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Hilbert space fragmentation imposed real spectrum of non-Hermitian systems
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We show that constraints imposed by strong Hilbert space fragmentation (HSF) along with the presence of
certain global symmetries can ensure the reality of eigenspectra of non-Hermitian quantum systems; such a
reality cannot be guaranteed by global symmetries alone. We demonstrate this insight for two interacting finite
chains, namely the fermionic Nelson-Hatano and the Su-Schrieffer-Heeger models, none of which has a PT
symmetry. We show analytically that strong HSF and real spectrum are both consequences of the same dynamical
constraints in the limit of large interaction, provided the systems have sufficient global symmetries. We also
show that a local equal-time correlation function can detect the many-body exceptional point at a finite critical
interaction strength above which the eigenspectrum is real.
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I. INTRODUCTION

Non-Hermitian many-body Hamiltonians are of great cur-
rent interest for their relevance to open quantum systems
and also for their novel properties without Hermitian analog
[1–20]. These features include novel topological properties
including the presence of so called exceptional points. At
these points, certain energy eigenvalues are degenerate and the
corresponding eigenfunctions coalesce. Across such points,
these eigenvalues can transform from being real to complex
[21–27]. Moreover, the nonequilibrium dynamics of such sys-
tems are of interest since they posses qualitatively different
characteristics compared to that of their closed Hermitian
counterparts [15–20]. Some such characteristics include the
presence of athermal steady states and entanglement transi-
tions following a quench or in the presence of a periodic drive.

The purpose of the current work is to investigate an im-
portant related feature of these systems. Namely, why the
spectra of certain non-Hermitian Hamiltonians are entirely
real in some parameter regimes. Note, this question cannot
be addressed completely by invoking global symmetries. For
example, pseudo-Hermiticity only guarantees that complex
eigenvalues, if they appear, come in complex conjugate pairs
[28,29]. Likewise, a so-called PT -symmetric system, where
P and T refer to parity and time reversal operators, respec-
tively, has completely real eigenvalues only in the regime
where all the energy eigenfunctions are also simultaneously
eigenfunctions of the PT operator [30–32] and the question
remains as to what guarantees the latter. In fact, as dis-
cussed later, the models that we study in this work are not
PT -symmetric and, as such, PT symmetry plays no role.

In this work we show that the combination of dynamical
constraints imposed in the limit of large interaction along with
global symmetries together can protect a “phase” where the
spectrum is entirely real. We illustrate our idea with finite
chains of the fermionic Hatano-Nelson (HN) and the non-
Hermitian Su-Schrieffer-Heeger (SSH) models with nearest
neighbor interaction.

An important ingredient in what follows is strong Hilbert
space fragmentation in the limit of infinitely large interaction,
where the Fock space breaks up into dynamically disjoint
pieces whose number scales exponentially with the system
size [33,34]. This phenomena is the focus of intense research
at present in Hermitian systems, since it leads to nonergod-
icity and the ability to generate exotic nonequilibrium states
[35–44].

Our main results are the following. (1) We show ana-
lytically that in the fragmented limit there are many-body
similarity transformations that map the above non-Hermitian
systems to Hermitian ones. Thus, in this limit, the spectra
are real. In fact, fragmentation and real spectrum are both
shown to be consequences of the same dynamical constraints
which emerge in the limit of infinitely large interaction. (2) We
show that the spectra persist to be real for arbitrarily large but
finite interaction, provided the systems have sufficient global
symmetry protection. These symmetries impose a hidden Her-
miticity in those subspaces where the reality of the spectrum
is not guaranteed by the fragmentation limit. Results (1) and
(2) together imply that the spectra are real for interactions
above finite critical values where the systems encounter many-
body exceptional points. (3) We compute a local equal-time
density-density fermionic correlation function and show that
it can be used to detect the exceptional point location. Overall,
our work provides the first analysis of the role of dynamical
constraints in determining the spectrum of a non-Hermitian
system.

The plan of the rest of the paper is as follows. In
Sec. II, we discuss the role of HSF on the reality of the
eigenspectra of the Hatano-Nelson model and demonstrate
the presence of a “phase” with entirely real eigenvalues.
This is followed by Sec. III, where analogous phenom-
ena is discussed for the SSH model. Next, in Sec. IV,
we discuss the behavior of the equal-time correlation func-
tion of the Hatano-Nelson model. Finally, we conclude in
Sec. V. Some details of the calculations are elaborated in the
Appendices.
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FIG. 1. (a) Schematic of Hatano-Nelson model with nonrecip-
rocal hopping and nearest neighbor interaction V1. Filled sites are
marked red. Panels (b) and (c) show the maximum imaginary and
the real parts of the spectrum, respectively, as a function of V1, for
system size L = 10 and γ = 0.2J . At V c

1 the system encounters a
many-body exceptional point. For V1 < V c

1 complex conjugate pairs
of eigenvalues first appear. In (c) the two eigenvalues which coalesce
at the exceptional point are delineated in blue. (d) V c

1 diverges as
γ → J , and also with L.

II. HATANO-NELSON MODEL

A. Model

For pedagogical reason we demonstrate our principle in
detail first for the HN model and argue later that the same
holds for the SSH model. In terms of fermionic creation and
annihilation operators (c†

i , ci ) at site i the HN Hamiltonian is

HHN =
L∑

i=1

[(J − γ )c†
i ci+1 + (J + γ )c†

i+1ci + V1n̂in̂i+1],

(1)

where n̂i ≡ c†
i ci is the number operator at site i, L is the system

size, and γ > 0 is the nonreciprocal hopping parameter; see
Fig. 1(a). We study the system at half filling with

∑
i ni = L/2

and we impose (anti)periodic boundary condition for total
particle number (even) odd. This choice ensures that the sys-
tem is translationally invariant, as discussed below and in
Appendix D. For the open boundary condition and γ < J the
problem is trivial because there is a one-body similarity trans-
formation which makes HHN Hermitian [24]. As discussed
in detail in the next section, HHN is pseudo-Hermitian, while
its global symmetries are G = (PC,R) with [HHN ,G] = 0,
where (P, C,R) are parity, charge conjugation, and transla-
tion by one site, respectively. Furthermore, since integrability
plays no role, our results are valid even in the presence of
next-nearest neighbor interaction.

The spectral properties of HHN are summarized in
Figs. 1(b)–1(d). Panels (b) and (c) show that, for γ < J , the
spectrum is real for V1 > V c

1 , a critical value. As shown in
(c), at V c

1 one pair (or two pairs) of eigenvalues and eigen-
vectors coalesce at a many-body exceptional point and they
become complex conjugate pairs for V1 < V c

1 , as dictated
by the pseudo-Hermiticity of HHN . Panel (d) shows that V c

1

diverges as γ → J and also with system size L. Note, while
these features were reported recently [45], the link between
Hilbert space fragmentation with the reality of the spectrum,
which is the focus of this work, has not been explored earlier.

