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Charge-density response in layered metals: Retardation effects, generalized plasma
waves, and their spectroscopic signatures
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Transverse plasma polaritons and longitudinal plasmons describe the propagation of light-matter modes in
an isotropic metal. However, in a layered metal the anisotropy of the bare electromagnetic response mixes
the longitudinal and transverse excitations, making the distinction between polariton and plasmon blurred at
small wave vectors, where retardation effects of the electromagnetic interactions become quantitatively relevant.
In the usual Kubo approach for the linear response, this effect appears as a mixing between the density and
the transverse current fluctuations, that requires to revise the standard random phase approximation (RPA)
approach for density correlations where only the instantaneous Coulomb potential is included. In this paper
we derive the general expression for the density and current correlation functions at long wavelength in a layered
metal, showing that below a crossover scale set by the anisotropy of the plasma frequencies retardation effects
make the dispersion of the generalized plasma modes different from the standard RPA result. In addition, the
mixed longitudinal and transverse nature of these excitations reflects in a double-peak structure for the density
response, that can be eventually accessed by means of high-momentum resolution electron-energy-loss or x-ray
spectroscopies.
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I. INTRODUCTION

The propagation of electromagnetic (e.m.) waves in metals
represents one of the main knobs to investigate the collective
properties of the electronic system. On general grounds, in
an isotropic metal transverse electromagnetic waves hybridize
with the conduction-electron excitations giving rise to the
so-called plasma polaritons, normal modes of the system
propagating at a renormalized light velocity in the region of
positive permittivity [1]. For zero momentum the frequency
of plasma polaritons coincides with the frequency of lon-
gitudinal bulk plasmons, which are characterized by zero
magnetic field and longitudinal electric field (∇×E = 0), so
that they satisfy Maxwell’s equations under the condition of
vanishing permittivity [1]. While plasma polaritons can be
excited by an external e.m. radiation, longitudinal plasmons
couple efficiently to density fluctuations and as such they are
measured via electron-energy-loss spectroscopies [2] (EELS)
or resonant inelastic x-ray scattering [3] (RIXS), which access
the charge-density response of the electron gas [4,5]. Nowa-
days, the significant advances in the spectroscopic techniques
using either confined light, as e.g. in. near-field optics [6,7],
or integrating EELS with scanning transmission electron mi-
croscopy [2,8,9], made possible a detailed investigation of
the energy-momentum dispersion of plasma modes at various
length scales. A particular attention has been put to the wide

*francesco.gabriele@uniroma1.it
†Present address: The Rudolf Peierls Centre for Theoretical

Physics, Oxford University, Oxford OX1 3NP, UK.
‡lara.benfatto@roma1.infn.it

category of layered metals, ranging from van der Waals mate-
rials [7,10] to layered high-Tc cuprate superconductors [11].

From the theoretical point of view, the behavior of metallic
plasmons in a layered geometry is actually a very old prob-
lem, that has been studied since the late 1970s in connection
with the physics of semiconducting superlattices [12–15].
The basic observation has to do with the fact that when
conduction in the stacking-layer direction is poor, the lack
of screening of the interplane Coulomb interactions strongly
modifies the plasmon dispersion with respect to the bulk
isotropic case. For zero interlayer momentum qz = 0, with
z being the stacking direction [with interlayer distance d ,
see Fig. 1(a)], one recovers the standard weakly dispersing
optical-like plasmon as a function of the momentum qxy in
the xy plane, with a large (of order of the eV) value ωxy at
qxy = 0, as observed by early EELS experiments on cuprates
[16,17]. However, at finite qz the dispersion changes drasti-
cally, with a severe softening of the plasma energy towards
qxy = 0. In the limit of zero interlayer hopping the plas-
mon energy goes to zero as ∼qxy at finite qz = π/d [13–15]
or it reaches a finite value of order of ωz � ωxy when a
finite hopping is allowed [12]. With the discovery of high-
temperature superconductivity in layered cuprates, that are
well modeled by a stacking of weakly coupled layers in the
metallic phase, it has been also explored the possibility that
such “acoustic-like” plasmon branches can play a role in the
superconducting phenomenon itself [18–20]. However, the
direct detection of the dispersive plasmon branches remained
elusive for a long time, mostly because in hole-doped cuprates
RIXS signal is dominated by the spin excitations, that emerge
strongly in proximity of the Mott-insulating antiferromag-
netic phase. Only recently has the existence of acoustic-like

