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Improvements to the stochastic series expansion method for the JQ2 model with a magnetic field
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The stochastic series expansion (SSE) quantum Monte Carlo method with directed loops is very efficient for
spin and boson systems. The Heisenberg model and its generalizations, such as the JQ2 model, are extensively
simulated via this method. When introducing magnetic field in these models, the SSE method always combines
the field with the diagonal part of the Heisenberg interactions (Si

zS j
z) and take them as the new diagonal

operators. In general, this treatment is reasonable. However, when studying Hamiltonians, which have other
interactions or even do not contain the Heisenberg interactions, this general treatment will not be efficient
or even not work. We suggest that when doing directed-loop simulations, the magnetic field can be put into
other interactions. This treatment, in some cases, improves the simulation efficiency. Using the JQ2 model with
magnetic field as an example, we here demonstrate this SSE method. Such treatment significantly improves the
efficiency when the Q2 interactions are large. The autocorrelations are reduced a lot compared to the previous
approach. In addition, we argue that we can divide the magnetic field into two parts and combine them with
both the J and Q operators respectively. This treatment also improves the simulation efficiency. The underlying
mechanism is that these two SSE methods can utilize the main part or even all part of operators in operator
products to do the directed-loop updates. Such idea can also be applied to other models with magnetic field and
it will speed up the simulations.

DOI: 10.1103/PhysRevB.109.045141

I. INTRODUCTION

The stochastic series expansion (SSE) quantum Monte
Carlo (QMC) method [1] with loop update [2–4] is a very
powerful method for quantum spin systems and boson sys-
tems. The Heisenberg model and its generalizations (e.g.,
the JQ models) are extensively simulated by this method.
When introducing magnetic field, Syljuåsen and Sandvik pro-
posed SSE method with directed-loop update, which includes
the field operators into the Heisenberg interactions [4]. The
Heisenberg model is taken as a specific example to demon-
strate that the directed-loop simulations are very efficient for
the full range of magnetic field (zero to the saturation point).
When simulating the generalizations of the Heisenberg model,
which not only contain the Heisenberg interactions but also
have other interactions, people in general still combine the
magnetic field with the Heisenberg interactions [5–7]. Such
treatment does work for most cases. However, it is not the
most efficient way for some extreme cases. In this paper,
we argue that not only can the Heisenberg interaction be
combined with the external magnetic field, but also other
interactions can contain the magnetic field. The simulations,
in some cases, are more efficient when we put the magnetic
operators into other interactions. What is more, we can divide
the magnetic field and combine them with all the types of
interactions. In this paper, we consider the JQ2 model with
magnetic field as a specific example. We present that the two
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versions of the SSE method with directed loops are more
efficient than that of the general SSE method when Q is large.

This paper proceeds as follows. In Sec. II, backgrounds on
the JQ2 model are given. In Sec. III, we introduce the basic
concepts of the SSE method. In Sec. IV, we briefly review the
general SSE method with directed loops for the JQ2 models
with an external magnetic field. In Sec. V, we present our two
versions of the SSE methods for the JQ2 model with magnetic
field. In Sec. VI, we present simulation results and show that
the two versions of the SSE method do work and decrease the
autocorrelation times significantly. We conclude in Sec. VII.

II. THE JQ2 MODEL

The JQ2 model is a generalization of the Heisenberg
model, which has four-spin interactions Q on every plaquette.
The Hamiltonian is expressed as

H = −J
∑
〈i j〉

Pi j − Q
∑
〈i j,kl〉

Pi jPkl = −(HJ + HQ) (1)

where Pi j = 1/4 − Si · Sj is the singlet projector operator,
〈i j〉 represent two nearest-neighbor sites, 〈i j, kl〉 represents
four sites on one plaquette and the index pairs i j, kl form
two parallel bonds on horizontal or vertical directions. The
summations are over all nearest neighbors for the J terms
and all translations of the vertical and horizontal stacks for
the Q terms. HJ and HQ stand for the J and Q terms in the
Hamiltonian. In this paper, we take J = 1 as the unit of energy.
We call every interaction as a bond and the JQ2 model has
two types of bonds: the J bonds and Q bonds. This model
was proposed by Sandvik to show the deconfined quantum
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phase transition from the Néel state to the valence-bond-solid
(VBS) state [8] and later other variants of the JQ models were
proposed, such as the JQn model (the JQn model means every
Q operator is the products of n singlet projector operators),
the checkerboard JQ (CBJQ) model. Lots of novel properties
were found in these models. In the JQ3 model, there also
exists the deconfined quantum phase transition [9]; there is
a symmetry enhanced first-order phase transition in the CBJQ
model [10]; in the JQ6 model, an emergent SO(5) symmetry
was observed [11]; in a modulated−J JQ model, the multi-
critical deconfined quantum criticality was found [12].

There is a deconfined quantum phase transition in the JQ2

model. When g = J/Q is large, the ground state is the Néel
state and when g = J/Q is small enough, the ground state is
the VBS state. The transition point between these two phases
is gc = J/Q ≈ 0.045, which means when we set J = 1, the
value of Qc will be around 22 [13]. Such value is really large.
When we are interested in the properties of the JQ2 model
around Qc or the properties of VBS state, we have to set Q
very large. The SSE method is efficient for the simulations
of this model. However, when introducing an external mag-
netic field, the situation will be different. We find the general
SSE method with directed loops, where the magnetic field
is combined with the Heisenberg interactions (J terms), is
less efficient. The autocorrelation time is much longer and
we need very large Monte Carlo steps to obtain high-quality
data. When the system size and inverse temperature increase,
the autocorrelation time will increase significantly and we can
even not get the correct results because of the limitation of
computational resources. An intuitive idea is that for the JQ2

model without external field, the average number of times that
the operators of the J (Q) bonds appearing in the operator
string is proportional to the expectation value of HJ (HQ).
When Q is much larger than J , the expectation value of HQ

will also be much larger than that of HJ . It means the Q
bonds occur more frequently than the J bonds in the operator
strings (see Appendix B). When introduced magnetic field,
the general directed-loop update only makes use of the small
part (J bonds) of the operator strings, which of course is not
efficient. In this article, we propose that we can use the main
part of the operator string (Q bonds) to do the directed-loop
updates or we can use all the bonds in the operator strings
(both J and Q bonds) to do the directed-loop updates. The
two treatments reduce the autocorrelation time significantly
and make the simulations more efficient.

In the next two sections, we will introduce the general
concepts of SSE method and talk about the general treatment
of the JQ2 model with magnetic field in the SSE method.

III. BASIC CONCEPTS OF SSE METHOD

In this section, we will introduce some basic concepts of
the SSE method.

