
PHYSICAL REVIEW B 109, 045144 (2024)
Editors’ Suggestion

Itinerant ferromagnetism in transition metal dichalcogenide moiré superlattices
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Moiré materials are artificial crystals formed at van der Waals heterojunctions that have emerged as a highly
tunable platform that is able to realize much of the rich quantum physics of electrons in atomic scale solids,
and in several cases even new quantum phases of matter. Here we use finite-size exact diagonalization methods
to explore the physics of single-band itinerant electron ferromagnetism in semiconductor moiré materials. We
predict where ferromagnetism is likely to occur in triangular-lattice moiré systems, and where it is likely to yield
the highest Curie temperatures.
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I. INTRODUCTION

Moiré materials have already been established as hosts
of Mott [1–3] and topological insulators [4], a rich vari-
ety of magnetic states [5–8], and recently even fractional
Chern insulators [9,10]. They also provide an alternative
platform for studies of itinerant electron ferromagnetism
[8,11–13]. Ferromagnets are many-electron ground states that
break time-reversal but not translational symmetry, have finite
macroscopic magnetization, and are more common in metals
than in insulators. Ferromagnetic metals exhibit a rich variety
of interesting hysteretic magnetoresistive effects that lie at
the heart of spintronics [14] and are valuable for technology.
Theoretical studies of metallic ferromagnetism in the con-
text of simple one-band Hubbard models [15–22], although
rarely physically realistic, have nevertheless helped provide
an understanding of the necessary conditions to stabilize such
ground states in crystalline materials. The moiré material case,
in which isolated bands are common, offers the opportunity to
compare theories of single-band itinerant electron ferromag-
netism directly with experiment.

In this paper we use exact diagonalization (ED) methods to
explore metallic ferromagnetism in the single-band triangular-
lattice moiré materials realized in transition metal dichalco-
genide (TMD) heterobilayers [23–26] such as WSe2/MoSe2

and WSe2/WS2. We predict where ferromagnetism is most
likely to occur and where ferromagnetic transition tempera-
tures are maximized. The restriction of our study to the case
in which a single band is partially occupied and well separated
from other bands [27] is motivated by a technical consid-
eration, namely, the need to restrict the dimensions of the
many-electron Hilbert spaces studied to manageable sizes.1

Metallic ferromagnetism is interesting in both single-band and
multiband systems. In the multiband case local moments from
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1Hilbert space dimensions grow exponentially with the number of

retained bands.

one subset of bands that supply local Hunds magnetism can
combine with large spin stiffnesses supplied by another set
of bands that validate simple mean-field descriptions, using
density functional theory for true atomic scale materials. In
contrast, single-band systems are often more difficult to un-
derstand, requiring nonperturbative approaches as the one we
take here. Although it seems likely that the highest ferromag-
netic transition temperatures that can be realized in moiré
systems are in multiband systems2 we nevertheless antici-
pate that scientific progress can be achieved by comparisons
between theory and experiment across a broad range of band-
filling factors and bandwidths in the the single isolated-band
regime.

Our paper is organized as follows. In Sec. II we specify
the model that we study: a triangular-lattice moiré material
model with the Hilbert space truncated to the lowest-energy
moiré band and interaction matrix elements calculated ex-
actly. In Sec. III we present our numerical results. We
examine three different ferromagnetism indicators that are
available from finite-size ED calculations: (i) ground-state
spin quantum numbers, (ii) magnon energy estimates from
the total-momentum dependence of the low-energy many-
body excitation spectrum, and (iii) Lanczos spin-susceptibility
calculations. All are consistent with the notion that fer-
romagnetism occurs when the band-filling factor of the
lowest-energy hole miniband is around ν ∼ 3

4 . We estimate
that Curie temperatures that can reach T ∼ 10 K. Finally, in
Sec. IV we summarize and discuss our findings, estimating
conditions for which the single-band model is realistic. We
conclude that the single-band approximation is not applicable
at ν ∼ 3

4 in the TMD moiré materials studied experimentally
to date, but that it can be realized by choosing systems with
the strongest possible moiré potentials and maximizing back-
ground screening of the Coulomb interaction.

2The highest critical temperature metallic ferromagnets in atomic
scale crystals are after all multiband systems.

2469-9950/2024/109(4)/045144(10) 045144-1 ©2024 American Physical Society

https://orcid.org/0000-0001-8383-2205
https://orcid.org/0000-0002-8655-3620
https://orcid.org/0000-0003-4662-9894
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.045144&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1103/PhysRevB.109.045144


PAWEL POTASZ et al. PHYSICAL REVIEW B 109, 045144 (2024)

II. FINITE-SIZE MOIRÉ MATERIAL MODEL

In this paper we will focus on transition metal dichalco-
genide heterobilayer moiré materials [23] in which the
topmost valence miniband is energetically isolated, so that
holes only populate this band upon doping. Because we are
interested mainly in understanding where ferromagnetism has
a substantial ordering temperature, we focus on the range
of twist angles for which the topmost band is relatively
dispersive. The single-particle part of the continuum model
Hamiltonian describing these systems is [23]