2469-9950/2024/109(4)/045137(20) 045137-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7043-825X
https://orcid.org/0009-0005-3647-9206
https://orcid.org/0000-0002-4648-1693
https://orcid.org/0000-0002-6091-3552
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.045137&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1103/PhysRevB.109.045137


F. GABRIELE et al. PHYSICAL REVIEW B 109, 045137 (2024)

FIG. 1. (a) Basic notation used in the paper to describe a layered
metal. The conducting sheets are parallel to the xy plane and stacked
along z, with interlayer distance d . Within the context of cuprates the
conducting planes correspond to the crystallographic CuO2 planes.
The angle that the wave vector forms with the z axis will be denoted
by η. (b) Sketch of the typical experimental dispersion ωexp (solid
dots) probed by RIXS in the range of momenta relevant for these
experiments. In this regime the experiments follow the standard
RPA prediction (solid lines) given by Eq. (1), with the emergence
of acoustic-line plasmon branches at finite qz. Here qx and qz are
measured in units of 2π/a and 2π/d , with a ∼ 0.3d in-plane lattice
spacing. (c) Zoom-in of the expected plasmon dispersion ωexp for
momenta around qc (i.e., blue-shaded area in (b)], as obtained by the
calculations in this paper. Solid lines are once again the predictions
based on Eq. (1). The divergence of the slope of the acoustic branches
as qz → 0 is an artifact of the approximation (1), as will be discussed
below. In both (b) and (c) we set ωxy = 1 eV, ωz = 0.05 eV, in
agreement with experiments in cuprates [23].

plasmon branches been proven by RIXS, first in different
families of electron-doped cuprates [21–23] and more re-
cently also in hole-doped cuprates [24,25]. In all these cases
the plasmon dispersion follows qualitatively the prediction
of a weakly correlated layered electron model [26–28], even
though it does not capture the significant broadening of the
plasmon observed at increasing in-plane momentum, even
when particle-hole dissipation is taken into account. Such an
effect is even more pronounced in recent EELS measurements
of the plasma dispersion at larger momenta [8,29–31], such
that they have been interpreted as signatures of the so-called
“strange metal” regime [32]. The peak of the density response
probed, e.g., by RIXS follows the dispersion ωexp(q) sketched
in Fig. 1(b) for a typical experimental configuration, with a
fixed value of the out-of-plane momentum and by varying the
in-plane momentum. As one can see, acoustic-like branches
appear as soon as qz moves away from the Brillouin-zone cen-
ter. Aside from the interest in plasmon detection by EELS and
RIXS, substantial work has been devoted in recent years to
the possibility to drive nonlinearly the soft interlayer plasmon
of cuprates at ωz of few THz with strong THz light pulses
[33–37]. Indeed, from one side the gap opening below the
superconducting critical temperature Tc makes it undamped
[38–42], in contrast to what happens in the metallic phase.
From the other side, in the superconducting state the plasma

modes appear also in the spectrum of the superconducting
phase of the complex order parameter, allowing for its non-
linear driving via optical probes [33,34].

In the theoretical work aimed at describing the plasma
modes measured by RIXS or EELS the usual approach
[12,14,15,21,22,24,25,28] consists in computing the density
response of the anisotropic electron system by including at
RPA level the effect of a Coulomb-type interaction term, in
analogy with the usual isotropic case [4,5,43]. The plasmon
dispersion then follows an anisotropic version of the three-
dimensional (3D) case, where plasma modes propagate with a
frequency [26–28]

ω2
RPA(q) = F (q)