For general models with N spins, such as the Heisenberg
antiferromagnet and the JQ model, we use the standard basis
for these models

|α〉 = ∣∣Sz
1, Sz

2, · · · , Sz
N

〉
(2)

and write the Hamiltonians in terms of bond operators Hb,

H = −
Nb∑

b=1

Hb (3)

where every index b refers to one interaction term: for the
Heisenberg interactions, one bond only contains two spins and
for multispin interactions, such as Q terms in the JQ model,
one Q bond can contain more spins. Nb is the number of bonds.
In order to carry out the SSE simulations, we need divide
every bond into N operators,

Hb = H1,b +
N∑

i=2

Hi,b (4)

where H1,b is the diagonal part of bond operator and Hi,b(i �
2) are the off-diagonal bond operators. We will see that for the
Heisenberg interaction N = 2 and for the Qn interaction N =
2n (the Q2 interactions N = 4; the Q3 interactions, N = 8).
The definition of the JQ model has been shown in Sec. II.

The starting point of the SSE method is the Taylor expan-
sion of the partition function,

Z = Tr{e−βH } =
∑

α

∞∑
n=0

(−β )n

n!
〈α|Hn|α〉 (5)

where the trace is written as summation of basis |α〉 and β =
1/T is the inverse temperature. Next, according to Eq. (4),
the operator string Hn need to be expanded as summations
of products of diagonal and off-diagonal bond operators. We
truncate the expansion power n at a maximum value M and
then fix the operator products length as M by introducing
some unit operators. For general expansion power n (n � M ),
we need insert M − n unit operators H0,0 = I in the operator
products in all possible ways. Finally, the partition function is
written as

Z =
∑

α

∑
SM

βn(M − n)!

M!
〈α|

M∏
i=1

Hai,bi |α〉 (6)

where n is the number of nonunit bond operators, ai =
1, 2, · · · ,N corresponds the type of operators (0, unit; 1,
diagonal; 2, 3, · · · , off-diagonal) and bi = 0, 1, 2, · · · , Nb is
the bond index (0 for unit operators, 1, 2, · · · , Nb for nonunit
bonds). SM is the configurations of operator products. Such a
product can be referred to by an operator-index sequence

SM = [a1, b1], [a2, b2], · · · , [aM , bM]. (7)

For simplicity, we sometimes use the notation [a, b]p to repre-
sent [ap, bp], where p can be thought as the index of imaginary
time.

One can show that the average expansion order is

〈n〉 = β|E | (8)

where E is the system energy, E = 〈H〉 [3,4]. The width of the
expansion order is approximately 〈n〉1/2. The cutoff M can be
chosen so that n can never reaches this value. The truncation
error is then negligible.

The Monte Carlo simulation can be started with
some random state |α〉 and “unit” operator string SM =
[0, 0]1, [0, 0]2, · · · , [0, 0]M . The general SSE sampling of
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configurations (α, SM ) contains two different types of updates,
which ensure the ergodicity of the sampling. The first update
(diagonal update) is of the update between the unit operator
[0, 0]p and the diagonal operator [1, b]p. Such update will
change the expansion order n by ±1. The corresponding
Metropolis acceptance probabilities are

P([0, 0]p → [1, b]p) = min

{
1,

Nbβ〈α(p)|H1,b|α(p)〉
M − n

}
, (9)

P([1, b]p → [0, 0]p) = min

{
1,

M − n + 1

Nbβ〈α(p)|H1,b|α(p)〉
}
. (10)

The second update (off-diagonal update) is of the update
between the diagonal operators [1, b]p and the off-diagonal
operators [a, b]p, where a � 2. It can be done by the loop
update. Readers can refer to article [3,4] for detail informa-
tion about the off-diagonal update for the Heisenberg model.
These two SSE methods introduced in this paper have the
same update processes, which also contain both the diagonal
update and the off-diagonal update.

It is convenient to define a Monte Carlo step (MCS) for
the SSE simulation. One MCS contains a sweep of diagonal
updates at all imaginary time positions and then do the con-
struction of linked list. After this construction, a fixed number
of loop updates are applied. Thus every MCS contains both
types of updates.

During the simulation, we should firstly evolve the initial
configuration to the equilibrated configurations and then the
reliable measurements are possible. Thus in Monte Carlo sim-
ulations, one firstly do some “equilibration” MCSs and then
do some “measure” MCSs. The number of these two MCSs
depends on the equilibrium correlation time and the autocor-
relation time; we will not discuss this in detail. The physical
observables are measured during the “measure” MCSs. A
general observable A (mostly diagonal observables) can be
measured according to

〈A〉 = 1

Z

∑
α,SM

βn(M − n)!

M!
〈α|A

M∏
i=1

Hai,bi |α〉

=
∑
α,SM

A(α, SM )W (α, SM )/
∑
α,SM

W (α, SM )

where

A(α, SM ) = 〈α|A ∏M
i=1 Hai,bi |α〉

〈α| ∏M
i=1 Hai,bi |α〉 ,

W (α, SM ) = βn(M − n)!

M!
〈α|A

M∏
i=1

Hai,bi |α〉.

We will not discuss the measurement in detail here. Several
observables have been derived in Refs. [3,14]. The off-
diagonal correlation functions have been studied in Ref. [15].

IV. GENERAL SSE METHOD FOR THE JQ2 MODEL
WITH MAGNETIC FIELD

In this section, we introduce the general SSE method
that deals with the magnetic field in the JQ2 model. The

FIG. 1. 6 different vertices for the J operators. The horizontal bar
represents the operators. The circles beneath (above) represent the
spin state (open and solid circles for spin-↑ and spin-↓, respectively)
before (after) operation with the J operators. We denote these six
vertices as �i, i = 1, 2, 3, 4, 5, 6. We denote the four circles as four
legs of the vertex.

Hamiltonian of the JQ2 model can be written as

HJQ2−h = −
∑
〈i j〉

JPi j −
∑
〈i j,kl〉

QPi jPkl − h
∑

i

Sz
i . (11)

The last term in Eq. (11) is the magnetic field. When doing the
SSE simulations on this model, we generally put the magnetic
field into the diagonal part of the J terms. In order to ensure all
matrix elements of the new diagonal part of the J terms are not
negative, we also need to add a constant. Such constant is not
unique, people can choose any value as long as the diagonal
part of the J terms have no negative matrix elements. The final
Hamiltonian of the JQ2 model with magnetic field is written
as

HJQ2−h = −
∑
〈i j〉

J (Pi j + hb
(
Sz

i + Sz
j + 1

) + ε)

−
∑
〈i j,kl〉

QPi jPkl . (12)

In Eq. (12), we have defined the magnetic field on a J bond,
the field strength is hb = h/zJ and z is the coordination num-
ber. In addition, we have added a constant hb + ε on every J
bond and ε � 0.

