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The eigenstate thermalization hypothesis (ETH) is a successful theory that establishes the criteria for ergodic-
ity and thermalization in isolated quantum many-body systems. In this work, we investigate the thermalization
properties of a spin-1/2 XXZ chain with linearly inhomogeneous interactions. We demonstrate that introduction
of the inhomogeneous interactions leads to an onset of quantum chaos and thermalization, which, however,
becomes inhibited for sufficiently strong inhomogeneity. To exhibit ETH, and to display its breakdown upon
varying the strength of interactions, we probe statistics of energy levels and properties of matrix elements of local
observables in eigenstates of the inhomogeneous XXZ spin chain. Moreover, we investigate the dynamics of the
entanglement entropy and the survival probability which further evidence the thermalization and its breakdown
in the considered model. We outline a way to experimentally realize the XXZ chain with linearly inhomogeneous
interactions in systems of ultracold atoms. Our results highlight a mechanism of emergence of ETH due to
insertion of inhomogeneities in an otherwise integrable system and illustrate the arrest of quantum dynamics in
the presence of strong interactions.
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I. INTRODUCTION

Understanding the thermalization and equilibration in iso-
lated quantum many-body systems has been a central topic
since the birth of quantum mechanics [1,2]. Its growing inter-
est is closely linked to the remarkable progress in the ultracold
atomic experiments [3–5], where advancements in control and
isolation have enabled the coherence in many-body systems
over unprecedented time scales [6,7]. The experiments on
nonequilibrium dynamics have revealed thermalization in the
chaotic quantum systems [8–12], which is inhibited in the
integrable systems [13–16].

Thermalization in generic (quantum-chaotic, noninte-
grable) isolated quantum many-body systems can be ex-
plained by the eigenstate thermalization hypothesis (ETH)
[17,18]. The ETH is usually formulated as an ansatz for ma-
trix elements of physical observables in the eigenbasis of the
Hamiltonian [17–20]. This ansatz guarantees that the local
observables after relaxation can be described by appropriate
ensembles of statistical mechanics, while the fluctuations in
a steady state satisfy the fluctuation dissipation theorem [21].
Recently, the connections between the notions of k designs
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[22], the theory of free probability [23], and ETH were made
explicit [24–26].

The validity of the ETH ansatz has been confirmed in
a wide range of quantum many-body systems, including
spin chains, bosonic and fermionic models, or systems with
electron-photon coupling [27–40]. One-dimensional spin-
1/2 XXZ chain with various types of integrability breaking
terms has become a paradigmatic system for studies of ETH
[41–47]. Introduction of spatial inhomogeneities is an intrigu-
ing way of integrability breaking, especially considering its
relevance to nonequilibrium physics [48–57] and generalized
hydrodynamics [58–63].

In this work, we investigate the eigenstate thermalization
properties of the spin-1/2 XXZ chain with spatially inho-
mogeneous interaction strength; see Fig. 1. The considered
Hamiltonian consists of the spatially uniform hopping terms
and inhomogeneous z-z spin coupling whose strength varies
linearly across the chain. By means of exact diagonalization
(ED), we show that the system is driven from an integrable
point to a quantum chaotic region upon introduction of the
linear variation of the z-z spin coupling. However, when the
inhomogeneity becomes sufficiently strong, it inhibits the
thermalization of the system.

This manuscript is structured as follows. In Sec. II, we de-
tail the XXZ model with spatially inhomogeneous interactions.
In Sec. III, we formulate our predictions about integrability
and thermalization in the system by investigating its level
statistics. Section IV contains a detailed study of ETH and its
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FIG. 1. Schematic representation of the XXZ chain with linearly
varying z-z interactions. The uniform hopping term is denoted by J ,
while �i represents an inhomogeneous z-z coupling whose strength
varies linearly with the spatial position, as depicted by the color
scheme in the figure. Interaction strength is � − θ (� + θ ) at the
leftmost (rightmost) site of the chain.

breakdown in the considered model, with particular attention
devoted to properties of the matrix elements of local operators.
In Sec. V, we demonstrate qualitative changes in the dynamics
of the system in the identified ETH and nonergodic regimes.
Finally, Sec. VI details a blueprint proposal for realization of
the considered model in cold atomic systems. We summarize
our findings and provide an outlook in Sec. VII.

