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Fractionally filled Chern bands with strong interactions may give rise to fractional Chern insulator (FCI)
states, the zero-field analog of the fractional quantum Hall effect. Recent experiments have demonstrated the
existence of FCIs in twisted bilayer MoTe2 without external magnetic fields—most robust at ν = −2/3—as
well as Chern insulators (CIs) at ν = −1. Although the appearance of both of these states is theoretically natural
in an interacting topological system, experiments repeatedly observe nonmagnetic (or weakly magnetic) states
(lacking FCIs) at ν = −1/3 and −4/3, a puzzling result, which has not been fully theoretically explained.
In this paper, we perform Hartree-Fock and exact diagonalization calculations to test whether the standard
MoTe2 moiré model with the (greatly varying) parameter values available in the literature can reproduce the
nonmagnetic/weakly magnetic states at ν = −1/3 and −4/3 in unison with the FCI at ν = −2/3 and CI state at
ν = −1. We focus on the experimentally relevant twist angles and, crucially, include remote bands. We find that
the parameters proposed in Wang et al. [arXiv:2306.02501] can nearly capture the experimental phenomena at
ν = −1/3, −2/3, −1, −4/3 simultaneously, although the predicted ground states at ν = −1/3 are still mostly
FCIs and a larger dielectric constant ε > 10 than is typical of hexagonal boron nitride (h-BN) substrate ε ∼ 6 is
required. Our results show the importance of remote bands in identifying the competing magnetic orders and lay
the groundwork for further study of the realistic phase diagram.

DOI: 10.1103/PhysRevB.109.045147

I. INTRODUCTION

As proposed more than a decade ago [1–3], interactions
can induce fractional Chern insulator (FCI) states when nearly
flat Chern bands [4,5] (in zero magnetic field) are fractionally
filled. Owing to the development of moiré materials [6,7],
there has been extensive theoretical [8–21] interest in the real-
ization of FCI states in this platform. First steps towards FCIs
were taken through the experimental observation of fractional
quantum Hall (FQH)-like states in twisted bilayer graphene
[22] and in bilayer graphenehexagonal boron nitride (h-BN)
heterostructures [23], both—especially the latter—requiring
a large external magnetic field. Remarkably, recent experi-
ments [24–27] demonstrated true FCI states without external
magnetic fields in twisted bilayer MoTe2 (tMoTe2) at frac-
tional fillings ν = −2/3,−3/5, as well as a Chern insulator
(CI) exhibiting the integer quantum anomalous Hall effect at
ν = −1, spurring immediate theoretical interest [28–38]. (ν is
the electron filling measured from the charge neutrality point.)
The FCI and CI states observed in the experiments have been
reproduced theoretically [28,29,31,32,34,36,37] based on the
continuum model proposed in Ref. [39].

Reference [39] already showed that the valley-filtered
bands exhibit a Chern number at the single-particle level.
Fractionally filling them ought to produce FCIs, as Refs. [1–3]
showed at multiple rational fillings of Chern bands. However,

there is a puzzling and essential departure from the typical
FCI phase diagram [1–3]. Unlike at ν = −2/3, experiments
[24–27] repeatedly found nonmagnetic/weakly magnetic (and
non-FCI) states at ν = −1/3, although several existing the-
oretical studies [29,31] have predicted the experimentally
nonexistent ν = −1/3 FCI at experimentally relevant an-
gles. The magnetic ordering at ν = −1/3 in comparison to
ν = −2/3 was studied in Refs. [28,29], but remote bands
were neglected. Robust nonmagnetic states were also found
at ν = −4/3 in experiments, despite ν = −4/3 being the
particle-hole (PH) partner of ν = −2/3 within the lowest-
energy spinful bands. The ground state at ν = −4/3 has not
been theoretically studied. The full phase diagram poses an
unavoidable question for theory: Can the known continuum
model of Ref. [39] with the widely used parameter values
[28,29,31,32,34,36,37] capture the nonmagnetic states at ν =
−1/3,−4/3, FCI states at ν = −2/3, and the CI state at ν =
−1? In this paper, we mainly limit ourselves to the more ro-
bust and pronounced ν = −2/3 FCI and focus on explaining
this key puzzle and other essential features of the theoretical
model. The FCI at ν = −3/5 will be lightly discussed at the
end of Sec. V; its appearance is consistent with the initial
studies [1–3].

To answer the question, we perform self-consistent
Hartree-Fock (HF) and exact-diagonalization (ED) calcula-
tions for the experimental angles [24–27] θ ∈ [3.5◦, 4.0◦]. We
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only focus on the two mainly used sets of parameter values
in Refs. [28,29]. As will be discussed, the two other sets of
parameters proposed in the literature [36,39] are similar to
Ref. [28]. Crucially, we include remote bands in our calcu-
lation, but restrict ourselves to at most two bands per valley
where the model is thought to be most faithful [28,29].

Our two-band-per-valley (2BPV) HF calculation shows
that a CI at ν = −1 occurs for dielectric constants ε > 10
using the parameter values in Ref. [29]. The required value
of the dielectric constant is considerably larger than ε ∼ 6
estimated from the h-BN substrate [40]. On the other hand,
similar to what was found in Ref. [37], dielectric constants
as small as ε = 5 yield CIs for the parameters of Ref. [28].
On the other hand, our 1BPV HF gives CI at ν = −1 for
dielectric constants as small as ε = 5 for both sets of parame-
ters [28,29]; the difference in the 1BPV and 2BPV HF results
(most notably for the parameters in [29]) indicates the impor-
tance of the remote bands. Despite this enlarged CI region at
ν = −1, we do not see clear signatures that the parameters in
Ref. [28] can fully capture the experimental phenomena at the
fractional fillings of interest, as discussed in the following.

We further perform 1BPV and 2BPV ED calculations for
the parameters of Refs. [28,29] for the ε range that covers the
CI region at ν = −1 in HF calculations (i.e., ε ∈ [5, 25] for
Ref. [28] and ε ∈ [10, 25] for Ref. [29]).

1BPV ED calculations were performed in Refs. [28,29],
and weaker ferromagnetism was found at ν = −1/3 than at
ν = −2/3, for values of ε yielding FCIs at ν = −2/3. In
our 1BPV ED calculations (consistent with Ref. [28] and
Ref. [29] on the same system sizes), the parameter values in
Ref. [28] require a much stronger interaction (ε ∈ [5, 6.25])
to give FCIs at ν = −2/3 than the parameters in Ref. [29]
where ε can be as large as 25. References [28,29] found the
weaker ferromagnetism at ν = −1/3 concomitant with the
ν = −2/3 FCI for 1BVP calculations on 12 unit cells. We
further consider 15, 18, and 24 unit cell systems. Though
larger system sizes do reduce the difference in ferromag-
netic stability between ν = −1/3 and ν = −2/3, we find that
the finite size effects are not significant enough to eliminate
the trend that ferromagnetism at ν = −1/3 is considerably
weaker than that at ν = −2/3. Moreover, at ν = −1/3, we
find that the parameters in Ref. [29] mostly give FCIs (similar
to the finding in Ref. [29]), while KM-CDW states are found at
ν = −1/3 for the parameters in Ref. [28] (in agreement with
experiments and with Ref. [28]). On the other hand, our 1BPV
ED results show that when the interaction is strong enough to
give FCI at ν = −2/3, ν = −4/3 (not considered in earlier
paper) is ferromagnetic and always has a similar or stronger
magnetic stability as ν = −2/3, which is inconsistent with
the experiments. To resolve this inconsistency, we will include
remote bands to the ED calculation.

Our 2BPV ED calculations include one more remote band
per valley. Generally, we find that their inclusion typically
reduces the spin gaps at ν = −1/3 and −2/3 (or even causing
a sign change) and changes the spin of the ground state at ν =
−4/3. We note that although the remote bands were included
in the study of ν = −2/3 in the fully spin-polarized sector in
Ref. [36], the effects of remote bands on the spin gap have
not yet been studied. In particular for the parameter values
in Ref. [29], when FCIs appear at ν = −2/3, the spin gap at

ν = −1/3, albeit still fully spin polarized across most of the
region, is dramatically reduced, and nearly spin-unpolarized
states (i.e., small total spin) are now favored at ν = −4/3.
Nevertheless, the ground states at ν = −1/3 are still mostly
FCIs when FCIs appear at ν = −2/3. Taken together, the
inclusion of remote bands greatly ameliorates the agreement
with the experimental phase diagram for the parameters in
Ref. [29], although we caution that the ground states at ν =
−1/3 are still mostly FCIs and the results are contingent on a
dielectric constant ε > 10.

On the other hand, the same 2BPV ED calculations for
the parameter values in Ref. [28] show large-spin states are
energetically favored at ν = −4/3 and (for the system sizes
currently accessible to us) have even larger spin-1 gap than
that at ν = −2/3 for ε ∈ [5, 6.25]. Thus, we have not seen
clear signatures that the parameters in Ref. [28] can capture
the significant experimental difference in magnetism between
ν = −2/3 and ν = −4/3 for the experimental angles θ ∈
[3.5◦, 4.0◦] for the system sizes currently accessible to us,
although ν = −1/3 becomes nonmagnetic and remains not
FCIs in agreement with experiments. A summary of our re-
sults in comparison to experiment and the literature may be
found in Table I.

These results show the need for the analog of the Lan-
dau level mixing to explain the experimental facts. Since the
single-particle bands have different Chern number sequences
depending on the twist angle, the physics of tMoTe2 is likely
to be very rich.

In the rest of this paper, we review the single-particle model
in Sec. II and discuss the interaction and the PH symmetry
in Sec. III. We further discuss the HF, 1BPV ED, and 2BPV
ED results in Secs. IV, V, and VI, respectively. We eventually
conclude the paper in Sec. VII, and provide more details in a
series of Appendices.

II. SINGLE-PARTICLE MODEL

The moiré physics of the TMDs was originally proposed
by Ref. [39] to be captured by a two-valley continuum model
formed from low-energy states at the K and K ′ valleys, where
the strong spin-orbit coupling splits the spin-up and spin-
down states. By time reversal, the states at valley K have the
opposite spin as the states at valley K . Thus spin is effectively
locked to valley, and the only global symmetries of the model
are charge U (1) and valley/spin (Sz) U (1). Because MoTe2 is
a semiconductor, the effective single-particle moiré Hamilto-
nian around the quadratic band edge takes the form (in the K
valley)

HK (r) =
(

h̄2∇2

2m∗
+ V+(r) t (r)

t∗(r) h̄2∇2

2m∗
+ V−(r)

)
(1)

where the matrix acts on the electron wavefunction
(ψ+(r), ψ−(r))T with support on momenta near R(± θ

2 )K in
the top/bottom layer [see Fig. 1(a)], V±(r) are moiré poten-
tials in the top/bottom layer, and t (r) is the interlayer moiré
tunneling. Here R(θ ) is a rotation matrix, m∗ is the effective
mass, and K = 4π

3a0
x̂ is the untwisted K point with a0 = 3.52 Å

[39]. Note that ∇2 is unbounded below and Eq. (1) describes
the electron valence bands below the charge neutrality point.
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TABLE I. Minimal phase diagram at θ ∼ 3.7◦ (determined with HF at ν = −1 and ED otherwise). “N-M/W-M” stands for the
nonmagentic/weakly magnetic ground states. “Not FCI” stands for the ground states being not FCI ground states. Checkmarks (crosses)
indicate a match (mismatch) to experiment for a considerable part of values of ε in the indicated range. The question mark indicates an
uncertainty due to finite size effects, and “≈ �” for ν = −4/3 means a ground state with small (but nonzero) total spin. Citations to earlier
work are shown if they are consistent with our work in the same range of parameters. We only consider calculations including both valleys,
a prerequisite for a prediction of magnetism. Note that Ref. [36] performed two-band ED calculations at ν = −2/3 on a related model with
different irreps in the remote bands due to a truncation of the Wannier basis, but only in the fully spin-polarized sector.

ν = −1/3 −1/3 −2/3 −1 −4/3 ε

Parameters \ Experiment N-M/W-M Not FCI FCI CI N-M
Ref. [28] param. (1BPV) �[28] �[28] �[28] � ✗ [5,6.25]
Ref. [28] param. (2BPV) � � ? �[37] ✗? [5,6.25]
Ref. [29] param. (1BPV) �[29] ✗[29] �[29] � ✗ [10,25]
Ref. [29] param. (2BPV) � ✗ � � ≈ � [10,25]

Spinful time reversal yields the K ′ valley model HK ′ (r) =
HK (r)∗.

A. Moiré potentials

Reference [39] obtained expressions for V±(r) and t (r)
by using the lowest-order symmetry-allowed Fourier modes
with parameters fit to bilayer band structures. The point group
symmetry of AA-stacked MoTe2 [41,42] is generated by mir-
ror z → −z, threefold rotation about the z axis C3z, twofold
rotation about the y axis C2y, and spinful time-reversal T .
Note that C3z acts locally on each layer, whereas C2yT flips
the layers. Twisting the layers in opposite directions preserves
only the C3z and C2yT symmetries at the K point, yielding the
magnetic point group 3m′ as the intravalley symmetry group
of the moiré model HK (r). Their explicit representations are
given in Appendix A.

The interlayer coupling t (r) can be expanded in terms of
the moiré scattering momentum

q1 = R(θ/2)K − R(−θ/2)K = 2 sin
θ

2
|K|ŷ (2)

and qi+1 = R(2π/3)qi [43]. Keeping only the lowest order
Fourier modes gives

t (r) = w

3∑
n=1

eiqn·r (3)

(a) (b)

FIG. 1. (a) Twisted BZs of the bilayer, with oppositely spin-
polarized low-energy states at K and K ′. Twisting creates a moiré
BZ shown (for a single valley) in (b) where blue/red represent moiré
reciprocal lattice points in the top/bottom layers. The momentum
space hoppings Ve±iψ, w of the moiré potential are marked.

where C3z ensures all three modes have equal amplitude w.
The overall phase of t (r) is not observable since it depends on
the arbitrary relative phase choice between the top and bottom
layers, and is not constrained by C2yT . By convention we take
w < 0.

Next we consider the potentials V±(r). Because they are
intralayer, they are supported on the moiré reciprocal lattice
spanned by the vectors

b1 = q3 − q2 =
√

3|q1|x̂, b2 = R(2π/3)b1 (4)

and we define b3 = −(b1 + b2) = R(2π/3)b2 for conve-
nience. The lowest-order reciprocal lattice points are 0 and the
first shell G = R(2πn/6)b1 for n = 0, . . . , 5. Keeping only
these harmonics and imposing C3z,C2yT , the most general
form of the potential can be written in terms of an amplitude
V and phase ψ as

V±(r) = 2V
3∑

n=1

cos(bn · r ± ψ ) (5)

up to an overall chemical potential. Figure 1 depicts these
next-nearest neighbor hoppings on the momentum space lat-
tice [44].

Within the approximation of keeping the lowest harmon-
ics only, an emergent intravalley pseudo-inversion symmetry
of HK (r) appears (see Appendix A). Although the pseudo-
inversion can be broken by C3z,C2yT -preserving higher-order
terms (see Appendix A), we focus on the original, lowest-
order model. As the model stands, the pseudo-inversion
symmetry relates k and −k so that the band structures in the
K and K ′ valleys are identical. The ab initio calculations in
Ref. [29] are in agreement with this to good accuracy.

The values of model parameters have been determined
by matching the DFT band structure (either at AA stacking
[39] or at commensurate twist angles [28,29,45]), which are
summarized in Table II. Among the four sets of parameter
values in Table II, the first three sets of parameter values are
fairly similar: they exhibit dispersive bands structures [see
Fig. 2(a)], peaked quantum geometry, and Ch = −1 topology
in both bands closest to the charge neutrality per valley (see
Appendix A). In contrast, the fourth set of parameter values
in Table II is qualitatively different, showing a flatter active
band [see Fig. 2(b)], nearly ideal quantum geometry [33,46–
50], and opposite Chern numbers Ch = ±1 for the bands
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TABLE II. Proposed parameter values for the single-particle
moiré model Eq. (1).

MoTe2 m∗ (me) w (meV) V (meV) ψ

Ref. [28] 0.62 −13.3 11.2 −91◦

Ref. [39] 0.62 −8.5 8 −89.6◦

Ref. [45] 0.62 −11.2 9.2 −99◦

Ref. [29] 0.6 −23.8 20.8 −107.7◦

closest to the charge neutrality per valley. (The larger values
of the moiré potential are on par with other transition metal
dichalcoginides [51].) Therefore, in the following, we will
focus on the first (Ref. [28]) and fourth (Ref. [29]) sets of pa-
rameter values in Table II. Since experiments repeatedly show
FCIs around the twist angle 3.7◦, we also restrict our attention
to the range of angles θ ∈ [3.5◦, 4◦]. Figure 3 maps out the
single-particle phase diagram of the active bands across V,w

for two values of ψ proposed in Refs. [28,29], finding three
topologically distinct regimes when the lowest two bands are
considered. Figure 3 shows that the parameters of Ref. [28]
and Ref. [29] fall in different phases, and can be expected to
yield different many-body phase diagrams.