When doing the SSE simulations, we divided every J term
in Eq. (12) into two operators: one is diagonal H (1)

i j = 1/4 −
Sz

i Sz
j + hb(Sz

i + Sz
j + 1) + ε and the other is off-diagonal

H (2)
i j = −(Sx

i Sx
j + Sy

i Sy
j ) = −1/2(S+

i S−
j + S−

i S+
j ). Every ma-

trix element of these two types of operators can be represented
by a vertex and they will give six different vertices. We denote
these vertices as �i (i = 1, 2, 3, 4, 5, 6). The six different
vertices contain four diagonal vertices and two off-diagonal
vertices (In diagonal vertices, the spin state does not change
after the operation of a operator. In the off-diagonal ver-
tices, the spin state will change after the operation of a
operator). The four diagonal vertices are �1 : 〈↑↑ |H (1)| ↑↑〉,
�2 : 〈↑↓ |H (1)| ↑↓〉, �3 : 〈↓↑ |H (1)| ↓↑〉, �6 : 〈↓↓ |H (1)| ↓↓
〉 and the two off-diagonal vertices are �4 : 〈↑↓ |H (2)| ↓↑〉,
�5 : 〈↓↑ |H (2)| ↑↓〉. The index of these six vertices can be
set arbitrarily. The weight of these six vertices (matrix el-
ement of operators) are W (�1) = 2hb + ε, W (�2) = 1/2 +
hb + ε, W (�3) = 1/2 + hb + ε, W (�4) = 1/2, W (�5) = 1/2,
W (�6) = ε respectively. These vertices are shown in Fig. 1.

Every Q2 term contains a product of two singlet projector
operators. In the SSE simulations, it also should be divided.
As every singlet projector operator Pi j can be divided into
two part: one is diagonal H (1)

i j = 1/4 − Sz
i Sz

j and the other

is off-diagonal H (2)
i j == −1/2(S+

i S−
j + S−

i S+
j ). Note that the

diagonal operator H (1) here, which does not contain magnetic
field part, is different from the diagonal operator of J terms
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mentioned above. However, we denote both of them as H (1)

for simplicity. Thus for every Q2 term, it can be divided
into four different operators: H1 = H (1)

i j H (1)
kl , H2 = H (1)

i j H (2)
kl ,

H3 = H (2)
i j H (1)

kl , and H4 = H (2)
i j H (2)

kl . H1 is the diagonal part
of the Q operator and the three others are off-diagonal parts
of the Q operator. Every off-diagonal term of the Q2 oper-
ators has at least one H (2). We denote these four terms as
H1 = Q(11)

i jkl , H2 = Q(12)
i jkl , H3 = Q(21)

i jkl , H4 = Q(22)
i jkl .

For JQ2 model with magnetic field, every diagonal part
of the J operators contains the field and every diagonal part
of the Q operators does not contain any magnetic field. Thus
when doing the diagonal update, the weight for the J diagonal
operators should include the field operators. The off-diagonal
update is a bit complicated. When a loop encounters the J
operators, the loop should choose the exit leg with a prob-
ability, which corresponds to the particular solution of the
directed-loop equations {see Eqs. (29) and (31) in Ref. [4]}.
When the loop encounters the Q operators, it will just do the
simple switch-and-reverse moves. This treatment introduced
above is the general SSE method. In the next section, we will
present a modified version of SSE method for the JQ2 model
with magnetic field.

V. MODIFIED VERSION OF SSE METHOD FOR THE JQ2

MODEL WITH MAGNETIC FIELD

As mentioned above, the critical point Qc is really large
for the JQ2 model. When Q is large, the J operators appear
much less frequently than the Q operators. If we study the
properties of the JQ2 model at large Q with external magnetic
field, we will find the efficiency of the general SSE method
with directed loops is very poor and we suggest a modified
version of the SSE method, which is more efficient.

As the operators appearing in the operator products will
mostly be the Q operators, if we can do the SSE simulations
by combining the Q operators and magnetic field together, the
simulations is more efficient than the general SSE method.
In this section we will show such combination can indeed be
applied in the SSE method. What is more, if we only combine
the magnetic field with the Q operators, the directed-loop
updates only make use of the Q operators. The J operators
do not participate in the directed-loop updates. When a loop
encounters the J operators, it just does the switch-and-reverse
moves. We argue that the magnetic field can be divided into
two parts. The first part is combined with the J operators (just
as the general method) and the second part is combined with
the Q operators. Any proportion of the division works for the
SSE method, but the best proportion depend on the parameters
(the strength of the J and the Q interactions). As all nonunit
operators will take participate in the directed-loop updates,
it speed up the simulations much more if the proportion of
division is chosen properly. In order to distinguish these three
different SSE methods, we denote the general SSE method as
“J-SSE” (the directed loops only work on the J operators).
The modified SSE method, in which the magnetic field is
combined with the Q operators, is denoted as “Q-SSE”. The
final modified SSE method, in which the magnetic field is
split and combined to both J and Q operators, is denoted as

“JQ-SSE”. The J-SSE and Q-SSE method can be thought as
two extreme cases of JQ-SSE method.

In this section, we present how to combine the magnetic
field with the Q operators in the modified Q-SSE and JQ-SSE
methods. We then show how to do the simulations in the Q-
SSE method. The correctness of the Q-SSE method will be
proven in the next section by comparing the results of the Q-
SSE method with the exact diagonalization (ED) method.

The Hamiltonian of the JQ2 model with magnetic field can
also be written as

H ′
JQ2−h = −

∑
〈i j〉

JPi j

−
∑
〈i j,kl〉

Q
(
Pi jPkl + hq

(
Sz

i + Sz
j + Sz

k + Sz
l

))

where have defined the magnetic field on a Q bond and the
strength is hq = h/2zQ.

We then put the magnetic field term hq(Sz
i + Sz

j + Sz
k + Sz

l )

into the diagonal part of the Q2 operator: Q(11)
i jkl . The diagonal

part now is written as

Q(11)
i jkl = H (1)

i j H (1)
kl + hq

(
Sz

i + Sz
j + Sz

k + Sz
l

)
.

In order to make all matrix elements (vertices weight) not
negative for the diagonal part of the Q operators, we also need
to add a constant as that in the traditional SSE method (J-SSE)
for the diagonal part of the J operators. The constant we
choose in this paper is 2hq for every Q bond and of course this
constant is also not unique. People can choose another con-
stant and the principle of derivation is the same. The constant
2hq chosen here corresponds to ε = 0 for the J-SSE method.
In this paper, we choose ε = 0 for the J-SSE method and
JQ-SSE method in order to focus on the efficiency difference
when combining the magnetic fields with different types of
operators. Finally, the diagonal part of the Q2 operators is
written as

Q(11)
i jkl = H (1)

i j H (1)
kl + hq

(
2 + Sz

i + Sz
j + Sz

k + Sz
l

)
.

