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Magnetic topological insulators in the quantum anomalous Hall regime host ballistic chiral edge channels.
When proximitized by an s-wave superconductor, these edge states offer the potential for realizing topological
superconductivity and Majorana bound states without the detrimental effect of large externally applied magnetic
fields on superconductivity. Realizing well-separated unpaired Majorana bound states requires magnetic topo-
logical insulator ribbons with a width of the order of the transverse extent of the edge state, however, which is
expected to bring the required ribbon width down to around 100 nm. In this regime, it is known to be extremely
difficult to retain the ballistic nature of chiral edge channels and realize a quantized Hall conductance. In this
paper, we study the impact of disorder in such magnetic topological insulator nanoribbons and compare the
fragility of ballistic chiral edge channels with the stability of Majorana bound states when the ribbon is covered
by a superconducting film. We find that the Majorana bound states exhibit greater robustness against disorder
than the underlying chiral edge channels.
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I. INTRODUCTION

The realization of Majorana bound states (MBSs) and non-
Abelian particle exchange statistics would be a watershed
moment in condensed matter physics and usher in the era
of intrinsically fault-tolerant quantum computing [1–3]. The
leading platforms for hosting MBS comprise s-wave super-
conductors (SCs) such as Nb and Al coupled with nanowires
of strong spin-orbit III-V semiconductors (InAs, InSb) [4],
or V-VI and III-VI topological insulators (TIs) (BiSbTe,
HgTe) [5,6]. While electron mobility in III-V nanowires sug-
gests disorder can hamper reliable MBS formation [7], TI
nanoribbons host topological surface states (TSSs) whose in-
nate immunity to bulk disorder could boost MBS stability
[6,8–10]. Chiral edge channels (CECs) that form when TIs
incorporate magnetic atoms leading to the quantum anoma-
lous Hall (QAH) effect [11–14] are particularly attractive for
obtaining ballistic transport without external magnetic fields.
Delocalized chiral Majorana edge modes in millimeter-scale
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QAH devices [15,16] have proved challenging to proximitize
and detect [17]. Pristine quasi-one-dimensional (quasi-1D)
magnetic TI nanoribbons (MTINRs) with out-of-plane fer-
romagnetism and proximity-induced superconducting pairing
[18,19] are amenable to detection with conventional tunneling
spectroscopy [20] and further incorporation within advanced
qubit control architectures [21–23]. Understanding the precise
role of disorder, however, is crucial. In this paper, we study
how disorder in MTINRs influences the emergence and ro-
bustness of quasi-1D topological superconductivity and the
stability of MBSs.

II. SETUP

Figure 1(a) shows a schematic of the system under consid-
eration: a MTINR with width W that is covered by a supercon-
ducting film over a length L. To enable tunneling spectroscopy
we include a 100-nm-long normal region at one end of the
MTINR. When the MTINR is in the single-channel regime
with a single pair of counterpropagating CECs (referred to
as the CEC phase and corresponding to the QAH regime for
wide MTI ribbons) that get coupled by a proximity-induced
superconducting pairing potential �, a nontrivial gap opens
with unpaired MBSs at opposite ends of the proximitized
section [19]. In order to open a proximity-induced spec-
tral gap Egap, the wave functions of the counterpropagating
CECs on opposite edges of the ribbon must overlap across the
SC-MTI interface (i.e., the top surface in our setup). Unlike
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FIG. 1. (a) Schematic of the MTINR setup: (top) proximitized MTINR with MBSs at opposite ends (MBS wave function density
shown above); (middle) a spatially correlated electrostatic disorder profile; (bottom) interedge scattering of CECs. (b) The spectral gap in
a proximitized 40-nm-wide MTINR as a function of magnetization Mz and chemical potential μ, with trivial (nontrivial) regions indicated by
a gray (red) color scale, delineated with green boundaries. (c) The spectral gap and chemical potential window of the proximitized CEC phase
as a function of magnetization Mz for different widths of the MTINR. (d) A Gaussian distribution for fluctuations of the MTINR spectrum
due to electrostatic disorder, with relevant energy scales (proximity-induced spectral gap Egap and extent of the CEC phase �μCEC) indicated.
(e) Distributions of normal-state and zero-bias tunneling conductance over an ensemble of disordered MTINRs.