We note that Refs. [28] and [29] extracted their parameters
from different commensurate twist angles, 4.4◦ and 3.89◦
respectively. Thus the parameters used in Ref. [29] are perhaps
more reliable for describing the experiments at the angle of
3.7◦. Although, it is likely that the model parameters depend
on twist angle due to relaxation effects [52,53].

B. Topology

The full magnetic wallpaper group (in one valley) is p31m′
(or 157.55 in the BNS setting) generated by C3z,C2yT , and
moiré translations. Band structures can be labeled by their C3z

eigenvalues at the high-symmetry points �M, KM , K ′
M in the

moiré Brillouin zone (BZ) (for a fixed valley). Figure 2 depicts
two example band structures. The active (highest valence)
band in both cases has the same eigenvalues, but the lower
two bands differ by a band inversion at the �M point, as can be
seen from the interchange of the �1 and �2 irrep. A minimal
character table for the spin-less irreps (we choose C3

3z = +1
since it is intravalley) at the C3z-symmetric points in one valley

FIG. 2. Single-particle band structures at θ = 3.7◦ for the param-
eters in Ref. [28] (a) and Ref. [29] (b), along with their C3z irreps. In
Fig. 3, (a) is marked with a circle and (b) with a star.

FIG. 3. Single-particle phase diagram at θ = 3.7◦. The parame-
ter space of the model contains three topologically distinct phases
delineated by direct gap closings (red lines). In each phase, the
Chern numbers Ch of the two bands nearest the Fermi energy are
labeled and the indirect gap � right below the highest valence band
is colored. (a) Parameters of Ref. [28] are marked with a black dot.
(b) Parameters of Ref. [29] are marked with a black star.

(giving the notation in real space and momentum space) is

r k 1 C3z

A �1, K1, K ′
1 1 1

2E �2, K2, K ′
3 1 e

2π i
3

1E �3, K3, K ′
2 1 e− 2π i

3

. (6)

We see that all irreps are one dimensional, showing that there
are no symmetry-protected degeneracies. Secondly, the Chern
number Ch of an individual band is related to the symmetry
eigenvalues by [54]

exp

[
2π i

3
Ch

]
=

∏
k=�M ,KM ,K ′

M

Dk[C3z] (7)

where Dk[g] is the representation of g at k, which can be
used to determine Ch mod 3. Lastly, we remark that this
space group hosts decomposable elementary band represen-
tations (see Appendix A), which generically give rise to Ch =
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±1 mod 3 Chern bands [55,56]. Thus there is a symmetry
principle [57] that predicts the appearance of topology.

C. Remarks on the continuous model

According to previous DFT calculations [28,29], the cur-
rent single-particle model Ref. [39] can faithfully capture the
top two bands in the K, K ′ valleys, but fails farther from the
charge neutrality. Specifically, the ab initio calculations [29]
show low-energy moiré bands from the TMD � valley appear-
ing right below the second highest K, K ′-valley bands, which
are absent from the Hamiltonian. Therefore, in the following
sections, we include at most two bands per valley in our
calculations. The � bands will be studied in our forthcoming
paper.

The single-particle Hamiltonian can be written in second
quantized notation as

H0 =
∫

d2r
∑
η,ll ′

c†
η,l,r[Hη(r)]ll ′cη,l ′,r (8)

where c†
η,l,r creates an electron at position r in the lth layer

and the η valley. The global symmetries of H0, as well as
the interacting Hamiltonians to be introduced in the following
section, are

N =
∫

d2r
∑
η,l

c†
η,l,rcη,l,r

Sz = 1

2

∫
d2r

∑
η,l

ηc†
η,l,rcη,l,r (9)

where η = ± denotes the valley ηK quantum number, which
is equivalently the spin quantum number Sz = η/2. In this
work, we only consider states with Sz � 0 since those with
negative Sz are related by time reversal.

III. INTERACTION AND PARTICLE-HOLE SYMMETRY

We now consider the many-body Hamiltonian obtained
from adding the Coulomb interaction to the single-particle
model discussed above. We first discuss the different interac-
tions suggested in the literature and then clarify their behavior
under particle-hole transformations.

A. Interaction among electrons and holes

In the previous theoretical papers [16,28,29,31,32,
34,36,37] on FCIs in tMoTe2, two different interactions
are used. One choice is the Coulomb interaction among holes,
employed by Ref. [28] in the full Hamiltonian

Hh =
∫

d2r
∑
η,ll ′

c̃†
η,l,r[−Hη(r)]ll ′ c̃η,l ′,r

+ 1

2

∑
lη,l ′η′

∫
d2rd2r′V (r − r′ )̃c†

η,l,r̃c
†
η′,l ′,r′ c̃η′,l ′,r′ c̃η,l,r,

(10)

where c̃†
η,l,r creates a hole at position r in the lth layer and

η valley and V (r) is the double-gated screened Coulomb
potential with gate distance ξ and dielectric constant ε (see

Appendix B for explicit formulas). Note that c̃†
η,l,r and cη,l,r

are related by a complex conjugation operator, i.e., c̃†
η,l,r =

Kcη,l,rK−1 with K the complex conjugate (see Appendix B).
Hh annihilates the charge neutrality point ν = 0, which is the
hole vacuum. This is because the charge neutrality (|ν = 0〉)
is the product state of all valence electron bands occupied (all
holes unoccupied), which is the maximally filled state in the
Hilbert space,

|ν = 0〉 =
∏
r,η,l

c†
η,l,r|0〉 , (11)

with cη,l,r|0〉 = 0, leading to c̃η,l,r|ν = 0〉 = 0.
The other choice is the Coulomb interaction among elec-

trons, which is used in Refs. [16,29],

He =
∫

d2r
∑
η,ll ′

c†
η,l,r[Hη(r)]ll ′cη,l ′,r

+ 1

2

∑
lη,l ′η′

∫
d2rd2r′V (r − r′)c†

η,l,rc
†
η′,l ′,r′cη′,l ′,r′cη,l,r,

(12)

recalling that c†
η,l,r creates an electron at position r in the

lth layer and the η valley. As is apparent from Eq. (11), the
electron interaction He does not annihilate |ν = 0〉, the state
around which the single-particle Hamiltonian was derived,

In our HF and ED calculations, we use a projected Hamil-
tonian in the band basis. In this basis, Hh can be written as
(see Appendix B)

Hh = −
∑
k,η,n

γ̃
†
η,n,kγ̃η,n,kEη,n(k) + Hh,int , (13)

where

Hh,int = 1

2

∑
k,k′,q

∑
η,η′

∑
m,m′,n′,n

Vηη′,mm′n′n(k, k′, q)

× γ̃
†
η,m,k+qγ̃

†
η′,m′,k′−q

γ̃η′,n′,k′ γ̃η,n,k, (14)

and Vηη′,mm′n′n(k, k′, q) labels the projected interaction and
m, m′, n′, n are the band indices. Note that −Eη,n(k) is the nth
hole band energy (which is bounded below) in valley η, and
γ̃

†
η,n,k creates a hole in the nth hole band in η valley at k. The

projection of He,int is analogous (see Appendix B).
We note that if we do not perform the band projection and

keep the whole continuous Hamiltonian, Hh [Eq. (10)] and He

[Eq. (12)] only differ by a chemical potential-like term that
is proportional to the particle number operator, which means
that the unprojected Eqs. (10) and (12) should give the same
results (up to a overall constant) in a fixed particle-number
sector. However, in practice, we always keep a finite set of
bands, and the projected He and Hh are not guaranteed to give
the same results in a fixed particle-number sector anymore
(see Appendix B). In the rest of this paper, we will always
use the projected Hamiltonians with a finite set of bands.
Section IV will show that the He and Hh give different results
at ν = −1 in projected HF calculation.
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B. Particle-hole symmetry

Any single Landau level (LL) under the projected Coulomb
interaction possesses exact particle-hole (PH) symmetry,
which was widely used in study of the fractional quantum
Hall effect [58]. However, this is not the case in general for
FCIs [59], and we will give a brief summary of the role of
particle-hole symmetry in Hh and He.

In close analogy to the PH symmetry of a single LL, we
consider the following intraband PH transformation

Cγ
†
η,n,kC

−1 = γη,n,k , (15)

where C is an anti-unitary operator. Under this PH transfor-
mation, He acquires two extra terms,

CHeC−1 = He +
∑
η,k,n

γ
†
η,n,kγη,n,k(−2Eη,n(k))

+
∑

η,k,nm

γ
†
η,n,kγη,m,kεη,nm(k) + const., (16)

where (−2Eη,n(k)) accounts for the sign flipping of the single-
particle dispersion, and εη,nm(k) is an effective one-body term
arising from the interaction matrix elements. Its explicit form
is given in Appendix B. The hole Hamiltonian Hh trans-
forms similarly, with γη,n,k → γ̃η,n,k and Eη,n(k) → −Eη,n(k)
in Eq. (16). The case of single LL can be recovered by
dropping the valley and band index, and then PH invariance
follows from the flat kinetic energy [E (k) = const.] and the
flat one-body term [ε(k) = const.] due to the unique LL wave-
function [60], which has uniform quantum geometry [61].

Note that, in the transformation of He and Hh, we have
kept the number of bands in the projected Hamiltonian fully
general. As mentioned at the end of Sec. III A, only a finite
number of bands (and spin-valley flavors) can be kept in nu-
merical calculations, and importantly the PH transformation
acts differently depending on this truncation. For instance,
one could keep only one active band in a single valley (corre-
sponding a fully spin-polarized Hilbert space); in this case, the
PH transformation transforms the electron filling ν to −1 − ν

(e.g., −1/3 to −2/3, recalling that ν is the electron filling
measured from the charge neutrality point). This case has been
studied in Ref. [34], which shows that the PH symmetry is not
exact (e.g., the spectra at −1/3 and −2/3 will not be identical)
but might be approximately correct outsides the experimental
range of angles considered in this paper.

In this paper, we will consider PH symmetry breaking
beyond the fully spin-polarized sector, which is a basic re-
quirement for studying the nonmagnetized states observed in
experiment. In particular, if we keep one band in each valley,
PH maps ν to −2 − ν (e.g., −2/3 to −4/3). For this case it
is then possible to have approximate PH symmetry between
−2/3 and −4/3. However, if the remote bands are heavily
involved in the low-energy physics, they might strongly break
any approximate PH symmetry (if it exists) between ν and
−2 − ν, akin to the situation of the fractional quantum Hall
effect at ν = 5/2 [62,63]. Strictly speaking, if we keep two
valleys and two bands per valley, we can only have exact PH
symmetry between ν and −4 − ν. We will see in Secs. V
and VI that these effects are indeed relevant for the parameter
values in Ref. [29].

FIG. 4. The 2BPV Hartree-Fock results for ξ = 20 nm at ν =
−1. Hh and He refer to the Hamiltonian used, and Ch refers to the
Chern number. The gray region in (a) indicates a nonferromagnetic
ground state, which is intervalley coherent translationally breaking
state with wavevector KM and which has zero Chern number. 18 × 18
labels the system size. In general, the system size L1 × L2 means that
the momenta included in the calculation are (n/L1)b1 + (m/L2)b2

with n = 0, . . . , L1 − 1 and m = 0, . . . , L2 − 1, where b1 and b2 are
defined in Eq. (4).

IV. SELF-CONSISTENT HARTREE-FOCK
CALCULATIONS AT ν = −1

Self-consistent HF calculations at ν = −1 for tMoTe2

have been performed in previous works [16,27,31,37], among
which Refs. [27,30,37] demonstrated different phases induced
by band mixing. In this section, we provide HF results at
ν = −1 for sets of parameter values in Refs. [28] and [29]
for both hole and electron interactions Hh and He. These HF
calculations will serve to demonstrate the difference between
the interactions Hh and He and will allow us to screen out the
choices of parameters for which no CI appears at ν = −1 in
preparation for more time-consuming ED calculations.

As discussed in Sec. II C, we include two bands per
valley—the two highest electron bands or two lowest hole
bands per valley—as done in Ref. [37]. In the end of this
section, we will mention the 1BPV HF results. Our 2BPV
HF calculation is different from the 3BPV HF calculations
done in Ref. [30], and different from the 2BPV calculation
in Ref. [27], which replaces part of the states in the sec-
ond band in each valley by those in the third band due to
Wannierization.

Our 2BPV HF results are summarized in Fig. 4 where we
show the phase diagram for the experimentally relevant angles
θ ∈ [3.5◦, 4.0◦] and a range of dielectric constants ε ∈ [5, 25].
For both interactions and both parameter values, we find that
the ground state is ferromagnetic (fully spin polarized) over
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nearly the entire phase diagram. The only exception is the ap-
pearance of an intervalley coherent (IVC) translation-breaking
state with wavevector KM , called IVC-KM [37], which appears
at ε close to 25 for Hh [grey region in Fig. 4(a)]. We note that
although the IVC-KM state becomes the ground state only at
θ = 4.0◦ in our (θ, ε) mesh for Hh in Fig. 4(a), it has energy
very close to the |Ch| = 1 state for smaller angles at ε = 25,
e.g., for (θ, ε) = (3.8◦, 25), the |Ch| = 1 state only wins over
the IVC-KM state by about 0.1 meV per unit cell. Such IVC-
KM states were also found in Ref. [37] for ε close to 25.
Intuitively, the translationally invariant IVC state that mixes
the lowest-energy bands in the two valleys is not energetically
favored because it is topologically obstructed—the opposite
Chern numbers of the lowest-energy bands in the two valleys
require the order parameter to have zeros [64–67].

Comparing Hh to He in Figs. 4(a) and 4(b), the hole in-
teraction Hh in Eq. (13) gives a much larger region where
|Ch| = 1, i.e., the CI phase, than He. The Ch = 0 region that
occurs at stronger interaction for He in Fig. 4(a) and for both
Hh and He in Fig. 4(b) comes from the band inversion between
the active band and the remote band in one valley (typically,
a single band inversion at KM or K′

M due to spontaneous
breaking of C2yT in each valley). This effect is only possible
due to the inclusion of remote bands, and underscores their
importance. Since only |Ch| = 1 is consistent with the CI state
observed at ν = −1 [24–27], our HF results suggest that the
hole interaction Hh is more suitable to realize CI effect at
ν = −1 than He.

Notably for Hh, Fig. 4(a) shows that the |Ch| = 1 region
persists all the way to ε = 5 using the parameters of Ref. [28]
(consistent with the results of Ref. [37]) but only to ε = 10 for
the parameter of Ref. [29]. Lastly, to check the dependence on
screening length, we calculated the phase diagrams for two
other screening lengths, ξ = 60 nm and ξ = 150 nm, and find
no changes in the CI region for the (θ, ε) mesh that we choose
though the gap of the CI does increase as the screening length
increases (see Appendix C).

As we can see, Hh and He lead to different 2BPV HF
phase diagrams. While both Hamiltonians were used in the
literature, we argue that Hh is the only physically reasonable
choice since Hh is normal ordered with respect to the charge
neutrality while He is not. For this reason, we will not use He

but will focus on Hh in the remainder of the paper. The CI re-
gions then roughly correspond to ε ∈ [5, 25] for the parameter
values in Ref. [28] and ε ∈ [10, 25] for the parameter values
in Ref. [29].

We also performed the 2BPV HF calculations with the
different values of V and w for the twist angle 3.7◦ and for
typical values of ε, and found that the CI state is robust as
long as V,w do not differ too much from those in Refs. [29]
and [28] (see Appendix C).

As a comparison to the 2BPV case, we perform 1BPV HF
calculations for Hh at ξ = 20 nm, which give CI at ν = −1
for the entire θ ∈ [3.5◦, 4.0◦] and ε ∈ [5, 25] for both sets of
parameters [28,29] (see Appendix C); CI at ν = −1 was also
found in the 1BPV HF calculation in Ref. [16] outsides the
experimental angle range. So the 1BPV calculations missed
the IVC-KM states for parameters in Ref. [28] and the Ch =
0 states for the parameters in Ref. [29] in the 2BPV results
(Fig. 4) indicating the importance of the remote bands.

To summarize, at the level of 2BPV HF at ν = −1, the
CI regions of the phase diagram differ considerably for the
parameters of Refs. [28] and [29]. To realize the CI phase for
the parameters in Ref. [29], roughly ε ∈ [10, 25] is required,
compared to the larger range ε ∈ [5, 25] for Ref. [28]. We
will show in the following section that ED calculations at
ν = −1/3,−2/3,−4/3 show a better match to experiment
using the parameters of Ref. [29] compared to Ref. [28].

V. ONE-BAND-PER-VALLEY EXACT DIAGONALIZATION
CALCULATIONS

1BPV ED calculations have been performed at frac-
tional fillings in previous studies [28,29,31,32,34,36,37]
restricting to the top electron band in each valley. In par-
ticular, Refs. [28,29] studied the magnetic properties at ν =
−1/3,−2/3 within 1BPV ED calculations and found weaker
ferromagnetism at ν = −1/3 than that at ν = −2/3. The dif-
ference in the magnetic properties between ν = −2/3 and
ν = −4/3 was not studied.