II. XXZ CHAIN WITH SPATIALLY INHOMOGENEOUS
INTERACTION

We consider the spin-1/2 XXZ chain with inhomogeneous
interaction and open boundary conditions (Fig. 1), whose
Hamiltonian can be written as (putting h̄ = 1)

Ĥinho =
N−1∑
i=1

[
J (σ x

i σ x
i+1 + σ

y
i σ

y
i+1) + �iσ

z
i σ z

i+1

]
, (1)

where σα
i represents the Pauli operator of the ith spin in the

α ∈ {x, y, z} direction and N is the length of chain that is
taken to be even. The XXZ spin chain can be mapped via
the Jordan-Wigner transformation to a system of interacting
spinless fermions, with the hopping strength equal to J and
nearest-neighbor density-density interaction strength �i. We
set the hopping strength J = 1 as the energy unit. The strength
of the z-z coupling terms is assumed to vary linearly with the
spatial position as

�i = � + θ
2i − N

N − 2
, (2)

where θ is the slope of the linear dependence characterizing
the strength of inhomogeneity and � represents the average
interaction strength. A homogeneous XXZ chain will be ob-
tained by taking θ = 0, which is a quintessential interacting
integrable model [64,65].

The Hamiltonian Ĥinho in Eq. (1) has the U (1) symme-
try as it conserves the total magnetization along the spin z
direction, [Ĥinho,

∑
i σ

z
i ] = 0. The zero magnetization sector

(
∑

i〈σ z
i 〉 = 0) is the largest sector that maintains the Z2 spin

inversion symmetry (with operator
∏N

j=1 σ x
j being conserved).

In our investigation, we focus on the even-Z2 sector within∑
i 〈σ z

i 〉 = 0 and resolve all the symmetries of the Hamil-
tonian [21]. The length of chain we consider here is up to
N = 20, where the dimension of the Hilbert space of the
considered sector is D = N!/[(N/2)!]2/2 = 92378.

III. INTEGRABLE-CHAOTIC-NONERGODIC
CROSSOVERS DRIVEN BY SPATIAL INHOMOGENEITY

OF INTERACTIONS

A. Distribution of level spacing

We first investigate the distribution of energy level spacing
P(s) with s the spacing between neighboring unfolded levels.
The spectral unfolding is performed so that the mean level
spacing is unity [66,67], allowing one to extract short-range
spectral correlations of many-body systems, such as P(s), in
a robust manner [68]. The distribution P(s) exhibits distinct
characteristics depending on whether the system is chaotic or
integrable.

For an integrable system, the eigenvalues are uncorrelated
and crossings between energy levels are not prohibited, which
leads to the Poissonian distribution of level spacings, i.e.,
PP(s) = exp(−s) [69–71]. In contrast, the energy levels in a
quantum chaotic system are correlated and the crossings are
avoided as level repulsion emerges. Consequently, the level
statistics follow the Wigner-Dyson distribution according to
the random matrix theory [72]. In our model, which preserves
the time-reversal invariance, the appropriate symmetry class is
the Gaussian orthogonal ensemble (GOE) and the correspond-
ing Wigner surmise reads PWD(s) = (πs/2) exp(−πs2/4).

The unfolding procedure mentioned above is performed
by introducing a cumulative spectral function N (E ) =∑

n �(E − En), where � represents the unit step function. We
fit N (E ) with the polynomials up to 12th order. For robustness,
we consider 80% of the energy levels in the regions with high
density of states.

The level spacing distributions P(s), for several values of
the slope θ , are shown in Fig. 2, where we take N = 18 and
� = 1. For the homogeneous case with θ = 0, P(s) matches
accurately the Poissonian distribution (depicted by the red
dash line). As the inhomogeneity strength increases, P(s)
gradually changes and shows an excellent agreement with the
Wigner-Dyson distribution (depicted by the blue solid line)
at θ ∼ 0.5 [Figs. 2(a)–2(d)]. This indicates the presence of
level repulsion and onset of applicability of random matrix
statistics. As θ continues to increase, P(s) gradually changes
back to the Poissonian distribution [Figs. 2(e)–2(h)]. These
results suggest that sufficiently strong inhomogeneity (θ � 8)
drives the system from quantum chaos back to integrability.

The observed behavior can be readily understood. At θ =
0, the system (1) is integrable. The multiple conserved quan-
tities break the considered D dimensional sector of Hilbert
space into smaller subspaces, giving rise to Poissonian level
statistics. Introduction of inhomogeneous interactions, θ > 0,
breaks the integrability of the Hamiltonian, giving rise to GOE
level statistics for θ of the order of unity. In contrast, for θ �
1, the z-z coupling term dominates in the Hamiltonian Ĥinho

and the hopping term is not sufficiently strong to delocalize
the eigenstates in the eigenbasis of σ z

i operators, giving rise to
Poissonian level statistics.