nonchiral III-V and undoped TIs, where spatial colocation
of particle and hole states makes it straightforward to ob-
tain a spectral gap Egap ∼ |�|, the MTINR width must be
comparable to the characteristic width of the CEC, ξCEC ≈
h̄vD/EQAH ∼ 10–100 nm for EQAH ∼ 3–30 meV [24], where
EQAH is the QAH gap that results from the interplay of the
magnetization and hybridization of top and bottom surface
states [11], and vD ∼ 4.5 × 105 m/s is the Dirac velocity of
the (M)TI surface-state spectrum. If the ribbon width signif-
icantly exceeds this ∼10–100 nm length scale, the overlap
and spectral gap will be exponentially suppressed. Thus, the
central question for the MBS platform based on MTINRs
in the CEC regime is whether sufficiently narrow MTINRs
can be realized with enough CEC overlap such that a sizable
proximity-induced gap can be opened, while retaining the
desired resilience against disorder.

In this paper, we assume that the MTINR forms a single
magnetic domain, i.e., a domain without sign changes of the
out-of-plane magnetization, enabling CEC formation over a
chemical potential window �μCEC that is proportional to the
magnetization strength. We consider a spatially correlated
electrostatic disorder landscape directly observed using local
tunneling in single-crystal flakes of Cr-doped (Bi1−xSbx )2Te3

exfoliated in UHV [25].

III. MODEL

For a detailed simulation of proximitized MTINRs with
disorder, we consider the following modeling approach. We
start with the MTI thin-film model Hamiltonian [11,26],

HMTI(k) = h̄vD(kyσx − kxσy)ρz

+ [
m0 + m1

(
k2

x + k2
y

)]
ρx + Mzσz, (1)

with a two-dimensional wave vector k ≡ (kx, ky), σx,y,z

(ρx,y,z) Pauli matrices acting on the spin up-down (top-
bottom surface) two-level subspace, and out-of-plane mag-
netization strength Mz. We consider the following pa-
rameters [19,27]: h̄vD = 3 eV Å, m0 = −5 meV, and m1 =
15 meV Å2. Proximity-induced superconductivity is treated

with the Bogoliubov–de Gennes (BdG) formalism and an in-
duced superconducting pairing potential � on the top surface
of the MTI thin film or ribbon, yielding the following BdG
Hamiltonian,

HBdG(k) =
(

HMTI(k) − μ −iσy(1 + ρz )�/2
iσy(1 + ρz )�∗/2 μ − H∗

MTI(−k)

)
, (2)

with the chemical potential μ and spinor (�,�†) as the basis
vector, with � = (|↑t〉, |↑b〉, |↓t〉, |↓b〉) and t (b) referring to
the top (bottom) MTI surface. Disorder is treated by adding a
disorder potential Sdis(r) to the Hamiltonian with a Gaussian
random-field profile [see Figs. 1(a) and 1(d)],

〈Sdis(r)Sdis(r′)〉 = S2
dis exp[−(r − r′)2/(2λ2)], (3)

with disorder strength Sdis and spatial correlation length λ.
Note that we focus on electrostatic (nonmagnetic) disorder
here. The BdG Hamiltonian is discretized to obtain a tight-
binding model on an artificial square lattice with the lattice
constant equal to 1 nm. The simulations are performed with
the PYTHON-based simulation package KWANT [28], with par-
allelized sparse direct solver MUMPS [29] and ADAPTIVE [30]
for efficient parameter sampling.