H0 = − h̄2

2m∗ k2 + �(r), (1)

�(r) =2Vm

∑

j=1,3,5

cos(b j · r + ψ ), (2)

where the b j are members of the first shell of moiré reciprocal
lattice vectors and m∗, Vm, and ψ are heterojunction specific
parameters. The specific calculations we report on below take
effective mass m∗ = 0.35 m0, where m0 is the rest mass of the
electron, moiré modulation strength Vm = 25 meV, and moiré
potential shape parameter [24] ψ = −94◦. These numerical
values correspond to WSe2/MoSe2 heterobilayer moirés [23].
It is known [28,29] that strain relaxation of the moiré pattern
strengthens the moiré modulation potential, an effect that can
be incorporated approximately simply by increasing the value
of Vm. For this reason we take a slightly larger value for the
moiré modulation than the one reported for the unstrained bi-
layer [23]. (Approximate scaling relations relating our results
to those at larger values of Vm are explained in the Sec. IV.)

Figures 1(a) and 1(b) illustrate the implied moiré band
structures and densities of states. The density-of-states max-
imum occurs at the energy of a saddle-point van Hove
singularity (VHS) at band filling ν ≈ 3

4 , where ν = N
2M with

N the number of valence band holes in the system (we call
them particles from now on), and M the number of moiré
unit cells. We will find that ferromagnetism occurs when
the van Hove singularity is close to the Fermi level of the
competing paramagnetic state. The position of the van Hove
singularity (VHS) shifts slightly to larger band-filling factors
ν with increasing twist angle. The VHS is manifested in
finite-size calculations with M unit cells by a bunching of
discrete states in a small energy interval. In Fig. 1(c) we
show the discrete single-particle spectra of (c) M = 16 and
(d) M = 36 meshes. When momentum space is discrete, the
thermodynamic limit VHS results in a set of closely spaced
discrete energies slightly below E = 15 meV. When these
states are occupied only by majority spins and all other states
are doubly occupied the filling factor is ν = 0.72 for M = 16
and ν = 0.74 for M = 36 system sizes, respectively. Note that
single-particle states at general momenta in the Brillouin-zone
interior are sixfold degenerate simply due to triangular-lattice
rotational symmetries; this property is responsible for the
bunching near E = 5.0 meV for M = 16 and near E = 2.5,
7.0, and 9.0 meV for M = 36. [γ point (k = 0) states are
nondegenerate and Brillouin zone corner states are doubly
degenerate, the degeneracy between K and K ′ points.] As is
commonly recognized, the bunching of single-particle energy
levels has an impact on finite-size many-body results, and
limits the types of conclusions that can be reached. We will

FIG. 1. (a) Particle-hole transformed (hole-picture) band struc-
ture of moiré TMD heterobilayers at twist angle θ = 3.0, moiré
modulation strength Vm = 25 meV, and shape parameter ψ = −94◦.
Note that the lowest-energy hole miniband is partially occupied and
isolated from the remote bands. (b) Density of states (DOS) of
the lowest-energy hole miniband vs band filling ν for twist angles
θ = 2.5, 3.0, 3.5. The inset indicates the discrete momenta of a
M = 16 unit-cell finite-size system within a color scale band contour
plot for the θ = 3.0 case. These bands have a van Hove singularity
at energy EVH ≈ 15 meV and band-filling factor νVH ≈ 0.75 in the
thermodynamic limit M → ∞. (c), (d) The discrete energies of the
(c) M = 16 and (d) M = 36 finite-size systems discussed in the text.

consider a variety of different finite-size geometries, each with
a corresponding discretization of the moiré Brillouin zone. In
order to correctly capture the VHS physics, we seek meshes
that neither under-represent nor over-represent the associated
high density of states close to ν = 0.75. In the Supplemental
Material (SM) [30] we discuss how we choose finite-size
geometries for the calculations discussed in the main text (see
also Refs. [31–33] therein).

The full Hamiltonian is obtained by projecting the two-
particle Coulomb interaction term to the topmost valence band
shown in Fig. 1(a):

H = H0 + HI

=
∑

k,σ

εkc†
kσ

ckσ + 1

2

∑

i, j,k,lσ,σ ′
V σ,σ ′

i, j,k,l c†
kiσ

c†
k jσ ′ckl σ ′ckkσ ,

(3)

where c†
kσ

(ckσ ) creates (annihilates) a particle with momen-
tum k and spin σ , εk are band energies, and the Coulomb
matrix elements are given by

V σ,σ ′
i, j,k,l = 1

A

′∑

Gi,G j ,Gk ,Gl

(
z∗

ki,Gi
z∗

k j ,G j
zkk ,Gk zkl ,Gl

)2πe2

ε q
, (4)

with zk,G eigenstate coefficients obtained from diagonaliza-
tion of Hamiltonian H0 given by Eq. (1) in a basis of plane
waves G. In Eq. (4), A is moiré unit-cell area, momentum
conservation implies that matrix elements are nonzero only
if ki + k j = kk + kl modulo a moiré reciprocal lattice vector,
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FIG. 2. Kinetic energy difference between maximal and mini-
mal spin-polarized states per moiré cell �Ekin/M = [Emin

kin (Sz
max) −

Emin
kin (Sz

min )]/M as a function of band-filling factor ν = N/2M for
θ = 3.0.