B. Ratio of consecutive level spacing

To understand better the system size dependence of the
observed crossovers as well as to pinpoint the roles of �

and θ , we investigate the level spacing ratio [73,74] that is

045139-2



EIGENSTATE THERMALIZATION AND ITS BREAKDOWN … PHYSICAL REVIEW B 109, 045139 (2024)

FIG. 2. Level spacing distribution P(s) of the unfolded energy spectra for the inhomogeneous XXZ model [see Eq. (1)]. The red dash
and blue solid lines correspond to the Poisson and the Wigner-Dyson distribution, respectively. The results shown are for chains with open
boundary conditions and N = 18, � = 1, even-Z2 within

∑N
i=1〈σ̂ z

i 〉 = 0 sector. The 19448 eigenvalues in the middle of the spectrum are used
for the calculation.
defined as

r = min

{
rn,

1

rn

}
, rn = En+1 − En

En − En−1
, (3)

where {En} are sorted eigenvalues of Ĥinho. This ratio serves
as another important signature of quantum chaos and it does
not require the unfolding procedure.

Its average value 〈r〉, computed from all eigenenergies, is
known to be approximately 〈r〉 = rGOE � 0.5307 for GOE
level statistics and 〈r〉 = rPS � 0.3863 for Poisson level statis-
tics, respectively.

We begin by studying the integrable to chaotic crossover
observed at small values of θ . To that end, we fix � = 0.5
and plot 〈r〉 as a function of θ for system sizes 14 � N � 20,
as shown in the top panel of Fig. 3. At each N , we observe
that the average level spacing ratio grows from rPS to rGOE

with the increase of θ . Notably, this crossover shifts towards
smaller values of θ with increasing N , so that the θl , i.e., the
slope at which the level spacing ratio becomes close to the
GOE value 〈r〉 = 0.525, shifts exponentially with N towards
smaller values of θ , see the inset in the top panel of Fig. 3. This
behavior indicates that in the large system size limit, N � 1,
the system (1) possesses an integrable point at θ = 0 and is
quantum chaotic for 0 < θ < θr , where θr is the inhomogene-
ity at which the z-z coupling term starts to dominate and the
systems become nonergodic.

To probe the latter behavior, we plot 〈r〉 for larger values
of θ and several system sizes N ; see the bottom panel of
Fig. 3. The interval of θ in which 〈r〉 is close to GOE (say,
bigger than 0.525) extends towards larger and larger values of
θ with increasing N . Notably, for θ > 5.5, the 〈r〉(θ ) curves
for different N approximately collapse on top of each other.
This system size dependence of 〈r〉 is immediately reminis-
cent of phenomenology observed for the XXZ spin chain with
disordered on-site magnetic field [73,75,76]. Understanding
of implications of the numerical results for the fate of the
disordered system in the thermodynamic limit remains an
outstanding challenge in the field of many-body localization
(MBL) [77–81]. Indeed, a crossover between 〈r〉 = rGOE and

FIG. 3. Average ratio of consecutive level spacings, 〈r〉, as the
function of inhomogeneity θ (a) from 0.01 to 1 and (b) from 1 to 10.
We take � = 0.5 and N = 14, 16, 18, 20. Considering the finite-size
effects, the chaotic region (the yellow region in Fig. 4) is identified
by 〈r〉 > 0.525. The inset of (a) shows the fitting of the left boundary
θl of the chaotic region, where we have 〈r〉 � 0.525. The θc � 5.5
in (b) is the collapsing point with 〈r〉 � 0.42. The inset of (b) shows
the fitting of the right boundary θr of the chaotic region. To ensure
smoothness in the curve, each blue point for N = 14 is given by the
average of 10 simulations within its closest range of two neighboring
θ values.
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FIG. 4. Average ratio of consecutive level spacings 〈r〉 for the
inhomogeneous XXZ chain [Eq. (1)], the system size N = 18 with
open boundary condition, as a function of the inhomogeneity θ and
the average strength �. The black (blue, purple) dashed line is the
contour of 〈r〉c � 0.52 for the system with N = 18(16, 14). The
red solid line represents θ = 0, showing the integrable limit of the
inhomogeneous XXZ chain.

〈r〉 = rPS does not necessarily signify ergodicity breaking in
the large N limit [82]. One possible scenario for the XXZ
chain with inhomogeneous interactions consistent with our
results is that there exists a finite θc (for instance, θc ≈ 5.5)
such that for θ < θc the system becomes quantum chaotic,

〈r〉 N→∞−→ rGOE, while for θ > θc the system is nonergodic,

〈r〉 N→∞−→ rPS. Based on the ED data we cannot, however,
exclude other scenarios for the N → ∞ limit. Nevertheless,
the observed behavior 〈r〉 has significant implications for the
dynamics of the XXZ chain with inhomogeneous interactions
at finite times and system sizes. In Sec. V, we demonstrate
that the uncovered nonergodic regime has the properties akin
to the Stark many-body localization [83–87].