IV. SPECTRAL GAP

In Fig. 1(b), we present the spectral gap of a 40-nm-
wide MTINR superposed with the (trivial or nontrivial) Z2

topological invariant for a Majorana quantum wire [31] as a
function of chemical potential μ and magnetization Mz (typi-
cal magnetization values are |Mz| = 10–100 meV for intrinsic
or magnetically doped MTIs [25,32–34]). The trivial and
nontrivial regions are separated by gapless boundaries, with
additional gapless boundaries appearing within (non)trivial
regions with multiple (sub)bands [19]. This has been seen
in spectra of similar systems [10,35], and is related to the
arrangement of multiple bands in reciprocal space. Here, we
focus on the chemical potential window with a single band
crossing (i.e., a CEC at zero energy), however, which yields
a topologically nontrivial phase and is denoted as �μCEC
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FIG. 2. (a), (b) The normal-state two-terminal conductance (top)
mean and (bottom) standard deviation of 200 MTINRs with Mz =
15 meV in the single-channel regime as a function of (a) width and
(b) length, considering disorder strength Sdis = 3 meV and different
spatial correlation lengths. (c), (d) The local current density along
the transport direction of a forward-propagating CEC in a 40-nm-
wide and 1-µm-long MTINR with the same disorder statistics and
averaging as in (a) and (b) is shown as a function of (c) the coordinate
along the MTINR (integrated over the transverse coordinate y [see
Fig. 1(a)] and of (d) the transverse coordinate (integrated over the
transport direction).

[indicated for |Mz| = 15 and 30 meV in Fig. 1(b)]. This
window is proportional to |Mz| and thus easily an order
of magnitude larger than the typical size of the proximity-
induced spectral gap Egap � 0.2|�| [see Fig. 1(c)]. To
examine the interplay between disorder and MBSs (CECs)
in (non)proximitized MTINRs and benchmark their robust-
ness, we calculate both the mean and standard deviation
of the tunneling (normal-state) conductance distributions, as
schematically depicted in Fig. 1(e).

V. CONDUCTANCE

A. Normal-state conductance

The normal-state conductance of a MTINR in the CEC
phase is shown as a function of MTINR dimensions for dif-
ferent disorder correlation lengths in Fig. 2. For each ribbon
width, the chemical potential is fixed to a value for which
the topological region of interest is reached with the smallest
possible value of Mz [see horizontal linecut in Fig. 1(b)].
This guarantees that the chemical potential is well separated
from the phase boundaries of the topological region (which
is essential for the robustness against disorder fluctuations)
for all values of Mz. For a 1-µm-long MTINR, we observe
near-perfect transmission for small and large widths, inde-

pendent of the disorder correlation length [see Fig. 2(a)]. For
large widths, this is expected due to CEC separation, while
for small widths the system enters a quasi-1D Klein tunneling
regime. For intermediate widths W ∼ λ, i.e., comparable to
the disorder correlation length, the disorder-induced backscat-
tering probability becomes maximal and, correspondingly,
we observe a minimum in the conductance. Note that the
spatial correlation statistics of the disorder profile become
irrelevant when the ribbon width significantly exceeds the
spatial correlation length. Interestingly, the conductance has
an approximately linear decrease as a function of length when
the length significantly exceeds the disorder correlation length
and the decrease is more pronounced for a shorter correlation
length [see Fig. 2(b)], which indicates a conventional ohmic
transport regime. This is corroborated by a linear decrease
of the edge-current density along the length of the ribbon,
which is revealed by removing quantum interference-induced
current-density fluctuations through averaging over multi-
ple samples [see Fig. 2(c)]. As we are considering standard
Landauer-Büttiker theory, with the two-terminal conductance
G = τe2/h being related to the CEC transmission probability
τ , our results indicate that disorder introduces a homogeneous
distribution of interedge scattering sites, which yields quasid-
iffusive (ohmic) CEC transport. Due to MTINR confinement,
the CECs hybridize and become partially colocated on the
same edge, and disorder can easily furnish direct backscatter-
ing to the counterpropagating CEC. This can be clearly seen in
Fig. 2(d), where a reduction of conductance is manifested as a
more pronounced negative current density peak near the edge
of the counterpropagating CEC. Hence, CECs in MTINRs are
generally fragile with respect to disorder, which impedes the
realization of a quantized two-terminal conductance across the
ribbon (or quantized Hall conductance in a Hall bar setup).