B. Global symmetries

We mention two transformations which establish that the
above Hamiltonian is pseudo-Hermitian. First, parity trans-
formation P , such that the site number i → (L − i + 1).
Since this maps right hops to left hops and vice versa,
we get PHHNP = H†

HN . Second, particle-hole transforma-
tion C, such that CciC = (−1)ic†

i . Under this transformation,
c†

i ci+1 → −cic
†
i+1 = c†

i+1ci and c†
i+1ci → c†

i ci+1. Thus the
strengths of the right and the left hops are interchanged.
The density-density interaction nini+1 → (1 − ni )(1 − ni+1).
However, due to half filling, this term remains invariant when
summed over all sites. Thus, at half filling, we get CHHNC =
H†

HN . However, by themselves these relations do not
guarantee that, at large interaction V1, the energy eigenvalues
are real. It is well known that pseudo-Hermiticity simply
guarantees that complex eigenvalues, if they appear, come in
complex conjugate pairs.

Combining these two relations one gets a symmetry of
the Hamiltonian HHN , namely PC, since (CP )HHN (PC) =
HHN . It is due to this symmetry that some energy eigen-
values are doubly degenerate (the nondegenerate ones being
eigenstates of PC) leading to situations when two pairs of
eigenvalues coalesce at the exceptional point. In addition to
this, HHN respects the translational symmetry R [i → (i +
1) modulo L], which plays an important role in preserving the
reality of the eigenspectrum for finite V1, as explained in a
later section.

Note, in the absence of spin degrees of freedom, the
Hamiltonian of Eq. (1) is trivially time reversal symmetric,
with T HHNT = HHN . This implies that (PT )HHN (PT ) =
H†

HN . In other words, the model is not PT -symmetric.

C. Limit of fragmentation

For large interaction, we keep terms to linear order in
(J, γ ) and ignore those of order (J, γ )2/V1 and smaller. This
gives [46]

HHN ≈ HHN, f =
L∑

i=1

[P̂i((J − γ )c†
i ci+1

+ (J + γ )c†
i+1ci )P̂i + V1n̂in̂i+1], (2)

where the projector P̂i ≡ 1 − (n̂i−1 − n̂i+2)2 ensures that the
hopping is constrained, and is allowed only if the process does
not change the total number of nearest neighbor occupations
N̂d ≡ ∑

i n̂in̂i+1.
The Hermitian version of HHN, f has been shown to

display strong Hilbert space fragmentation [37,38]. Since
fragmentation is independent of whether the hopping me-
diated connectivity between the many-body Fock states is
reciprocal or not, the non-Hermitian HHN, f shows fragmenta-
tion as well. Below we prove that the dynamical constraints
that give rise to fragmentation ensure the existence of a
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FIG. 2. (a) Examples of labeling many-body wave functions by
the location of “defects.” Two nearest neighbor sites form a particle
or a hole defect when they are both occupied or both unoccupied,
respectively. The defect position is the location of the leftmost of
the two sites. Panels (b) and (c) are examples of connectivities for
L = 10, Nd = 2, 1, respectively; see text. Solid (green) and dashed
(brown) arrows denote fermions hopping to the right and left, re-
spectively. Reversing an arrow direction implies exchanging solid ↔
dashed. (d) Three examples of nonreciprocal hopping over four sites:
(i) has open boundary, while (ii) and (iii) have periodic boundary
conditions. 1, r, r2, etc. (in blue) in (b)–(d) are the scaling factors
λ, such as in Eq. (3), of the wave functions next to them, which
define the similarity transformation, wherever possible. In [(d)(ii)]
one of the sites, indicated by a question symbol, cannot be scaled
consistently. For a closed loop a similarity transformation is only
possible if there are equal numbers of solid and dashed arrows while
traversing the loop in a given direction, as in [(d)(iii)].

many-body similarity transformation that maps HHN, f into a
Hermitian form for γ < J .

D. Many-body similarity transformation

The first step of the proof is to label the many-body
states. Traditionally, this is done using “spins and movers”
[37,38,46]. Here we take a different strategy and we label
them by “defects.” A “particle defect” and a “hole defect” are
two occupied or two unoccupied nearest-neighbor sites, re-
spectively. Due to half filling, particle and hole defects appear
in pairs and their numbers are conserved, since [HHN, f , N̂d ] =
0. Thus the Hilbert space factorizes into sectors with eigen-
value Nd = 0, 1, . . . , L/2 − 1.

All dynamically frozen (i.e., zero connectivity) states,
which includes the Nd = 0 sector, have real energies. For
Nd �= 0 we label a defect position by the location of the
leftmost of the two nearest-neighbor sites. Thus any state
with Nd = 1 has label |(i)( j)〉, where i and j are locations
of the particle and hole defect, respectively. Likewise, a state
with Nd = 2 is labeled by |(i1, i2)( j1, j2)〉 and Nd = n by
|(i1, i2, . . . , in)( j1, j2, . . . , jn)〉. Since the fermions are indis-
tinguishable, permutations of i and of j imply the same
state. Thus the state |(5)(7)〉 shown in Fig. 2(a) belongs to
Nd = 1 and has a particle and a hole defect at sites i = 5, 7,
respectively.

Due to half filling the defect locations are not arbitrary,
but follow certain rules. (a) If two particle defects at i1 and

i2 are “adjacent,” then (i1, i2) can only be (odd, even) or
(even, odd). The same applies for two “adjacent” hole defects.
Here, adjacent does not imply defects located right next to one
another. Two defects are adjacent if there is no third defect in
between the two while traversing in one of the two directions.
(b) If a particle defect at i1 is adjacent to a hole defect at j1,
then (i1, j1) can only be (even, even) or (odd, odd). One can
verify that the wave functions in Fig. 2(a) satisfy these rules.

The second step is to determine the defect dynamics which,
due to the constrained hopping, obey the following rules. (i)
An allowed fermion hop changes i or j by ±2 modulo L. (ii)
Since second nearest neighbor hopping is absent, two defects
cannot cross each other. It is shown in Appendix A that due to
rules (i) and (ii) each sector of Nd breaks into an exponentially
large number of disjoint subsectors, i.e., fragments, that scale
as eNd [34].

The third step is to establish the constrained hopping in-
duced connectivity between the many-body wave functions
within each nontrivial subsector. There is no general pattern
for these connectivities and they need to be worked out case
by case, even though the proof below holds for all the connec-
tivities. To show a few examples, Fig. 2(b) is the connectivity
for L = 10, Nd = 2 with (i1, i2)( j1, j2) = (odd, odd)(odd,
odd), while Fig. 2(c) is for L = 10, Nd = 1 with (i)( j) =
(odd)(odd). The dashed and solid arrows denote fermions
hopping to the left and right (amplitudes J1,2 ≡ J ∓ γ ), re-
spectively. Reversing an arrow implies J1 ↔ J2. A fermion
hopping left can result in either a particle defect moving left,
i.e., i → (i − 2) mod L, or a hole defect moving right, i.e.,
j → ( j + 2) mod L. Thus each connectivity diagram can be
viewed as a single particle hopping in the abstract space of
many-body wave functions in a nonreciprocal manner.