the prime on the sum over the G’s implies that ki + Gi + k j +
G j = kk + Gk + kl + Gl , and q = |q| = |ki + Gi − kk − Gk|
is the momentum transfer. As we have shown previously [34],
by working in a Wannier representation the matrix elements
can be reexpressed in terms of a single large parameter,
the onsite Coulomb interaction U0, and a series of smaller
parameters including nonlocal exchange, interaction-assisted
hopping, and longer-range local interactions. The strength
of interactions depends on the value used for the effective
dielectric constant ε, which represents screening by the three-
dimensional dielectric environment of the moiré system. We
return to this issue in Sec. IV.

The physics of ferromagnetism is often viewed qualita-
tively as a competition between band energies, which favor
states with minimal spin-polarization and interaction ener-
gies, which favor spin-polarized states because many-electron
wave functions must vanish when electrons with parallel spins
approach each other, thereby avoiding strong repulsive in-
teractions. The gain in interaction energy per unit cell is
often referred to as the Stoner energy I . In Fig. 2 we com-
pare finite-size kinetic energies for single Slater-determinant
(SD) states with maximal and minimal spin polarization
in triangular-lattice moiré materials �Ekin = Emin

kin (Sz
max) −

Emin
kin (Sz

min), where the superscripts “min” emphasize that the
occupation numbers are chosen to minimize the kinetic energy
subject to the spin-polarization constraint. The energy differ-
ence per moiré period reaches its maximum when the band is
half-filled because this is the filling factor with the maximum
possible spin polarization per moiré cell. The kinetic energy
cost increases with twist angle θ because of increasing band-
widths (see SM [30]). Note that the kinetic energy cost of spin
alignment is, for the most part, reasonably well approximated
at relatively small system sizes, and that the kinetic energy
cost is very small for large band-filling factors because of
the VHS near the top of the first hole miniband. This is the
filling-factor regime where itinerant ferromagnetism might be
expected.

III. EXACT DIAGONALIZATION RESULTS

We will discuss three different indicators for ferromag-
netism that are available from finite-size calculations. First
of all we consider the total spin quantum number of the

FIG. 3. The ground-state total spin S as a function of filling
factor ν from exact diagonalization calculations for a system with
M = N1 × N2 = 16 unit cells (N1 and N2 are defined in SM [30]).
(a) Spin-polarization map: total spin as a function of filling fac-
tor ν and dielectric constant ε for twist angle θ = 2.5 and moiré
potential strength Vm = 11 meV. A horizontal blue line labels the
metal-insulator transition at half-filling [35]. (b) Comparison of the
ground-state spin polarization of the moiré continuum Hamiltonian
and the corresponding on-site Hubbard model for dielectric constant
ε−1 = 0.04, twist angle θ = 3.0, moiré strength Vm = 25 meV, and
moiré shape ψ = −94◦. A dashed line indicates the position of the
van Hove singularity for finite-size mesh.

finite-size many-electron ground state. The absence of spin-
orbit coupling in our model allows a ferromagnet to be
defined as a system in which the ground-state total spin
quantum number S is extensive. We find that maximal spin
polarization is common in finite-size systems at band-filling
factors larger than about 3

4 , and conclude that ferromag-
netism will occur through much of this filling-factor range.
In the following subsections we estimate the temperature
to which ferromagnetism survives in two different ways:
(i) by extracting magnon energies from the momentum de-
pendence of the many-body excitation spectrum and (ii)
by extracting finite-temperature Stoner energies I from the
temperature-dependent spin susceptibilities calculated using
finite-temperature Lanczos methods.

A. Ground-state spin

We first assess the tendency toward ferromagnetism by
comparing ground-state energies in different total spin S sec-
tors. Typical results are summarized in Fig. 3(a), where we
plot ground-state spin quantum numbers vs ν and the in-
teraction strength parameter ε−1. Large ground-state spins
appear in several different regimes in this plot. First of all they
appear at small band-filling factors and weak interactions.
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FIG. 4. Exchange energy and correlation energy difference be-
tween maximally Smax and minimally Smin spin-polarized states
normalized per moiré unit cell. These plots are based on finite-size
ED calculations for M = 16 and on non-self-consistent Hartree-
Fock, single Slater determinant (SD), for M = 441. A dashed line
indicates the position of the van Hove singularity. (a), (c) For in-
teraction strength ε−1 = 0.04 and (b), (d) for interaction strength
ε−1 = 0.1. These plots are for twist angle θ = 3.0, moiré modulation
strength Vm = 25 meV, and potential shape ψ = −94◦.