B. Tunneling conductance

Next, we consider the tunneling conductance [of a metallic
tunneling probe, schematically depicted by the tip in Fig. 1(a)]
at zero bias (see Fig. 3) for similar MTINRs as before, but with
a proximity-induced pairing potential � on the top surface.
As the MBS localization length ξMBS is inversely proportional
to the pairing potential (ξMBS ∝ 1/|�|), a smaller value for
� can be compensated by increasing the MTINR length for
obtaining well-separated MBSs (L � ξMBS). Hence, the re-
sults should not change qualitatively under a rescaling L ∝
1/|�| such that the ratio L/ξMBS remains unchanged, which
is why we consider a rather large top-surface pairing po-
tential (|�| = 5 meV) to reduce the required system size
and, correspondingly, the computational burden. Despite the
fragility of the CEC in normal transport, the zero-bias tunnel-
ing conductance, i.e., the zero-bias peak (ZBP), is remarkably
well quantized at 2e2/h for small ribbon widths, as long as
the MTINR is sufficiently long [see Figs. 3(a) and 3(b)]. A
smooth reduction of the ZBP appears when the ribbon width
increases and becomes comparable to the transverse CEC
size ξCEC, or when the ribbon length decreases and becomes
comparable to the MBS localization length ξMBS ≈ h̄vD/Egap

(ξMBS ≈ 0.3 µm for Egap ≈ 1 meV). Overall, the robustness of
the ZBP is dictated by the width and length of the MTINR [see
Fig. 3(c)], which control the interedge CEC overlap (across
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FIG. 3. (a), (b) The tunneling conductance (top) mean and (bot-
tom) standard deviation as a function of (a) width and (b) length of
200 proximitized MTINRs with identical magnetization, dimensions,
and disorder statistics as considered in Fig. 2. (c) The tunneling
conductance GT of a pristine MTINR as a function of ribbon length
L and width W . (d) The MBS wave function density of 1-µm-long
proximitized MTINRs with different widths [indicated in (c)] in
the pristine (Sdis = 0 meV) and disordered (Sdis = 3 meV) case, with
different spatial correlation lengths [legends in (a) and (b)].

the ribbon width) and the interend MBS separation (along
the ribbon length), respectively. Note that the required length
scales exponentially with the ribbon width for large widths,
due to the exponential suppression of the CEC overlap and
proximity-induced spectral gap, ∝|�| exp(−W/ξCEC) (see the
Appendix for details). Disorder barely affects the appearance
of well-separated MBSs [see Fig. 3(d)] or the resulting tun-
neling conductance. The ZBP is only significantly affected by
disorder when the quantized ZBP of the pristine MTINR is
already in a breakdown regime. Hence, while the formation
of well-separated MBSs requires long (L � ξMBS) and nar-
row (W � ξCEC) MTINR dimensions for which quasidiffusive
CEC transport is expected, the MBS formation itself is robust
with respect to disorder.

C. Comparison

The normal-state and tunneling conductances of a MT-
INR with fixed dimensions are presented as a function of
disorder strength in Fig. 4. We can see clearly that the
breakdown of the quantized ZBP is decoupled from the break-
down of perfect CEC transmission [Fig. 4(a)]. As discussed
above, CEC transmission in MTINRs is critically depen-
dent on interedge backscattering due to disorder, which can
easily be induced for narrow long MTINRs with relatively
weak disorder. For retaining a quantized ZBP, however, it
is sufficient that the MTINR remains in the topologically

(a) (b)

FIG. 4. (a) The normal-state and tunneling conductance (top)
mean and (bottom) standard deviation of 100 MTINRs with Mz =
30 meV, W = 30 nm, (A) L = 4.5 µm and |�| = 5 meV, or (B)
L = 15 µm and |�| = 1.5 meV, as a function of disorder strength
with λ = 35 nm. (b) The (top) local extent of the CEC phase around
the chemical potential (horizontal dashed line) and (bottom) wave-
function density of the two lowest-energy solutions along the length
of a MTINR with a chemical potential in the single-channel regime
[similar to the horizontal linecut in Fig. 1(b)], considering differ-
ent disorder strengths [indicated in (a)]. The wave-function density
is presented relative to the maximum density of the solution of a
pristine MTINR (not shown, but nearly indistinguishable from the
density with Sdis = 5 meV).

nontrivial phase with a proximitized single (spinless) channel.
This requires that the disorder strength is small compared
to the CEC window �μCEC around the chemical potential
[see Fig. 4(b)].