The fourth and final step of the proof is to establish the
existence of the similarity transformation in each subsector.
For pedagogical reason we first consider a few examples
of nonreciprocal hopping of a single particle in a four-site
system. Figure 2(d)(i) is a linear chain with open boundary
condition. This can be mapped to a Hermitian form for γ < J
by the scaling

|i〉 → λi|i〉, 〈i| → (1/λi )〈i|, (3)

where λi = 1, r, r2, r3, for i = 1, . . . , 4, respectively, and r ≡√
J2/J1 [24]. However, for periodic boundary condition, as

in Fig. 2(d)(ii), the transformation will not work since the
new link 4 -1 of the closed loop cannot be made Hermi-
tian. This exemplifies that finding similarity transformations
is nontrivial where the connections form closed loops, which
is precisely our case as seen in, e.g., Figs. 2(b) and 2(c). Now
consider Fig. 2(d)(iii), which is also a closed loop, but where
the hops are J2, J2, J1, J1 moving clockwise. In this case,
once again, a similarity mapping exists, with λi = 1, r, r2, r,
respectively. This example illustrates the crucial property that
a closed loop with equal number of J1 and J2 hops, while
traversing along a direction, can be mapped to a Hermitian
form. This is because a J2 link requires an additional scaling
of r for the second site compared to the first, which is compen-
sated by a J1 link which requires a 1/r scaling. This is exactly
the case for the connectivities of Figs. 2(b) and 2(c), where
the scalings associated with the wave functions are marked
in blue. Additional examples of such scalings are discussed
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in Appendix B. We prove below that all the connections of
HHN, f are such that each and every possible loop has this
property.

Starting from any |(i1, i2, . . . , in)( j1, j2, . . . , jn)〉, a closed
loop is obtained in three basic ways.

(1) If one or more of the site indices change as, say,
i → i′ → i′′ and so on, and then reverse the path to go back
to i, while obeying the rules (i) and (ii). Since the reverse
of a J1 hop is a J2 hop, and vice versa, traversing the loop
along one direction will necessarily have an equal number
of J1 and J2 hops. The loop (1)(7) → (1)(5) → (3)(5) →
(3)(7) → (1)(7) in Fig. 2(c) is an example.

(2) If a defect does not retrace its path, but moves across the
chain, traversing L sites, and gets back to its original position
using the periodic boundary condition. However, according
to rule (ii) this can happen only if all other defects perform
the same circular motion in the same direction and regain
their original positions, each having traversed L sites. Since
a particle-defect moving to the right is a J2 hop, while a hole
defect moving to the right is a J1 hop, and since there are an
equal number of particle and hole defects, this loop, too, will
have an equal number of J1 and J2 hops. Starting from state
(1)(3) on the left side of Fig. 2(c) and ending again at (1)(3)
on the right side of the figure is an example of such a loop.

(3) In some cases, such as in Fig. 2(b), it is possible for the
defects to exchange positions such that i1 → i2 → i3 · · · →
in → i1 and j1 → j2 → j3 · · · → jn → j1. In this case a loop
is completed by permuting the indices, while the defects nei-
ther retrace their paths nor complete the circle. Here the sum
of the sites traversed by all the particle defects is L and the
same is true for all the hole defects and they are along the same
direction. Thus, again here. the loop has an equal number of
J1 and J2 hops.

This completes the proof that HHN, f can be mapped into a
Hermitian form for γ < J; this feature guarantees the reality
of eigenspectrum of HHN, f in this limit.

E. Finite V c
1 and symmetry protection

The above conclusion is not sufficient for our purpose once
V1 is large but finite. To understand why, consider two eigen-
states of HHN, f from the same subsector of N̂d . Measuring
energies from the average eigenvalue, the subsystem has the
structure

Heff =
(

l m1 + m2

m1 − m2 −l

)
,

with eigenvalues ±
√

l2 + m2
1 − m2

2. Since m1,2 ∼
O((J, γ )2/V1) or smaller, for finite l the reality of the
eigenvalues is guaranteed for V1 sufficiently large. But,
this argument fails in the case of degeneracy when l = 0.
Nevertheless, the reality of the spectrum can still be protected
if the two degenerate states are connected by a symmetry G
of the full Hamiltonian HHN , which squares to identity in the
degenerate subspace, as we show below.

Let |ψ〉 and |φ〉 represent two degenerate right eigen-
states of HHN, f connected by a symmetry G of both HHN, f

and HHN , i.e., |φ〉 = G|ψ〉. The corresponding left eigen-
states are 〈〈ψ | and 〈〈φ| = 〈〈ψ |G†. Further, let us assume

that G2|ψ〉 = |ψ〉 and G2|φ〉 = |φ〉. The off-diagonal matrix
elements are seen to be equal as follows:

〈〈ψ |HHN |φ〉 = 〈〈φ|GHHNG|ψ〉
= 〈〈φ|HHNG2|ψ〉
= 〈〈φ|HHN |ψ〉. (4)

Since the eigenvectors of HHN, f can be chosen to be real when
its eigenvalues are real, these matrix elements are also real.
This implies that the full Hamiltonian HHN effectively has
a Hermitian structure within this degenerate subspace. The
degeneracy of the two states |ψ〉 and |φ〉 at the level of HHN, f

is lifted by δHHN = HHN − HHN, f in a Hermitian manner
at most. This leads to level repulsion which is opposite to
what is required for two eigenstates to coalesce. This also
implies that eigenstates, or their linear combinations, that are
related by symmetry of the type of G cannot coalesce. Thus
there will be a finite range of V1 for which the spectrum of
HHN would be real, until one (or two) pair(s) of eigenstates,
not related by any symmetry (of the type of G) coalesce at
an exceptional point. We illustrate this using one concrete
example in Appendix C.

As discussed in Appendix D, the above symmetry protec-
tion can be destroyed by a choice of boundary condition that
breaks translation symmetry. In this case one has complex
eigenvalues for any finite value of V1, even though the spec-
trum is real in the fragmented limit.

We estimate l ∼
√

J2 − γ 2/ecL by the average level spac-
ing of a subsector, where the constant c > 0 depends on
the subsector size. Empirically, we find that, for the pair
that coalesce, m1 is at least one order of magnitude smaller
than m2, while m2 ∝ V −α

1 (J2 − γ 2)−β/2, where the exponents
(α, β ) are L dependent. This implies that V c

1 ∼ J ecL/α/[1 −
(γ /J )2](β+1)/(2α). Thus, as shown in Fig. 1(d), V c

1 diverges
exponentially with L and as a power law with an L-dependent
exponent for γ → J .

Note, in passing, that for certain values of L the two coa-
lescing levels at V c

1 are each doubly degenerate, so that below
V c

1 there are two pairs of complex conjugate eigenvalues. This
degeneracy is related to PC invariance.

