (see
Supplemental Material [26]).

III. RESULTS AND DISCUSSION

A. Magnetoresistance and mobility

Figures 1(a) and 1(b) show the temperature-dependent MR
of the NbP Hall bar. It has a resistivity of 38.3 µ� cm at 300 K
and 3.6 µ� cm at 4.2 K (RRR ∼ 11). The MR at 9 T for a
magnetic field parallel to the c axis increases from 295% at
300 K to 13.600% at 4.2 K. At sufficiently high magnetic
fields the temperature coefficient of the resistivity becomes
negative (insulatinglike behavior [10,16]).
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Figure 1(b) shows the MR of NbP at various temperatures
T, for B parallel to the c axis, and perpendicular to the electri-
cal current. The MR does not saturate and exhibits a parabolic
to nearly linear transition at a critical field of around 0.5 T
(as visible from the derivative of the MR in the Supplemental
Material [26]). The nonsaturating and approximately linear
MR is widely observed in semimetals [3,10,27–29], but un-
expected from the classical theory of MR based on Lorentz
force, indicating that some more complex mechanisms come
into play. Nevertheless, the application of Kohler’s rule can
offer insights into the factor that regulates the magnitude of
the MR.

The MR is approximately linear in the range under analysis
(0–9 T, 4–300 K), so according to Kohler’s rule, it should be a
temperature-independent linear function of B/ρ0. This is only
approximately the case, as shown in the so-called Kohler plot
in Fig. 1(c).

To improve the Kohler scaling, we need to move to an
extended Kohler’s rule by considering the temperature depen-
dence of the carrier density. We can rely exclusively on the
MR data and extract EF from the SdH oscillations emerging
at low temperatures, and find the temperature dependence of
the carrier density n at EF from the Sommerfeld expansion,

n(T ) =
∫ ∞

0
f (ε)g(ε)dε ≈ E3

F

3π2(h̄vF )3

(
1 + π2k2

bT 2E−2
F

)
,

(1)

where f (ε) = 1
1+e(ε−EF )/kBT is the Fermi-Dirac distribution,

g(ε) = ε2

π2(h̄vF )3 is the density of states (DOS) for relativistic
carriers, and vF is the Fermi velocity.

The carrier density goes approximately as n ∼ T 2, which
is also the trend followed by the inverse of the angular coef-
ficients s(T )−1 extracted from a linear fit of MR = s(T )B/ρ0,
as shown in Fig. 1(d). Assuming that the MR depends on tem-
perature only through ρ0(T ) and n(T ), then s(T )−1 ∝ n(T ),
and, according to Eq. (1), a parabolic fit of s(0)

s(T ) = n(T )
n(0) would

return the Fermi level as the only free parameter. From the fit,
we find EF = 33 meV. Now, we will compare this value with
the one extracted from the SdH oscillations.

After isolating the SdH oscillations from a smooth back-
ground by computing the second derivative of the MR [inset in
Fig. 1(e)], we extract the power spectral density (PSD), shown
in Fig. 1(e), to calculate the cross-sectional Fermi-surface
areas according to the Onsager relation AFS = (2π2/�0)F ,
where �0 = 2.07 × 10−15 T m2 is the flux quantum, and F
is the oscillation frequency. We find a dominant PSD at 31 T.
Then, we find the effective mass m∗ of the carriers related to
such a frequency by fitting the temperature dependence of the
amplitude A of the 31-T peak in the PSD, using the Lifshitz-
Kosevich formula A = λ

sinh(λ) , where λ = 14.7 T
Bm∗ [Fig. 1(f)].