ω2
xy(qxyd )2 + 4ω2

z sin2
( qzd

2

)
2qxyd

, (1)

where F (q) ≡ sinh(qxyd )
cosh(qxyd )−cos(qzd ) accounts for the Fourier trans-

form of the Coulomb potential in a layered 3D system, i.e.,
V lay

C (q) = F (q)(2πe2d )/qxy. In this approach retardation ef-
fects, corresponding to the coupling of the charge density
to the magnetic field induced via current fluctuations, have
not been included [13]. In the isotropic case this is actually
not an approximation, but an exact result: indeed due to
the complete decoupling between longitudinal and transverse
degrees of freedom density fluctuations only induce longitu-
dinal current fluctuations, remaining then decoupled from the
magnetic field. On the other hand, in a layered system the
anisotropy of the current response with respect to the in-plane
and out-of-plane directions leads to an unavoidable coupling
between charge and transverse current fluctuations, making
magnetic-field effects in general nonzero [44,45]. The main
consequence of the imperfect longitudinal-transverse decou-
pling is that in a layered metal there is an intrinsic mixture
among plasmon and polaritons at generic wave vector, while
an almost perfect decoupling is only reached at a momentum
scale larger than a threshold qc ∼

√
ω2

xy − ω2
z /c, set by the

plasma-mode anisotropy [46,47]. Above this scale retardation
effects are irrelevant, so that the standard approach including
only Coulomb interactions between electrons is quantitatively
correct and Eq. (1) provides a fairly good description of exper-
iments [see Fig. 1(b)]. Indeed, for typical values of ωxy and ωz

the scale is qc ∼ ωxy/c ∼ 1−10 µm−1, so it is much smaller
than the state-of-the art momenta accessible by RIXS and
EELS. On the other hand, at momenta around qc the expres-
sion (1) would lead to an unphysical divergence of the slope of
acoustic-like branches [see Fig. 1(c)]. As we shall see below,
this is one of the signatures of the failure of this approximation
in the relativistic regime, due to the absence of the proper
inclusion of retardation effects. For the experiments with THz
light mentioned above the regime q < qc is exactly the one
probed, and indeed the role of magnetic-field effects has been
discussed within the recent literature focusing on THz driving
of the soft interlayer plasmon below Tc [33,34,44,45,48–52].
It is worth noting that the theoretical investigation of plasma
modes in the superconducting state is actually easier than in
the metal since plasmons appear in the response of the su-
perconducting phase, whose dynamics has a relatively simple
description at long wavelength [46,47]. In a recent publication
[46] three of us took advantage of this peculiarity to derive
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an analytical expression for the generalized plasma modes in
the SC state of layered superconductors via an effective-action
formalism for the phase degrees of freedom, further extended
to the bilayer case in Ref. [47]. In this paper we aim at
providing an analogous derivation for the layered metal, by
employing again an effective-action formalism where both
Coulomb and retardation effects are taken into account by
integrating out the fluctuations of the internal e.m. degrees
of freedom. This procedure is formally equivalent to a ran-
dom phase approximation (RPA) for both the density-density
and current-current interactions, mediated respectively by the
Coulomb potential and the transverse e.m. propagator. This
approach allows us to derive in a rather compact and elegant
way the density and current response to an external perturba-
tion valid at any momenta, in terms of the bare susceptibilities
of the layered system. Such a formulation has the twofold
advantage to allow us for an analytical derivation of the
generalized plasma waves for the uncorrelated layered metal,
and to provide us with a general expression where short-
range correlation effects can be included in the electronic
susceptibilities. Indeed, as long as short-range interactions are
included by preserving the gauge-invariance relations for the
electronic response functions [53,54], our scheme allows one
to derive the plasma modes including retardation effects. As
an example, we study specifically the density response, as
accessed by EELS and RIXS experiments, and we show that
the coupling among longitudinal and transverse degrees of
freedom leads to a doubling of the peaks of the loss function
at small momenta, that can eventually become accessible by
improving momentum resolution in these probes.

The plan of the paper is the following. In Sec. II an in-
troductory analysis of the influence of retardation effects on
the longitudinal propagation of plasmons is provided within
the framework of Maxwell’s equations. As anticipated be-
fore, while in isotropic systems plasmons are never influenced
by those effects, in layered systems the anisotropy of the
bare electronic response leads to a nontrivial mixing between
instantaneous (longitudinal) and retarded (transverse) fields.
The same issue is then analyzed in detail within a microscopic
many-body approach in Secs. III and IV. In Sec. III, in order
to give a pedagogical illustration of the formalism employed
throughout the paper, we consider the linear response of an
isotropic electron gas in the absence and in the presence of
e.m. interactions, finding in both cases the results usually
discussed in the literature: in the first case we find the Lind-
hard response functions, which are then renormalized at a
standard RPA level when e.m. interactions are included. In
Sec. IV we address the linear-response theory of a layered
system: we find that the mixing discussed in Sec. II has
the crucial consequence that the response functions deviate,
at low momenta, from their standard RPA counterparts. A
remarkable consequence is that the correct density-density
response function accounts for the propagation of two mixed
longitudinal-transverse modes, which both appear in the spec-
trum of density fluctuations, that we discuss in detail in Sec. V
for the case of a weakly correlated layered metal. We then
conclude the paper with a a general discussion about the
results in Sec. VI.