We view ferromagnetism in this regime as an artifact of the
symmetry-related momentum-space shell degeneracy of the
finite-size mesh used to produce these results, which we have
illustrated in Fig. 1. Second, ferromagnetism is seen near half-
filling of the band at large interaction strengths. The ground
state at ν = 1

2 for this range of interaction parameters is an
interaction-induced insulator [the blue line in Fig. 3(a) labels
a metal-insulator transition estimated from the charge-gap
calculations using a definition �C = Etot (N + 1) + Etot (N −
1) − 2Etot (N ) (see also Ref. [23]], but the ground state is
ferromagnetic rather than antiferromagnetic because spatially
indirect exchange interactions (∝ε−1) exceed antiferromag-
netic superexchange interactions (∝ε). The property that Mott
insulators are sometimes ferromagnetic in moiré materials has
been discussed previously [34]. Our main interest here is in
the very robust ferromagnetic states that appear near band
filling ν = 3

4 , where the ground state is metallic. In Fig. 3(b)
we plot the ground-state spin vs ν in the moderate interaction
strength regime, where nonlocal exchange is unimportant,
demonstrating that its value is unchanged when the interaction
model is truncated to include only the onsite Hubbard-type
Coulomb interaction term. In the SM [30] we show that the
magnetic competition in the insulating state at ν = 1

2 is shifted
in favor of antiferromagnetism with increasing twist angle,
as expected since larger bandwidths imply stronger superex-
change interactions.

In Fig. 4 we analyze the competition between ferromag-
netism and paramagnetism by partitioning the total energy
into four different contributions: kinetic energy Ekin, Hartree
energy EH, Fock (exchange) energy Eexch, and correlation

energy Ecorr. Convergence to the thermodynamic limit is eas-
ily obtained for the first three terms, whereas the fourth part,
the correlation energy, must be estimated from finite-size cal-
culations and extrapolated to the thermodynamic limit. For
the purposes of the qualitative point that we wish to make
in this paragraph, we define the sum of the first three terms
as the expectation value of the full Hamiltonian in the single
Slater-determinant (SD) state constructed by occupying the
lowest-energy single-particle states for a given spin polariza-
tion. We define the mean-field interaction energy difference
�EHF = �EH + �Eexch between maximally and minimally
spin-polarized SD states by subtracting the kinetic energy
contribution to the energy difference:

�EHF = �ESD − �Ekin. (5)

Note that �EHF accounts for the fact that the shape of the
charge distribution within the unit cell is different in the spin-
polarized and unpolarized states, an effect that is absent in
the Hubbard model. Because of this effect, the lowest-energy
SD state is not always the one constructed from the lowest-
energy single-particle states. In the SM [30] we show results
for �Eexch obtained from multiband self-consistent Hartree-
Fock calculations. These energies have larger negative values
because of the additional band-mixing degrees of freedom that
are optimized.

The correlation energy is defined as the difference between
the ED ground-state energy and the lowest-energy SD ground-
state energy in a given spin sector with subtracted kinetic
energies contributions

Ecorr (Smax) = Etot (Smax) − Ekin
tot (Smax)

− [
ESD(Smax) − Ekin

SD (Smax)
]
. (6)

Here we used the following definitions:

Etot (S) = 〈
GS(S)|H0 + HI|
GS(S)〉,
Ekin

tot (S) = 〈
GS(S)|H0|
GS(S)〉,
ESD(S) = 〈�GS(S)|H0 + HI|�GS(S)〉,
Ekin

SD (S) = 〈�GS(S)|H0|�GS(S)〉,
where |
GS(S)〉 is ED ground-state wave function in a total
spin sector S and |�GS(S)〉 = ∏

kσ c†
kσ |0〉 is lowest-energy SD

state. The correlation energy difference is

�Ecorr = Ecorr (Smax) − Ecorr (Smin). (7)

With the above definitions, the total-energy difference is

�Etot = �ESD + �Ecorr. (8)

In Fig. 4 we see that mean-field interaction energies �EHF

strongly favor spin-polarized states, and that the degree to
which interactions favor spin-polarized states is strongly re-
duced when correlations are included. For the parameters of
this calculation, increasing the strength of interactions ac-
tually does not substantially increase the degree to which
interactions favor spin polarization. This is precisely the
problem in estimating where ferromagnetism occurs; once
correlations are strong, electrons avoid each other well even
if they have the same spin, and even in metallic states. Fer-
romagnetism is most likely when one subset of states has a
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FIG. 5. The total-energy difference between maximally Smax and
minimally Smin spin-polarized states �Etot = Etot (Smax) − Etot (Smin )
per moiré unit cell for (a) ε−1 = 0.04 and for (b) ε−1 = 0.1. �Etot

for M = 16 is obtained from ED calculations and for M = 441 from
exchange energy and extrapolated correlation energy from ED. These
results were obtained with model parameters θ = 3.0, Vm = 25 meV,
and ψ = −94◦.

high density of states so that it is easily polarized, and the re-
maining states are strongly dispersive so that correlations are
suppressed. Conditions favorable for ferromagnetism are reg-
ularly achieved in multiband systems, like the paradigmatic
late 3d transition metals. In single-band systems somewhat
less favorable conditions can be achieved by having a sharp
maximum in the density of states. For two-dimensional (2D)
materials, maxima always appear at saddle points in the band
structure. It follows that single-band ferromagnetism in 2D
moiré materials is most likely when the Fermi level of the
paramagnetic state is close to a saddle point in the band
structure.