Finally, the Fermi energy is calculated as EF = h̄2k2
F

2m∗ , where
kF = √

AFS/π is the Fermi momentum, assuming a circular
cross-sectional FS. We find EF = 37 meV, comparable with
the value found from the fit in Fig. 1(d). Given EF , the carrier
density is calculated from Eq. (1) (considering the anisotropy
of the FS, according to the data discussed below), and the
mobility as μ = (neρ0)−1. Now, when we plot the MR as a
function of Bμ, we get the collapse expected for the Kohler’s

plot [Fig. 1(g)], indicating that the temperature dependence of
the MR comes from the temperature-dependent mobility, or
mean free path le, of the carriers that dominate the SdH’s PSD.
A similar analysis has also been done by Xu et al., however,
in Ref. [22] the authors had to rely on DFT calculations to
predict the carrier density, while here we show that it can be
found from experiments alone.

The mobility turns out to be extremely large, espe-
cially at low temperatures: μ(5 K) = 4 × 105 cm2/V s and
μ(300 K) = 7 × 103 cm2/V s, and this is the first out of two
causes for the XMR in the Weyl semimetal NbP. In this sense,
the relativistic nature of the carriers in NbP plays a major role,
first of all, because of their intrinsically small effective mass
m∗ = 0.09me, which directly influences the mobility (μ = eτ

m∗ ,
where τ is the carrier scattering time); second, the relativistic
DOS causes a steeper increase of the carrier density as the
temperature increases, which is partially responsible for the
strong decrease of the mobility, and therefore of the MR, at
high temperatures.

B. Angle-dependent magnetoresistance
and Fermi-surface anisotropy

After having verified that the XMR is a linear function
of the mean free path, we investigate whether the magne-
toresistance of NbP increases linearly as the cyclotron radius
decreases, as expected if MR ∝ le

rc
. To do so, we take ad-

vantage of the anisotropic Fermi surface of NbP [23]. The
anisotropicity of the FS reflects in the change of the carriers’
cyclotron orbit as the magnetic field is rotated with respect
to the crystalline axes. In fact, the cyclotron orbit is equal
to the FS contour perpendicular to B and scaled by h̄/eB.
Figure 2(a) shows that the MR of NbP manifests a similar
anisotropic character, namely, it changes as the magnetic field
is rotated. Next, we will show that the change of the cyclotron
orbit dimension can quantitatively account for the measured
anisotropic MR.

By means of angle-dependent SdH measurements
[Fig. 2(b)] we reconstruct the evolution of the cross-sectional
FS area as a function of the angle φ between B and the
c axis of the NbP crystal. The FS area is proportional to
the SdH oscillation frequency, and the number of mixing
frequencies reflects the number of carrier pockets populating
NbP. Three peaks are distinguishable in the PSD in Fig. 2(c),
and are characterized by a similar trend: The oscillation
frequency, and so FS’s area perpendicular to B, increase
as the magnetic field is rotated from being parallel to
the c axis to being parallel to the b axis. The simplest
FS shape with such characteristics is an ellipsoid sphere,
in which case the angular-dependent SdH frequency is

F (φ) = F (0◦)F (90◦)
√

cot2 φ+1
F (90◦ )2 cot2 φ+F (0◦ )2 [30]. This relation,

plotted in dashed lines in Fig. 2(d), describes the experimental
data reasonably well.

As the cross-sectional Fermi surface’s area perpendicular
to the magnetic field increases when moving from B ‖ c to
B ‖ b, so does the real-space cyclotron orbit, reducing the
MR. Meanwhile, given the fixed temperature, the mean free
path between two scattering events in the direction parallel to
the a axes stays constant. Overall, the ratio le/rc decreases.
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FIG. 2. Angle-dependent MR and FS shape. (a) Angle-dependent MR at T = 5 K vs field, from B ‖ c (φ = 0◦) to B ‖ b (φ = 90◦). (b) SdH
oscillations isolated from the smooth background. (c) Oscillations’ PSD at different angles. Three main oscillation frequencies are highlighted.
(d) Oscillation frequencies and (e) effective masses vs angle. The oscillations’ frequencies are fitted considering elliptic FSs [dashed lines in
(d)]. (f) Angle-dependent MR at T = 5 K vs field times the inverse of normalized oscillations’ frequency, which is proportional to the relative
change of the cyclotron radius. The MR curves almost collapse on a single line, suggesting that its angle dependence mostly comes from the
angle-dependent cyclotron orbit.