In our simulations, the finial Hamiltonian now is written as

HJQ2−h = −
∑
〈i j〉

J
(
H (1)

i j + H (2)
i j

)

−
∑
〈i j,kl〉

Q
(
Q(11)

i jkl + Q(12)
i jkl + Q(21)

i jkl + Q(22)
i jkl

)
(13)

where H (1)
i j = 1/4 − Sz

i Sz
j, H (2)

i j = −1/2(S+
i S−

j + S−
i S+

j ) and

Q(11)
i jkl = H (1)

i j H (1)
kl + hq(2 + Sz

i + Sz
j + Sz

k + Sz
l ), Q(12)

i jkl = H (1)
i j

H (2)
kl , Q(21)

i jkl = H (2)
i j H (1)

kl , and Q(22)
i jkl = H (2)

i j H (2)
kl .

As every Q operator can be thought as the product of two J
bonds, thus every Q operator will give 36 = 6 × 6 different
types of vertices: 16 of them are diagonal, 20 of them are
off-diagonal. Every vertex of the Q bond acts on 4 sites and
has 8 legs. The 36 kinds of vertices are shown in Fig. 2. The 16
kinds of diagonal vertices are shown in blue regions and the 20
kinds of off-diagonal vertices are shown in white region. In
the Q-SSE method, there are two same types of updates as that
of the J-SSE method. The first update (diagonal update) is the
same as the general one, where only the weight are changed.
The weights of the J vertices do not contain the magnetic
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FIG. 2. 36 = 6 × 6 types of vertices for the Q2 operators. The diagonal vertices are shown in blue regions and the others are off-diagonal
vertices.

field and instead the weights of the Q vertices contain the
magnetic field. The weights for the Q operators, which have
36 kinds of vertices, are shown in Fig. 3. In this figure, we
just show the absolute value of weight and ignore the minus
sign that may appear in the matrix elements of off-diagonal
operators. This is because for the JQ2 model in bipartite
lattice, the number of the off-diagonal operators with negative
weight is required to be even in every allowed configuration
in the SSE method, in order to satisfy the “imaginary time”

periodicity (it is just the requirement of the trace of the parti-
tion function) [3].

The second update is also the directed-loop update (off-
diagonal update) but it will be different from the J-SSE
method. When a loop encounters the J operators, it will just
do the switch-and-reverse move. However, when the loop
encounters the Q operators, we need solve the directed-loop
equations for the Q operators and using these solutions to do
the directed-loop update.

4hq

3hq

0

0

2hq

3hq

1/4+2hq

1/4+2hq

1/4

1/4

hq

3hq

1/4+2hq

1/4+2hq

1/4

1/4

hq

1/4

1/4

0

1/4

1/4

0

0

1/4

1/4

1/4

1/4

0

2hq

0

0

0

hq

hq3hq

FIG. 3. The weight of 36 = 6 × 6 types of vertices for the Q2 operators. The diagonal vertices are shown in blue regions and the others
are off-diagonal vertices.
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FIG. 4. Two independent assignments of directed-loop segments
for every column in Fig. 2. All other directed-loop segments can be
derived from these two segments by certain symmetry transforma-
tion. The lines with arrows are the directed loops and the arrows
present the direction of loops.

The updates for the JQ-SSE method are similar. As both
the J and Q operators contain the magnetic field, the weights
for the diagonal J and Q operators should contain part of
magnetic field that are assigned to these operators. The first
update (diagonal update) is the same as previous and only
the weights are different. However, for the second update
(directed-loop update), both J and Q operators should do the
directed-loop update based on the solutions of the directed-
loop equations for J and Q cases. The solutions for the J
operators can be found in Eqs. (29) and (31) in Ref. [4] and
the solutions for the Q operators will be shown later in this
section.

In Fig. 2 we have shown all the types of the Q vertices. Ev-
ery Q vertex can be thought of containing left vertex and right
vertex. Both vertices (left vertex and right vertex) are similar
to the J vertices. Because of symmetry reasons (spins/bonds
permuting and imaginary time inversion), we only need to
consider the loop appearing on the left vertex. If the loop
appears on the left vertex, there are two independent sets of
directed-loop equations for every type of right vertex. These
two sets of equations are similar to the equations appearing
in the J-SSE method. As the right vertex has six different
types, the total number of independent sets of directed-loop
equations is 2 × 6 = 12. We have not excluded the cases,
which vertices weight are zero. The weights of these vertices
may not be zero if we choose another constant rather than 2hq.

Now we try to solve these 12 sets of equations. For every
column in Fig. 3, there are two independent assignments of
directed-loop segments, as shown in Fig. 4. These two as-
signments correspond two independent sets of directed-loop
equations. All other assignments can be derived from these
two assignments by certain symmetry transformation. Every
set of equations should obey

∑
x

W (s, e, x) = Ws (14)

where s denotes the configuration of a vertex, which has a
weight Ws. W (s, e, x) ≡ WsP(s, e → s′, x), e is the entrance
leg of the vertex and x is the exit leg of the vertex. P(s, e →
s′, x) means that if the entrance leg is e in a vertex with
a configuration s, the loop will exit the vertex from leg x
with a probability P(s, e → s′, x). s′ is the new configura-
tion of this vertex after the loop going through this vertex.

According to Eqs. (14), we can get the corresponding
directed-loop equations for every set and the solutions can
be derived easily. Note that every set of directed-loop equa-
tions has an infinite number of solutions, the solution shown
below is particular: we minimize the bounce probability (the
entrance leg and exit leg are the same). Such idea is based on
the intuitive hypothesis (we have no rigorous proof) that min-
imizing the bounce probability will increase the simulation
efficiency. It can not be ruled out that there exists a more ef-
ficient directed-loop solution in which the bounce probability
is not minimized.

Now we present the solutions of all the 12 sets of equa-
tions with minimized bounce probability. We will show how to
solve the directed-loop equations step-by-step in Appendix A.
Firstly, we present the solutions of the two sets of equa-
tions for the first column in Fig. 3, where the right vertex is
�1. The left assignments of directed-loop segments, shown in
Fig. 4, give the first set of equations,

4hq = b1 + a + b, 3hq = a + b2 + c, 0 = b + c + b3,

(15)

where the left-hand sides are the vertex weights in the spin
configuration space and those on the right are weights in the
enlarged configuration space of spins and directed-loop seg-
ments. The probabilities of selecting the exit leg are dividing
the weights in the extended configuration space by the weight
of the bare vertex (spin configuration space). For example,
if the loop encounters a vertex �1 and the entrance leg is
the lower left leg (the first row of left part in Fig. 4), the
probability of choosing the lower left leg as exit leg is b1/4hq,
the probability of choosing the lower right leg as exit leg is
0, the probability of choosing the upper left leg as exit leg is
a/4hq and the probability of choosing the upper right leg as
exit leg is b/4hq. The summation of the four probabilities is
1. It is the same for other directed-loop segments and only the
bare weights and weights in the extended space are different.