III. GENERALIZATION TO THE NON-HERMITIAN
SU-SCHRIEFFER-HEEGER MODEL

A. Model

Next we discuss the non-Hermitian interacting SSH model
as one possible generalization of the concept presented in the
previous section. We consider a fermionic SSH chain with left
(right) intracellular hopping J1 = J − γ1 (J2 = J + γ1), left
(right) intercellular hopping K1 = K − γ2 (K2 = K + γ2), and
a nearest neighbor interaction V1, as shown in Fig. 3(a). The
Hamiltonian of the system reads

HSSH =
L/2∑
i=1

[J1c†
2i−1c2i + J2c†

2ic2i−1

+K1c†
2ic2i+1+K2c†

2i+1c2i]+
L∑

i=1

V1n̂in̂i+1. (5)
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FIG. 3. (a) Schematic of the interacting SSH model with nonre-
ciprocal intra- and intercellular hops and nearest neighbor interaction
V1. The blue boxes indicate one unit cell of the SSH chain and the
filled sites are marked in red. (b) Defects at odd site can only move by
an intercellular hop [blue dashed and red dotted in (i) and (ii)], while
defects at even site can move by an intracellular hop [green solid in
(iii)]. (c) Variation of the maximum imaginary part of the eigenvalues
with the interaction strength V1 for three system sizes L = 8, 10, 12
corresponding to γ1 = γ2 = 0.1, J = 0.9, and K = 1.0. For all the
system sizes, beyond a certain interaction strength, the imaginary
parts of the eigenvalues become zero within numerical precision. The
inset shows islands at V1 < V c

1 (for instance, V c
1 = 23.8 for L = 10)

for L = 10 (red) and L = 12 (black), where the imaginary part is fi-
nite, but orders of magnitudes smaller than the real part. (d) Variation
of the maximum imaginary part of the eigenvalues with δ = K − J
for three system sizes L = 8, 10, 12 with γ1 = γ2 = 0.1, K = 1.0,
and V1 = 1000. The presence of a critical value of δ (δc = 0.156 for
L = 10, for example), below which the spectrum is completely real
is seen. Also, the value of δc at a given V1 reduces with increase in
system size. See text for details.

Each unit cell is composed of two nonequivalent sites 2i − 1
and 2i so that there are L sites in total. The nearest neighbor
interaction V1 does not distinguish between the two nonequiv-
alent sites. The non-Hermiticity of HSSH arises due to the
nonreciprocal intracellular and intercellular hoppings.

As we show here, there exists a one-body similarity
transformation by virtue of which, for any parameter set
(J, K, γ1, γ2), γ1 can be made equal to γ2, while keeping
different values of J and K . To do so, we scale the particle
creation and annihilation operator on every odd site by

c†
2 j−1 → λc†

2 j−1, c2 j−1 → 1

λ
c2 j−1,

respectively. In terms of these transformed operators, the
Hamiltonian reads

HSSH =
L/2∑
i=1

[
J̃1c†

2i−1c2i + J̃2c†
2ic2i−1

+K̃1c†
2ic2i+1 + K̃2c†

2i+1c2i
] +

L∑
i=1

V1n̂in̂i+1, (6)

where J̃1 = J̃ + γ̃1 = λJ1, J̃2 = J̃ − γ̃1 = J2/λ, K̃1 = K̃ +
γ̃2 = K1/λ, and K̃2 = K̃ − γ̃2 = λK2. Choosing

λ =
√

J + K + γ2 − γ1

J + K − γ2 + γ1
,

one gets γ̃1 = γ̃2 in this transformed frame, while J̃ �= K̃ . For
our numerical results, we choose our parameter set to obey
this and vary δ = K − J , without any loss of generality.

We consider the chain at half filling,
∑

i ni = L/2,
with (anti)periodic boundary condition for (even) odd L/2.
Figure 3(c) shows that, in this case too, there is a strength
of the nearest neighbor interaction, V c

1 , above which the spec-
trum is completely real within numerical precision. For V1 <

V c
1 , islands appear in the spectrum where the imaginary part is

orders of magnitude smaller than the real part of the eigenval-
ues. The islands progressively shorten in height before hitting
zero within numerical precision at V c

1 . The inset of Fig. 3(c)
shows such islands. The value of this interaction strength is
seen to increase with system size as well as with δ.

B. Fragmentation and similarity transformation

We consider the large V1 limit, V1 � J, K, γ1, γ2, and focus
on the first-order effective Hamiltonian

HSSH, f =
L/2∑
i=1

[
P̂2i(J1c†

2i−1c2i + J2c†
2ic2i−1)P̂2i

+ P̂2i+1(K1c†
2ic2i+1 + K2c†

2i+1c2i )P̂2i+1

+ V1

L∑
i=1

n̂in̂i+1

]
, (7)

where P̂i = 1 − (n̂i−2 − n̂i+1)2 is a projector that only allows
those hops which preserve the number of nearest neighbor
pairs (defects), Nd = ∑

i nini+1. It is useful to remember here
that a particle defect refers to two particles sitting on neigh-
boring sites and a hole defect refers to two neighboring vacant
sites. In addition, since a particle hop changes the position
of a defect by ±2 modulo L sites, therefore the number
of defects at odd sites (Nd,odd = ∑′

i nini+1) and even sites
(Nd,even = ∑′′

i nini+1) are individually conserved by HSSH, f .
Here, single (double) prime implies sum over odd (even) sites
only. It is easy to see now that these constraints are similar to
those which appear in the Hatano-Nelson model in the large V1

limit. Since the connectivity of states in the Hilbert space does
not depend on the hopping strengths (as long as they are much
smaller than V1), therefore HSSH, f also exhibits strong Hilbert
space fragmentation in spite of having different intercellular
and intracellular hoppings.

In addition, it is important to note the following. (i) At half
filling, the number of particle defects at the odd sites is equal
to the number of hole defects at odd sites and the same holds
true for defects at even sites. (ii) A defect at an odd site can
only move by an intercellular hop and a defect at an even site
can only move by a intracellular hop [Fig. 3(b)]. (iii) Two
defects cannot cross each other.

It remains to understand whether the similarity transforma-
tion goes through in the fragmented limit. For this purpose, we
need to label the states first. The labeling scheme is similar to
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FIG. 4. Connectivity diagram of HSSH, f in Fock space showing
type (2) connectivity in which the defects traverse through the entire
chain to return to their original configuration. Solid green and yellow
arrows refer to right and left intracellular hops, respectively, while
red dotted and blue dashed arrows refer to right and left intercellular
hops, respectively. See text for details.

that used in the case of Hatano-Nelson model. Thus, in the
Nd = 1 sector, |(i)( j)〉 denotes a state having a particle defect
at site i and a hole defect at site j. Similarly, in the Nd = 2
sector, a state is labeled as |(i1, i2)( j1, j2)〉 and a state in the
Nd = n sector is |(i1, i2, . . . , in)( j1, j2, . . . , jn)〉.