A typical result for the competition in total energy between
fully spin-polarized and depolarized states is summarized
in Fig. 5 where we see that ferromagnetism is most likely
near ν = 3

4 as expected. The Hartree-Fock theory results for
the weaker of the two interaction strengths considered tell
a cautionary tale about finite-size effects since they predict
ferromagnetism for M = 16 finite-size systems and param-
agnetism for M = 441 finite-size systems; the M = 16 mesh
overstates the van Hove singularity (see Fig. 2). In a vicinity
of half-filling ferromagnetism is predicted for M = 441 but
the energy of SD state with S = Smin is not the lowest one
here; instead, a state with broken translation symmetry, the
three sublattice Néel state, is expected to have lower energy
and competes with FM; both of these two states have been
indeed observed in experiment [1,6]. For stronger interactions,
ferromagnetism is predicted in a vicinity of ν = 0.75 for both
meshes. In the following sections, we focus on estimates of
transition temperatures for ferromagnetism around this partic-
ular filling, indicated by a black dashed line in Fig. 3.

B. Magnon energies

In metallic ferromagnets with large splitting between
majority-spin and minority-spin quasiparticle energies, the
ordering temperature is typically limited by collective ther-
mal fluctuations. The Curie temperature then scales with the
energies of the magnon modes, just as it does in insulat-
ing magnets. In Fig. 6(a) we show the spin-flip excitation
spectrum of a typical maximally spin-polarized state near

(a) (b)

FIG. 6. Spin-flip excitation spectrum of a M = Nx × Ny = 16
fully polarized ground state. (a) Energy spectrum for total spin
S = Smax − 1 for the system with Nh = 9 holes (N = 23, ν = 0.73),
corresponding to the filling factor ν indicated by a dashed line in
Fig. 3, ε−1 = 0.04, ψ = −94◦. The 16 lowest-energy excitations
can be associated with magnon collective modes, and the higher-
energy excitations with unbound spin-flip particle-hole excitations.
�E indicates the width of the magnon spectrum, which scales with
the transition temperature. Nx (Ny) is the number of unit cells along
two directions determined by real-space lattice vectors a1 and a2 on
a triangular lattice, Kx (Ky) are total momenta along two directions
determined by reciprocal space lattice vectors b1 and b2. (b) The
width of magnon spectrum �E as a function of a twist angle θ for
the moiré superlattice and its corresponding Hubbard model.

ν = 3
4 . We associate the 15 lowest-energy excitations (one

for each nonzero momentum) with magnon modes and the
higher-energy excitations with unbound quasiparticle spin-
flip excitations. We see that the magnon energies are several
times smaller than the quasiparticle spin-splitting energy. In
Fig. 6(b) we show the twist angle dependence of the highest
magnon energy, which grows with the bandwidth, suggesting
that spin stiffness is supplied mainly by band dispersion.

Since we neglect spin-orbit interactions, our two-
dimensional model is spin-rotationally invariant and its
critical temperature therefore vanishes (see the effect of spin-
orbit interactions on a critical temperature in the SM [30]).
We defer to a separate study the issue of engineering strong
spin-orbit interactions in TMD triangular-lattice moiré materi-
als in order to suppress long-wavelength thermal fluctuations.
Figure 6(b) suggests that ferromagnetic critical temperatures
approaching 100 K could be achievable at large twist angles
for sufficiently strong spin-orbit interactions. However, it is
important to realize that the single-band approximation could
fail at large twist angles. We return to this point again in
Sec. IV.

C. Finite-temperature Lanczos method

One of the interesting aspects of moiré materials physics
from a fundamental point of view is that the regime in which
the temperature is comparable to or larger than the bandwidth
is experimentally accessible. In the following paragraphs we
address the temperature dependence of magnetic properties
over this wide energy interval.

For the evaluation of thermodynamic properties in the
canonical ensemble, we need to calculate thermal expectation
values of relevant operators A:

〈A〉 =
∑Nst

n=1〈n|e−βH A|n〉
∑Nst

n=1〈n|e−βH |n〉 , (9)
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where β = 1/kBT with kB the Boltzman constant, the parti-
tion function Z = ∑Nst

n=1〈n|e−βH |n〉, and |n〉 is summed over
orthonormal basis states. The exponential increase of Nst with
system size places severe limits on the direct application of
these fundamental formulas.