To understand the interplay of � and θ we plot 〈r〉 for
N = 18 in Fig. 4 on the �, θ plane. Note that we only focus on
the positive θ and � since the plot would be nearly centrosym-
metric about the origin (θ = 0 and � = 0). For a negative θ ,
for instance, one can introduce a unitary reflection operation
along the chain, which effectively transforms the system back
to the positive θ without altering the eigenenergies. For a
negative �, one can apply exp{∑ν i π

2 σ z
2ν}, a π/2 rotation

along the spin-z direction on the even sites. This operation
changes the sign of J while preserving the interactions along
z direction. Although this adjustment could introduce a minus
sign to the eigenenergies, it does not impact the averaged level
spacing ratio according to Eq. (3).

The system is integrable (or nonergodic) when θ is small
(or large) enough, as confirmed for various values of � in
Fig. 4. In the former limit, the system reduces to the typical
homogeneous XXZ chain. In the latter limit, the system is
dominated by the z-z interactions.

When the inhomogeneity θ is comparable to the hopping
term, the system is chaotic, which is consistent with the
suggestion that, in finite systems, quantum-chaotic properties
usually emerge when there are no simplifying descriptions of

the model that would emerge if one of the terms in the Hamil-
tonian is dominating [36]. Notably, as � increases, the range
of θ in which the system is chaotic shrinks, indicating the sup-
pression of chaos and thermalization by the z-z interactions.
For a sufficiently large �, the system is nonergodic for all θ .
This behavior is analogous to Hilbert space fragmentation in
clean systems [88,89] associated with the strong presence of
quasiconservation laws due to strong interactions [90–92] and
observed experimentally in the Hubbard model [93,94].

IV. EIGENSTATE THERMALIZATION

In the previous section, we investigated the signatures of
quantum chaos, which is one of the consequences of ther-
malization in the inhomogeneous XXZ chain. We will now
investigate directly the eigenstate thermalization hypothesis
(ETH) by exploring the statistics of the matrix elements of
local operators in the eigenstates of (1). The properties of
matrix elements of the inhomogeneous interacting XXZ chain
in the nonergodic regime will be presented for comparison and
to enhance our understanding of the latter regime [43,95].

The ETH ansatz for the matrix element of an observ-
able, denoted as Onm = 〈n|O|m〉 in energy eigenstates (with
Ĥ |m〉 = Em|m〉), can be written as

Onm = O(Ē )δnm + e−S(Ē )/2 fO(Ē , ω)Rnm, (4)

with Ē = (En + Em)/2 and ω = Em − En. Here, S(Ē ) denotes
the thermodynamic entropy at the energy Ē equal to the log-
arithm of the density of states [96]; O(Ē ) and fO(Ē , ω) are
smooth functions; Rnm is a Gaussian-distributed variable with
zero mean and unit variance.

The first term in Eq. (4) ensures that when the energy
fluctuations in the initial state are subextensive, the equili-
brated result can be described using statistical mechanical
ensembles. The factor e−S(Ē )/2 in the second term suggests
that the off-diagonal matrix elements decrease exponen-
tially with system size. Up to random fluctuations, these
elements are characterized by a smooth function fO(Ē , ω)
[21,29,33,36,43,97] that carries crucial information on the
quantum thermalization and fluctuation dissipation relations
[21,29,38,98–102]. It is worth noting that Rnm is similar to
the random matrices in the GOE. However, the higher-order
correlations are not described by GOE or the random matrix
theory [45,100,103–106]. Here, our primary target is to probe
the nature of the distribution of matrix elements, while the
higher-order statistical correlations remain beyond the scope
of this work.

We consider the matrix elements of two operators, T̂ and
Ẑ . T̂ is the next-nearest-neighboring “kinetic” energy per site

T̂ = 1

N

N−2∑
i=1

(
σ x

i σ x
i+2 + σ

y
i σ

y
i+2

)
. (5)

Ẑ contains the nearest-neighboring z-z interactions with a
spatially inhomogeneous coefficient, which is defined as

Ẑ = 1

N

N−1∑
i=1

�̃iσ̂
z
i σ̂ z

i+1. (6)

045139-4



EIGENSTATE THERMALIZATION AND ITS BREAKDOWN … PHYSICAL REVIEW B 109, 045139 (2024)

FIG. 5. Diagonal matrix elements of T̂ [(a), (b)] and Ẑ [(c),
(d)] in the eigenstates of ĤInho in the quantum chaotic regime (� =
1, θ = 1) [(a), (c)] and in the nonergodic regime (� = 1, θ = 8) [(b),
(d)]. The black lines represent the microcanonical averages (within
windows of δεn = 0.01) for the largest chain size (N = 20). The
insets exhibit the scaling behavior of |δOnn| = |Onn − On+1n+1| (for
O = T, Z) with respect to ND [the dashed lines indicate the line
∝(ND)−1/2]. The averaging is performed over the central 20% of
the eigenstates in the Hamiltonian described by Eq. (1) with N from
10 to 20.