The solution of this set of equations is

b1 = hq, b2 = 0, b3 = 0,

a = 3hq, b = 0, c = 0. (16)

The right assignments give the second set of equations,

3hq = b′
1 + a′ + b′,

0 = a′ + b′
2 + c′,

2hq = b′ + c′ + b′
3. (17)

The solution can be

b′
1 = hq, b′

2 = 0, b′
3 = 0,

a′ = 0, b′ = 2hq, c′ = 0. (18)

Secondly, the two sets of equations for the second and third
columns in Fig. 3, where the right vertices are �2 and �3

respectively, are the same. The left assignments give a set of
equations,

3hq = b1 + a + b, 2hq + 1
4 = a + b2 + c,

1
4 = b + c + b3. (19)
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The solution is

if
(
hq � 1

2

)
b1 = 0, b2 = 0, b3 = 0,

a = 5
2 hq, b = hq

2
, c = 1

4 − hq

2
,

if
(
hq > 1

2

)
b1 = hq − 1

2 , b2 = 0, b3 = 0,

a = 2hq + 1
4 , b = 1

4 , c = 0. (20)

The equations of the right assignment for these two
columns are

2hq + 1
4 = b′

1 + a′ + b′, 1
4 = a′ + b′

2 + c′,

hq = b′ + c′ + b′
3. (21)

The solution can be

b′
1 = hq, b′

2 = 0, b′
3 = 0,

a′ = 1
4 , b′ = hq, c′ = 0. (22)

Thirdly, the two sets of equations for the fourth and fifth
columns in Fig. 3 are also the same, where the right vertices
are �4 and �5. The equations for the left set are

0 = b1 + a + b, 1
4 = a + b2 + c,

1
4 = b + c + b3. (23)

The solution can be

b1 = 0, b2 = 0, b3 = 0, a = 0, b = 0, c = 1
4 .

(24)

The equations of the right set are

1
4 = b′

1 + a′ + b′, 1
4 = a′ + b′

2 + c′,

0 = b′ + c′ + b′
3. (25)

The solution can be

b′
1 = 0, b′

2 = 0, b′
3 = 0,

a′ = 1
4 , b′ = 0, c′ = 0. (26)

At last, we give the two sets of equations for the sixth
column in Fig. 3 and the right vertex is �6. The equations for
the left set are

2hq = b1 + a + b, hq = a + b2 + c,

0 = b + c + b3. (27)

The solution can be

b1 = hq, b2 = 0, b3 = 0,

a = hq, b = 0, c = 0. (28)

The right set equations are

hq = b′
1 + a′ + b′, 0 = a′ + b′

2 + c′,

0 = b′ + c′ + b′
3. (29)

The solution can be

b′
1 = hq, b′

2 = 0, b′
3 = 0,

a′ = 0, b′ = 0, c′ = 0. (30)
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h
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z

Q=4   (ED)
Q=8   (ED)
Q=4 (Q-SSE)
Q=8 (Q-SSE)

FIG. 5. Magnetization properties versus magnetic field for the
JQ2 model on square lattice. The lattice size is 4 × 4 and the inverse
temperature is β = 32. The solid circles are results of the Q-SSE
method and the solid lines are results of the ED method.

Based on these solutions, we can construct the directed-
loop update. If we only use these solutions shown above,
where the magnetic field is combined to the Q operators, we
can get the Q-SSE method. However, if we not only use the
above solutions but also use the solutions that the magnetic
field are combined to the J operators, we can get the JQ-SSE.
In this case, we need divide the magnetic field into two parts.
One is put into the J operators and the second is put into the Q
operators. In the next section, we will present the simulations
results of the Q-SSE method and the JQ-SSE method.

VI. SIMULATIONS RESULTS

In this section, we present the simulation results of the
Q-SSE and JQ-SSE methods. We will firstly show that the
modified Q-SSE method is correct and the proof of correct-
ness of the JQ-SSE method is shown in Appendix C. Then we
compare the efficiency of the three different SSE methods.

A. Correctness of the Q-SSE method

In this subsection, we will prove the correctness of the
Q-SSE method introduced above. As our modified program
focuses on the properties of models with magnetic field, we
mainly concentrate on the magnetization, which are defined
as

Mz =
N∑

i=1

Sz
i . (31)

In Fig. 5, we show the simulation results of the JQ2 model
on square lattice with Q = 4 and 8. The system size is 4 × 4
with inverse temperature β = 32. In this figure, the magne-
tization properties with magnetic field h for both the Q-SSE
method and the ED method coincide. The results of these two
different methods do agree with each other and it certificates
the correctness of the Q-SSE method.

After proving the correctness of the Q-SSE method, we
think the JQ-SSE method will also be right, which is just the
combination of the J-SSE and Q-SSE method. In Appendix C,
we present the results of the JQ-SSE method, which prove the
correctness of the JQ-SSE method.
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Q=16 β=16
Q=20 β=16

FIG. 6. Simulation results of the Q-SSE method on 16 × 16
square lattice at β = 16 or 32.

B. Efficiency of the Q-SSE method

In this subsection, we focus on the efficiency of Q-SSE
method. We firstly present the results of the Q-SSE method
on 16 × 16 square lattice with Q = 1, 2, 4, 8, 12, 16, 20 at
β = 32 or 16 in Fig. 6. The quality of magnetization curves
is really good. The step structure of magnetization is really
clear and the error bars are almost smaller than the symbol
size. From this figure, we can see that we need larger exter-
nal magnetic field to change the magnetization for larger Q
interactions.

As mentioned earlier in this paper, the J-SSE method will
become more and more worse when Q becomes larger as the
autocorrelation time increases significantly. Figure 7 shows
the simulation results of both the J-SSE and Q-SSE methods.
We use the same Monte Carlo parameters for both meth-
ods (50 000 MCSs for equilibration, 50000 × 20 MCSs for
measurement, we fix the number of loops in the directed-
loop update in one MCS). As seen in Fig. 7(a), when Q is
small (Q = 2), both the J-SSE method and the Q-SSE method
give the correct results for magnetization for a low tempera-
ture β = 32. However, when Q = 4, we can find the results
of the J-SSE method become worse, the fluctuations of data

0 0.5 1 1.5 2 2.5 3
h

0

1

2

3

M
z

Q=2 (Q-SSE)
Q=4 (Q-SSE)
Q=2 (J-SSE)
Q=4 (J-SSE)

(a)
β=32

2.4 3 3.6 4.2 4.8 5.4
h
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3.2

M
z

Q-SSE
J-SSE
J-SSE+Annealing

Q=8   β=16(b)