In general, a measure of magnetic stability is the spinful
gap [28,29], i.e., the energy difference between the lowest-
energy state in the Sz �= Smax sectors and the lowest-energy
state with the same particle number in the Sz = Smax (ferro-
magnetic) sector (former minus latter). Recall that Sz is the
total spin of the ground state for which we only consider
Sz � 0 owing to the TR symmetry; note that Smax is the spin
of the maximally spin-polarized state in the Hilbert space.
If the spinful gap is positive (negative), the ground state is
(is not) maximally spin polarized. When the ground states
are maximally spin polarized, a larger spinful gap means in-
creased stability. We note that in the 1BPV case, a maximally
spin-polarized state of a given filling ν is a fully spin-polarized
state only if ν > −1. For ν < −1, we cannot have all holes in
one valley since one valley has only a single band. Taking
ν = −4/3 as an example, even a maximally spin-polarized
state has a quarter of the total number of holes in the other
valley, i.e., it is not a fully spin-polarized state.

In Appendix D 1, we compare the spinful gaps to the spin-1
gaps for the system sizes of 3 × 4, 3 × 5 and 3 × 6 for both
sets of parameters, and find that the spin-1 gap is typically
equal to or similar to the spinful gap, where the spin-1 gap
is the gap between the lowest-energy state in Sz = Smax − 1
sector and that in the Sz = Smax sector (former minus latter)
with the same particle numbers. This trend is also shown in
Ref. [28] for ν > −1 for system sizes of 12 and 15 unit cells,
while we further show it for sizes reaching 3 × 6. In the rest
of this section, we will thus use the spin-1 gap as a proxy for
the spinful gap, unless specified otherwise.

Our 1BPV ED calculations were done for four system
sizes: 3 × 4, 3 × 5, 3 × 6, and 4 × 6. We show the main
results on 3 × 6 and 4 × 6 in Figs. 5 and 6, while leaving
3 × 4 and 3 × 5 results to Appendix D. Throughout the paper,
we determine the FCI region by the following criterion:

Proposition 1. The system is in the FCI region if (i) the
three lowest states are maximally spin polarized, (ii) the mo-
menta of the three lowest states match the momenta of FCI
[68,69], and (iii) the spread of the three lowest states is smaller
than the gap between the third lowest state and fourth lowest
state in maximally spin-polarized sector.
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FIG. 5. 1BPV ED calculations on Hh for parameter values in Ref. [28] on 3 × 6 (a) and 4 × 6 (b) systems. 3 × 6 in (a) and 4 × 6 in
(b) stand for different system sizes. In the left most three figures of (a), (b), green (“FCI”) labels the region that satisfies the criterion in Prop. 1,
and blue (“not FCI”) means that we do not see clear signatures of FCI or maximally spin-polarized CDW. For ν = −4/3 in (a) for the system
size of 3 × 6, 1BPV results show that the system is in a maximally spin-polarized KM -CDW phase for relatively large interaction (brown)
and for experimental angles θ ∈ [3.5◦, 4.0◦]; the KM -CDW phase is suppressed for the system size of 4 × 6 since its momentum mesh do not
include the KM or K ′

M point. The rightmost three figures of (a) and (b) give the spin-1 gaps, which are shown with the same color scale for all
plots. If the spin-1 gap is negative, it is set to zero in the plot.

We note that Prop. 1 is a necessary condition for FCI states.
In addition to this criterion, we will also probe the quality of
FCI based on the standard deviation of the particle density in
the momentum space—perfect FCI states have uniform parti-
cle density in the momentum space (zero standard deviation).

As shown in Figs. 5 and 6, the finite-size effects on the
FCI region at ν = −2/3 are non-negligible. Hence we choose
the largest system size 4 × 6 to determine the ν = −2/3 FCI
region, which is roughly ε ∈ [5, 6.25] for the parameters in

Ref. [28] and nearly the whole phase diagram for the pa-
rameters of Ref. [29]. Based on the particle density in the
momentum, we find that the quality of the FCI states in the
ν = −2/3-FCI region are much worse for the parameters in
Ref. [28] (standard deviation of particle density larger than
0.136) than that for Ref. [29] (standard deviation of particle
density can be as small as 0.002). In the “not FCI” regions
of Figs. 5 and 6, we did not see clear signatures for FCI or
maximally spin-polarized CDW, and the signature of metal is

FIG. 6. 1BPV ED calculations on Hh for parameter values in Ref. [29] on 3 × 6 (a) and 4 × 6 (b) systems. In the leftmost three plots of
(a) and (b), green (“FCI”) labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means that we do not see clear signatures
of FCI or maximally spin-polarized CDW. The rightmost three plots of (a) and (b) given the spin-1 gaps, which are shown with the same color
scale for all plots. If the spin-1 gap is negative, it is set to zero in the plot. In the “not FCI” region, the properties of the ground state(s) (other
than the momentum and spin polarization) are not conclusively determined.
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also not clear enough (perhaps due to finite-size effect). (See
Appendix D for details.)

In the parameter region where ν = −2/3 hosts FCIs, the
1BPV ED calculation shows that the ground states at ν =
−1/3, −2/3, and −4/3 all exhibit a positive spin-1 gap,
indicating maximally spin-polarized ground states. We note
that although the finite-size effect in the FCI region is consid-
erable, the finite-size effect of the spin-1 gap is small as the
spin-1 gap does not change significantly for all four system
sizes we consider (see Appendix D 2 for full details). We now
compare the magnetic stability of the ground states at different
fillings.

We compare ν = −4/3 to ν = −2/3 first. In the FCI
region for ν = −2/3, the filling fraction ν = −4/3 is in a
maximally spin-polarized charge density wave phase with
wavevector KM (noted as KM-CDW) for the parameter val-
ues in Ref. [28] (see Fig. 26 of Appendix D), while ν =
−4/3 is mostly in the FCI phase for the parameter values in
Ref. [29] (see Fig. 30 of Appendix D). As shown in Fig. 5,
the spin-1 gap at ν = −4/3 is larger than that at ν = −2/3
for the parameter values in Ref. [28], indicating more robust
magnetism in the former than the latter, which is contrary
to the experiment. Specifically, in the ν = −2/3 FCI region,
the ratio of the spin-1 gap at ν = −4/3 and ν = −2/3 takes
a value in the range [1.59,1.72] for 3 × 4, [1.49,1.59] for
3 × 5, [1.62,1.77] for 3 × 6, and [1.37,1.64] for 4 × 6. In
comparison, the same ratios for Ref. [29] are in [0.60,0.92]
for 3 × 4, [0.61,0.93] for 3 × 5, [0.74,1.00] for 3 × 6, and
[0.71,0.93] for 4 × 6. In the top left corner of the phase
diagram (θ ∈ [3.5◦, 3.7◦] and 10/ε ∈ [0.8, 1.0]), the similar
spin-1 gaps (shown in Fig. 6) for the parameter values in
Ref. [29] can be understood from the approximate PH sym-
metry between ν = −4/3 and ν = −2/3 in this 1BPV case,
as discussed in Sec. III B and Appendix D 3. Thus, within
the 1BPV approximation for existing models [28,29], these
results show that not only are the many-body states found
at ν = −4/3 magnetic, but that their magnetism is far from
being significantly less robust than that of the FCI at ν =
−2/3. This should be contrasted with the nonmagnetic state at
ν = −4/3 and the magnetic FCI at ν = −2/3 observed in the
experiments [24–27].

On the other hand, comparing ν = −1/3 and ν = −2/3,
we find that the spin-1 gap at ν = −1/3 is indeed considerably
smaller than that at ν = −2/3 for both sets of parameter
values. Reference [28] finds an order-of-magnitude difference
between spinful gaps at ν = −1/3 and ν = −2/3 for the
system size of 12 unit cells at θ = 3.5◦ and ε = 5, which is
consistent with our 3 × 4 results on both spinful and spin-1
gaps (see Appendix D 4). Reference [29] finds the spinful gap
at ν = −2/3 is about five times that at ν = −1/3 for θ = 3.5◦,
ε = 15 and the system size of 3 × 4, which is also consistent
with our 3 × 4 results on both spinful and spin-1 gaps (see
Appendix D 4). (Reference [28] also studied the spinful gap at
15 unit cells, but for interaction strengths that do not give FCIs
within the experimentally relevant angle region; nevertheless,
their results are consistent with our 3 × 5 results.) We find
that increasing the system size reduces the difference in the
magnetic behavior between ν = −1/3 and ν = −2/3, but this
difference still remains considerable (see Appendix D 4 for
more details).

Although the spin properties at ν = −1/3 are consistent
with the nonmagnetic/weakly magnetic states observed at
ν = −1/3 in experiments, the FCI states at ν = −1/3 given
by the parameters in Ref. [29] are not consistent with the
experimental signatures at ν = −1/3 pointing toward a topo-
logically trivial state, as opposed to the KM-CDW states given
by the parameters in Ref. [28].

In summary, the spin-1 gap 1BPV ED results indicate
that the magnetic stability at ν = −4/3 is far from being
significantly weaker than that at ν = −2/3, which is incon-
sistent with the experiments, whereas the difference between
ν = −1/3 and ν = −2/3 is consistent with the nonmagnetic
or weakly ferromagnetic states at ν = −1/3 in experiments.
Besides ν = −1/3,−2/3,−4/3, we also studied ν = −3/5
in 1BPV ED calculations with parameters in Ref. [29], as
discussed in Appendix D 5. We find robust FCI states with
large spin-1 gaps (e.g., ∼4 meV for ε = 16.67 and θ = 3.7◦)
for experimental relevant angles ∼3.7◦. We note that although
FCI states at ν = −3/5 were studied in Ref. [34]; Ref. [34]
did not show the existence of them for experimentally relevant
angles ∼3.7◦ and did not study the spin properties.

In the following, we will show that our 2BPV calculations,
which include one additional band per valley, the spinful
and/or spin-1 gaps are reduced at ν = −1/3 and −2/3 (even
having sign changes) and the spin of the ground state at ν =
−4/3 is greatly changed. In this 2BPV case, we can capture
the difference between −2/3 and −4/3 only for the parameter
values in Ref. [29]. In addition, the difference in the stability
of magnetism between (the weakly magnetic) ν = −1/3 state
and (the robustly magnetic) ν = −2/3 state increases for both
sets of parameter values.

VI. TWO-BAND-PER-VALLEY EXACT
DIAGONALIZATION CALCULATIONS

We perform 2BPV ED calculations to study ν = −1/3,
ν = −2/3 and ν = −4/3 for ξ = 20 nm and for the hole
interaction in Eq. (13). We will first discuss ν = −1/3 and
ν = −2/3, and then compare ν = −4/3 to ν = −2/3. We
note that although the remote bands were included in the fully
spin-polarized sector in Ref. [36], the effect of remote bands in
spinful calculations have not yet been considered. Our 2BPV
calculations will involve the systems sizes of 3 × 3, 3 × 4, and
3 × 5, since the partially spin-polarized and spin-unpolarized
sectors at larger sizes have very large Hilbert dimensions
(taking 3 × 6 as an example, the Sz = Smax

2BPV − 1 sector at
ν = −2/3 has Hilbert space dimension about 1.2 × 109 per
momentum).

A. ν = −1/3 and ν = −2/3

In our 3 × 4 2BPV calculations, the spin-1 gaps are con-
siderably larger than the spinful gaps for ν = −1/3, although
the spin-1 gap is a good approximation of the spinful gap for
ν = −2/3 (see Appendix E). The spinful gap being smaller
than the spin-1 gap at ν = −1/3 implies that the spin-zero
states actually have lower energy than the partially spin-
polarized (Sz = 1) states, since we only have three possible
values |Sz| = 0, 1, 2 at ν = −1/3 at the system size of 3 × 4.
Therefore, we will compare the spinful gaps at ν = −1/3 and
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FIG. 7. 3 × 4 2BPV ED calculation at ν = −1/3, −2/3 for the parameter values in Refs. [28,29] using Hh in Eq. (13). In the leftmost
two plots of each row, green (“FCI”) labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means that we do not see
clear signatures of FCI or maximally spin-polarized CDW. In rightmost two plots of (a) or (b), the spinful gap is shown with the same color
functions for all plots. Conventions are the same as in Figs. 5 and 6.

ν = −2/3 as shown in Fig. 7. By comparing to the spinful
gaps at the system size 3 × 4 in the 1BPV case (see Ap-
pendix D), we can see that including one extra band per valley
generally decreases the spinful gaps (and spin-1 gaps) at both
fillings. For example, the spinful gap at ν = −2/3 does not
exceed 2 meV in the 2BPV case, while it can be as large as
∼8 meV with 1BPV.

For the parameter values in Ref. [28], we see the absence
of FCIs at ν = −2/3 in Fig. 7(a) for the 3 × 4 system size.
However, we cannot exclude the possibility that this is due to
finite-size effects, because for the same parameters, the FCI
also does not appear in the 1BPV calculation for the 3 × 4
system size (see Appendix D). If we change the system size
to 3 × 5 at (θ, ε) = (3.7◦, 5), the ground state at ν = −2/3 is
still not an FCI.

The magnetic properties appear to not be afflicted by fi-
nite size effects. At (θ, ε) = (3.7◦, 5), the ground state at
ν = −1/3 is spin unpolarized on 3 × 4 systems [Fig. 7(a)] and
is minimally polarized for 3 × 5 (the total spin cannot be zero
for five holes), and the spin-1 gaps at ν = −2/3 are similar for
the system sizes of 3 × 4 and 3 × 5 (0.56 meV and 0.75 meV
respectively, see Appendix E). Therefore, we can see the spin
properties here are much more robust against finite-size ef-
fects than the FCI phase boundary at ν = −2/3. In particular,
for interaction strengths ε ∈ [5, 6.25] (i.e., 10/ε ∈ [1.6, 2],
which can give FCIs at ν = −2/3 in 1BPV 4 × 6 calcu-
lations), the zero-spin ground states at ν = −1/3 and the
maximally spin-polarized ground states at ν = −2/3 on the

3 × 4 systems [Fig. 7(a)] for the parameters of Ref. [28]
are consistent with the nonmagnetic/weakly ferromagnetic
ν = −1/3 and magnetic ν = −2/3 in experiments [24–27]
after adding the remote bands. Furthermore, the absence of the
FCI states at ν = −1/3 is also consistent with experiments.

For the parameter values in Ref. [29], FCI states at ν =
−2/3 are clearly present in a considerable “diagonal-shaped”
parameter region in the phase diagram for the 3 × 4 system
size, as shown in Fig. 7(b). The quality of the FCI states deep
in the ν = −2/3 FCI region is very good (standard deviation
of particle density can be as small as 0.006 compared to
the filling |ν| = 2/3 ≈ 0.67). (See Appendix E 2 for details.)
Compared to the ν = −2/3 FCI region for the 1BPV case
in Fig. 25(a) for the 3 × 4 system size (Appendix D), the
remote bands suppress the FCI at larger interaction when
fixing the twist angle, which is consistent with the remote
bands suppressing CIs at ν = −1 at larger interaction shown
in Fig. 4. The diagonal shape of FCI region at ν = −2/3
is consistent with the experimental report [26] of ν = −2/3
FCIs at θ = 3.7◦ but not at θ = 3.5◦ and θ = 3.9◦. The fully
spin-polarized 2BPV calculation in Ref. [36] finds that the
largest-gap FCI at ν = −2/3 occurs at a larger angle for
a stronger interaction outside the experimental angle region
θ ∈ [3.5◦, 4.0◦], which shows the same trend as our results.

Among the 18 points in the phase diagram Fig. 7(b)
that give FCIs at ν = −2/3 on 3 × 4 systems, there is one
point that favors spin-unpolarized (i.e., spin zero) ground
states at ν = −1/3. For the other 17 points, we find fully
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FIG. 8. Schematic plots of maximally spin-polarized states in the
1BPV (a) and 2BPV (b) cases, respectively, for six unit cells. The
remote bands (gray) are frozen in (a), and the configuration in (b) is
fully spin polarized. We note that the case of (a) is allowed in the
2BPV case as a partially spin-polarized state.

spin-polarized ground states at ν = −1/3 (FCI states for 11
of them), but ratio between the spinful gaps at ν = −1/3 and
ν = −2/3 (former divided by latter) takes roughly uniform
values in [0.03, 0.27] (see Appendix E for details). There-
fore, when ν = −2/3 features a fully spin-polarized FCI, the
state at ν = −1/3 is either spin unpolarized (at one point)
or more often is fully spin polarized with magnetic stability
much weaker than that at ν = −2/3. This magnetic property
is consistent with the experiments. However, the ground states
at ν = −1/3 are still mostly FCIs, which are inconsistent with
the experiments. We emphasize that the results here rely on
ε > 10 within ε ∈ [5, 25]. In fact, a weaker magnetic stabil-
ity (i.e., smaller spinful gap) at ν = −1/3 tends to happen
at larger ε values when fixing the twist angle as shown in
Fig. 7(b) and in Appendix E.

B. ν = −4/3 versus ν = −2/3

At ν = −4/3, the spinful gap is difficult to calculate for a
3 × 4 system due to the large Hilbert space dimension, which
is ∼4.5 × 1010 per momentum in the spin-zero sector. (The
largest Hilbert space dimension per spin per momentum in our
2BPV calculations is about 1.09 × 108.) Therefore, we can
only compare the spin-1 gap at ν = −4/3 to the spin-1 gap at
ν = −2/3 on the 3 × 4 system.