We also examine the scaling relation between the pairing
potential and the ribbon length by considering MTINRs with
different values for proximity-induced pairing � and ribbon
length L with the same product |�|L and identical disorder
characteristics. While the ZBP breaks down when the disorder
becomes comparable to the MBS localization length in both
cases, there is a notable difference. The MTINR with smaller
pairing and larger ribbon length appears to be less robust. This
can be understood by considering the detailed statistics of
disorder [Fig. 1(d)], which are responsible for locally driving
the system out of the topologically nontrivial phase. For a long
MTINR with weak superconducting pairing, the probability of
having local spectral fluctuations that significantly exceed the
standard deviation (i.e., the disorder strength) in the sample is
larger than for a shorter MTINR with stronger pairing. Such
fluctuations nucleate additional low-energy states (MBS pairs)
throughout the ribbon that hybridize with the end-localized
MBSs [see how the two lowest-energy solutions in Fig. 4(b)
feature density peaks in the MTINR interior in the case of
strong disorder] and push the ZBP breakdown to smaller
disorder strengths. Hence, relatively short and strongly prox-
imitized MTINRs are favored for realizing a quantized ZBP,
as compared to relatively long and weakly proximitized MT-
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INRs with similar |�|L, to minimize outliers of the spectral
fluctuations.

VI. CONCLUSION

In conclusion, we find that long ∼10–100-nm-wide mag-
netic topological insulator ribbons are required to realize a
topologically nontrivial proximity-induced superconducting
gap with well-separated Majorana bound states on opposite
ends of the ribbon. These ribbon dimensions render chiral-
edge-channel transmission fragile with respect to disorder and
a quasidiffusive transport regime is to be expected in normal
transport due to direct backscattering. However, this fragility
does not impede the formation of well-separated Majorana
bound states with a quantized zero-bias peak in tunneling
spectroscopy that remains robust against electrostatic disorder
up to an energy scale that is proportional to the magnetization
strength. While considerable challenges must be overcome to
fabricate high-quality narrow magnetic topological insulator
ribbons in the single-channel regime, the resilience against
disorder makes this a very promising platform for realizing
Majorana bound states.
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FIG. 5. (a) The tunneling conductance shown in Fig. 3(a), with
a contour line of constant tunneling conductance GT = 1.95e2/h.
(b) The contour line (shown as dots) and the exponential fitting
function, which is extrapolated to larger ribbon widths and lengths.

APPENDIX: LENGTH AND WIDTH SCALING
OF THE RIBBON

While a proximitized magnetic topological insulator
nanoribbon should be sufficiently narrow and long to obtain
well-separated MBSs with a nearly quantized zero-bias con-
ductance peak (see Fig. 3), there is still the freedom to choose
different aspect ratios. Due to the exponential suppression of
the CEC overlap and proximity-induced spectral gap, how-
ever, an exponential increase of the required ribbon length
is expected, when increasing the width significantly above
the CEC width, in order to maintain equally well-separated
MBSs. We verify this scaling relation for the aspect ratio
by fitting a contour of constant tunneling conductance, GT =
1.95 e2/h, denoted by a dashed line in Fig. 5(a), with the
following fitting function: Wf + Cf exp(W/ξ f ) [see Fig. 5(b)].
The function fits very well to the contour with the following
parameters: Wf = 0.39 µm, Cf = 0.025 µm, and ξf = 50 nm.
The exponential has a characteristic length scale ξf = 50 nm,
which is comparable to the CEC width ξCEC = h̄vD/EQAH =
30 nm for the model parameters under consideration. Because
of this scaling relation, a ∼10–100-nm ribbon width will be
necessary to avoid impractically long ribbons from an exper-
imental point of view. Furthermore, longer ribbons are more
likely to fluctuate locally out of the topological regime due to
outliers in the disorder profile, and should therefore also be
avoided.
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