4 8 12 16h
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3

M
z

Q-SSE
J-SSE
J-SSE+Annealing

Q=20    β=1
(c)

4 8 12 16h
0

1

2

3

M
z

Q-SSE
J-SSE

Q=20   β=0.2
(d)

FIG. 7. Simulation results for magnetization vs external mag-
netic field with (a) Q = 2, 4 with β = 32; (b) Q = 8 with β = 16;
(c) Q = 20 with β = 1; and (d) Q = 20 with β = 0.2.
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M
z
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h=12.5 Q-SSE h=12.5 J-SSE

FIG. 8. Typical evolutions of magnetization for the JQ2 model
with Q = 20, β = 0.2. The magnetic fields are h = 4, 9, 12.5.

become larger, especially when Mz > 2. The quality of results
for the Q-SSE method is still good enough. The results for
Q = 8 at β = 16 are shown in Fig. 7(b). For this large value of
Q, even the β become small, the J-SSE method gives incorrect
results in our simulations. It is because the autocorrelation
time is really large for the J-SSE method, the independent
configurations change very slowly. For finite MCSs, the con-
figurations may not be thermalized or we can not get enough
independent configurations if we start with a thermalized con-
figuration. Of course we can use other optimization methods
in the J-SSE method to improve the results, such as the replica
exchange method and the annealing method [16,17]. In this
paper, we adopt the annealing method in the J-SSE method,
which slowly reduces the temperature. We denote this method
as “J-SSE+Annealing”. After annealing, the magnetizations
give the right results. But the error bars are still large. How-
ever, the quality of the results in Q-SSE method is as good as
that of small Q. In Fig. 7(c), we present the results for Q = 20
at β = 1. The value of Q is really large and the temperature
is really high. However, even for this high temperature, the
results of the J-SSE method only keep correct for small mag-
netic field h. While the results for large field are still incorrect.
After applied the annealing technique, the results will be right
but the error bars are also very large. If we raise the model to
a much more higher temperature β = 0.2, the results of the
J-SSE method are finally correct for all calculated magnetic
fields, as shown in Fig. 7(d).

From Fig. 7, we can clearly see that the general J-SSE
method will fail for large Q and low temperature with finite
MCSs. In order to elucidate this conclusion in more detail, we
present the typical evolutions for both the J-SSE method and
the Q-SSE method in Fig. 8. We also present the autocorre-
lation properties later. Figure 8 shows the typical evolutions
of magnetization with 350 MCSs for both the J-SSE method
and the Q-SSE method at Q = 20 on 16 × 16 square lattice.
The inverse temperature chosen in this figure is β = 0.2. We
choose three different magnetic fields h = 4, 9, 12.5 and the
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expectation values of the magnetization for these fields are
around 0.5, 1.5, 2.5 respectively [it can be seen in Fig. 7(d)].
We can clearly see that the evolutions of magnetization is
faster in the Q-SSE method than that in the J-SSE method.
When the external field increases, the evolution in the J-SSE
method will become even slower and it seems the evolution
speed in the Q-SSE method changes very little. In this part,
we have not shown the efficiency of the JQ-SSE method. It
will be presented in the next section via the autocorrelation
times.

C. Autocorrelations

The autocorrelation functions provide direct quantitative
measurement of the efficiency of a Monte Carlo method in
generating the independent configurations. In this part, we
will focus on the autocorrelations. For a quantity O, the nor-
malized autocorrelation function is defined as

AO(t ) = 〈O(i + t )O(i)〉 − 〈O(i)〉2

〈O(i)2〉 − 〈O(i)〉2
(32)

where i and t are Monte Carlo times (we use the unit of
1 MCS). The brackets indicate the average over time i. For
large time separations, the autocorrelation function decays
exponentially as

A(t )
t→∞−−−→ ae−t/τexp , (33)

τexp is the exponential autocorrelation time and a is a constant.
This time is given by the slowest mode of the simulation
to which the observable O couples. At smaller time, usually
other modes contribute and O(t ) behaves no longer purely
exponentially.

Here we also introduce another time: the integrated auto-
correlation time, which is defined as

τint[O] = 1/2 +
∞∑

t=1

AO(t ). (34)

This time is the autocorrelation measure of the greatest practi-
cal utility [18]. In general, these two times are different. Only
if A(t ) is a pure exponential, the two times coincide. In this
paper, we focus on the autocorrelations of magnetizations.

In this part, we not only pay attention to the autocorrela-
tions of magnetizations in the J-SSE and Q-SSE methods, we
also study the autocorrelations in the JQ-SSE method. In the
JQ-SSE method, as mentioned above, the external magnetic
field should be divided into two parts and be combined with
J interactions (Heisenberg interactions) and Q interactions
respectively. The directed-loop updates will be carried out
on both the J and Q bonds. In this method, there is another
freedom: the division ratio. For a magnetic field h on a spin,
we can divide it into two magnetic fields. We denote the
strength of the first field as h j and this field will be combined
to the J interactions. The strength of the second field, which
will be put into the Q interactions, is h − h j . The value of
h j should be 0 � h j � h. We define the division ratio of the
magnetic field as h j/h, which is the ratio of magnetic field
that will be applied to the J interactions. The J-SSE and
Q-SSE methods are two extreme cases: h j/h = 1 for the J-
SSE method, h j/h = 0 for the Q-SSE method.

0 20 40 60
t

0.1

1

A M
z

hj / h=0
hj / h=0.091
hj / h=0.4
hj / h=0.6
hj / h=0.8
hj / h=1

h=12.5

FIG. 9. The normalized autocorrelation function for Q = 20,
h = 12.5, and β = 0.2 on 16 × 16 square lattice.

We firstly present the normalized autocorrelation function
at Q = 20, h = 12.5, β = 0.2 on 16 × 16 square lattice in
Fig. 9. We can clearly find when hj/h = 1 (J-SSE method),
the autocorrelation function is the largest. The ratio of the
smallest autocorrelation function is close to 0 (we can not
determine the exact ratio).