Next, it is again useful to remember here that for the sim-
ilarity transformation to be consistent along a closed loop (in
Fock space), the number of right nonreciprocal hops should be
equal to the number of left nonreciprocal hops along the loop.
Since, in this particular case, the intercellular and intracellular
hops are individually nonreciprocal, this criterion translates
to having an equal number of right and left intercellular
hops and an equal number of right and left intracellular hops
separately along any closed loop. To check whether this is
the case, we again consider the three ways by which a state
|(i1, i2, . . . , in)( j1, j2, . . . , jn)〉 can close on to itself in Fock
space.

(1) The defects retrace their path. In this case, one or more
defects hop following i → i′ → i′′ → · · · and then retrace
their path to return to the original configuration and close
the loop. Since a right intercellular (intracellular) hop will
necessarily require a left intercellular (intracellular) hop for its
reversal, therefore, in this case, it trivially holds that a closed
loop will have an equal number of right and left intercellular
(intracellular) hops.

(2) The defect moves across the chain making L hops and
returns to its original position using the periodic boundary
condition. Due to rule (iii) above, this implies that all other
defects would also have to return to their initial positions after
going across the chain in the same direction. Each such defect
will have to make L hops across the chain. From rules (i) and
(ii), this implies that there will be an equal number of particle
and hole defects undergoing intercellular (intracellular) hops
in the same direction. Since a particle defect hopping to the
right is equivalent to a particle hopping to the right and a hole
defect hopping to the right is equivalent to a particle hopping
to the left, this suggests that, in this case too, there will be an
equal number of right and left intercellular hops and an equal
number of right and left intracellular hops separately along a
closed loop. This is shown in Fig. 4.

(3) The defects permute their positions to reach the initial
configuration. In this case, a sequence of defects exchange

their positions as i1 → i2 → i3 → · · · → in → i1 and j1 →
j2 → j3 → · · · → jn → j1 to reach the initial state and com-
plete the loop. Thus the sum of the sites traversed by all the
particle defects is L and the same is true for all the hole
defects. However, this type of connectivity is only possible
if all the defects are present either on the odd sites or on the
even sites. If the defects are on odd (even) sites and the motion
is along the counterclockwise direction, then all the hops of
the particle defects will be of the type K2 (J2), while those of
the hole defects will be of the type K1 (J1). Thus, here too,
there will be an equal number of K1,2 hops and no J1,2 hop or
vice versa.

Thus a consistent similarity transformation can always be
carried out along any closed loop with each right and left
intracellular (intercellular) hop being scaled by a factor r (r′)
and 1/r (1/r′), respectively, where r =

√
J2
J1

and r′ =
√

K2
K1

.

C. Symmetry protection

In this section, we discuss the protection of the real eigen-
values once we move out of the limit of fragmentation HSSH, f

by considering large, but finite, V1. As discussed for the HN
model, the nondegenerate eigenvalues are guaranteed to stay
real once V1 is finite, while the degenerate ones are not. In
the HN model we found that the degenerate subspaces are
symmetry protected which enforces Hermiticity in these sub-
spaces. The case of the SSH model is more complex because,
due to period doubling with J �= K , translations by an odd
number of sites are no longer symmetry operations. Thus we
find certain pairs of degenerate eigenvalues in the fragmented
limit which are not symmetry connected. These pairs are
symmetry connected only if J = K when the full translation
symmetry of the chain is restored, i.e., in the limit of the
HN model. As expected, we find that in such projected non-
symmetry connected two-dimensional subspaces the effective
Hamiltonian is non-Hermitian with the structure

Heff =
(

l m1 + m2

m1 − m2 −l

)
,

with m1,2 �= 0. However, if we define δ ≡ (K − J ) as the
deviation from the HN limit, we are guaranteed that the
non-Hermitian component m2 → 0 as δ → 0. Thus, for V1

sufficiently large (larger than V c
1 of the HN model), there is a

finite critical value δc below which m1 > m2 for all such non-
symmetry connected degenerate pairs of eigenvalues, which
guarantees that the eigenvalues stay real even if the subspace
is non-Hermitian. This is shown in Fig. 3(d) for L = 8, 10, 12.
The value of δc is seen to decrease with an increase in system
size for a given value of V1. Beyond δc, islandlike features
again emerge suggesting that the behavior of m2/m1 is non-
monotonic as a function of δ.

IV. CORRELATION FUNCTION AND DETECTION
OF AN EXCEPTIONAL POINT

In this section, we study the time evolution of a correlation
function which, in principle, can be measured to identify
the location of a many-body exceptional point. We choose
the Hatano-Nelson model for this purpose. One such exam-
ple is χ (t ) = 〈ψ (t )|N̂d |ψ (t )〉/L starting from a random Fock
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FIG. 5. (a)–(c) Time evolution of the correlation function χ (t )
for V1 = 3J , 4.285J , and 6J , respectively, for L = 14 and γ = 0.2J .
In (b) the system is very close to the exceptional point at V c

1 ≈
4.2863. (d) Variation of the relaxation timescale τ with V1 showing a
one-sided divergence as V1 → V c

1 from below.

state |ψ (0)〉 = ∑
m cm|φm〉, expanded in the basis of the right

eigenvectors |φm〉 of HHN . The time-evolved wave function,
suitably normalized to account for the non-Hermiticity of
HHN , is

|ψ (t )〉 = e−iHHN t/h̄|ψ (0)〉
||e−iHHN t/h̄|ψ (0)〉|| =

∑
m cm(t )|φm〉√∑

m,n c∗
m(t )cn(t )〈φm|φn〉

,

where cm(t ) = cme−iεmt/h̄.
Figure 5, panels (a)–(c), shows the time evolution of χ (t )

for V1 less than, nearly equal to, and greater than V c
1 , respec-

tively, for the HN model. For V1 < V c
1 the time evolution is

dominated by the eigenvalue with the largest imaginary com-
ponent. Consequently, after a timescale τ ∼ 1/max[Im ε],
the correlation function attains a steady state value χ (t �
τ ) ∼ 1/L〈φ∗

m|N̂d |φ∗
m〉, where |φ∗

m〉 is the eigenvector with the
largest Im ε. This implies that τ diverges as V1 → V c

1 from
below, as seen in Fig. 5(d). For V1 � V c

1 all the eigenvalues
are real and the system quickly attains a diagonal ensem-
ble and χ (t ) fluctuates about an average value χ (t � τ ) ∼
1/L

∑
m |cm|2〈φm|N̂d |φm〉 [47,48], implying that the peak of

τ (V1) in Fig. 5(d) is one sided. This peak can be used to detect
the exceptional point.

V. DISCUSSION

In this work, we have studied the Hatano-Nelson and the
Su-Schrieffer-Heeger models with nonreciprocal hops and
nearest neighbor interactions. We have shown that these mod-
els provide two examples of a class of non-Hermitian systems
which have a “phase” with an entirely real spectrum for suffi-
ciently large interactions.