The problem can be avoided if an appropriate statistical
average of the full Hilbert space is generated. In the finite-
temperature Lanczos method (FTLM) [36] one starts with the
high-temperature expansion:

〈A〉β→0 = Z−1
Nst∑

n=1

∞∑

k=0

(−β )k

k!
〈n|HkA|n〉, (10)

where

Z =
Nst∑

n=1

∞∑

k=0

(−β )k

k!
〈n|Hk|n〉. (11)

The Lanczos algorithm is an iterative method for finding
extreme eigenvalue of a large matrix in which expectations
of high powers of the Hamiltonian naturally appear. During
Lanczos iteration steps, a set of orthogonal basis vectors
is generated (a Krylov space), spanning a finite-size space
that contains approximations to eigenvectors corresponding
to extreme eigenvalues of a full Hilbert space with accuracy
controlled by the number of iteration steps. In the Lanczos
method the Hamiltonian is diagonalized in this Krylov space
obtaining Lanczos eigenvectors |l〉 and the associated Lanczos
energy eigenvalues εl . When the number of Lanczos steps
Nl � k one can write

〈n|HkA|n〉 ≈
NL∑

l=0

〈n|Hk|l (n)〉〈l (n)|A|n〉

=
NL∑

l=0

(εl (n) )
k〈n|l (n)〉〈l (n)|A|n〉 (12)

and

〈n|Hk|n〉 ≈
NL∑

l=0

(εl (n) )
k|〈l (n)|n〉|2. (13)

NL is a parameter of the approximation that needs to be large
enough to reach accurate extremal energy eigenvalues; for the
calculations we present below we take NL = 150. Inserting
Eqs. (12) and (13) into (10) and (11) and replacing the sum
over all orthonormal basis states by a much smaller sum over
R random Lanczos seed states, in analogy to Monte Carlo
methods, yields

〈A〉 ≈ Z−1 Nst

NR

∑

ν∈NR

NL∑

l

e−βεl (ν)〈l (ν)|A|ν〉〈ν|l (ν)〉, (14)

where the partition function is

Z ≈ Nst

NR

NR∑

ν

NL∑

l

e−βεl (ν) |〈l (ν)|ν〉|2. (15)

The exponential-size Hilbert space of the Hamiltonian is
thereby approximated by its spectral representation in a
Krylov space spanned by the NL Lanczos vectors starting from

each random vector. The chosen random vectors |ν〉 should
ideally be mutually orthogonal, but for practical purposes
this is not really necessary since two vectors with random
components in a large dimensional space are always nearly
orthogonal.

In general, calculations using this approach are less sensi-
tive to finite-size effects as temperature increases, and most
sensitive to finite size at T = 0. This property is related to
the fact that at T = 0 both static and dynamical quantities
are calculated from one eigenstate only, and the selection
of this state can be dependent on the size and on the shape
of the finite-size system. T > 0 introduces thermodynamic
averaging over a larger number of eigenstates and this directly
reduces finite-size effects for static quantities. Calculational
efficiency can be improved by taking symmetries into account,
so that Nst corresponds to the number of states with a given
symmetry.

In our view, the finite-temperature Lanczos method
(FTLM) is ideally suited to exploring the high-temperature
physics that is observable in moiré materials. In this work
we focus on calculations of the spin magnetic susceptibilty
χ = β〈S2

z 〉 where

〈
S2

z

〉 =
∑

n exp (−βεn)Sz(n)2

∑
n exp (−βεn)

. (16)

Beacuse [H, Sz] = 0, the Lanczos method can be applied to
each Sz sector separately. The FTLM formula for the suscep-
tibility is

χ = Z−1β
∑

s

Nst (s)

NR(s)

NR (s)∑

ν=1

NL∑

l=1

e−βεl (ν) |〈l (ν)|ν〉|2s2, (17)

where s is the Sz value for the subspace. We find that the most
accurate results are obtained for NR(s) chosen such that the
ratio between the Hilbert subspace size and the number of
vectors is kept constant.

The accuracy of FTLM finite-size calculations is assessed
in Fig. 7 by comparing χ as calculated by performing the full
sum over all states with the FTLM sum. The three plots in
Fig. 7 [(a) χ/β as a function of inverse temperature β, (b) the
susceptibility χ (T ), and the (c) inverse susceptibility χ−1(T )
as a function of temperature T ] emphasize different aspects
of the temperature dependence of χ . The β → 0 (T → ∞)
and β → ∞ (T → 0) limits of χ/β can be calculated analyt-
ically by averaging S2

z over the full Hilbert space [χ−1/β →
Mν(1 − ν)/2 for β → 0] and over the ground-state spin mul-
tiplet [χ−1/β → S(S + 1)/3 for β → ∞], respectively. For
the test case (M = 16 and N = 4) illustrated in Fig. 7, the
susceptibility can be calculated exactly from the full many-
body spectrum because the Hilbert space dimension for a
given Sz subspace does not exceed 1000. The exact result is
indicated by a red line in Fig. 7, and compared with FTLM
estimates based on different numbers of random vectors NR.
All lines overlap for temperatures T > 20 K, demonstrating
the high accuracy of the method in the high-temperature limit.
The ground state of the system in this case has S = 0 (see
the inset), which leads to vanishing susceptibility in (b) and
divergence of the inverse susceptibility in (c) as T → 0. The
susceptibility reaches a maximum at around T = 4 K. The
blue line in (c) is a high-temperature linear fit that extrapolates
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FIG. 7. Comparison of FTLM and exact susceptibility calcula-
tions for M = 16 moiré unit cells, N = 4 electrons, and different
number of random vectors NR. (a) χ/β as a function of inverse tem-
perature β. The inset shows low-energy many-body spectrum with
total spin indicated by color. (b) Susceptibility χ (T ) and (c) inverse
susceptibility χ−1(T ) as a function of temperature T . The blue line in
(c) is a linear fit to estimate a transition temperature TC . The number
of Lanczos steps is taken to be NL = 150. The size of the Hilbert
space for Sz = 0 and fixed total momentum K is weakly momentum
dependent and around 900. The parameters for this illustration are
interaction strength ε−1 = 0.04, twist angle θ = 3.0, Vm = 25 meV,
and ψ = −94◦. NR = 20, 10, 5 means that for Sz = 0 we take
NR = 20, Sz = ±1 we take NR = 10, and so on. If one number is
given, for all subspaces we take the same NR.

to a finite value for T = 0, consistent with a paramagnetic
state.