There is a subtlety regarding the spin-1 gap in the 2BPV
case. Unlike for ν = −1/3 and ν = −2/3, the maximally
spin-polarized state for ν = −4/3 is different in the 1BPV and
2BPV approximations: The maximally spin-polarized state
(Sz = S1BPV

max ) at ν = −4/3 in the 1BPV case corresponds to
a partially spin-polarized state in the 2BPV case as schemat-
ically shown in Fig. 8(a). This partially spin-polarized sector
at ν = −4/3 has the same total spin as the maximally spin-
polarized states at ν = −2/3: it might potentially host FCIs
if the remote bands are negligible as shown in the 1BPV
calculations in Fig. 6. But the 2BPV case allows for fully
spin-polarized states (Sz = S2BPV

max ) ν = −4/3 as depicted in
Fig. 8(b). Since the remote bands also have nonzero Chern
numbers, this situation might also potentially lead to an FCI
phase, namely the product of a CI and a Laughlin-like FCI
(potentially with an opposite chirality for two sets of parame-
ters in Refs. [28,29] since they have opposite Chern numbers
in the remote bands).

The spin-1 gap at ν = −4/3 is the energy difference be-
tween the lowest-energy states in the Sz = S2BPV

max and Sz =
S2BPV

max − 1 sectors, which we first focus on for system sizes of
3 × 4 and 3 × 5. Note that even if the spin-1 gap is negative, it

FIG. 9. Spin-1 gaps for 3 × 4 2BPV at ν = −2/3, −4/3 for pa-
rameter values in Ref. [28] (a) and Ref. [29] (b) using Hh. The spin-1
gap is shown with the same color functions for all plots. If the spin-1
gap is negative, we set it to zero in the plots.

is conceivable that partially spin-polarized states like Fig. 8(a)
might still be favored at ν = −4/3 in the 2BVP calcula-
tion. However, the Hilbert space dimension of the partially
spin-polarized states in Fig. 8(a) is beyond our computational
capabilities for 3 × 4 (dimension ∼2.4 × 109 per momentum)
and 3 × 5 (dimension ∼1.5 × 1012 per momentum) systems
and thus will be addressed later in this part by considering
smaller 3 × 3 systems.

As shown in Fig. 9(a) for the parameters in Ref. [28], our
2BPV ED results point toward a spin-1 gap at ν = −4/3 that
is larger than the one at ν = −2/3, when the interaction is
strong enough (ε ∈ [5, 6.25]) to give an FCI at ν = −2/3 in
1BPV 4 × 6 calculations. We also see this larger spin-1 gap at
ν = −4/3 on 3 × 5 systems (see Appendix E 1), which seems
to suggest that the large-spin states are favored at ν = −4/3.
For the parameters of Ref. [29], Fig. 9(b) shows that the
ground states are not fully spin-polarized at ν = −4/3; this
trend persists to the system size of 3 × 5 as discussed in
Appendix E 2.

To address the subtlety of partially spin-polarized states
of Fig. 8(b), we resort to the 3 × 3 system. For the param-
eters in Ref. [28] and 3 × 3 systems, the large-spin states
(Sz = S2BPV

max , S2BPV
max − 1 with S2BPV

max = 6) are indeed strongly
favored (see Appendix E) at ν = −4/3, though the spin-1 gap
at 3 × 3 becomes negative. (For comparison, the fully spin-
polarized states at ν = −2/3 have Sz = 3.) The preference for
large-spin states at ν = −4/3 is inconsistent with experiment
[24–27]. For the parameters in Ref. [29], the 3 × 3 system has
a similar FCI region at ν = −2/3 and similar spinful gap at
ν = −2/3 and ν = −4/3 as those of the system size 3 × 4, as
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FIG. 10. (a) The 2BPV many-body energy spectrum for the pa-
rameters in Ref. [29] at θ = 3.7◦ and ε = 50/3 ≈ 16.67 and ν =
−4/3. Here we only include the lowest-energy state in per momen-
tum and spin sector. The energy of the ground state is set to zero.
(b) At each value of ε, we show the lowest energy of each spin sector
for the parameters specified in the plot. As a comparison, the total
spin of the fully spin-polarized state at ν = −2/3 is |Sz| = 3 for the
size of 3 × 3. The energy of the ground state is set to zero at each
value of ε. kx and ky are defined as k = (kx/L1)b1 + (ky/L2)b2, where
L1 × L2 is the system size, and b1 and b2 are defined in Eq. (4).

shown in Appendix E. The 3 × 3 results in Fig. 10 show that
for θ = 3.7◦, the partially spin-polarized Sz = 3 states (which
have the same spin as the 1BPV maximally spin-polarized
states at ν = −4/3 and as the fully spin-polarized state at
ν = −2/3) are not favored at ν = −4/3 for the interaction
strengths that give FCIs at ν = −2/3 (roughly 10/ε = 0.5 ∼
0.7 at θ = 3.7◦). Instead it is the small-spin (Sz = 0, 1) states
that dominate at ν = −4/3, in agreement with experiments
[24–27]. As the ground states at ν = −2/3 are always fully
spin polarized (Sz = 3) up for ε ∈ [10, 25] at θ = 3.7◦, the
fact that the ground states never have Sz = 3 in Fig. 10 in-
dicates the clear breaking of the approximate PH symmetry
owing to the remote bands for the parameters in Ref. [29].

Finally, we would like to argue that the bands beyond
2BPV should be negligible. To show this, we use ν = −4/3
as an example since it has larger hole fillings than ν = −1/3
and −2/3 and thus is more likely to be affected by the bands
beyond 2BPV. As discussed in Appendix E, the 3 × 3 calcu-
lations show that the weight of the low-energy states in the
second bands in both valleys is about 0.1 ∼ 0.3 (with even
lower occupations for Sz values close to zero), which is not
negligible yet significantly smaller than the weight in the first
bands (0.7 ∼ 0.9). Such significant decrease means that the
bands beyond 2BPV (including the �-valley bands as shown
in Ref. [29]) should have negligible effects, even if they are
included.

C. Summary of 2BPV results

After including remote bands, the parameters in Ref. [29]
exhibit mostly a fully spin-polarized state at ν = −1/3 with
significantly weakened magnetic stability than that at ν =
−2/3 while maintaining spin-polarized FCI states at ν =
−2/3, which is consistent with the experiments. These param-
eters can also capture the observed difference between ν =
−4/3 and ν = −2/3. Nevertheless, the fit to the experimental

phase diagram relies on a weaker interaction, namely ε � 10,
and the predicted ground states at ν = −1/3 are mostly FCIs,
which are not consistent with experiments.

For the same system sizes, the parameter values in
Ref. [28] are able to capture the difference in magnetism be-
tween ν = −1/3 and ν = −2/3 and the trivial ground states
at ν = −1/3, but we have not seen clear indications that
they capture the difference between ν = −4/3 and ν = −2/3.
We find that the desired FCI phase at ν = −2/3 is missing,
although this is possibly due to finite-size effects.

VII. CONCLUSIONS

We have studied the continuum moiré model in Ref. [39],
including remote bands in our HF and ED calculations. We
performed a comparative study of the parameter values in
both Refs. [28] and [29]. For the experimental twist angles
θ ∈ [3.5◦, 4.0◦], the 2BPV HF and ED calculations using the
parameters of Ref. [29] show FCIs at ν = −2/3, CIs with
the quantum anomalous Hall effect at ν = −1, fully spin-
polarized states at ν = −1/3 with much weaker stability than
that at ν = −2/3, and weakly magnetic (very small total spin)
states at ν = −4/3. Therefore, the magnetic phenomenology
is agreement with experiments, provided that a dielectric con-
stant of ε > 10 (larger than ε ∼ 6 estimated from h-BN [40])
can be accounted for. However, for the region of the phase
diagram compatible with a FCI state at ν = −2/3, the ground
states at ν = −1/3 given by the parameters of Ref. [29] are
mostly FCIs, which are inconsistent with experiments. On the
other hand, we have not succeeded in capturing the significant
difference in magnetism between ν = −2/3 and ν = −4/3
with the parameter values in Ref. [28] for the experimental
angles θ ∈ [3.5◦, 4.0◦] and ε ∈ [5, 25].

Our results suggest that the key new magnetic features
(beyond the usual FCI [1–3] phases) of the experimental phase
diagram depend on remote bands. Our study demonstrates
that the minimal model first proposed in Ref. [39] with the
parameters of Ref. [29] is a reasonable starting point for
describing the realistic phase diagram of tMoTe2, although
it still mostly gives FCI ground states at ν = −1/3 and it
needs a larger value of the dielectric constant ε than estimated
values in bulk h-BN. A precise estimation of ε is impor-
tant for distinguishing different theoretical models, which we
leave for future work. One potential explanation for a weaker
interaction could lie in modifications of the minimal model
of Ref. [39]. In materials like graphene, lattice relaxation
[52,53,70–72] and strain [73–79] are understood to play a key
role in extending the original Bistrizter-MacDonald model
[43]. Such an effect is a typical feature of moiré engineering
[80–85]. They lead to higher order terms in the single-particle
model that could increase the bandwidth, effectively shrinking
the interaction strength. Our results are obtained with HF
and ED calculations; it is interesting to study the magnetism
with other numerical methods such as determinantal quantum
Monte Carlo [86,87].

The now-accessible cornucopia of moiré platforms and
tuning parameters promises to enrich the already large family
of FCI states [88–93], further supported by the experimental
characterization of lattice effects in fractional quantum Hall
systems [94–97]. The successful prediction of these more
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exotic FCI phases in addition to other material platforms rests
on a faithful model of the underlying Hamiltonian. To that
end, we have shown that multiband physics plays a crucial
role in tMoTe2, and that its inclusion can accurately hew out
the FCI region of the experimental phase diagram.
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APPENDIX A: SINGLE-PARTICLE MODELS

In this Appendix, we discuss the single-particle continuum
models of the twisted transition metal dichalcogenides (TMD)
homobilayer Hamiltonians with an emphasis on their symme-
tries and topology.

1. Momentum space model

In TMD materials, strong spin-orbit coupling breaks spin
SU (2) and leads to spin polarization: The low-energy states in
the K valley are spin polarized, and those in the K′ valley are
oppositely spin polarized by spinful time-reversal symmetry.
Thus the full TMD Hamiltonian only has U (1) valley symme-
try (locked to spin), and no SU (2) spin symmetry.

This paper focuses specifically on twisted MoTe2. The bulk
material typically grows in the 2H configuration [41] although
other configurations are possible [98,99]. When exfoliated
down to a monolayer (1H), this configuration results in a
gapped 2D band structure with peaked and opposite Berry

curvature in each valley due to explicit inversion symmetry
breaking from the Te atom positions. (Note that the 1H mono-
layer band gap is opened due to a trivial inversion-breaking
mass, so the model is not a topological insulator [41]). The
band near the K, K ′ points are well described by a gapped
Dirac Hamiltonian written in the orbital basis of the Mo d
electrons [39]. Explicitly, the k · p theory near the K point
is vF k · σ + 1

2�σ3 where � ∼ 1 eV is the gap, and the basis
is dz2 , dx2−y2 + idxy orbitals (for a single-spin species due to
spin-orbital coupling). The dz2 orbitals are at high energy, and
Ref. [39] obtained an effective quadratic Hamiltonian on only
the dx2−y2 + idxy basis element (in both layers), which reads

HK (r) =
(

h̄2∇2

2m∗
+ V+(r) t (r)

t∗(r) h̄2∇2

2m∗
+ V−(r)

)
. (A1)

The matrix acts on the dx2−y2 + idxy orbital in each layer. The
Hamiltonian acts on wavepacket states in the upper (+) and
lower (−) layers with momenta centered around, respectively,

κ± = b1

2
± q1

2
(A2)

where

b1 = kθ (1, 0), q1 = kθ

(
0,

1√
3

)
, bi+1 = C3zbi,

qi+1 = C3zq1, kθ = 4π√
3

2 sin θ
2

a0
, (A3)

and a0 = 3.52 Å is the MoTe2 lattice constant such that the
moiré reciprocal lattice is spanned by b1, b2 corresponding to
a moiré real space lattice ai obeying ai · b j = 2πδi j . Hence,
similar to twisted bilayer graphene [43], the TMD Hamilto-
nians are defined by a honeycomb momentum space lattice,
but with only a scalar degree of freedom at each site (the
single dx2−y2 + idxy orbital) as opposed to a sublattice spinor.
(See Fig. 11.) We obtain the momentum-space Hamiltonian
by Fourier transforming into the variables (N is the number of
moiré unit cells)

ψk(r) = 1√
N

∑
b,l

ei(k+b+κl )·rUb,l (k), (A4)

which naturally lie on a honeycomb lattice given by Q = b +
κl , where b ranges over the whole reciprocal lattice. This leads
to the momentum space Hamiltonian

HK
Q,Q′ (k) = − h̄2

2m∗
(k + Q)2δQQ′

+ V
∑

i

(
eiψζQδQ−Q′,bi

+ e−iψζQδQ−Q′,−bi

)
+ w

∑
i

(
δQ−Q′,qi

+ δQ−Q′,−qi

)
(A5)

where ζQ = ±1 for Q = b + κl in the l = ± layer. The eigen-
vectors of HK

Q,Q′ (k) in the nth band at momentum k are
denoted UQ,n(k), leading to the eigenstates

ψk,n(r) = 1√
N

∑
Q

ei(k+Q)·rUQ,n(k) . (A6)
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(a) (b) (c)

FIG. 11. (a) Brillouin zones of the top (red) and bottom (blue) layers with a relative twist angle θ , and the emergent moiré BZ in the TMD
K valley. (b) Momentum space lattice with red sites (moiré K point) corresponding states in the upper layer and blue sites (moiré K ′ point)
in the lower layer. There is a single degree of freedom per site. (c) Moiré Brillouin zone with C3z-symmetric points, with K and K ′ points
exchanged by C2yT .

Note that the spectrum of HK (k) is periodic over the moiré
BZ due to

HK
Q,Q′ (k + b) = HK

Q+b,Q′+b(k) = [VbHK (k)V †
b ]Q,Q′ ,

[Vb]Q,Q′ = δQ+b,Q′ , (A7)

where Vb is the unitary embedding matrix. (Imposing a finite
momentum space cutoff breaks the momentum space period-
icity and spoils the unitarity of Vb due to the cutoff boundary.
However, since the low-energy eigenstates U (k) decay expo-
nentially for large b, this effect is negligible.) Thus we employ
a periodic convention where

U (k + b) = VbU (k), UQ,n(k + b) = UQ+b,n(k),

ψk+b,n(r) = 1√
N

∑
Q

ei(k+b+Q)·rUQ+b,n(k) = ψk,n(r). (A8)

In practice, this means one need only compute U (k) in the first
BZ. Band structures at the experimentally relevant angle θ =
3.7◦ are show in Fig. 12 for all sets of parameters in Table II.

2. Space group symmetries and topology

We now discuss the intravalley space group G of the model.
The symmetry representations are obtained from the transfor-
mation properties of the dx2−y2 + idxy orbitals in the top and

bottom layers for valley K . A C3 operation takes

C3

(
dx2−y2

dxy

)
=

⎛⎝ − 1
2

√
3

2

−
√

3
2 − 1

2

⎞⎠(
dx2−y2

dxy

)
(A9)

so that the dx2−y2 + idxy orbital has C3 eigenvalue ei2π/3.
Similarly C2yT acts trivially on the dx2−y2 + idxy orbital, but
interchanges the layer. Thus we have the representations

D[C3z] = e
2π i

3 σ0, D[C2yT ] = σ1K (A10)

where σi are the Pauli matrices, K is complex conjuga-
tion, and the representations obey D[g]HK (r)D†[g] = HK (gr)
[see Eq. (A1)]. We take C3zr = R(2π/3)r and C2yT (x, y) =
(−x, y). Remarkably, the Hamiltonian inherits another sym-
metry due to the lowest-order harmonic approximation in
Eq. (A1): a pseudo-inversion symmetry D[I] = σ1, which
obeys

D[I]HK (r)D†[I] = HK (−r) . (A11)

We emphasize that there is no microscopic inversion symme-
try in the moiré system. Indeed, keeping higher-order terms
will break D[I]. One example is t (r) → t (r) + t ′(r) where
(with w′ a real number)

t ′(r) = iw′
3∑

n=1

ei(−2qn )·r, (A12)

FIG. 12. Comparison of band structures for the parameter values in Table II, where (a)–(d) correspond to rows 1–4. We see that (a)–(c),
which are in the Ch = (−1, −1) phase, are quite similar (see main text), whereas (d) in the Ch = (−1,+1) phase (see main text) has a
significantly different dispersion. For this reason, we focus our comparative study on the parameters in (a) and (d).
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which preserves C3z and C2yT . The ab initio spectrum in
Ref. [29] does indeed show small-I breaking in the band
structure, but these effects appear to be less than ∼1 meV and
can be neglected at leading order.