We note that none of these models have PT symmetry.
Thus the generic expectation in the existing literature for the
existence of real eigenvalues in the presence of such symmetry
is not applicable to the present models. Our work explicitly
points out that the presence of global symmetries cannot, by
itself, explain the reality of eigenspectrum of the models at
large interaction strength.

In contrast, as we show in this work, such a phase with
entirely real eigenspectrum is a consequence of two ingre-
dients. First, the dynamical constraints in the infinitely large
interaction limit which also fragments the Hilbert space of the
models. This Hilbert space fragmentation leads to restriction
on the matrix elements of the Hamiltonian between Fock
states and, as we show, allows for an existence of a many-body
similarity transformation, which allows us to prove the reality
of the eigenspectrum in this limit. Second, moving away from
the fragmented limit, we show that the presence of global
symmetries allows one to retain the reality of eigenspectrum
up to a critical interaction strength. The effective Hamiltonian
between two states related by such symmetries (and which are
therefore degenerate in the limit of large V ) can be shown to
be Hermitian for finite V � Vc; this allows for persistence of
real eigenvalues until a critical interaction strength is reached.
Interestingly, this mechanism seems to be effective even when
such symmetries are weakly broken as seen from the analysis
of the SSH model. Thus our work points out the role of HSF
for the presence of a real eigenspectrum; to the best of our
knowledge, such application of HSF in the context of non-
Hermitian system has not been pointed out earlier.

In addition, we also provide a method of detection of the
first exceptional point in these systems. Our analysis indicates
that time taken by an equal-time correlator of such a system
to reach its steady state value following a quench diverges at
the first exceptional point. This observation, which only relies
on the presence of an infinitesimal complex component of
a pair of eigenvalues at this point, provides a link between
the presence of exceptional points and the behavior of experi-
mentally measurable equal-time correlation functions in such
non-Hermitian systems.

To summarize, we reveal a deep link between the physics
of fragmentation and the property of the real spectrum of an
interacting non-Hermitian system. This link is worth inves-
tigating in the future to identify and construct other systems
belonging to this class. We also propose a method to detect
many-body exceptional points by studying the time required
for a correlation function to reach its steady state value.
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APPENDIX A: ARGUMENT FOR FRAGMENTATION

In Fig. 6, we plot the absolute difference, �n = |εn − ε
f
n |,

between the energy eigenvalues εn of the exact Hamiltonian
HHN and ε

f
n of the fragmented Hamiltonian HHN, f . We take

L = 8 with anti-PBC. It can be seen that, as the nearest neigh-
bor interaction V1 increases, the spectrum of HHN approaches
that of HHN, f . This implies that, in the large V1 limit, HHN, f

gives the leading order description of HHN .
Next, we revisit the argument of why the constrained hop-

ping of HHN, f in Eq. (2) of the main text leads to strong
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FIG. 6. Variation of the difference between the eigenvalues of H
and that of HHN, f with V1 for L = 8 with anti-PBC. As V1 increases,
HHN, f increasingly becomes a better approximation to HHN . See text
for details.

Hilbert space fragmentation. For the Hermitian case the argu-
ment can be found in the literature in terms of the mapping to
“spins and movers” [37]. Since the argument is based in Fock
space, it is valid as well for nonreciprocal hopping. Below
we reconstruct the argument in terms of “particle and hole
defects.”

As already outlined in the main text, due to half filling the
defect locations follow certain rules. (a) If two particle defects
at i1 and i2 are “adjacent,” then (i1, i2) can only be (odd, even)
or (even, odd). The same applies for two adjacent hole defects.
Two defects are adjacent if there is no third defect in between
the two while traversing either clockwise or counterclockwise.
(b) If a particle defect at i1 is adjacent to a hole defect at j1,
then (i1)( j1) can only be (even)(even) or (odd)(odd).

Also, the defect dynamics, due to the constrained hopping,
obey the following rules. (i) An allowed fermion hop changes
i or j by ±2 modulo L. (ii) Since second nearest neighbor
hopping is absent, two defects cannot cross each other.

Due to rule (ii) two configurations in which the sequence
of the defects are not cyclically related can never be connected
by HHN, f and hence they belong to two different fragments.
Thus each fragment can be labeled by the sequence in which
the defects appear while moving, say, from site 1 to L of the
chain. As an example consider the sector Nd = 3. The wave
functions have three particle defects and three hole defects.
Note that the sequences need to obey rules (a) and (b) men-
tioned above. Moreover, due to rule (i), a defect on an odd
(even) site always stays on an odd (even) site. There are eight
possible different sequences that can be designated as

(pe, he, pe, he, pe, he), (pe, he, pe, po, ho, he),

(pe, po, pe, he, ho, he), (po, pe, he, pe, he, ho),

(po, ho, po, pe, he, ho), (p0, pe, po, ho, he, ho),

(pe, po, ho, po, ho, he), (po, ho, po, ho, po, ho),

where po/e implies a particle defect on an odd (even) site
and ho/e implies a hole defect on an odd (even) site. Thus,
by suitably inserting hole defects, each of the three particle
defects can be put either on an odd or on an even site. This
implies 2Nd distinct fragments. In practice, in between a pe

and a po one can put an even number, including zero, of hole

defects, and in between two pe one can put an odd number of
hole defects. This last flexibility makes the actual number of
fragments more than 2Nd for L and Nd large enough. Thus 2Nd

is a lower bound, which nevertheless shows that the number
of fragments proliferate exponentially with the system size.

Next we enumerate the size of the largest fragment in the
symmetry sector with Nd = L/4 defects. Consider a seed state
with all the particle defects p to the left, followed by all the
hole defects h and then pairs of filled and empty sites denoted
by R This configuration has the form

(p, p, . . .︸ ︷︷ ︸
Nd times

, h, h, . . .︸ ︷︷ ︸
Nd times

, R, R, . . .︸ ︷︷ ︸
P times

).

Since Nd consecutive particle defects require (Nd + 1) parti-
cles and Nd consecutive hole defects require (Nd + 1) holes,
while the remaining particle/holes are in pairs, the number
of pairs is P = L/2 − (Nd + 1). Under the action of HHN, f a
particle from R can “diffuse” into the sequence of hole defects.
However, it needs to be accompanied by a hole as well, in
order to maintain the number Nd of hole defects. The same
is true for diffusion into the sequence of particle defects. For
instance,

In other words, only pairs diffuse under the constrained hop-
ping. The size of the fragment is given by the number of
distinct wave functions that can be created from this seed
state through pair diffusion. Since P pairs can be put in 2Nd

intermediate positions in between the defects, and since trans-
lation of a given configuration by two sites also generates new
configurations (note, defects can move only by two sites), the
size of the largest fragment is

Nf = L

2

(
2Nd + P − 1

P

)
= L

2

(
3L/4 − 2

L/4 − 1

)
.

On the other hand, the total size of the symmetry sector with
Nd defects is [38]

Ns = 2

(
L/2

L/4

)(
L/2 − 1

L/4

)
.