II. RETARDATION EFFECTS AND TRANSVERSE AND
LONGITUDINAL MIXING FROM MAXWELL’S

EQUATIONS

To outline the physical mechanism behind the propagation
of e.m. modes in a layered metal, that will be addressed in
the rest of the paper by using a general many-body formalism,
we start from the framework of classical Maxwell’s equations,
connecting the density ρ and currents J fluctuations to the
electric E and magnetic B fields. The former is defined by
the Gauss’ law and Faraday’s law as [55]

∇ · E(r, t ) = 4πρ(r, t ), ∇ × E(r, t ) = −1

c

∂B
∂t

(r, t ), (2)

where c is the light velocity in vacuum, while the magnetic
field is defined by the divergence-free condition along with
the Ampere-Maxwell equation

∇ · B(r, t ) = 0, ∇ × B(r, t ) = 4π

c
J(r, t ) + 1

c

∂E
∂t

(r, t ).

(3)

The above equations can also be formulated in terms of scalar
φ and vector A potentials as

E(r, t ) = −∇φ(r, t ) − 1

c

∂A
∂t

(r, t ), B(r, t ) = ∇ × A(r, t ),

(4)

that make explicit the fact that while B is always a transverse
field, the electric field E = EL + ET has in general both a
longitudinal ∇ × EL = 0 and a transverse ∇ · ET = 0 com-
ponent. As it is discussed in standard textbooks [56], the ET

component, that according to Faraday’s law (2) is induced by
a time-varying magnetic field, is the main responsible for the
retardation effects, i.e., it mediates an interaction that takes
a finite amount of time �t ≡ |r − r′|/c to propagate to point
(r, t ) from the source at (r′, t − |r − r′|/c). This can be easily
seen, e.g., by using the Coulomb gauge ∇ · A = 0, where
A ≡ AT is purely transverse. In this gauge, that we will also
use in the derivation below, the equations for the scalar and
vector potentials decouple. The scalar potential satisfies the
same Poisson equation ∇2φ = −4πρ of the electrostatic, so
that the longitudinal electric-field component EL = −∇φ is
not retarded. However, in the same gauge the vector potential
AT satisfies an inhomogeneous d’Alembert equation with the
transverse component of the current JT as the only source, and
whose solution is a retarded potential [56]

A(r, t ) = 1

c

∫
d3r′ JT (r′, t − |r − r′|/c)

|r − r′| . (5)

One then sees that the ET component, expressed by Faraday’s
law as ET = −(∂AT /∂t )/c, accounts for retardation effects
and vanishes as c → ∞: for this reason, such a feedback
of the current fluctuations on the electric field is sometimes
referred to as a “relativistic” effect.

The previous discussion does not include yet the effect,
specific of metals, of the current induced as local response
to an electric field. As we shall clarify, such an induced
response is responsible for the mixing between longitudinal
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and transverse e.m. modes in a layered metal. We consider
first an isotropic conducting medium where J = σE, with
σ being a scalar conductivity, so that J and E are parallel,
and we switch for convenience to a Fourier-space notation.
Let us assume that the external perturbation induces a finite
charge fluctuation ρ, which in turn induces a longitudinal
electric field with magnitude |EL| = (4π/|q|)ρ, as given be
Gauss’s Law. Since J is parallel to E, EL, as due to ρ, can
only induce a longitudinal current JL. This implies that we
cannot have any source for the magnetic field in the Ampere-
Maxwell equation and, therefore, any finite transverse field
ET from Faraday’s law. Finally, by approximating the con-
ductivity with the Drude model at frequencies larger than the
inverse electronic scattering rate as σ 
 −ω2

p/(i4πω), ωp ≡√
4πe2n/m being the 3D plasma frequency, and using the

continuity equation ∂tρ = −∇ · JL, we end up with a closed
equation for EL: (

1 − ω2
p

ω2

)
|EL(q, ω)| = 0. (6)

The solutions of Eq. (6) with |EL| �= 0 require ω = ωp, that
is the (dispersionless) expression for the longitudinal plasma
mode in an isotropic conductor. In isotropic systems re-
tardation effects do not affect longitudinal excitations, i.e.,
plasmons, since a longitudinal electric field never induces a
transverse current as a source of a magnetic field. Conversely,
a transverse current perturbation, induced in the metal in
response to external transverse waves in the vacuum, does
not induce any longitudinal response, making the polariton
propagation independent from the plasmon.