Using the symmetries of the model, the generic appearance
of Chern bands can be predicted from topological quantum
chemistry [57,100]. Consider the large V limit where inter-
layer hopping w and kinetic energy are subleading terms.
Then we expect the valence band eigenstates to be formed
from “atomically” localized wavefunctions at r±, the minima
of −V±(r) in each layer. We find that

r± =

⎧⎪⎨⎪⎩
± 1

3 (a1 + a2), −π < ψ < −π/3
0, |ψ | < π/3

∓ 1
3 (a1 + a2), π/3 < ψ < π

(A13)

meaning that, if |ψ | > π/3, the atomic states are centered
at opposite corners of the moiré unit cell related by C2yT .
This is the 2b Wyckoff position. Consulting the Bilbao crys-
tallographic server [101,102], we find that any atomic states
induced from this position realize a decomposable elementary
band representation formed by two disconnected bands with
Chern number ±1 mod 3 [55,56]. This is in agreement with
the numerically calculated Chern numbers for the parameters
of Ref. [29] where V/w > 1, as shown in the main text. This
shows that topology is inherent in this model, no matter what
terms are added (as long as they are small), in a similar way
as in twisted bilayer graphene.

We now turn to the representations in momentum space. A
space group symmetry g ∈ G has a matrix representation D[g]
on the momentum-space Hamiltonian Eq. (A5) obeying

D[g]HK (k)D[g]−1 = HK (gk) . (A14)

Similarly, the (unitary and anti-unitary) momentum space rep-
resentations of the true space group symmetries are

DQ,Q′[C3z] = ei 2π
3 δQ,C3zQ′ , DQ,Q′ [C2yT ] = δσ3Q,Q′K,

DQ,Q′[I] = δQ,−Q′ , (A15)

where we abuse notation by taking C2yT (kx, ky) =
(kx,−ky ) = σ3k as the momentum vector representation
[the position space representation is C2yT (x, y) = (−x, y)
since T is local], and K is complex conjugation. Note that
C2yT and pseudo-inversion I flip the layers, while C3z does
not. These symmetries form the 3D magnetic space group
164.89 (P3̄m′1), which is isomorphic in 2D to the magnetic
wallpaper group 6m′m′ where the sixfold pseudorotation
is C−1

3z I. We refer to I as a pseudo-inversion because it is
intravalley, while a true inversion symmetry would exchange
the K and K ′ = −K valleys. Finally, the Hamiltonian in the
K ′ valley can be obtained from the spinful time-reversal
symmetry of the underlying TMD model, which acts as iτ2K
and maps, e.g., the dx2−y2 + idxy spin ↑ orbitals in valley K to
dx2−y2 − idxy spin ↓ orbitals at valley K ′. (Here τ is the valley
matrix.) Thus the Hamiltonian at K ′ is

HK ′
Q,Q′ (k) = HK

−Q,−Q′ (−k)∗ . (A16)

Since the two valleys are related by time reversal and the
model preserves U (1) valley symmetry, we can choose a

gauge U η

Q,n(k) = U
η

ηQ,n(ηk) where η = ± denotes the K/K ′

a valley, and x+ = x, x− = x∗.
To compute the Berry curvature and quantum geometry of

the bands, we use the integrals [103]

Ch

2π
=

∫
d2k

(2π )2

i

2
εi jTrP(k)[∂iP(k), ∂ jP(k)],

G

2π
=

∫
d2k

(2π )2

1

2
Tr∂iP(k)∂iP(k), (A17)

where P(k) = U (k)U †(k) is the gauge-invariant projector on
the single-particle eigenvector U (k). The advantage of the
projector formalism is that no smooth gauge is necessary, and
discretization can be done efficiently [104]. The integrands of
Eq. (A17) are the Berry curvature and Fubini-Study metric
respectively. We report the Chern numbers Ch and integrated
Fubini-Study metric G, along with their structure over the
moiré Brillouin zone in Figs. 13 and 14 for the two bands
included in our interacting calculations.

APPENDIX B: MORE DETAILS ON INTERACTION AND
PARTICLE-HOLE SYMMETRY

In this Appendix, we discuss two types of the interaction
and the PH transformations of the projected Hamiltonians.

1. Interaction in the electron and hole language

In the previous theoretical studies [16,28,29,31,32,
34,36,37] on FCIs in tMoTe2, two types of interactions are
mainly used. One is the Coulomb interaction among holes,
used in Ref. [28], for which the explicit Hamiltonian is

Hh =
∫

d2r
∑
η,ll ′

c̃†
η,l,r[−Hη(r)]ll ′ c̃η,l ′,r

+ 1

2

∑
lη,l ′η′

∫
d2rd2r′V (r − r′ )̃c†

η,l,r̃c
†
η′,l ′,r′ c̃η′,l ′,r′ c̃η,l,r,

(B1)

where c̃†
η,l,r creates a hole at position r in the lth layer in the

η valley and Hη(r) is the single-particle electron Hamiltonian,
and V (r) is the double-gated screened Coulomb potential with
gate distance ξ ,

V (r) =
∫
R2

d2 p

(2π )2
V (p)eip·r,

V (p) = πξ 2Vξ

tanh(ξ |p|/2)

ξ |p|/2
, Vξ = e2

4πεε0ξ
. (B2)

Here ε0 is the vacuum permittivity, and ε is the dielectric
constant. The vacuum state of c̃η,l,r is the charge neutrality
point|ν = 0〉 with c̃η,l,r|ν = 0〉 = 0, which corresponding to
fully filling all the electron states of the single-particle Hamil-
tonian, and the Hilbert space is just given by acting various
powers of c̃†

η,l,r on |ν = 0〉.
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FIG. 13. Comparison of the highest valence band Berry curvature [(a)–(d)] and Fubini-Study metric [(e)–(h)] for the parameter values in
Table II, corresponding to rows 1–4. Again we see strong similarity between the first three rows where the �M point shows a strong peak in the
quantum geometry, compared to the nearly uniform features in (d) and (h). Color bars are consistent across all plots.

The other common Hamiltonian is the Coulomb interaction
among electrons, which is used in Refs. [16,29],

He =
∫

d2r
∑
η,ll ′

c†
η,l,r[Hη(r)]ll ′cη,l ′,r

+ 1

2

∑
lη,l ′η′

∫
d2rd2r′V (r − r′)c†

η,l,rc
†
η′,l ′,r′cη′,l ′,r′cη,l,r,

(B3)

where c†
η,l,r creates an electron at position r in the lth layer

in the η valley. Importantly, charge neutrality |ν = 0〉 is not
the vacuum of cη,l,r, i.e., cη,l,r|ν = 0〉 �= 0. Instead, the Fock
vacuum obeys cη,l,r|0〉 = 0.

The Hilbert space of He is the same as Hh, as c†
η,l,r is related

to c̃η,l,r by

Kc†
η,l,rK

−1 = c̃η,l,r , (B4)

FIG. 14. Comparison of the second highest valence band Berry curvature [(a)–(d)] and Fubini-Study metric [(e)–(h)] for the parameter
values in Table II, corresponding to rows 1–4. Color bars are consistent across all plots.
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where K is a complex conjugate. As a result, He differs from
Hh by the complex conjugate and a single-body term,

KHeK−1 = Hh + �H + const., (B5)

where

�H =
(

V (0) − 4
∫

d2r′V (r′)δ(0)

) ∑
lη

∫
d2rc̃†

η,l,r̃cη,l,r ,

(B6)

and we have used that V (r) is real. Naively, �H is propor-
tional to the particle-number operator, and thus one may think
in a fixed-particle-number sector, �H becomes a constant,

and the two Hamiltonian are related by a complex conjugate
up to a constant. However, in reality, we can never use the
continuous Hamiltonian to do HF or ED calculations; instead,
we will project the Hamiltonian into a finite set of bands.
We will see in the following that after the projection, the
two Hamiltonians are not necessarily related due to one-body
terms that appear from the different normal orderings.

As just mentioned, we project the Hamiltonian into a finite
set of band spanned by the operators

γ̃
†
n,η,k =

∑
Q

c̃†
η,k,Q[Un,η,k]Q , (B7)

where the band index n only takes a finite set of values. The
projected Hamiltonian in this basis is

Hh = −
∑
k,η,n

γ̃
†
η,n,kγ̃η,n,kEη,n(k) + 1

2

∑
k,k′,q

∑
η,η′

∑
m,m′,n′,n

Vηη′,mm′n′n(k, k′, q)γ̃ †
η,m,k+qγ̃

†
η′,m′,k′−q

γ̃η′,n′,k′ γ̃η,n,k, (B8)

where

Vηη′,mm′n′n(k, k′, q) = 1

N

∑
b

V (q + b)

�
Mη,mn(k, q + b)M∗

η′,n′m′ (k′ − q, q + b),

Mη,mn(k, q) = U †
η,m,k+qUη,n,k, �−1 = b1 × b2/(2π )2, (B9)

are the matrix elements, form factors, and (inverse) moiré unit-cell area respectively.
Hermiticity requires

V ∗
ηη′,nn′m′m(k + q, k′ − q,−q) = Vηη′,mm′n′n(k, k′, q) , (B10)

and the fermion statistics gives

Vη′η,m′mnn′ (k′, k,−q) = Vηη′,mm′n′n(k, k′, q) . (B11)

On the other hand, after projection into the band basis γ
†
n,η,k = ∑

Q c†
η,k,Q[Un,η,k]Q, He becomes

He =
∑
k,η,n

γ
†
η,n,kγη,n,kEη,n(k) + 1

2

∑
k,k′,q

∑
η,η′

Vηη′,mm′n′n(k, k′, q)γ †
m,η,k+qγ

†
m′,η′,k′−q

γn′,η′,k′γn,η,k. (B12)

Now we show the relation between the two Hamiltonian
after the projection. According to Eq. (B4), we have c̃†

η,k,Q =
Kcη,k,QK, and then γn,η,k and γ̃

†
n,η,k are related by

Kγn,η,kK−1 = γ̃
†
n,η,k . (B13)

Under the K, now the projected Hamiltonians are related as

KHeK−1 =
∑

η,k,nm

γ̃
†
η,n,kγ̃η,m,kεη,nm(k) + Hh , (B14)

where

εη,nm(k) = −1

2

∑
k′,η′,n′

[V ∗
ηη′,mn′n′n(k, k′, 0)

+ Vηη′,nn′n′m(k, k′, 0)]

+ 1

2

∑
qn′

[Vηη,n′nn′m(k, k + q, q)

+ V ∗
ηη,n′mn′n(k, k + q, q)], (B15)

which in general is not zero as we only consider a finite sets
of n and m. The nonvanishing εη,nm(k) is consistent with the
different HF phase diagrams given by He and Hh in Fig. 4.
Physically, εη,nm(k) represents the different background po-
tential felt by the electron interaction.

2. Particle-hole symmetry

In this part, we only talk about Hh and He after projection
to a finite set of bands. Neither of the Hamiltonians Hh and
He preserves the PH symmetry exactly in general after the
projection. Here the PH transformation for He is defined as

Cγ
†
η,n,kC

−1 = γη,n,k , (B16)

where C is an anti-unitary operator. Under this PH
transformation, He would gain two extra terms,

CHeC−1 = He +
∑
η,k,n

γ
†
η,n,kγη,n,k( − 2Eη,n(k))

+
∑

η,k,nm

γ
†
η,n,kγη,m,kεη,nm(k) + const. , (B17)
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FIG. 15. The 2BPV Hartree-Fock results for ξ = 20 nm at ν = −1 for the parameters in Ref. [28] [(a) and (b)] and the parameters in
Ref. [29] [(c) and (d)]. 18 × 18 labels the system size. Hh [(a) and (c)] and He [(b) and (d)] refer to the Hamiltonian used. Ch refers to the
Chern number (leftmost panel), the middle panel shows the value of 2Sz per unit cell, and the indirect gap (right panel) is the indirect gap of
the HF band structure. The spin-unpolarized state in (a) is intervalley coherent translationally breaking state with wavevector KM .

where (−2Eη,n(k)) accounts for the sign flipping of the
single-particle dispersion, and εη,nm(k) is given in Eq. (B15).
The reason that εη,nm(k) in Eq. (B17) is the same as that in
Eq. (B14) is that the transformation in Eq. (B13) will become

the PH transformation in Eq. (B16) if we identify γ̃η,n,k in
Eq. (B13) with γ

†
η,n,k.

For Hh, the PH transformation is given by replacing γη,n,k

in Eq. (B16) by γ̃η,n,k, and the PH breaking term CHhC−1 − Hh
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FIG. 16. The 2BPV Hartree-Fock results for ξ = 60 nm at ν = −1 for the parameters in Ref. [28] [(a),(b)] and the parameters in Ref. [29]
[(c),(d)]. The notations are identical to those in Fig. 15.

is just given by performing Eη,n(k) → −Eη,n(k) in the PH-
breaking term in Eq. (B17),

CHhC−1 = Hh +
∑
η,k,n

γ̃
†
η,n,kγ̃η,n,k(2Eη,n(k))

+
∑

η,k,nm

γ̃
†
η,n,kγ̃η,m,kεη,nm(k) + const. . (B18)

The extra one-body term given by the PH transformation is
in general nonvanishing, meaning that He and Hh are not
invariant under this transformation.

When the PH breaking effect is strong, i.e., εη,nm(k) is
large, the two fillings related by PH transformation would
have considerable difference. It is also important to note
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FIG. 17. The 2BPV Hartree-Fock results for ξ = 150 nm at ν = −1 for the parameters in Ref. [28] [(a),(b)] and the parameters in Ref. [29]
[(c),(d)]. The notations are identical to those in Fig. 15.

that as we are talking about the PH transformation of the
projected Hamiltonian, the PH transformation only acts on
the finite projected subspace, and thus the PH-related fillings
depend on the how many bands we keep in the projected
model. If we consider the fully spin-polarized case where
we only keep one valley (spin) and one band in that val-

ley, the PH transformation maps ν to −1 − ν (e.g., −1/3 to
−2/3) electron filling. If we keep two valleys and one band
per valley, the PH transformation maps ν to −2 − ν (e.g.,
−2/3 to −4/3) electron filling. In general, if we keep two
valleys and N band per valley, the PH transformation maps ν

to −2N − ν.
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FIG. 18. The 2BPV 6 × 6 results for ξ = 20 nm at ν = −1. The
notations are analogous to Fig. 4 in the main text. Hh and He refer
to the Hamiltonian used, Ch refers to the Chern number, and we
take Ch mod 3 ∈ {−1, 0, 1}. The |Ch mod 3| = 0 region for Hh in
(a) comes from a nonferromagnetic ground state, which is intervalley
coherent translationally breaking state with wavevector KM . Owing
to the small sizes, we only use Eq. (7) to compute Ch mod 3 as it does
not require a Berry curvature integral.

APPENDIX C: ADDITIONAL HARTREE-FOCK RESULTS
AT ν = −1

In this Appendix, we provide more details on the Hartree-
Fock (HF) calculations at ν = −1. We note that system size
L1 × L2 means that the momenta included in the calculation
are (n/L1)b1 + (m/L2)b2 with n = 0, . . . , L1 − 1 and m =
0, . . . , L2 − 1, where b1 and b2 are defined in Eq. (A2).

FIG. 19. The 6 × 6 2BPV Hartree-Fock results for ξ = 20 nm at
ν = −1 for the m∗, ψ parameters in Ref. [28] (a) and Ref. [29] (b).
We choose ε = 5 in (a) and ε = 50/3 ≈ 16.67 in (b). The boundaries
of the three single-particle parameter regions are marked in red
according to Fig. 3. The dot and the star correspond to the parameters
in Ref. [28] and Ref. [29], respectively.

FIG. 20. The 2BPV Hartree-Fock results for Hh and ξ = 20 nm
at ν = −1 done by restricting to the translationally invariant sub-
space. We choose ε = 5 in (a) and ε = 50/3 ≈ 16.67 in (b). 18 × 18
labels the system size. The spinful gap is smallest energy cost to
change the total spin of the ground state according to the HF band
structure. In (a), the nonmagnetic states for ν > −0.4 in (a) are con-
sistent with experiments [24–27], but the fact that the ferromagnetic
ground states persists to ν = −2 differs from the experiments. In (b),
the ferromagnetic ground states start from nearly zero ν and persist
to ν = −1.6, which is not consistent with experiments. Therefore,
the translationally invariant HF cannot fully capture the behaviors of
ferromagnetism observed in experiments.

As mentioned in the main text, we have considered the
effect of the screening length ξ . We provide the HF phase dia-
grams for the system size of 18 × 18 in Fig. 15 for ξ = 20 nm,
in Fig. 16 for ξ = 60 nm, and in Fig. 17 for ξ = 150 nm (as
a reminder, we used ξ = 20 nm in the main text). We choose
two types of initial states: (i) translationally invariant initial

FIG. 21. The 1BPV Hartree-Fock results for Hh with ξ = 20 nm
at ν = −1. 18 × 18 labels the system size, and and Ch refers to the
Chern number. The ground states are always spin-polarized and thus
has nonzero Chern number; the indirect gap is the indirect gap of the
HF band structure.
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FIG. 22. The summary of 1BPV spinful gaps for the parameter values of Ref. [28] for the system sizes of 3 × 4 and 3 × 5. In the left
most three figures, blue (“not FCI”) means that we do not see clear signatures of FCI or maximally spin-polarized CDW. The rightmost three
figures of give the spinful gaps, which are shown with the same color functions for all plots. If the spinful gap is negative, it is set to zero in
the plot.

states (with random band mixing), and (ii) translationally
breaking intervalley-coherent states with wavevector KM [37].
We can see the phase diagrams of the ferromagnetism are the
same for all three values of ξ : the ground states are always
ferromagnetic except the lower right corner of the phase dia-
gram of Hh for the parameters in Ref. [28], which is IVC-KM ;
IVC-KM is also found at small interaction in Ref. [37] for the
parameters in Ref. [28]. The phase diagrams of Chern number
are also the same for all three values of ξ and for the (θ, ε)
mesh that we choose. The Ch = 0 phase that occurs as the
interaction increases comes form the band inversion at KM

or K ′
M between two bands in one valley. The only notable

effect of the screening length is that as ξ increases, the indirect
gap of the HF bands increases, which makes sense as larger
screening length means stronger interaction.