In the limit of large chain length L, this implies that the ratio
λ ≡ Nf /Ns ≈ (0.8)L, which vanishes exponentially with the
system size. In other words, even the largest fragment samples
only a vanishing portion of the total possible states. This
establishes strong Hilbert space fragmentation.

APPENDIX B: MORE ON CONNECTIVITY DIAGRAMS
AND SIMILARITY TRANSFORMATION

In this section, we provide an illustration of the similarity
transformation in a simple case and explicit examples of the
three possible types of closed loops as mentioned in the main
text.

To begin with, we consider a chain of length L = 6 having
three fermions with PBC. We focus on the Nd = 1 sector and
since the Hamiltonian HHN, f changes the positions of the
hole and the particle defects by ±2 (mod L) only, we con-
sider the (odd)(odd) and the (even)(even) sectors separately.
The basis states for the (odd)(odd) sector are enumerated
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FIG. 7. (a) Connectivity diagram corresponding to Hodd
HN, f showing both real space hoppings and the Fock space structure. Solid (green)

and dashed (brown) arrows represent right hops with strength J2 and left hops with strength J1, respectively. The numbers in blue show
the scaling factors of the states of the states, required for the similarity transformation S. This gives an example of the second type of
connectivity. (b) Connection diagram in Fock space of H̃odd

f after the similarity transformation is carried out. Both the right and left hops,

indicated by double-headed blue arrows, have strengths
√

J2 − γ 2 and hence the structure is Hermitian. (c) Same as (a) but now for Heven
HN, f in

the (even)(even) sector. It can be seen that (c) is related to (a) by R. After carrying out the similarity transformation S, one gets a Hermitian
structure like that of (b) for the (even)(even) sector. (d) A closed loop from the Nd = 1 sector of the half filled L = 10 chain in which the
defects retrace back their paths to return to their initial position. This is an example of the first type of connectivity. Panels (a)–(c) correspond
to the Nd = 1 sector of a half filled L = 6 chain.

as {|(1)(3)〉, |(1)(5)〉, |(3)(5)〉, |(3)(1)〉, |(5)(1)〉, |(5)(3)〉}. It
is worthwhile to note that the labeling scheme for the states
followed here is the same as that outlined in the main text. In
this basis, the Hamiltonian Hodd

HN, f reads as

Hodd
HN, f =

⎛
⎜⎜⎜⎜⎜⎜⎝

V1 J2 0 0 0 J2

J1 V1 J1 0 0 0
0 J2 V1 J2 0 0
0 0 J1 V1 J1 0
0 0 0 J2 V1 J2

J1 0 0 0 J1 V1

⎞
⎟⎟⎟⎟⎟⎟⎠, (B1)

where J1 ≡ J − γ and J2 ≡ J + γ . The connectivity diagram
corresponding to Hodd

HN, f is shown in Fig. 7(a). This is, in fact,
an example of the second type of connectivity mentioned in
the previous section wherein a particle defect moves across
the entire chain to return to its original position. This struc-
ture is reminiscent of a single-particle hopping problem on a
one-dimensional ring in Fock space but with different hop-
ping strengths on alternate links. To map this to our familiar
hopping problem, we define a similarity transformation

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

r 0 0 0 0 0
0 1 0 0 0 0
0 0 r 0 0 0
0 0 0 1 0 0
0 0 0 0 r 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠, (B2)

with r = √
J2/J1. The scalings are also shown in Fig. 7(a)

in blue. It is straightforward to see that, under this

transformation, Hodd
HN, f assumes a Hermitian structure given

by

H̃odd
HN, f = S−1Hodd

HN, f S

=

⎛
⎜⎜⎜⎜⎜⎜⎝

V1 α 0 0 0 α

α V1 α 0 0 0
0 α V1 α 0 0
0 0 α V1 α 0
0 0 0 α V1 α

α 0 0 0 α V1

⎞
⎟⎟⎟⎟⎟⎟⎠, (B3)

where α =
√

J2 − γ 2.
The corresponding connectivity structure in Fock space is

shown in Fig. 7(b). This, of course, admits of a real spectrum
and the eigenvalues can be readily written down as Ek =
V1 + 2

√
J2 − γ 2 cos(k). Here the fictitious lattice spacing is

taken to be unity and k = −π + mπ/3, with m = 0, 1, . . . , 5.
The eigenvectors |k〉 of the original problem can be recovered
using the similarity transformation S .

It is useful to note here that the (even)(even) sector is
related to the (odd)(odd) sector through a translation by one
lattice spacing R. This is evident on comparing the connection
diagrams in Figs. 7(a) and 7(c). Hence Heven

HN, f has exactly the
same structure and spectrum as that of Hodd

HN, f . Equivalently,

HNd =1
HN, f = Hodd

HN, f ⊕ Heven
HN, f is invariant under R. This property

would be significant in the next section.
Before closing this section, we chalk out examples of

the other types of connectivities discussed in the main text.
Figure 7(d) illustrates the situation where a particle defect
completes a loop by retracing back its path. This gives an
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FIG. 8. (a) Closed loop from the Nd = 3 sector of the half filled L = 14 chain where the defects permute their positions to reach the initial
configuration. This is an example of the third kind of connectivity as specified in the main text. Solid (green) and dashed (brown) arrows
represent right hops with strength J2 and left hops with strength J1, respectively. The numbers in blue show the scaling factors of the states of
the states, required for the similarity transformation. (b) The same connectivity diagram in the Fock space with the states labeled according to
the labeling scheme used in the main text.

example of the first type of connectivity discussed in the main
text. Figure 8 shows a case where multiple defects exchange
their positions in order to complete the loop. This is an exam-
ple of the third type of connectivity. It is worth noting that,
in all these three cases, there are an equal number of right
hops and left hops, which makes the similarity transformation
possible. As the system size increases, more complicated con-
nection diagrams emerge. However, any closed loop in these
connection diagrams will fall in one of these three classes or
will be some combination of these three and hence will admit
of this general feature.

APPENDIX C: SYMMETRY PROTECTION AND HIDDEN
HERMITICITY

We use this section to illustrate with a concrete example the
symmetry protection of the real eigenvalues once we move out
of the limit of fragmentation of HHN, f (i.e., infinite V1) and
consider large but finite V1 effects.