Next in Fig. 10, we present the magnetization integrated
autocorrelation time for Q = 1, 2, 4, 8, 12, 16, 20 and the ex-
ponential autocorrelation time for Q = 20. The integrated
autocorrelation times are calculated from Eq. (34) and we
fit the exponential autocorrelation time from autocorrelation
functions based on Eq. (33). In this figure, we choose dif-
ferent temperatures for different Q. That is because we need
ensure the JQ-SSE methods in all division ratios give the right
results in our finite MCSs (we have verified the results for
all ratios are correct). In addition, we choose three different
magnetic fields for every Q, in which the expectation values of
magnetization are around 0.5,1,1.5 respectively. From Fig. 10,
we can find that the autocorrelation times are the biggest for
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FIG. 10. Integrated autocorrelation time and exponential au-
tocorrelation time of magnetizations versus the division ratio of
magnetic field in the JQ-SSE method for JQ2 model on 16 × 6
square lattice. [(a)–(c)] The integrated autocorrelation for Q = 1, 2,
Q = 4, 8, 12, and Q = 16, 20. (d) The exponential autocorrelation
time for Q = 20.
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h j/h = 1 (J-SSE method) even for Q = 1 and 2. When Q
increases, the autocorrelation times increase significantly at
h j/h = 1. It means the J-SSE method is the worst choice to
do the simulations of the JQ2 model with magnetic field for
these values of Q (Of course, we can argue that when Q is
much smaller, the J-SSE method is the best choice). Although
the autocorrelation for J-SSE method is the largest for small
Q, the autocorrelation times for the J-SSE method are still not
large (τinit < 10 for Q = 1, 2). So the simulations of the J-SSE
method for small Q are still good enough. For large Q, the
smallest autocorrelation times seem to be close to hj/h = 0.
In addition, for a large range of the ratio around 0, the auto-
correlation times do not change too much. We can not clearly
find the best ratio for large Q in this figure. So we suggest
that the Q-SSE method is good enough for simulating the JQ2

model with large Q. We do not need to optimize the ratio in
the JQ-SSE method to find the smallest autocorrelation time,
which is very close to that of h j/h = 0. The results shown in
Fig. 10 are based on (5 − 10) × 105 MCSs for each data point.

VII. SUMMARY

In this paper, we argue that if we study the JQ2 model
with external magnetic field, the general SSE method with
directed loops (J-SSE method) will be good enough for small
Q interactions. However, when the Q interactions become
large and the temperature is low, this general SSE method
may fail with finite MCSs. Here we introduce the modified
SSE methods (the Q-SSE and JQ-SSE methods) to deal with
this problem. These modified methods can really decrease
the autocorrelation times especially for large Q interactions.
Thus it can really speed up the simulations. In addition, we
argue that when doing simulations of the JQ2 model with
large Q, the Q-SSE method is good enough. We do not need
to optimize the ratio hj/h to find the smallest autocorrelation
time in the JQ-SSE method, which is very close to that of the
Q-SSE method.

The principle behind these modified methods is that for the
JQ2 model, the products of operators in the SSE configura-
tions SM not only contain the J operators but also have the Q
operators. The general J-SSE method only make use of the J
operators to do the directed-loop updates. When Q becomes
large, the portion of the J operators in the operator products
will be very small. It means the general method only affect
really small part of the products. The methods introduced
here, consider the main part of the operators (Q-SSE method)
or even all the part of products (JQ-SSE method), which are
much better than the general J-SSE method.

Such methods and idea can be applied to other models,
such the JQ3 model and the CBJQ model. If there are N
types of interactions, we can also divide the magnetic field
into N parts and combine them with every type of interactions
respectively. These methods will certainly speed up the simu-
lations of these models.

In this article, we have not paid attention to the effect of the
constant added to the Hamiltonian and the different solutions
to the directed loop-equations. The three SSE methods all
choose the smallest constant and minimize the bounce proba-
bility. We focus on the efficiency difference when combining
the magnetic fields with different types of operators. The

two treatments of the magnetic field improve the efficiency
significantly.
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APPENDIX A: SOLUTIONS OF THE DIRECTED-LOOP
EQUATIONS

In this Appendix, we will present how to solve the directed-
loop equations in Eqs. (15), (17), (19), (21), (23), (25), (27),
and (29) step-by-step. The solution for the general form of
directed-loop equations has been discussed in Ref. [4]. In the
JQ2 model, there are three equations in every set. It is conve-
nient to label three weights as W1, W2, W3 and W3 � W2 � W1.
The weights in every set can be relabeled in this order and
every set of equations can be written as

W1 = = a11 + a12 + a13,

W2 = = a21 + a22 + a23,

W3 = = a31 + a32 + a33, (A1)

where all ai j should be non-negative and ai j = a ji. The
bounce probabilities are determined by aii, i = 1, 2, 3. As we
want to minimize the bounce probabilities, we can set aii = 0
for i = 1, 2, 3. Then there are three independent unknowns
(a12, a13, a23) and three equations, which make the solution
unique. However, every ai j should be non-negative and we
can find only when W3 � W1 + W2, all the three aii can be 0.
In this condition, the solution is

a12 = a21 = (W1 + W2 − W3)/2,

a13 = a31 = (W1 − W2 + W3)/2,

a23 = a32 = (−W1 + W2 + W3)/2. (A2)

When W3 > W1 + W2, we can always permit one bounce
probabilities not be zero (this is the bounce in the largest
weight W3 configuration). We set a11 = a22 = 0 and a33 =
W3 − W1 − W2 and the solution for the three unknowns is

a12 = a21 = 0, a13 = a31 = W1,

a23 = a32 = W2. (A3)

Based on Eqs. (A2) and (A3), we now solve the eight inde-
pendent sets of equations for the JQ2 model with magnetic
field.

The weights of the first set of equations [Eqs. (15)] are
W1 = 0,W2 = 3hq,W3 = 4hq (we have relabeled the order of
the weight). As W1 + W2 < W3, we can get the solution ac-
cording to Eqs. (A3),

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq,

a12 = = a21 = 0,

a13 = a31 = W1 = 0,

a23 = = a32 = W2 = 3hq. (A4)

045141-10



IMPROVEMENTS TO THE STOCHASTIC SERIES … PHYSICAL REVIEW B 109, 045141 (2024)

This is just the solution shown in Eqs. (16).
The weights of the second set of equations [Eqs. (17)] are

W1 = 0,W2 = 2hq,W3 = 3hq. As W1 + W2 < W3, we get the
solution according to Eqs. (A3),

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq,

a12 = a21 = 0,

a13 = a31 = W1 = 0,

a23 = a32 = W2 = 2hq. (A5)

This is just the solution shown in Eqs. (18).
The weights of the third set of equations [Eqs. (19)] are

3hq, 2hq + 1/4, 1/4. The order of the weight depends on the
value of hq. When hq � 1/12, W1 = 3hq,W2 = 1/4,W3 =
2hq + 1/4. As W1 + W2 � W3, we get the solution according
to Eqs. (A2),

a11 = a22 = a33 = 0,

a12 = a21 = (W1 + W2 − W3)/2 = hq/2,

a13 = a31 = (W1 − W2 + W3)/2 = 5hq/2,

a23 = a32 = (−W1 + W2 + W3)/ = 1/4 − hq/2. (A6)

When 1/12 � hq � 1/4, W1 = 1/4,W2 = 3hq,W3 = 2hq +
1/4. As W1 + W2 � W3, we get the solution according to
Eqs. (A2),

a11 = a22 = a33 = 0,

a12 = a21 = (W1 + W2 − W3)/2 = hq/2,

a13 = a31 = (W1 − W2 + W3)/2 = 1/4 − hq/2,

a23 = a32 = (−W1 + W2 + W3)/ = 5hq/2, (A7)