The coefficient �̃i takes the same expression as Eq. (2) with
� = 1 and θ = 1. We expect that the specific choices of
operators do not affect our main conclusions.

A. Diagonal matrix elements

Figures 5(a), 5(b) and 5(c), 5(d) show the diagonal ma-
trix elements Tnn = 〈n|T̂ |n〉 and Znn = 〈n|Ẑ|n〉, respectively.
These results are obtained in the even-Z2 sector within the∑

i〈σ z
i 〉 = 0 sector (see Sec. II). The matrix elements are plot-

ted as functions of the energy density, defined as εn = (En −
Emin)/(Emax − Emin), where En represents the nth eigenvalue
of (1), while Emax and Emin are the highest and lowest eigen-
values.

In the quantum chaotic regime, at � = θ = 1, we observe
a decrease of the support of both Tnn and Znn around the εn

away from the edges of the spectrum as the system size N
increases [see Figs. 5(a) and 5(c)]. Meanwhile, an exponential
decay of the average strength of the eigenstate-to-eigenstate
fluctuations, |δTnn| [34,36,43,47,107,108], is shown in the in-
sets of Fig. 5(a). Similar observations are shown in the inset of
Fig. 5(c) for δZnn. Thus the diagonal matrix elements, up to the
exponentially decaying fluctuations, follow a smooth function

of energy which agrees with the microcanonical predictions
of these observables as shown by the black solid lines in the
main panels of 5(a) and 5(c). These results are also consistent
with the ETH, regardless of whether the observable is homo-
geneous (T̂ ) or not (Ẑ).

In the nonergodic regime, at � = 1, θ = 8 [see Figs. 5(b)
and 5(d)], we observe that the support of distributions of
Tnn and Znn remains wide and does not shrink with the
system size N . The insets also show that the eigenstate-to-
eigenstate fluctuations exhibit a very slow or even no decay
as N increases. This wide and nonshrinking support indicates
the absence of diagonal eigenstate thermalization for these
observables in the nonergodic inhomogeneous XXZ chain.
This observation is consistent with Poissonian level statis-
tics of the system and shows that the model violates the
ETH.

B. Off-diagonal matrix elements

We now turn to the off-diagonal matrix elements of ob-
servables Tnm ≡ 〈n|T̂ |m〉 and Znm ≡ 〈n|Ẑ|m〉 in the energy
eigenbasis and focus on the second term of the ETH ansatz
[Eq. (4)]. Since T̂ and Ẑ are averaged local operators, the ETH
ansatz for the off-diagonal matrix elements of a single local
operator should be modified to [43,47,109,110]

Onm = e−S(Ē )/2

√
N

fO(Ē , ω)Rnm. (7)

We focus on the region with Ē � 0, which corresponds to the
“infinite-temperature” region as S(Ē ) � ln D.

Figure 6 illustrates the distribution of the off-diagonal
matrix elements |Tnm|2 and |Znm|2 using normalized 2D his-
tograms, along with the coarse-grained averages |Tnm|2 and
|Znm|2 as a function of ω. These averages correspond to the
variances of the off-diagonal matrix elements as Tnm = Znm =
0. In the chaotic regime (� = θ = 1), the variances change
smoothly with ω [43,47] [see Figs. 6(a) and 6(c)]. Both the
homogeneous observable T̂ and inhomogeneous Ẑ exhibit a
slow decay at the intermediate values of ω and a relative rapid
decay at larger ω. Nearly perfect collapses of variances for
different system sizes are demonstrated, indicating that the
variances of the off-diagonal matrix elements satisfy |Onm|2 ∝
(ND)−1 for O = T, Z . These results are in full agreement with
the ETH [21,43,45,47].