We again consider the Nd = 1 sector of the half filled
chain of length L = 6, whose spectrum was discussed in the
previous section. Corresponding to the eigenvalue Eπ/3, there
would be four degenerate states of HHN, f , namely |ψ1,2〉o and
|ψ1,2〉e:

|ψ1〉o = 1√
3

(rC|(1)(3)〉 − C|(1)(5)〉 − r|(3)(5)〉 − C|(3)(1)〉

+ rC|(5)(1)〉 + |(5)(3)〉),

|ψ2〉o = 1√
3
S (r|(1)(3)〉 + |(1)(5)〉 − |(3)(1)〉 − r|(5)(1)〉),

|ψ1〉e = 1√
3

(rC|(2)(4)〉 − C|(2)(6)〉 − r|(4)(6)〉 − C|(4)(2)〉

+ rC|(6)(2)〉 + |(6)(4)〉),

|ψ2〉e = 1√
3
S (r|(2)(4)〉 + |(2)(6)〉 − |(4)(2)〉 − r|(6)(2)〉),

where r = (J2/J1)1/2, C = cos π
3 , and S = sin π

3 .
The first two states are from the (odd)(odd) sector

and lie in the subspace spanned by |k = ±π
3 〉, which are

related by PC symmetry. This can be seen easily con-
sidering that, under PC, {|(1)(3)〉 ↔ |(3)(5)〉, |(3)(1)〉 ↔
|(5)(3)〉, |(1)(5)〉 ↔ |(1)(5)〉, |(5)(1)〉 ↔ |(5)(1)〉}. The same
can be said about the last two states which lie in
the (even)(even) sector. States from the (odd)(odd) sector
and (even)(even) sector are related by R, viz. |ψ1(2)〉e =
R|ψ1(2)〉o. It is useful to note here that in addition (PC)2 = I
and R2|ψ1(2)〉o,e = |ψ1(2)〉o,e.

We consider the matrix representation of the second order
correction, H(2)

HN , in this degenerate subspace. Enumerating
the basis as {|ψ1〉o, |ψ2〉o, |ψ1〉e, |ψ2〉e}, HHN

(2) reads

H(2)
HN =

⎛
⎜⎜⎝

μ 0 ν λ

0 μ −λ ν

ν −λ μ 0
λ ν 0 μ

⎞
⎟⎟⎠, (C1)
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where μ = − J1J2
V1

, ν = − 1
4V1

(rJ2
1 + J2

2
r ), and λ =

√
3

4V1
(rJ2

1 +
J2

2
r ). This is Hermitian and admits of real spectrum. This

Hermiticity is expected to hold order by order in perturbation
since Eq. (4) in the main text is true for exact HHN . Thus the
reality of the spectrum is guaranteed within this subspace.

There remains a second possibility in which these degen-
eracies might be accidental, i.e., not related by any symmetry,
at some point in parameter space. However, we would argue
here that such accidental degeneracies are not possible in
generic integrable or nonintegrable systems. In case of generic
finite-sized nonintegrable systems, one generally expects level
repulsion leading to finite gaps in the spectrum, which pro-
tects the reality of the eigenspectrum at finite V1. These gaps
decrease with increasing size as pointed out in the main text;
consequently, we expect Vc to diverge in the thermodynamic
limit. And in case of an integrable model, a generic crossing
between two eigenstates involves eigenstates from different
conserved charge sectors. The full Hamiltonian, being inte-
grable, cannot connect between states in different sectors at
any order in 1/V1. Thus there is no matrix element between
them once V1 is lowered. For our case, we have not observed
any occurrence of accidental degeneracy.

APPENDIX D: BOUNDARY CONDITION, SYMMETRY
BREAKING, AND COMPLEX EIGENVALUES

So far, we have considered PBC for odd filling and anti-
PBC for even filling. In this section, we show that choosing the
opposite set of boundary conditions breaks the translational
invariance of the full Hamiltonian HHN and results in complex
eigenvalues for any finite value of V1. This happens even
though HHN, f has real eigenvalues just as in the case of the
standard boundary condition. This is an example where there
is no sufficient symmetry protection in the degenerate sub-
space of HHN, f and therefore Vc is trivially infinite, because
any finite V1 will lead to complex eigenvalues.

For illustration purposes, we consider a half filled
chain of length L = 4 with PBC. Choosing the basis
as {|0〉, |0̄〉, |(1)(3)〉, |(2)(4)〉, |(3)(1)〉, |(4)(2)〉}, the
Hamiltonian HHN can be written as

HHN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −J1 J2 J1 J2

0 0 J2 J1 −J2 J1

−J2 J1 V1 0 0 0
J1 J2 0 V1 0 0
J2 −J1 0 0 V1 0
J1 J2 0 0 0 V1

⎞
⎟⎟⎟⎟⎟⎟⎠, (D1)

where The correspond-
ing connection diagram is shown in Fig. 9(a). It can
be readily verified from the matrix structure as well as
from the connection diagram that H is not invariant un-
der R, which maps |0〉 ↔ |0̄〉 and |(1)(3)〉 → |(2)(4)〉 →
|(3)(1)〉 → |(4)(2)〉 → |(1)(3)〉.

FIG. 9. (a) Fock space connectivity diagram corresponding to the
full Hamiltonian HHN for L = 4 with periodic boundary condition.
Letters in blue above the arrows show the hopping strength for that
particular hop. (b) The fate of the connectivity diagram on applica-
tion of the one-site lattice translation operator R. Comparison of the
two figures clearly show that HHN with this boundary condition is
not invariant under R. See text for details.

However, HHN, f in this basis reads

HHN, f =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 V1 0 0 0
0 0 0 V1 0 0
0 0 0 0 V1 0
0 0 0 0 0 V1

⎞
⎟⎟⎟⎟⎟⎟⎠. (D2)

This is trivially Hermitian in this case because all the basis
states are annihilated by the constrained hopping terms in
HHN, f . Such states are termed as frozen states in the field of
fragmentation physics. The energy eigenstates can be chosen
to be the basis states and they are doubly degenerate in the
Nd = 0 sector and exhibit fourfold degeneracy in the Nd = 1
sector.

We now consider the representation of the second-order
correction to HHN in both these degenerate subspaces:

H(2)
HN =

⎛
⎜⎜⎜⎜⎜⎜⎝

4μ −2δ 0 0 0 0
2δ 4μ 0 0 0 0
0 0 −2μ −δ 2μ −δ

0 0 δ −2μ −δ −2μ

0 0 2μ δ −2μ δ

0 0 δ −2μ −δ −2μ

⎞
⎟⎟⎟⎟⎟⎟⎠,

(D3)

where μ = − J1J2
V1

and δ = 1
V1

(J2
2 − J2

1 ). This is non-
Hermitian, implying that, for any finite value of V1, the
eigenspectrum will be complex. Explicitly, the eigenvalues of
HHN, f + H(2)

HN are

ε =
(

V1,V1,− 4

V1
(J ± iγ )2,V1 + 4

V1
(J ± iγ )2

)
. (D4)
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This makes it impossible to have a real eigenspectrum for any
finite V1; this fact has been numerically found in Ref. [45].

It is important to note here that HHN, f yields a real spec-
trum irrespective of the chosen boundary condition. In the
case shown, it is trivially real; in other cases, where the
connection diagrams are more complicated, a similarity trans-
formation like the above will smoothly go through giving rise

to a real spectrum. The hidden Hermiticity argument becomes
invalid because Eq. (4) of the main text fails, owing to the
lack of translational symmetry R of the full Hamiltonian
HHN . This results in the higher-order corrections being man-
ifestly non-Hermitian in the degenerate subspaces, thereby
immediately destroying the reality of the spectrum for any
finite V1.
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