Since our ED calculations are done for much smaller sizes
than 18 × 18, we would like to check whether the phase
diagram of the Chern numbers have qualitative changes if
we go to much smaller sizes. For this purpose, we perform
6 × 6 HF calculations, and map out the phase diagram for
the Chern number in Fig. 18. Compared to the Chern number
phase diagrams in Fig. 15, we found that the Chern phase
diagrams are very similar to those at 18 × 18, meaning that
the finite-size effect of the Chern phase diagrams is very

FIG. 23. The summary of 1BPV spinful gaps for the parameter values of Ref. [29] for the system sizes of 3 × 4 and 3 × 5. In the leftmost
three figures of each row, green (“FCI”) labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means that we do not see
clear signatures of FCI or maximally spin-polarized CDW. The rightmost three figures of each row give the spinful gaps, which are shown
with the same color functions for all plots. If the spinful gap is negative, it is set to zero in the plot.
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FIG. 24. The summary of 1BPV spin-1 gaps for the parameter values of Ref. [28] for the system sizes of 3 × 4, 3 × 5, 3 × 6, and 4 × 6.
In the leftmost three figures of each row, green (“FCI”) labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means
that we do not see clear signatures of FCI or maximally spin-polarized CDW. For ν = −4/3 in (c) for the system size of 3 × 6, 1BPV results
show that the system is in a maximally spin-polarized KM -CDW phase for relatively large interaction (brown) and for experimental angles
θ ∈ [3.5◦, 4.0◦]; the KM -CDW phase is suppressed for the system sizes of 3 × 4, 3 × 5, and 4 × 6 since their momentum meshes do not
include the KM or K ′

M point. The rightmost three figures of each row give the spin-1 gaps, which are shown with the same color functions for
all plots. If the spin-1 gap is negative, it is set to zero in the plot.

small. Exploiting this small finite-size effect, we perform HF
calculations across various values of (V,w) for the system size
of 6 × 6, θ = 3.7◦, and ξ = 20 nm. The results are shown in
Fig. 19. We choose ε = 5 for ψ = −91◦ [28] and ε ≈ 16.67
for ψ = −107.7◦ [29], since ε = 5 and ε = 50/3 ≈ 16.67 are
deep in the FCI region at ν = −2/3 in later ED calculations
for the parameters in Refs. [28] and [29], respectively. As
shown in Fig. 19, the CI is robust as long as the parameters
do not differ too much from those in Refs. [28] and [29].

In Fig. 20, we perform the translationally invariant sub-
space 2BPV Hartree-Fock calculations beyond ν = −1, and
reasonably the results are not reliable. Specifically, for the
parameters in Ref. [28] in Fig. 20(a), the nonmagnetic states
for ν > −0.4 are consistent with experiments [24–27], but
the fact that the ferromagnetism persists to ν = −2 is dif-

ferent from the experiments, meaning that the calculation
is not completely reliable. For the parameters in Ref. [29]
in Fig. 20(b), the ferromagnetic ground states start from
nearly zero ν and persist to ν = −1.6, which is not consis-
tent with experiments, meaning that the calculation is not
reliable.

As last, we also perform the 1BPV Hartree-Fock calcula-
tions for Hh with ξ = 20 nm at ν = −1 as shown in Eq. (21).
The ground states are always spin polarized and thus has
nonzero Chern number for θ ∈ [3.5◦, 4.0◦], ε ∈ [5, 25] and
both sets of parameters in Refs. [28] and [29]. CI at ν = −1
was also found in the 1BPV HF calculation in Ref. [16]
outsides the experimental angle range. Therefore, the 1BPV
calculations missed the IVC-KM states for parameters in
Ref. [28] and the Ch = 0 states for the parameters in Ref. [29]
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FIG. 25. The summary of 1BPV spin-1 gaps for the parameter values of Ref. [29] for the system sizes of 3 × 4, 3 × 5, 3 × 6, and 4 × 6.
In the leftmost three figures of each row, green (“FCI”) labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means that
we do not see clear signatures of FCI or maximally spin-polarized CDW. The rightmost three figures of each row give the spin-1 gaps, which
are shown with the same color functions for all plots. If the spin-1 gap is negative, it is set to zero in the plot.

in the 2BPV results (Fig. 15), indicating the importance of the
remote bands.

APPENDIX D: 1BPV ED RESULTS

In this Appendix, we provide more in-depth analysis of the
1BPV ED results. Before going into details, we first present
the definitions of the spinful and spin-1 gaps of the model that
we study.

Definition 1 (Spinful gap). Given a fixed particle number,
the spinful gap of the system with the spin-U(1) symmetry
and TR symmetry is defined as the energy difference between
the lowest-energy state in all Sz �= Smax sectors and the lowest-
energy state in the Sz = Smax sector (former minus latter),
where we only consider Sz � 0 owing to the TR symmetry.

Definition 2 (Spin-1 gap). Given a fixed particle number,
the spin-1 gap of the system with the spin-U(1) symmetry
and TR symmetry is defined as the energy difference between

the lowest-energy state in the Sz = Smax − 1 sector and the
lowest-energy state in the Sz = Smax sector (former minus
latter), where we only consider Sz � 0 owing to the TR sym-
metry.

We note that in the 1BPV case, the maximally spin-
polarized sector at ν = −4/3 has the same spin as the
maximally spin-polarized sector at ν = −2/3.

1. Spin-1 gap as an approximation of the spinful gap

We first benchmark that the spin-1 gap is a good approxi-
mation of the spinful gap at the fractional fillings of interest in
our 1BPV calculations.

(i) System size of 3 × 4 (1BPV): When the spinful gaps
are positive, the ratio between the spinful gaps and spin-1 gaps
(former divided by latter) in average takes value of 0.36 at
ν = −1/3, of 0.93 at ν = −2/3 and of 1 at ν = −4/3 for the
parameters of Ref. [28], as shown in Figs. 22(a) and 24(a),
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FIG. 26. The 1BPV ED many-body spectrum for the system size of 3 × 6. The dots of different colors correspond to different spin Sz

sectors. The ground-state energy is chosen to be zero. In the partially spin-polarized sectors, we only show the lowest-energy state for each
momentum and each spin, which are enough to determine the spinful and spin-1 gaps. Here, the FCI states, if they occur, have momenta
at (kx, ky ) = (0, 3), (0, 3), (0, 3) at ν = −1/3, and have momenta at (kx, ky ) = (0, 0), (0, 0), (0, 0) for ν = −2/3 and ν = −4/3. In (a), the
maximally spin-polarized sector at ν = −1/3 shows a CDW with wavevector KM , since it has three ground states at (1,1), (0,3), and (2,5),
which have relative momentum differences ±KM . In (a), the ground states at ν = −4/3 also show a maximally spin-polarized CDW with
wavevector KM , as it has three ground states at (0,0), (2,2), and (1,4), which have relative momentum differences ±KM In (b), although the
lowest-energy three states at ν = −1/3, −2/3, −4/3 have the right FCI momentum, their spread is larger than the gap between the third
lowest-energy state and the fourth lowest-energy state in the maximally spin-polarized sector; thus they are not FCI states according to the
criterion in Prop. 1. At ν = −4/3 of (b), if we combine the third lowest-energy state at (0,0) with the lowest energy states at (2,2) and (1,4),
this combination would give us a KM -CDW around energy 1 meV; however, such combination is not reliable since we have a state at (0,3) that
has close to 1 meV.

respectively. For the parameters of Ref. [29], the same ratio in
average takes value of 0.65 at ν = −1/3, of 0.98 at ν = −2/3
and of 0.71 at ν = −4/3, as shown in Figs. 23(a) and 25(a),
respectively.

(ii) System size of 3 × 5 (1BPV): When the spinful gaps
are positive, the ratio between the spinful gaps and spin-1 gaps
(former divided by latter) takes value of 1 at ν = −1/3, of
0.95 at ν = −2/3 and of 1 at ν = −4/3 for the parameters
of Ref. [28], as shown in Figs. 22(b) and 24(b), respectively.
For the parameters of Ref. [29], the same ratio in aver-
age take the value of 0.97 at ν = −1/3, of 1 at ν = −2/3
and of 1 at ν = −4/3, as shown in Figs. 23(b) and 25(b),
respectively.

(iii) System size of 3 × 6 (1BPV): We choose θ = 3.7◦
and ε = 5 as the representative point for the parameter val-
ues in Ref. [28], and θ = 3.7◦ and ε ≈ 16.67 (10/ε = 0.6)
for the parameters of Ref. [29], as those points are in the
(ν = −1)-CI region shown in Fig. 4 of the main text and in the
(ν = −2/3)-FCI region for 4 × 6 (Figs. 24 and 25). As shown
by Fig. 26(a), which is for the parameters in Ref. [28], the
spinful gap and spin-1 gap are equal for all three fillings—they
take values 0.63 meV, 7.86 meV, and 12.84 meV for ν =
−1/3, ν = −2/3, and ν = −4/3, respectively. As shown by
Fig. 26(b), which is for the parameters in Ref. [29], the spinful
gap and spin-1 gap are equal for ν = −1/3 and ν = −2/3,
and they take values 1.31 meV and 5.12 meV for ν = −1/3
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FIG. 27. Representative plots of the 〈nk〉 in Eq. (D1). In (a), we plot it for the KM -CDW states at ν = −4/3 for θ = 3.7◦, ε = 5, the
3 × 6 system size, and the parameters in Ref. [28]. In (a), we consider for 〈nk〉 the three KM -CDW states—the maximally spin-polarized
lowest-energy states at the CDW momenta (0,0), (2,2), and (1,4) as shown in Fig. 26(a). In (b)-(d), we plot 〈nk〉 for the FCI states at ν = −2/3,
where ρ is the projection operator for the subspace spanned by three-FCI states—the maximally spin-polarized lowest-energy states at the FCI
momenta (kx, ky ) = (0, 0), (0, 2), (0, 4). The red dashed line mark the mean value of 〈nk〉, which equals to −ν.

and ν = −2/3, respectively; the spinful gap and spin-1 gap
are not identical but similar for ν = −4/3—they take values
3.15 meV and 4.28 meV, respectively, and the ratio (former
divided by latter) reads 0.74.

Our results on 3 × 4 and 3 × 5 the spin-1 gap becomes
better approximation of the spinful gap as sizes grow; the
trend persists to our examples on 3 × 6, except for ν = −4/3
for parameters in Ref. [29]. Nevertheless, for ν = −4/3 for
parameters in Ref. [29], the ratio between the spin-1 gap and
spinful gap is still close to 1 for the largest size 3 × 6. Thus,
for the 1BPV calculations, our results on 3 × 4 and 3 × 5 and
our examples on 3 × 6 clearly show that the spin-1 gap is a
good approximation of the spinful gap.

2. Ground states at ν = −1/3, −2/3, −4/3

The 1BPV ED calculations for the system sizes of 3 × 4,
3 × 5, 3 × 6, and 4 × 6 are summarized in Figs. 24 and 25 for

FIG. 28. 1BPV ED calculations of the standard deviation of the
〈nk〉 in Eq. (D1) for the system size of 4 × 6 by using the param-
eters in Ref. [28] at ν = −2/3. 〈nk〉 is plotted for the maximally
spin-polarized lowest-energy states at the FCI momenta—(kx, ky ) =
(0, 0), (0, 2), (0, 4).

both sets of parameters in Refs. [28] and [29]. We first discuss
the ground states at ν = −1/3,−2/3,−4/3.

(i) ν = −2/3 (1BPV): As shown in Figs. 24 and 25,
the finite-size effect on the FCI region at ν = −2/3 is
non-negligible, so we choose the largest system size 4 ×
6 to determine the ν = −2/3 FCI region. The ν = −2/3
FCI region is roughly ε ∈ [5, 6.25] for the parameters of
Ref. [28]; the FCI region at ν = −2/3 basically covers
the entire phase diagram in Fig. 25 for the parameters of
Ref. [29].

(ii) ν = −4/3 (1BPV): In the parameter region where
ν = −2/3 hosts an FCI, the 1BPV ED calculation shows
that the ground states at ν = −4/3 exhibit a positive spin-
1 gap for both sets of parameters in Refs. [28] and [29],
indicating maximally spin-polarized ground states. In this
region, ν = −4/3 is in the spin-polarized KM-CDW phase
for the parameter values in Ref. [28], which is indicated by
the fact that we have three nearly degenerate ground states
for ν = −4/3 in Fig. 26 with a considerable gap ∼7 meV
and their momentum difference is ±KM = ±( 1

3 b1 + 2
3 b2) for

the system size of 3 × 6. It is not an FCI since the three
FCI states at the system size of 3 × 6 are all in the (0,0)
sector for ν = −4/3, and such KM-CDW phase cannot be
detected for the system sizes of 3 × 4, 3 × 5, and 4 × 6 as
their momentum meshes do not include the KM point. For the
parameter values in Ref. [29], ν = −4/3 are mostly in the FCI
phase for the parameters that give FCI at ν = −2/3, as shown
in Fig. 30 for θ = 3.5◦ and ε = 10 deep in the FCI region
at ν = −2/3.

(iii) ν = −1/3 (1BPV): In the parameter region where
ν = −2/3 hosts an FCI, the 1BPV ED calculation shows that
the ground states at ν = −1/3 exhibit a positive spin-1 gap
for both sets of parameters in Refs. [28] and [29], indicating
maximally spin-polarized ground states. In the parameter re-
gion where ν = −2/3 hosts an FCI, if we focus on the fully
spin-polarized sector of ν = −1/3, we have a KM-CDW phase
for the system size of 3 × 6 for the parameters of Ref. [28]
(Fig. 26), which is consistent with the results in Ref. [28].
However, the partially spin-polarized sector has energies too
low to solidly claim the presence of the fully spin-polarized
KM-CDW as the ground state (finite-size effects or disorder
might change this). For the parameter values in Ref. [29],
ν = −1/3 is mostly in the FCI phase for the parameters that
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FIG. 29. 1BPV ED calculations of the standard deviation of the 〈nk〉 in Eq. (D1) for the system size of 4 × 6 by using the parameters
in Ref. [29]. 〈nk〉 is plotted for the maximally spin-polarized lowest-energy states at the FCI momenta—(kx, ky ) = (0, 0), (0, 2), (0, 4) at
ν = −1/3, −2/3, −4/3.

give FCI at ν = −2/3, as shown in Fig. 30 for θ = 3.5◦ and
ε = 10 deep in the FCI region at ν = −2/3, where the ν =
−1/3 FCI phase is consistent with the 1BPV ED calculations
in Ref. [29].

We now discuss the qualities of the FCI states based on
〈nk〉, where

〈nk〉 = Tr[ρnk]

Tr[ρ]
, (D1)

where ρ is the projection operator for the states of interest; for
three FCI states |ψFCI

i 〉 with i = 1, 2, 3 (such as |1〉, |2〉, and
|3〉 at ν = −2/3 in Fig. 30), ρ reads

ρ =
3∑

i=1

∣∣ψFCI
i

〉〈
ψFCI

i

∣∣ . (D2)

nk = ∑
n,η γ̃

†
η,n,kγ̃η,n,k is the hole number operator at k (n only

takes one value in this section). As a benchmark, we show in
Fig. 27(a) the 〈nk〉 for the KM-CDW states at ν = −4/3 for
θ = 3.7◦, ε = 5, the 3 × 6 system size, and the parameters
in Ref. [28]. As we can see, 〈nk〉 the KM-CDW states have
considerable fluctuations with standard deviation 0.144. In
Fig. 27(b), we show nk of the FCI states deep in the FCI region
at ν = −2/3 for the 4 × 6 system size and the parameters
in Ref. [29], which is very uniform with standard deviation
0.006. If we move close to the boundary of the FCI region,
the fluctuations become much stronger—standard deviation
increases to 0.134 as shown in Fig. 27(c), which is close
to the fluctuations of the CDW. As shown by Fig. 27(d),
the quality of the FCI states at ν = −2/3 for the 4 × 6 sys-
tem size and the parameters in Ref. [28] (standard deviation

FIG. 30. The 1BPV ED many-body spectrum for the system size of 4 × 6. The dots of different colors correspond to different spin Sz

sectors. The ground-state energy is chosen to be zero. Here we only show the lowest-energy state per momentum for the sector Sz = Smax − 1
(using blue dots). For the sector Sz = Smax (using orange dots), we show the lowest-energy state per momentum, except for kx = 0 where we
show the two lowest-energy states per momentum in order to make sure there are two states per momentum for the FCI momenta (kx, ky ) =
(0, 0), (0, 2), (0, 4). According to the criterion in Prop. 1, FCI states exist for all three fillings for the parameters of interest. |1〉, |2〉, and |3〉
label the threefold degenerate ground states at ν = −2/3 and ν = −4/3 for the FCI, which are used in verifying the approximate PH symmetry
between ν = −2/3 and ν = −4/3 in Eq. (D3).
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FIG. 31. (a) The overlap probability of the rank-3 lowest-energy
subspaces with the FCI quantum numbers between ν = −2/3 and
ν = −4/3 [see Eq. (D3)] for the system size of 4 × 6, the param-
eters in Ref. [29], and for the 1BPV calculations. Explicitly, the
rank-3 lowest-energy subspace with the FCI quantum numbers is
spanned by the lowest-energy states at the FCI momenta (kx, ky ) =
(0, 0), (0, 2), (0, 4) in the maximally spin-polarized sector at ν =
−2/3 or ν = −4/3, as shown in Fig. 30. If the criterion in Prop. 1
is satisfied, the three states at ν = −2/3 or ν = −4/3 are in the FCI
phase, which is true for most parts of the phase diagram, as shown
in Fig. 25(d). (b) The ratio between the spin-1 gaps at ν = −4/3 and
ν = −2/3 (former divided by latter) for the system size of 4 × 6, the
parameters in Ref. [29], and for the 1BPV calculations.

of nk is 0.137) is as bad as those close to the boundary
of the FCI region for the same size and the parameters in
Ref. [29].