For our inhomogeneous XXZ chain in the nonergodic
regime, Figs. 6(b) and 6(d) show the distributions of the
off-diagonal matrix elements and their coarse-grained aver-
ages. Remarkable differences are observed in comparison
to the chaotic region. First, the overall dispersion is much
larger than that at the quantum-chaotic points, consistent
with the previous results [43,47]. Second, the coarse-grained
averages (|Onm|2) at a nonergodic point do not evidently
show the trend to drop as ω increases and change nons-
moothly with ω. Thirdly, we find no data collapsing for
different system sizes N . These differences between in-
tegrability and chaos in our inhomogeneous system are
inconsistent with the ETH. Note that, for the conventional
homogeneous integrable XXZ model, the off-diagonal matrix
element variances behave smoothly and the data collapse
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FIG. 6. Normalized 2D histograms of the off-diagonal matrix
elements and the corresponding coarse-grained average of T̂ [(a),
(b)] and Ẑ [(c), (d)] for different chain sizes as a function of ω.
Panels (a), (c) correspond to the nonintegrable point of the inho-
mogeneous XXZ model with parameters � = 1, θ = 1, while panels
(b), (d) present results for the nonergodic point with � = 1, θ = 8.
The matrix elements were computed within a small energy window
around Ē � 0, the center of the spectrum, with a width of 0.075ε,
where ε = Emax − Emin. The coarse-grained averages in ω were cal-
culated using windows of width δω = 0.1.

for different system sizes, which are similar to its chaotic
counterpart [43,44,46,47].

To test the normality of the distribution of the off-diagonal
matrix elements, we evaluate the frequency-dependent ratio

�Ô(ω) = |Onm|2/|Onm|2. (8)

This ratio is equal to π/2 when Onm obeys the Gaussian
distribution with zero mean [43]. Figure 7 illustrates �T̂ (ω)
and �Ẑ (ω) for the inhomogeneous XXZ chain. In the chaotic
regime [θ = 1; see Figs. 7(a) and 7(c)], the ratios are close
to π/2 at the intermediate frequencies and deviate from π/2
for lower and higher frequencies. The deviations are caused
by the finite-size effects and are suppressed by increasing
the system size N . The presented results indicate that the
distribution of the off-diagonal matrix elements Tnm and Znm

is the Gaussian distribution in a wide frequency range for
sufficiently large N , consistently with the prediction of ETH.

In contrast, the behaviors of the ratios for the nonergodic
inhomogeneous chain (θ = 8) are strongly affected by the sys-
tem size N [see Figs. 7(b) and 7(d)]. The value deviates further
from π/2 as N increases, indicating that the distribution of
off-diagonal matrix elements Tnm and Znm is not Gaussian.

FIG. 7. �Ô(ω) [see Eq. (8)] for T̂ [(a), (b)] and for Ẑ [(c), (d)]
in the nonintegrable inhomogeneous XXZ chain with � = 1, θ = 1
[(a), (c)] and the nonergodic one with � = 1, θ = 8 [(b), (d)]. In
(a) and (c), the horizontal line denotes π/2. The matrix elements
were computed within a narrow energy window of width 0.075ε,
where ε = Emax − Emin. The coarse-grained averages were calculated
using a window size of δω = 0.1.

The distributions of off-diagonal matrix elements near zero
frequency are depicted in Fig. 8. In the chaotic regime [θ = 1,
panels (a) and (c)], the reliability of ETH is confirmed by the
remarkable agreement with the Gaussian distribution. Addi-
tionally, comparing the case of � = 0 with � = 1 (see the
insets), we find that the agreement with Gaussian distribution
is better for � = 0. Nevertheless, both distributions tend to-
wards a Gaussian distribution as the system size increases, as
supported by Fig. 7. In the nonergodic regime [θ = 8, panels
(b) and (d)], the ln |Onm| distribution has a skewed normal-like
shape as typically observed in the integrable XXZ model [43],
even though the overall frequency behavior depicted in Fig. 6
is different.

V. DYNAMICS

The results shown above concern the matrix elements of
local operators, which demonstrate the ETH behavior of the
inhomogeneous XXZ spin chain. In this section, we explore
the thermalization and ergodicity breaking in the system by
investigating time evolution of the entanglement entropy and
the survival probability, of which both are relevant to the
quench experiments with quantum simulators.

A. Entanglement entropy

We first investigate the time evolution of the entanglement
entropy for a bipartition of the chain into two halves. The
entanglement entropy at the time t is defined as

S(t ) = − Tr [ρ̂R(t ) ln ρ̂R(t )], (9)
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FIG. 8. Probability distributions P(Onm ) for observables T̂ and Ẑ
[(a), (c)] for quantum chaotic Hamiltonian with θ = 1, � = 0 (θ =
1, � = 1) in the main panel (inset), along with Gaussian distributions
(dash lines) with the same mean and variance. We consider the eigen-
pairs around Ē ≈ 0 within a narrow energy window of width 0.075ε,
where ε = Emax − Emin, and ω < 0.1. The probability distributions
P(ln |Onm|) of the matrix elements of T̂ and Ẑ , respectively, along
with the log-normal distributions (dash line), are shown in panels
(b) and (d) for the nonergodic Hamiltonian with θ = 8 and � = 0.

where ρR(t ) represents the reduced density matrix at the time t
after tracing over the degrees of freedom residing in one of the
halves of the chain. Here, as the initial states, we consider the
product states, where the spin on each site is drawn randomly
to be oriented either up or down in the z direction.