The FTLM estimates have the advantage that they can
be drawn from larger Hilbert spaces. In Fig. 8 we show a
typical result obtained for N = 23 particles (Nh = 9 holes)
in the M = 16 case, in the regime of filling factors where
ferromagnetism is expected on the basis of the many-body
ground-state calculations. In this case the many-body ground
state has nonzero total spin S = 9

2 . The exact value of χ/Mβ

normalized per moiré unit cell in the β → ∞ limit is there-
fore 0.515, as indicated by a black arrow in Fig. 8(a). (The
β → 0 limit 0.104 33, which is independent of interactions,

FIG. 8. FTLM susceptibility calculations for M = 16 moiré unit
cells, N = 23 electrons (9 holes), and different number of random
vectors NR. (a) χ/β normalized per moiré cell as a function of
inverse temperature β. Analytically calculated values are given for
the limit of infinite temperature (left) and zero temperature (right).
(b) Susceptibility χ (T ) and (c) inverse susceptibility χ−1(T ) as a
function of temperature T . The red line is a linear fit to estimate
the transition temperature TC . The inset shows the Stoner parameter
I (T ) ≡ χ−1(T )/M − χ−1

NI (T )/M, where NI means noninteracting.
The number of Lanczos steps was NL = 150. The size of Hilbert
space for Sz = 0 at fixed total momentum K is around 5 × 105. NR =
20, 10, 5, 5 means that for Sz = ±0.5 we take NR = 20, Sz = ±1.5
we take NR = 10, and for all other subspaces NR = 5. If one number
is given, for all subspaces we take the same NR. The parameters used
for this calculation are dielectric constant ε−1 = 0.04, twist angle
θ = 3.0, Vm = 25 meV, and ψ = −94◦.

is also indicated by a black arrow.) We see that the FTLM
method gives accurate results in both limits, irrespective of
NR at T → ∞ and for NR � 10 at T = 0. Generally speaking,
the ratio between NR and the dimension of a given Hilbert
subspace is a good accuracy indicator. The increase in χ at in-
termediate temperatures relative to the high-temperature limit
shows that on average interactions lower the energies of states
with larger Sz relative to those with smaller Sz. The linear fit
to the inverse susceptibility shown in Fig. 8(c) estimates the
Curie temperature TC ≈ 9 K for this case, and the estimate is
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not strongly affected by NR in reasonable ranges. The inset
shows the finite-size Stoner parameter I that has the expected
linear-in-T dependence up to around T ≈ 12 K.

Having established the efficacy of the FTLM, we now
employ it to study trends in ferromagnetism in triangular-
lattice moiré materials. In the SM [30] in Figs. S2(b) and
S2(d) we compare inverse susceptibility results for two other
twist angles for the same moiré modulation potential. Extrap-
olating from high temperatures where finite-size effects are
less severe, we see that the susceptibility at higher temper-
atures decreases with twist angle. We attribute this decrease
to an increase in bandwidth, which decreases the Pauli sus-
ceptibility of noninteracting electrons. At the same time, the
high-temperature estimate of the Curie temperature at which
the susceptibility diverges (the inverse susceptibility vanishes)
increases with twist angle. We attribute this increase also to
increasing bandwidth, which increases magnon energies by
increasing the kinetic energy cost of spatial modulation of the
magnetization.

IV. DISCUSSION

We have used three different indicators available from
finite-size exact diagonalization calculations to address the
physics of itinerant ferromagnetism in single-band triangular-
lattice moiré materials: (i) ground-state spin quantum num-
bers, (ii) magnon excitation energies, and (iii) temperature-
dependent spin susceptibilities. All indicate that ferromag-
netism is common at hole band-filling factors near ν = 3

4 at
temperatures up to ∼10 K. Our calculations were performed
for particular values of the moiré modulation strength and
shape parameters. These are, however, expected to be strongly
dependent on the specific heterojunction at which the moiré
pattern is formed, and in particular on strain relaxations at
those heterojunctions which will tend to increase modulation
strengths [28,29]. When Vm → λVm, twist angle θ → √

λθ ,
and dielectric screening parameter ε → √

λε, the three terms
in the continuum model Hamiltonian (interaction, moiré po-
tential, and kinetic energy) all increase by a factor of λ. Since
the properties of interest here are relatively insensitive to the
interaction strength parameter within reasonable ranges, it
follows that the properties of systems with stronger moiré
potentials can be read off from our results by increasing
temperature scales and twist angles. In particular, the larger
energy scales increase the temperatures at which ferromag-
netism can occur.