We further calculate 〈nk〉 for the maximally spin-
polarized lowest-energy states at the FCI momenta—
(kx, ky) = (0, 0), (0, 2), (0, 4)—in the phase diagrams that
involve FCI at the 4 × 6 system size as shown in Figs. 28
and 29. As shown in Fig. 28 [compared to Fig. 24(d)}, the
standard deviation of 〈nk〉 at ν = −2/3 does minimize in the
region where the three states become FCI according to the
criterion in Prop. 1 for the parameters in Ref. [28]; the same

FIG. 32. The 1BPV ED many-body spectrum for the system size
of 5 × 6, ν = −3/5 at θ = 3.7◦ with ε = 10 (a) and ε = 16.67 (b).
The dots of different colors correspond to different spin Sz sectors.
The ground-state energy is chosen to be zero. In the partially spin-
polarized sectors, we only show the lowest-energy state for each
momentum and spin Smax − 1, which are enough to determine the
spin-1 gaps. Here, the FCI states, if they occur, have momenta at
(kx, ky ) = (0, 3), (1, 3), (2, 3), (3, 3), (4, 3). In both (a) and (b), we
have clear FCI ground states and large spin-1 gap.

holds for each for the three fillings ν = −1/3,−2/3,−4/3
for the parameters in Ref. [29] as shown in Fig. 29. The
FCI states at ν = −1/3,−2/3,−4/3 for the parameters in
Ref. [29] can have good quality—standard deviations of 〈nk〉
take values in [0.037, 0.166] at ν = −1/3, in [0.002, 0.134]
at ν = −2/3 and in [0.077, 0.181] at ν = −4/3. Yet, the FCI
states at ν = −2/3 for the parameters in Ref. [28] has large
fluctuations in 〈nk〉 with the standard deviation in the range
[0.136, 0.169], well beyond the minimum values for the FCI
states for the parameters in Ref. [29].

In the parameter region where ν = −2/3 hosts an FCI, the
ground states at ν = −1/3 and ν = −4/3 are maximally spin
polarized in 1BPV calculations for both sets of parameters
in Refs. [28] and [29]. Although the finite-size effects on the
FCI region are substantial, the finite size effect of the spin-1
gap is small: the spin-1 gap does not change significantly for
all four different system sizes. In the following, we compare
the magnetic stability of the ground states at different fillings
based on the spin-1 gaps.

3. Magnetic stability at ν = −4/3 and ν = −2/3

We now compare the magnetic stability of the ground
states between ν = −4/3 and ν = −2/3 first in the 1BPV
calculations.

(i) ν = −2/3 versus ν = −4/3 for the parameters in
Ref. [28] (1BPV): We find that the spin-1 gap at ν = −4/3
is larger than that at ν = −2/3; specifically, in the ν = −2/3
FCI region, the ratio of the spin-1 gap at ν = −4/3 and
ν = −2/3 takes values in the range [1.59,1.72] for 3 × 4,
[1.49,1.59] for 3 × 5, [1.62,1.77] for 3 × 6, and [1.37,1.64]
for 4 × 6.

(ii) ν = −2/3 versus ν = −4/3 for the parameters in
Ref. [29] (1BPV): We find that the spin-1 gap at ν = −4/3 is
similar to that at ν = −2/3; specifically, in the ν = −2/3 FCI
region, the ratio of the spin-1 gap at ν = −4/3 and ν = −2/3
takes values in the range [0.60,0.92] for 3 × 4, [0.61,0.93] for
3 × 5, [0.74,1.00] for 3 × 6, and [0.71,0.93] for 4 × 6.

These 1BPV results show that the magnetic stability at ν =
−4/3 cannot be significantly weaker than that at ν = −2/3,
which is dramatically different from the clearly nonmagnetic
state at ν = −4/3 and the magnetic FCI at ν = −2/3 ob-
served in the experiments [24–27].

In the 1BPV results, the similarity between the spin-1
gaps at ν = −4/3 and ν = −2/3 for the parameter values in
Ref. [29] can be understood from the approximate PH sym-
metry roughly for θ ∈ [3.5◦, 3.7◦] and for 10/ε ∈ [0.8, 1].
As discussed in Sec. III B and Appendix B 2, ν = −4/3 and
ν = −2/3 is allowed to be PH partners in the 1BPV case,
as we have two bands in total (PH transforms ν to −2 − ν).
Let us first take θ = 3.5◦ and ε = 10 as an example. As
shown in Fig. 30 for θ = 3.5◦ and ε = 10, we have the ex-
tremely similar the low-energy spectra (including the Sz =
Smax − 1 sector) at ν = −2/3 and ν = −4/3, indicating the
approximate (almost exact) PH symmetry. We can be more
quantitative and compute the overlap probability between the
ground states at ν = −2/3 and the PH-transformed ground
states at ν = −4/3 at the system size 4 × 6. We note that the
ground states at the system size 4 × 6 for θ = 3.5◦ and ε = 10
are FCI states at both ν = −2/3 and ν = −4/3, and the FCI
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FIG. 33. The comparison of the spinful gap and spin-1 gap for 3 × 4 in 2D 2BPV ED calculations at ν = −1/3 and ν = −2/3 (a) using
the parameters of Ref. [28] and (b) using the parameters of Ref. [29]. Spinful and spin-1 gaps are set to zero if they are negative.

momenta are (0,0), (0,2), and (0,4) at both ν = −2/3 and
ν = −4/3. We label the three FCI states at ν by i = 1, 2, 3,
and making sure that |ν = −2/3, i〉 and C|ν = −4/3, i〉 have
the same momentum as shown in Fig. 30, where C is the PH
transformation operator defined in Eq. (15). We obtain

1

3
Tr

[
3∑

i=1

|ν = −2/3, i〉〈ν = −2/3, i|

×
3∑

j=1

(C|ν = −4/3, j〉)(〈ν = −4/3, j|C−1)

]

= 1

3

3∑
i=1

|〈ν = −2/3, i|C|ν = −4/3, i〉|2 = 0.95, (D3)

which is close to 1, verifying the approximate PH symmetry.
Here we have used 〈ν = −2/3, i|C|ν = −4/3, j〉 = 0 for i �=
j owing to the different momenta, and we also have used

|〈ν = −2/3, 1|C|ν = −4/3, 1〉|2 = 0.96,

|〈ν = −2/3, 2|C|ν = −4/3, 2〉|2 = 0.95,

|〈ν = −2/3, 3|C|ν = −4/3, 3〉|2 = 0.95. (D4)

For completeness, we give in Fig. 31(a) the phase dia-
gram indicating the overlap quantifying the approximate PH
symmetry between ν = −2/3 and ν = −4/3 in the 1BPV cal-
culations. We note that the three states |ν, 1〉, |ν, 2〉, and |ν, 3〉
with ν = 2/3 or ν = −4/3 are chosen to be the lowest-energy
states at the FCI momenta (kx, ky) = (0, 0), (0, 2), (0, 4) in
the maximally spin-polarized sector. In the phase diagram,

|ν, 1〉, |ν, 2〉, and |ν, 3〉 are not always the absolute ground
states, but they become the absolute ground states and form
FCI for most part of the phase diagram as shown in Fig. 25(d).
In Fig. 31(b), we can see extreme similarity between the
spin-1 gaps at ν = −3/4 and ν = −2/3 in the top left corner,
where the approximate PH symmetry is good. Specifically, for
θ ∈ [3.5◦, 3.7◦] and for 10/ε ∈ [0.8, 1], the overlap probabil-
ity in Eq. (D3) is no less than 0.66, indicating the fairly good
approximate PH symmetry [Fig. 31(a)], and the ratio between
the spin-1 gaps at ν = −3/4 and ν = −2/3 (former divided
by latter) is no less than 0.84 [Fig. 31(b)]. Nevertheless, the
extreme similarity between the spin-1 gaps at ν = −3/4 and
ν = −2/3 in the top right corner of Fig. 31(b) (i.e., θ close
to 4.0◦ and 10/ε close to 1) happens when the overlap prob-
ability in Eq. (D3) is relatively small (smaller than ∼0.5), of
which the explanation we leave for future work.

4. Magnetic stability at ν = −1/3 and ν = −2/3

We now compare the magnetic stability at ν = −1/3 and
ν = −2/3 based on the spin-1 gaps in the 1BPV calculations.
As itemized in the following, when ν = −2/3 is an FCI, we
find that the spin-1 gap at ν = −1/3 is indeed considerably
smaller than that at ν = −2/3 for both sets of parameter
values of Refs. [28,29], although the difference between ν =
−1/3 and ν = −2/3 is reduced at larger system sizes, com-
pared to the numbers reported in Refs. [28,29] on smaller
systems.

(i) ν = −2/3 versus ν = −1/3 for the parameters in
Ref. [28] (1BPV): In the ν = −2/3 FCI region, the ratio
between the spin-1 gap at ν = −1/3 and that at ν = −2/3
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FIG. 34. The many-body spectrum at 3 × 4 for 2BPV at ν = −1/3, −2/3, −4/3 (a) for the parameters of Ref. [28] and (b) for the
parameters of Ref. [29]. For ν = −2/3 and for the spin-zero sector at ν = −1/3, we only show the lowest-energy state for each momentum.
For ν = −4/3, we only show three spin sectors, and the lowest-energy state for each momentum and for each spin. Note that for this system
size S2BPV

max = 8 and S1BPV
max = 4; the S1BPV

max = 4 sector at ν = −4/3 has Hilbert dimension about 2.3 billion per momentum, which is hard to
address. The ground-state energy is chosen to be zero. Here, the FCI states, if any, should have momenta at (kx, ky ) = (0, 2), (1, 2), (2, 2) at
ν = −1/3, and have momenta at (kx, ky ) = (0, 0), (1, 0), (2, 0) for ν = −2/3 and ν = −4/3. According to the criterion in Prop. 1, the FCI
states exist for both ν = −1/3 and ν = −2/3 in (b). However, one can clearly see the minuscule FCI gap at ν = −1/3 and the large FCI gap
at ν = −2/3.

takes the value in the range [0.07, 0.17] for 3 × 4, [0.02,
0.10] for 3 × 5, [0.07, 0.09] for 3 × 6, and [0.18, 0.23]
for 4 × 6. Ref. [28] finds an order-of-magnitude difference
between the spinful gaps at ν = −1/3 and ν = −2/3 for the
system size of 12 unit cells for θ = 3.5◦ and ε = 5, which is
consistent with our 3 × 4 spinful gaps (Fig. 22) and spin-1
gaps.

(ii) ν = −2/3 versus ν = −1/3 for the parameters in
Ref. [29] (1BPV): In the ν = −2/3 FCI region, the ratio
between the spin-1 gap at ν = −1/3 and that at ν = −2/3
takes the value in the range [0.17,0.41] for 3 × 4, [0.16,0.38]
for 3 × 5, [0.16,0.39] for 3 × 6, and [0.35,0.47] for 4 × 6.
Therefore, increasing the system size does increase the ratio
between the spin-1 gaps at ν = −1/3 and ν = −2/3 (former
divided by latter), but the effect is not significant enough
to rule out the trend that the spin-1 gap at ν = −1/3 is

considerably smaller than that at ν = −2/3. Ref. [29] finds
the spinful gap at ν = −2/3 is about five times that at ν =
−1/3 for θ = 3.5◦, ε = 15 and the system size of 3 × 4,
which is consistent with our 3 × 4 spinful gaps (Fig. 23) and
spin-1 gaps.

To summarize, the spin-1 gap 1BPV ED results indicate
that the magnetic stability at ν = −4/3 cannot be significantly
weaker than that at ν = −2/3, which is inconsistent with the
experiments, although the fact that the spin-1 gap at ν = −1/3
is much smaller than that at ν = −2/3 is consistent with the
nonmangetic or weakly ferromagnetic states at ν = −1/3 in
experiments. In addition, the ground states at ν = −1/3 are
mostly FCIs for the parameters of Ref. [29] but are mostly
KM-CDW for parameters of Ref. [28]; only the latter is con-
sistent with the topologically trivial states at ν = −1/3 in
experiments).
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FIG. 35. The many-body spectrum at 3 × 5 for 2BPV at ν = −1/3, −2/3, −4/3 and for the parameter values specified. We include all
spin sectors at ν = −1/3 and the lowest-energy state per momentum in each spin sector to obtain the spinful gap. We only include two spin
sectors Sz = S2BPV

max , S2BPV
max − 1 at ν = −2/3, −4/3 to show the spin-1 gap and the lowest-energy state per momentum per spin, except that we

keep two lowest-energy states per momentum in Sz = S2BPV
max sector for possible FCIs in (b). Here, the FCI states, if occur, have momenta at

(kx, ky ) = (0, 0), (1, 0), (2, 0) at ν = −1/3, ν = −2/3, and ν = −4/3. According to the criterion in Prop. 1, FCI states exist for ν = −2/3
in (b). For ν = −1/3 in (b), it is not an FCI state according to the criterion Prop. 1 for two reasons. First, the lowest three states at the FCI
momenta (0,0), (1,0), and (2,0) in the fully spin-polarized sector are not the absolute ground states, since the lowest-energy fully spin-polarized
state at (0,0) has higher energy than the partially spin-polarized state at the same momentum, violating the combination of (i) and (ii) in the
criterion Prop. 1. Second, the lowest three fully spin-polarized states at the FCI momenta (0,0), (1,0) and (2,0) for ν = −1/3 have a spread
larger than the gap between the third lowest state and the 4th lowest state in the fully spin-polarized sector, violating (iii) in the criterion
Prop. 1. Therefore, even if the partially spin-polarized states have much higher energies than the three lowest fully spin-polarized states [as
ν = −2/3 in (b)], ν = −1/3 in (b) is still not an FCI due to the second reason. We note that lowest two states at momenta (1,0) and (2,0) are
guaranteed to be exactly degenerate due to the effective inversion symmetry for ν = −1/3 in (b).

5. ν = −3/5 for parameters in Ref. [29]

In this section, we discuss the FCI states at ν = −3/5 in
1BPV ED results.

FCI states at ν = −3/5 were already observed in Ref. [26]
at θ = 3.7◦. We find that 1BPV ED calculations with the
parameters in Wang et al. [37] can clearly show FCI ground
states at ν = −3/5 at the experimentally-relevant angle θ =
3.7◦ with considerable spin-1 gap (e.g., ∼4 meV for ε =
16.67), as shown in Fig. 32. We note that although FCI states
at ν = −3/5 were studied in Ref. [34]; Ref. [34] did not show
the existence of them at experimentally relevant angles ∼3.7◦
and did not study the spin excitations.

APPENDIX E: 2BPV ED RESULTS

In this Appendix, we provide more details on the 2BPV ED
results.

1. Parameters in Ref. [28]

First we start with the parameters of Ref. [28]. The ground
states are fully polarized at ν = −2/3 in more than 70% of
the 2BPV phase diagram [Fig. 7(a)] on a 3 × 4 system, but
the FCI phase is absent at ν = −2/3 in the entire 2BPV phase
diagram. However, as mentioned in the main text and from the
discussion about the 1BPV, we cannot determine whether this
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absence of FCI at ν = −2/3 on a 3 × 4 system is due to the
finite-size effect, since 3 × 4 systems do not exhibit FCIs at
ν = −2/3 even in the 1BPV calculations for the parameters
in Ref. [28]. In 1BPV calculations, we found the ν = −2/3
FCI only at 4 × 6, not for 3 × 6, 3 × 5, or 3 × 4. 2BPV
calculations for 4 × 6 at ν = −2/3 are beyond our numerical
accessibility, as the Hilbert space dimension per momentum
at 4 × 6 at ν = −2/3 in the full-spin-polarized sector is larger
than 90 billion. In fact, for all the 1BPV and 2BPV calcula-
tions that we did with the parameters in Ref. [28], we only find
FCI at ν = −2/3 for the system size 4 × 6 and the interaction
strength ε ∈ [5, 6.25] in 1BPV calculations. Therefore, we
will study the 2BPV results for the parameters of Ref. [28]
in the 1BPV ν = −2/3 FCI region within ε ∈ [5, 6.25].