The behavior of S(t ) for different choices of � and θ is
illustrated in Fig. 9. The results are averaged over 103 time
evolutions with different initial product states. In (a), we show
the S(t ) in the chaotic region (� = 0 and θ = 1) for various
system sizes ranging from N = 8 to 16. There is an early-time
ballistic linear growth of S(t ) that persists to longer times with
increasing N [111]. Subsequently, the growth of S(t ) even-
tually saturates at the Page value S = N/2 ln 2 − 1/2 [112]
up to an O(1) correction associated with the symmetry of
Ĥinho [113,114]. These results indicate the ergodic dynamics,
implying the occurrence of thermalization.

In Fig. 9(b), we compare the ergodic dynamics observed
for � = 0, θ = 1 with the nonergodic dynamics that arise
at large θ . In the nonergodic regime, at � = 0, θ = 8, the
entanglement entropy exhibits logarithmic growth at long
times, S(t ) ∼ ln(t ). This logarithmic behavior of S(t ) in our
inhomogeneous nonergodic XXZ spin chain resembles the
observations in the MBL systems, where S(t ) grows log-
arithmically with time [115–119]. Interestingly, increasing
either θ in the inhomogeneous XXZ chain or � in the ho-
mogeneous chain would have a similar effect which, in the
case of MBL systems, stems from the presence of localized
integrals of motion [120–123]. This observation suggests po-

FIG. 9. (a) Evolution of entanglement entropy S(t ) in the chaotic
region (� = 0 and θ = 1) with different system sizes N . The black
dashed line represents the fitting at short times [t O(100)]. The
asymptotic saturation values of S(t ) for large t are indicated by
the Page values (see the horizontal dashed lines). (b) The S(t ) in
the system with various �]apos;s and θ ’s. See the analyses in the
main text. Note each data point in this figure is the average over the
simulations from about 103 distinct initial states.

tential connections between the phenomenology of MBL and
the dynamics of systems with shattered Hilbert space due to
significant z-z interactions.

B. Survival probability

To further probe the dynamics of the XXZ spin chain with
inhomogeneous interactions and to highlight the memory ef-
fects occurring in the nonergodic regime, we consider the
survival probability of the initial state is defined as

P(t ) = |〈ψ (0)|e−iĤinhot |ψ (0)〉|2, (10)

where ψ (0) is the initial state and e−iĤinhot is the time evolution
operator for our system. Alternatively, the survival probabil-
ity can also be expressed as the norm square of the Fourier
transformation of the local density of state (LDOS), obeying

P(t ) =
∣∣∣∣
∫

dE ρ(E )e−iEt

∣∣∣∣
2

, (11)

where the LDOS is given by ρ(E ) = ∑
n |Cn|2δ(E − En)

[with Cn = 〈En|ψ (0)〉 and |En〉 the nth eigenstate of Ĥinho].
Figure 10 shows the survival probability P(t ) averaged over
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FIG. 10. (a) Decay of the survival probability P(t ) for various θ

with � = 0 and N = 20. The dotted line illustrates a Gaussian decay
with σ (the variance of the LDOS with θ = 1). The dash-dotted line
is proportional to t−2. Each curve is given by the average over 103

different initial states. (b) Survival probability multiplied by Hilbert
space dimension, P(t )D, as function of time in the ETH regime, � =
0, θ = 1. (c) Persistent decay of the survival probability P(t ) at the
crossover between ETH and nonergodic regions.

103 initial random product states polarized in z direction for
different values of θ ranging from 1 to 9, with fixed � = 0.

In the chaotic region [see as illustrated by the results for
θ = 1–3 in Fig. 10(a)], the decay is Gaussian for the early time
[124–127]. This suggests that the LDOS is Gaussian-shaped,
i.e., the coefficients Cn do not add any specific structure on
top of the Gaussian density of states at large energy scales.
Subsequently, the decay of P(t ) changes to a power law and
eventually saturates at a value that is exponentially small in
the systems size N [128,129], as shown in Fig. 10(b). This
behavior signals occurrence of thermalization in the system.