It is interesting to compare TMD triangular-lattice moiré
materials, with graphene multilayer moiré materials that also
support ferromagnetic states. In the latter case, it is known
that because of topological obstructions inherited from the
individual layer Dirac cones [37–39], a faithful representation
of the flat moiré minibands requires multiband tight-binding
[40] models, for which the exact diagonalization approach
is not practical. In the TMD moiré material case, however,
the lowest-energy moiré bands have Wannier functions that
are similar to harmonic oscillator ground states centered on
moiré potential extrema [23]. Although we do not approxi-
mate the interaction matrix elements in our one-band model,
we have verified that all properties related to ferromagnetism

are similar to those of simple triangular-lattice Hubbard mod-
els.

It is also interesting to compare TMD triangular-lattice
materials with rhombohedral graphene multilayers [41–49],
a class of two-dimensional materials in which metallic fer-
romagnetism has been discovered recently. These graphene
multilayer systems are like TMD moiré materials in that they
have peaks in their densities of states, related in that case to
Liftshitz transitions of distorted Dirac cones, but they do not
have minibands and are not approximated by Hubbard mod-
els. The magnetism that appears in these systems is consistent
with the notion that the key to ferromagnetism is a sharp
density-of-states peak in a low-density-of-states background.

At the mean-field level, the critical temperature of the
ferromagnetic state is proportional to the exchange splitting
�exch between majority- and minority-spin bands. The classic
metallic ferromagnets, like cobalt, iron, or nickel, are well
known to have transition temperatures Tc that are much lower
than the exchange splitting �exch. Measured critical temper-
atures are more comparable to typical magnon energies Emag

(kBTc ∼ Emag � �exch). Critical temperature estimates based
on fermionic mean-field approximation do not work well for
itinerant ferromagnets, actually in agreement with our results.
We believe that our Hubbard model systems are, in this sense,
in the same regime as the classical 3d ferromagnets.

The exact diagonalization method we have employed is
most suitable when the many-electron Hilbert space can be
truncated to a single moiré miniband. The small parame-
ter which controls the applicability of this approximation
is the ratio of the largest interaction scale, the onsite Hub-
bard interaction U0, to the subband separation. As explained
in Ref. [23] these can be estimated by making a harmonic
approximation for the moiré potential. We find that U0 ∼
Ry3/4(zVm)1/4(aB/aM )1/2, where z = 6 is the triangular-lattice
coordination number and Ry and aB are the host 2D semi-
conductor Rydberg energy scale ∼0.3 eV and Bohr radius
length scale ∼1 nm. Similarly, the subband separation h̄ω ∼
Ry1/2(zVm)1/2aB/aM . It follows that

U0

h̄ω
∼ (Ry/zVm)1/4(aM/aB)1/2. (18)

Truncation to the lowest moiré band is justified at all band-
filling factors ν ∈ (0, 1) when the right-hand side of Eq. (18)
is smaller than ∼1. Most systems [50,51] that have been
studied to date do not satisfy this criterion. Since continuum
model approximations are valid only for aM � aB, it follows
that single-band ferromagnetism will occur only when the
first factor on the right side of Eq. (18) is made small, for
example by increasing the dielectric screening environment of
the moiré system to decrease Ry, or by choosing a system with
a particularly large value of Vm. From exponentially localized
Wannier functions obtained for the topmost valence band used
in our calculations, we get, for θ = 3.0, U0ε ≈ 1121 meV
[34], h̄ω ≈ 58.5 meV. For ε−1 = 0.1, U0(ε−1=0.1)

h̄ω
> 1, while

for U0(ε−1=0.04)
h̄ω

< 1. Thus, for the limit of weaker interac-
tion strength the single-band approximation is justified. This
suggests that our predictions are relevant for systems with
sufficiently close nearby gates.
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We note that Coulomb repulsion will increase the energy
of the lowest-energy hole miniband, as it is filled, by more
than it increases the energies of states in higher-energy moiré
minibands. For this reason the regime of parameter space
in which occupation of higher-energy minibands can be
neglected decreases as band-filling factor increases. When
correlations are included, the ground state at hole-filling factor
ν = 1

2 is often an insulator. When its lowest-energy hole-
charged excitation is dominantly in a higher-hole miniband,
the insulator is referred to as a charge transfer insulator
[50,51]. Since single-band ferromagnetism is most likely near
band-filling factor ν = 3

4 , the present single-band study is
never relevant when the ground state of the half-filled band
is a charge transfer insulator, which already involves higher-
energy subbands in an essential way. If systems could be
realized in which the sign of Vm is reversed (or equiva-
lently ψ → ψ + 180◦), ferromagnetism would be expected

for minibands that are less than half-filled. For the standard
sign of Vm, however, any ferromagnetism that occurs when the
interaction parameter that is the subject of Eq. (18) is large,
must be of multiband character. We leave the analysis of this
situation for a future study, for it requires a different approach.
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