We first discuss ν = −1/3 and ν = −2/3 at the system
sizes of 3 × 4 and 3 × 5.

(i) The spin-1 gaps are positive but the spinful gaps are
negative at ν = −1/3 for the 3 × 4 system size and for ε ∈
[5, 6.25], as shown in Fig. 33(a). The negative spinful gaps
and the positive spin-1 gaps at ν = −1/3 for ε ∈ [5, 6.25]
imply that the ground states are spin unpolarized for the 3 × 4
system size, as exemplified in the spectra of Fig. 34(a). This is
in contrast to the fully spin-polarized states at ν = −2/3 for
ε ∈ [5, 6.25] and the system size 3 × 4.

(ii) As a test of the finite-size effects, we calculate the
spinful gap at ν = −1/3 and the spinful gap at ν = −2/3
for the system size of 3 × 5 and (θ, 10/ε) = (3.7◦, 2.0) [see
Fig. 33(a)], which read −1.18 meV and 0.75 meV, respec-
tively. Compared to the corresponding values −0.39 meV and
0.56 meV for the 3 × 4 system, we see that the difference
between −1/3 and −2/3 is even stronger at a larger size,
indicating different magnetic behaviors for these two filling
factors.

In contrast to the different the spin-1 and spinful gaps
for ν = −1/3 and the system size of 3 × 4 in first item,
the spin-1 gap is equal to the spinful gap at ν = −2/3
for ε ∈ [5, 6.25] for the same system size. Nevertheless, we
should not compare the spin-1 gaps between ν = −1/3 and
ν = −2/3; instead we compare the spinful gaps between
ν = −1/3 and ν = −2/3 as shown in Fig. 7(a) of the main
text. Our findings clearly show a significant contrast in the
spin polarization between ν = −1/3 and ν = −2/3, which
is consistent with the experimentally observed difference in
magnetism between ν = −1/3 and ν = −2/3. In addition,
the ground states at ν = −1/3 are not FCIs, which is con-
sistent with the topologically trivial states at ν = −1/3 in
experiments.

Although there is a clear difference between ν = −1/3 and
ν = −2/3, there is no obvious indication that the difference
between ν = −2/3 and ν = −4/3 can be captured at the
system size of 3 × 4 or 3 × 5 for the parameters in Ref. [28].

(i) The spin-1 gap away from the fully spin-polarized sec-
tor at ν = −4/3 is larger than the spin-1 gap at ν = −2/3 for
3 × 4 systems [see Fig. 9(a) in the main text].

(ii) Even on system size 3 × 5, the spin-1 gap is still
much larger at ν = −4/3 than that at ν = −2/3, as shown in
Fig. 35(a). Specifically, at representative parameters (θ, ε) =
(3.7◦, 5), the spin-1 gaps at ν = −2/3,−4/3 respectively
read 0.56 meV and 2.65 meV for the system size 3 × 4, and
respectively 0.75 meV and 2.56 meV for the system size

FIG. 36. 2BPV ED calculations of the standard deviation of the
〈nk〉 [see Eq. (D1)] for the parameters in Ref. [29] the system size
of 3 × 4. 〈nk〉 is calculated for the maximally spin-polarized lowest-
energy states at the FCI momenta—(kx, ky ) = (0, 2), (1, 2), (2, 2) at
ν = −1/3 and (kx, ky ) = (0, 0), (1, 0), (2, 0) for ν = −2/3.

3 × 5, where we can see that the spin-1 gap is roughly the
same for the two sizes.

(iii) If we consider the Sz = S2BPV
max − 2 = 8 − 2 = 6 sec-

tor at ν = −4/3 for 3 × 4, θ = 3.7◦ and ε = 5, the lowest-
energy state in the Sz = 6 sector has energy higher than the
lowest-energy state in the Sz = S2BPV

max = 8 sector by about
7 meV and higher than the lowest-energy states in the Sz =
S2BPV

max = 7 sector by about 4.5 meV as shown in Fig. 34(a).
These findings indicate that the large-spin states might be

favored. Nevertheless, as discussed in Sec. VI of the main
text, the 1BPV maximally spin-polarized state at ν = −4/3
corresponds to the 2BPV partially spin-polarized states at
ν = −4/3; we need to check whether such 2BPV partially
spin-polarized states at ν = −4/3 (with Sz = S1BPV

max ) are also
energetically favored. In all the three items, we have not got
close to the Sz = S1BPV

max = 4 sector for the system size of 3 ×
4. To fully address this question, we use 3 × 3 systems where
all sectors are numerically feasible. In this case, the finite-size
effect of the spin-1 gap becomes strong [see Fig. 37(a) for
θ = 3.7◦ and ε = 5], which makes the spin-1 gap at ν =
−4/3 negative (about –0.5 meV). Nevertheless, the large-spin
states are still the ground states for the interaction strength
ε ∈ [5, 6.25] at θ = 3.7◦ as shown in Fig. 37(b), which is
significantly different from the clear spin-zero ground states
at ν = −1/3 and small-spin ground states at ν = −4/3 for
the parameters in Ref. [29] discussed in the following. In fact,
the large-spin states at ν = −4/3 are the ground states even
for ε going to ∼7 at θ = 3.7◦, although the smaller spin states
start to become more competitive at smaller interaction [see
Fig. 37(b)]. Therefore, we do not see clear numerical evidence
that the parameters in Ref. [28] explain the experimental
difference between ν = −4/3 and ν = −2/3 at the available
system sizes, even if we include remote bands.

Finally, we address the weight of the remote bands in the
low-energy states at ν = −4/3. To characterize the weight,
we introduce the following quantity to capture the average
probability in the remote bands for each spin sector Sz,

p2,Sz = 1

N

∑
k

〈sz, k|n̂2|sz, k〉
n

, (E1)
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FIG. 37. [(a),(b)] Analogs of Fig. 10 in the main text but for the parameters in Ref. [28]. (a) The many-body 2BPV spectrum at ν = −4/3
for 3 × 3, the parameters in Ref. [28], ε = 5 and θ = 3.7◦. We only include the lowest-energy state per momentum per partially spin-polarized
sector. For this system size, the FCI states (in the S2BPV

max = 6 and S1BPV
max = 3 sectors) should appear as an (almost) threefold degenerate ground-

state manifold at (kx, ky ) = (0, 0). According to the criterion in Prop. 1, we cannot have FCI states here, since the ground states are not even
at (0,0) momentum. The energy of the ground state is set to zero. (b) At each value of ε, we show the lowest energy of each spin sector for the
parameters specified in the plot. As a comparison of the spin, we note that the spin of the fully spin-polarized state at ν = −2/3 is Sz = 3 for
the size of 3 × 3. The energy of the ground state is set to zero at each value of ε. (c) At each value of ε, we show the average probability in the
remote bands p2,Sz in Eq. (E1) for the low-energy states in each spin sector. The parameters are specified in the plot.

where n̂2 = ∑
k′,η γ̃

†
η,2,k′ γ̃η,2,k′ is the holes number operator

on the remote bands, γ̃
†
η,2,k′ creates a hole in the second top

valence band in the valley η, N is the number of k points, n
is the total number of holes, and |Sz, k〉 is the lowest-energy
many-body state in the momentum-k spin-Sz sector. If all
(no) holes are in the remote bands, we would have p2,Sz = 1
(p2,Sz = 0). As shown in Fig. 37(c), p2,Sz is about 0.1 ∼ 0.3,
which is non-negligible but reasonable enough to envision
perturbation schemes to elucidate the loss of ferromagnetism
at this filling factor. Nevertheless, there is a clear decay in the
probability compared to that in the top pair of valence bands
(about 0.7 ∼ 0.9), meaning the effect of bands beyond the
second top pair of valence bands should be negligible even
if they are included.

2. Parameters in Ref. [29]

We now turn to the parameters in Ref. [29]. At ν = −2/3
on a 3 × 4 system, Fig. 7(b) in the main text shows a diag-
onal region hosting an FCI phase, with neighboring non-FCI
phases (see Fig. 39). For the system size of 3 × 4, we again
evaluate the standard deviation of 〈nk〉 [see Eq. (D1)] for
the maximally spin-polarized lowest-energy states at the FCI
momenta—(kx, ky ) = (0, 0), (1, 0), (2, 0) for ν = −2/3. We
find that standard deviation at ν = −2/3 can be very small
in the FCI region, taking values in [0.006,0.104], which is
similar to the 1BPV FCI states at ν = −2/3 for the 4 × 6
system size and for the parameters in Ref. [29], as discussed
in Eq. (D2). As a side note, the standard deviation 〈nk〉 at
ν = −1/3 minimizes in the FCI region without reaching the
extremely small values obtained at ν = −1/3. Indeed, the

minimum standard deviation of 〈nk〉 at ν = −1/3 is 0.058
whereas that at ν = −2/3 is 0.006 (Fig. 36).

We focus on the parameter region that gives an FCI phase
at ν = −2/3.

(i) In the ν = −2/3 FCI region on a 3 × 4 system, the
spin-1 gaps are mostly about twice the spinful gaps at ν =
−1/3, though the spin-1 gap is equal to the spinful gap at
ν = −2/3, as shown in Fig. 33(b). So we should use the
spinful gaps (instead of spin-1 gaps) as a measure of the
magnetic stability at ν = −1/3 and ν = −2/3 as done in the
main text.

(ii) Among the 18 points in the phase diagram Fig. 7(b)
that give FCIs at ν = −2/3 at the 3 × 4 system size, there is
one point that favors spin-unpolarized (i.e., spin zero) ground
states at ν = −1/3.

FIG. 38. Analog of Fig. 37(c) but for the parameters in Ref. [29].
At each value of ε, we show the average probability in the remote
bands p2,Sz in Eq. (E1) for the low-energy states in each spin sector.
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FIG. 39. The many-body spectrum at 3 × 4 for 2BPV at ν = −2/3 and for the parameter values of Ref. [29]. The ground-state energy is
chosen to be zero. We only include two spin sectors Sz = S2BPV

max , S2BPV
max − 1 at ν = −2/3, and the lowest-energy state per momentum in each

spin sector except at the momenta where FCI states might occur, namely (kx, ky ) = (0, 0), (1, 0), (2, 0). According to the criterion in Prop. 1,
FCI states only exist in the middle plot.

(iii) For the other 17 points of the 18 points in the last
item, we find fully spin-polarized ground states at ν = −1/3
(FCI states for 11 of them), but ratio between the spinful gaps
at ν = −1/3 and ν = −2/3 (former divided by latter) takes
values in [0.03, 0.27] with the mean value 0.13, as shown
in Table III. [For these 17 points, the spin-zero state again
has lower energy than the partially spin-polarized state at
ν = −1/3, as exemplified in Fig. 33(b).]

(iv) As a test of the finite-size effect, the spinful gaps at
ν = −1/3 and ν = −2/3 (θ, 10/ε) = (3.7◦, 0.6) respectively
read 0.22 meV and 1.40 meV for the 3 × 4 system, where the
ratio (former divided by latter) is 0.16; the spinful gaps at ν =

−1/3 and ν = −2/3 (θ, 10/ε) = (3.7◦, 0.6) read 0.52 meV
and 1.48 meV for the 3 × 5 system, where the ratio (former
divided by latter) is 0.35.

Therefore, when ν = −2/3 features a fully spin-polarized
FCI, the state at ν = −1/3 is either spin unpolarized (1/18
of the region) or fully spin polarized with magnetic stability
much weaker than that at ν = −2/3 (17/18 of the region)
at the 3 × 4 system size. The difference between the ν =
−1/3 and ν = −2/3 spin-1 gap is decreased as the size in-
creases (ratio changes from 0.16 to 0.35), but not significant
enough to eliminate the trend that ν = −1/3 has much weaker
magnetic stability than ν = −2/3, hinting towards different

TABLE III. The summary of the spin-1 gap and spinful gap values for the parameters in Ref. [29] and for system size 3 × 4 at ν =
−1/3, −2/3 in 2BPV calculations. We only include the angles and dielectric constant values in the phase diagram that leads to an FCI phase
at ν = −2/3.

Spinful Gapν=−1/3 Spin-1 Gapν=−1/3 Spinful Gapν=−2/3 Spin-1 Gapν=−2/3

θ 10/ ε (meV) (meV) (meV) (meV)
Spinful Gapν=−1/3

Spinful Gapν=−2/3

3.5 0.40 0.23 0.44 1.12 1.12 0.21
3.5 0.50 0.32 0.63 1.20 1.20 0.27
3.6 0.40 0.14 0.27 1.33 1.33 0.10
3.6 0.50 0.23 0.47 1.27 1.27 0.18
3.6 0.60 0.32 0.66 1.38 1.38 0.23
3.7 0.50 0.15 0.30 1.42 1.42 0.10
3.7 0.60 0.22 0.48 1.40 1.40 0.16
3.7 0.70 0.29 0.65 1.54 1.54 0.19
3.8 0.60 0.15 0.33 1.49 1.49 0.10
3.8 0.70 0.22 0.50 1.49 1.49 0.15
3.8 0.80 0.27 0.66 1.67 1.67 0.16
3.9 0.70 0.12 0.34 1.54 1.54 0.08
3.9 0.80 0.21 0.51 1.55 1.55 0.13
3.9 0.90 0.26 0.66 1.77 1.77 0.15
4.0 0.70 −0.15 0.18 1.66 1.66 −0.09
4.0 0.80 0.06 0.34 1.57 1.57 0.04
4.0 0.90 0.18 0.50 1.57 1.57 0.12
4.0 1.00 0.23 0.65 1.83 1.83 0.13
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FIG. 40. The 2BPV ED calculation done for parameter values in Ref. [29] on a 3 × 3 system. In the leftmost three figures, green (“FCI”)
labels the region that satisfies the criterion in Prop. 1, and blue (“not FCI”) means that we do not see clear signatures of FCI or maximally
spin-polarized CDW. The rightmost three figures give the spin-1 or spinful gaps, which are shown with the same color scale for all plots. If the
spin-1 or spinful gap is negative, it is set to zero in the plot.

magnetic behaviors at ν = −1/3 and ν = −2/3. Such dif-
ference between ν = −1/3 and ν = −2/3 is consistent with
the experiments. However, the ground states at ν = −1/3 are
still mostly FCIs for the parameters of Ref. [29], which is
inconsistent with the topologically trivial states at ν = −1/3
in experiments.

Now we discuss the difference between ν = −4/3 and ν =
−2/3.

(i) Figure 9(b) in the main text for the system size of 3 × 4
shows that the fully spin-polarized state is not favored at ν =
−4/3 for the parameter values in Ref. [29], according to the
negative spin-1 gaps.

(ii) The fact that the fully spin-polarized state is not fa-
vored at ν = −4/3 persists to the system size of 3 × 5 at
(θ, ε) = (3.7◦, 50/3) (which leads to an FCI at ν = −2/3 for
the experimentally relevant angle) as shown in Fig. 35(b).

(iii) At ν = −4/3 for 3 × 4, θ = 3.7◦ and ε = 50/3 ≈
16.67, the lowest-energy state in the Sz = 6 sector has energy
lower than the lowest-energy state in the Sz = S2BPV

max = 8 sec-
tor by about 6 meV and lower than the lowest-energy states
in the Sz = S2BPV

max = 7 sector by about 2.5 meV as shown in
Fig. 34(b).

These findings indicate that the small-spin states might be
favored. Still, we are away from the Sz = S1BPV

max = 4 sector for

the system size of 3 × 4, where a potential FCI phase similar
to the 1BPV case could emerge. Since it is technically difficult
to probe lower Sz sectors on a 3 × 4 system, we look at the
smaller 3 × 3 case. Despite its moderate size, it has a similar
FCI region at ν = −2/3 and similar spinful gap at ν = −2/3
and similar spin-1 gap ν = −4/3 as those of the system size
3 × 4, as indicated by the comparison of Fig. 40 and Figs. 7(b)
and 9(b) in the main text. The results for the system size of
3 × 3 for ν = −4/3 suggest that the partially spin-polarized
states that correspond to the 1BPV maximally spin-polarized
states are not favored at ν = −4/3; instead it is the small spin
(Sz = 0, 1) states that are favored for the parameters that give
FCIs at ν = −2/3 (roughly 10/ε = 0.5 ∼ 0.7 at θ = 3.7◦).
Interestingly, as shown in Fig. 38 the weight of the remote
bands in the low-energy states at ν = −4/3 (about 0.1 ∼ 0.3)
is similar to that for the parameters in Ref. [28], which is
considerable. Still, there is a clear decay in the probability
compared to that in the top pair of valence bands (about
0.7 ∼ 0.9), meaning that the bands beyond the two bands per
valley are negligible even if they are included. Therefore, the
parameters in Ref. [29] can capture the observed difference
between ν = −4/3 and ν = −2/3, although this fit to the
experimental phase diagram relies on a weaker interaction,
namely ε > 10.
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