From the angle-dependent SdH we can measure the cyclotron
radius rc(φ) perpendicular to the transport direction and to the
magnetic field, and compare it with the angle-dependent MR.

Because of the elliptic Fermi surface the cyclotron orbit
is also elliptic, and the ratio between oscillation frequencies
at different φ is equal to the ratio between the major and
minor axis of the orbit. This is because, while rotating the
magnetic field, only one of the radii changes, while the other
stays constant,

F (φ)

F (0◦)
= AFS(φ)

AFS(0◦)
≈ πrc0rc(φ)

πr2
c0

= rc(φ)

rc0
, (2)

where F is the SdH frequency, AFS the FS area, rc0 is the minor
axis of the ellipsoid sphere, and rc(φ) is the major axis. In
Fig. 2(f), the plot of the MR as a function of the magnetic
field renormalized by the relative cyclotron radius [or relative
oscillation frequency, Eq. (2)] causes the angle-dependent MR
curves to almost collapse on a single line, similar to what is
shown in the Kohler plot in Fig. 1(g).

Only the SdH frequencies F2 of Fig. 2(c) are used in the
renormalization. This is because up to φ = 60◦ F2 clearly
dominates the PSD and the angle dependence is similar for
all the observed frequencies. Also, the scattering rate is con-
sidered isotropic. The approximation of considering only one
pocket with an isotropic scattering rate in the analysis of
the MR could justify the deviation from a perfect collapse
in Fig. 2(f). This result suggests that the cyclotron radius
perpendicular to the transport direction is the main parame-
ter regulating the angle-dependent MR. The collapse shown
in Fig. 2(f) remains valid up to 300 K (Fig. S4 in the

Supplemental Material [26]), meaning that it is independent
of the specific scattering mechanism, which affects le but
not rc.

Commonly, the angle-dependent MR is associated with
the angle-dependent effective mass or mobility [31,32], rather
than the cyclotron radius. To test whether the notion of MR
scaling with the effective mass is useful for the description of
NbP, in Fig. 2(e) we extracted the angle-dependent effective
mass from the temperature dependence of the SdH oscillations
amplitude (Fig. S5 in the Supplemental Material [26]). The
relative increase of the effective masses with angle is smaller
than the relative increase of rc with angle, and cannot describe
the change in MR. Also, the extracted effective masses are
subject to a larger uncertainty than the oscillation frequencies,
making the latter an easier quantity to deal with.

The cyclotron radius of the NbP carriers’ orbit is as small
as 20 nm, for B = 9 T and parallel to the c axis, while the
mean free path is around 7.7 µm at 4 K, which gives le/rc =
384. In normal metals under the same conditions the situation
is generally the opposite, namely, the mean free path is in the
nanometer range, while the cyclotron radius can be several
micrometers, justifying the tremendously lower values of MR,
when compared to XMR materials such as NbP, despite being
apparently regulated by similar mechanisms.

IV. CONCLUSION

In summary, the temperature dependence of the XMR of
NbP can be understood in terms of temperature-dependent
mobility, and the angle-dependent XMR relates to the
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variation of the cyclotron orbit as the magnetic field is rotated.
The ratio le/rc, that is around 380 in our NbP sample at
4 K and 9 T, controls the magnitude of the XMR. This is
not different from what happens in normal metals, where the
MR is several orders of magnitude lower than that of XMR
materials such as NbP. The difference lies on the fact that
Dirac and Weyl semimetals are characterized by exceptionally
long mean free paths and short cyclotron radii, i.e., very high
mobilities and small Fermi surfaces, while the situation can
be the opposite in normal metals.

The presence of multiple carriers of different species in
an almost-compensated proportion is another crucial aspect
required to explain the magnitude as well as the nonparabolic
and nonsaturating MR, but a simplified model in which only
the most mobile carriers’ pocket is considered (a pocket of
Weyl electrons in the NbP case) appears to be enough to

explain the variation of MR with temperature and magnetic
field direction.
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