When 1/4 < hq � 1/2, W1 = 1/4,W2 = 2hq + 1/4,W3 =
3hq. As W1 + W2 � W3, we get the solution according to
Eqs. (A2),

a11 = a22 = a33 = 0,

a12 = a21 = (W1 + W2 − W3)/2 = 1/4 − hq/2,

a13 = a31 = (W1 − W2 + W3)/2 = hq/2,

a23 = a32 = (−W1 + W2 + W3)/2 = 5hq/2. (A8)

When hq > 1/2, W1 = 1/4,W2 = 2hq + 1/4,W3 = 3hq. As
W1 + W2 < W3, we get the solution according to Eqs. (A3),

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq − 1/2,

a12 = a21 = 0,

a13 = a31 = W1 = 1/4,

a23 = a32 = W2 = 2hq + 1/4. (A9)

There are four solutions for the third set of equations under
different conditions. But one can find that Eqs. (A7)–(A9) give
the same solution. That is because under these three condi-
tions, the weights all have the property W1 + W2 � W3, which
means aii = 0. Thus the solution of the unknown is unique.
We set W1 = 1/4,W2 = 2hq + 1/4,W3 = 3hq and summarize

the solutions for Eqs. (19): when hq � 1/2,

a11 = a22 = a33 = 0,

a12 = a21 = 1/4 − hq/2,

a13 = a31 = hq/2,

a23 = a32 = 5hq/2,

when hq > 1/2,

a11 = a22 = 0,

a33 = hq − 1/2,

a12 = a21 = 0,

a13 = a31 = 1/4,

a23 = a32 = 2hq + 1/4. (A10)

This is just the solution shown in Eqs. (20).
The weights of the fourth set of equations [Eqs. (21)] are

W1 = hq(1/4),W2 = 1/4(hq ),W3 = 2hq + 1/4 when hq �
1/4 (hq > 1/4). As W1 + W2 < W3, we get the solution ac-
cording to Eqs. (A3). The value of hq only changes the
order of W1 and W2, which does not change the solution.
We can present the solutions together. We set W1 = hq,W2 =
1/4,W3 = 2hq + 1/4, the solution for this set of equation is

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq,

a12 = a21 = 0,

a13 = a31 = W1 = hq,

a23 = a32 = W2 = 1/4. (A11)

This is just the solution shown in Eqs. (22).
The weights of the fifth and sixth sets of equa-

tions [Eqs. (23) and (25)] are same: W1 = 0,W2 = 1/4,W3 =
1/4. As W1 + W2 � W3, we get the solution according to
Eqs. (A2),

a11 = a22 = a33 = 0,

a12 = a21 = (W1 + W2 − W3)/2 = 0,

a13 = a31 = (W1 − W2 + W3)/2 = 0,

a23 = a32 = (−W1 + W2 + W3)/2 = 1/4. (A12)

This is just the solution shown in Eqs. (24) and (26).
The weights of the seventh set of equations [Eqs. (27)] are

W1 = 0,W2 = hq,W3 = 2hq. As W1 + W2 < W3, we get the
solution according to Eqs. (A3),

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq,

a12 = a21 = 0,

a13 = a31 = W1 = 0,

a23 = a32 = W2 = hq. (A13)

This is just the solution shown in Eqs. (28).
The weights of the eighth set of equations [Eqs. (29)]

are W1 = 0,W2 = 0,W3 = hq. As W1 + W2 < W3, we get the
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FIG. 11. The number of the J bonds (NJ ) and the Q bonds (NQ)
in SSE configurations of the JQ2 model without external field. The
system size is L = 16 and the inverse temperature is β = 16. The
inset shows the ratio of the number of J bonds to the number of Q
bonds.

solution according to Eqs. (A3),

a11 = a22 = 0,

a33 = W3 − W1 − W2 = hq,

a12 = a21 = 0,

a13 = a31 = W1 = 0,

a23 = a32 = W2 = 0, (A14)

This is just the last solution shown in Eqs. (30).

APPENDIX B: THE NUMBER OF THE J AND Q BONDS
IN THE JQ2 MODEL

As mentioned in main text, the Q bonds will appear more
frequently than the J bonds in the JQ2 model, when Q is
large. In Fig. 11, we present simulation results to verify such
statement. We perform SSE simulations to study the proper-
ties of the number of the J bonds and the Q bonds appearing
in the SSE configurations in the JQ2 model without external
field. The system is L = 16 square lattice and the inverse
temperature is β = 16. The strength of the J bonds is set to
1 and the strength of Q bonds ranges from 1 to 30. One can
find that when the value of Q increases, the number of the
J bonds will decrease very slowly and the number of the Q
bonds will increase very fast. The inset in Fig. 11 shows the
ratio of the number of J bonds to the number of Q bonds.
The ratio will decrease to very small value when Q is very
large.

APPENDIX C: RESULTS FOR THE JQ-SSE METHOD

In this Appendix, we present the simulation results for
the JQ2 model at Q = 8 with external magnetic field by the
JQ-SSE method. The inverse temperature is β = 16 and the
system size is L = 16. h j/h is the ratio of magnetic field that
is applied to the J bonds. We use 50 000 MCSs for equi-
libration, 50000 × 20 MCSs for measurement for all h j/h.
When h j/h = 1, it is just the J-SSE method, which has the
largest autocorrelation time. The MCSs used here are not
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FIG. 12. Simulation results for magnetization versus external
magnetic field with Q = 8 at β = 16. hj/h is the ratio of magnetic
field applied into J bonds.

large enough to give the right answer. When h j/h = 0, it’s
the Q-SSE method. We think it gives the right results in
our simulations, as we have proven its correctness in main
text. In Fig. 12, one can find when the ratio h j/h � 0.8, the
magnetization curves are the same as that of hj/h = 0, which
means the JQ-SSE method is right. However, when hj/h is
close to 1, the results diverge from the correct results. The
reason is that for ratio close to 1, the JQ-SSE method is close
to the J-SSE method and the most part of magnetic field is
still applied into the J bonds. Although the autocorrelation
time decreases as the ratio reduces, the autocorrelation times
are still large compared to our MCSs. In addition, even for
h j/h = 0.9, which is close to the J-SSE method, the results
are very close to the right results.

APPENDIX D: RESULTS FOR THE Q-SSE METHOD
AT LARGE Q

In this Appendix, we present simulation results (Fig. 13)
for even large Q strength (Q = 30) at β = 16, 32 via the
Q-SSE method. We can clearly see the step structure of mag-
netization.
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FIG. 13. Simulation results for magnetization versus external
magnetic field with Q = 30 at β = 16, 32.
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