With increasing inhomogeneity strength θ , we observe a
significant slowdown of the decay of the survival probability.
Upon entering into the nonergodic, nonergodic region, for θ >

4, we observe only a residual power-law decay of P(t ) with
the exponent that decreases rapidly with θ . We have checked
that the survival probability at large times is decreasing slower
than exponentially quickly with system size in this regime
(data not shown). While our results in the nonergodic region of
the inhomogeneous XXZ spin chain demonstrate the memory
of the initial state at the considered system sizes N and time
scales t , our numerical data are insufficient to decide whether
this behavior persists in the asymptotic limit of large t and N .
The decay of survival probability is slow, but the decreasing
of P(t ) tends to be faster with increasing N even at the largest
values of θ considered here. This behavior is especially well

pronounced in the region intermediate between the ETH and
nonergodic regimes, as illustrated in Fig. 10(c).

The uncovered features of time evolution in the XXZ spin
chain with inhomogeneous interactions are similar to the be-
havior of strongly disordered many-body systems [130,131]
ultimately preventing us from distinguishing a regime of very
slow thermalization from ergodicity breaking phenomenon in
the asymptotic limit t → ∞, N → ∞ [132].

VI. EXPERIMENTAL IMPLEMENTATION

The experimental realization of the XXZ model presented
in Eq. (1) can benefit from recent advances in atomic sys-
tems and waveguide QED. In particular, the spin degree of
freedom is mapped to two metastable states of the atoms,
whose position can be optically controlled with the use of
optical lattices or atomic tweezers. Spin exchange naturally
appears when atomic dipolar interactions are strong enough
to compete with the finite lifetime (τ ) of their internal levels
(Jτ � 1). This is the case of magnetic atoms in short optical
lattices, where single atom addressing becomes challenging
due to the diffraction limit and new strategies are being put
into place [133]. Another emergent platform consists of atoms
coupled to waveguides, where spin exchange can be mediated
by exponentially localized photons emitted into the fiber, and
additional control fields can be used to engineer the desired
XXZ interactions [134]. In this open-quantum system, other
additional terms not conserving the number of excitations
would enter as well, though [135].

An alternative consists of using Rydberg atoms, where
the strength of dipolar interactions scales with the quantum
number n of the valence electron as n4, leading to strong
forces even for typical atomic separations of r ∼ 1 µm. While
the resulting spin-exchange terms are of the form XX, the
XXZ Hamiltonian can be engineered in a Floquet manner by
appropriately rotating the spin axis at regular time intervals, as
it has been experimentally realized in [133]. Single-atom ad-
dressing can then be used to modulate the desired linear tilt �i

in the σ z
i σ z

i+1 term of each atom in the array in the regime 0 �
� ± θ � 2J , where both the chaotic and nonergodic regimes
can be accessed. Using randomized measurements one can
extract arbitrary observables [136], including the entangle-
ment entropy of the chain [137]. Following this approach,
dipolar interactions decay polynomially as r−3 and the role
of next-nearest-neighbor interactions (which are one order of
magnitude weaker than the nearest-neighbor ones) will be the
subject of future work.

VII. SUMMARY AND PERSPECTIVE

Our work extends the explorations of the interplay of ETH
and quantum chaos with ergodicity breaking to the systems
with linearly inhomogeneous interactions. We demonstrate
that insertion of a suitable inhomogeneity of the z-z interac-
tions leads to the onset of quantum chaos in the spin-1/2 XXZ
chain, while a sufficiently large inhomogeneity restores the
integrability of the system. While our results hold for a clean
system, similar phenomenology can be found also in systems
with disordered interactions; see [138–141].
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To support our conclusions, we probe level statistics of the
inhomogeneous XXZ spin chain and study statistical proper-
ties of matrix elements of local observables in eigenstates of
the system. In the quantum chaotic regime, the support and
average eigenstate-to-eigenstate fluctuations of the diagonal
elements vanish exponentially with the system size. Further-
more, the off-diagonal elements follow a Gaussian distribu-
tion and their variances exhibit a well-defined smooth function
| fO(Ē � 0, ω)|2 with respect to the frequency ω. These results
are fully consistent with the ETH. In contrast, the system ex-
hibits essentially different behavior in the nonergodic regions
with strong inhomogeneity. The variances of off-diagonal ma-
trix elements are not anymore the smooth function of energy.
Notably, the observed behavior is also different from other
integrable models such as the homogeneous XXZ chain.

We also investigate the dynamics of the entanglement en-
tropy and survival probability, both of which can be probed in
quench experiments with quantum simulators. In the chaotic
region, we find a ballistic spreading of entanglement entropy
and an abrupt decay of the survival probability. These results
indicate the ergodic dynamics, implying the occurrence of
thermalization. Conversely, in the nonergodic region with the
large inhomogeneity, entropy exhibits logarithmic growth and
the survival probability remains significant even at longer
times, indicating the presence of the memory in the system.
This closely resembles the observations for the strongly dis-
ordered MBL phase and stems from Hilbert space shattering
due to strong interactions in the system.
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