In layered materials the situation is radically different.
The electronic excitations in these systems can be modeled,
in first approximation, with anisotropic effective masses
for propagation in the planes or perpendicular to them, i.e.,
mxy �= mz. This results in an anisotropy of the conductivity

tensor given, in Cartesian coordinates, by σ̂ = (
σxy 0
0 σz

)
, with

σxy/z 
 ω2
xy/z/(i4πω), ωxy/z ≡ √

4πe2n/mxy/z being the
plasma frequency along the xy plane/z axis, so that in
general J and E are no more parallel. For a perturbation with
momentum q forming a generic angle η with the z axis we
obtain, by simple rotation to the longitudinal-transverse basis,
the general relation between the current and the electric field
[57] as (

JL

JT

)
=

(
σL σmix

σmix σT

)(
EL

ET

)
, (7)

where σL/T = (σxyq2
xy/z + σzq2

z/xy)/|q|2 is the longitudinal/
transverse part of the conductivity tensor and the nondiagonal
element is defined as

σmix = −(σxy − σz )
qxyqz

|q|2

= −σxy − σz

2
sin(2η). (8)

Therefore, if we now introduce, as in the isotropic case,
a charge-density perturbation that induces a longitudinal
electric field, a transverse current JT = σmixEL is also pro-

duced. JT acts as a source for the magnetic field in the
Ampere-Maxwell equation B = 4π/(ic|q|)JT = 4π/(ic|q|)
σmixEL, where we neglected in first approximation the contri-
bution of the displacement current. At the end, a transverse
electric field ET = (ω/c|q|)B, as prescribed by Faraday’s
law, appears in response to a longitudinal perturbation. The
relative magnitude among the two components |ET |/|EL| is
approximately given by

|ET |
|EL| = 4πω

c2|q|2 |σmix| 
 q2
c

|q|2
sin(2η)

2
, (9)

where we defined the momentum qc as

qc ≡
√

ω2
xy − ω2

z

c
. (10)

A better estimate of the ratio among the longitudinal and
transverse components within the Maxwell’s formalism is
presented in Appendix A, and an analogous one will be de-
rived below within the many-body approach. Nonetheless,
Eq. (9) already gives an idea of the mechanism at play in
layered systems. First of all, Eq. (9) is zero for purely in-plane
(η = π/2) or out-of-plane propagation (η = 0), showing that
no mixing occurs in these cases. At a generic angle, according
to the same equation, when |q| � qc one can neglect the
induced transverse electric field, and thus retardation effects,
so that the plasmon decouples from the polariton and one
recovers the result of the isotropic case. In the many-body
language, we expect this to be the regime where transverse
current fluctuations induced by a density perturbation are
negligible. Conversely, when |q| ∼ qc one must account for
retardation effects and longitudinal and transverse modes be-
come intrinsically mixed. Equation (9) allows one to estimate
the relevance of such effects depending on the probe under
consideration, that sets the value of the momentum q. In sys-
tems like cuprates typical values of the plasma frequencies are
ωxy ∼ 1 eV and ωz ∼ 10−3ωxy. Using h̄c ∼ 1.9 × 102 eV nm
one obtains that the largest value of the crossover momentum
is qc ∼ 10−3–10−2 nm−1. At present the typical momentum
resolution of RIXS does not exceed ∼0.1 nm−1, and it can
be even larger for EELS, pushing then the measurement in
a regime where retardation effects cannot be appreciated.
Conversely, for light propagation the momentum is set by the
frequency of the probe, being q = ω/c. It then turns out that
the maximum value of |EL|/|ET | scales as

√
ω2

xy − ω2
z /ω 


ωxy/ω, where ω is the frequency of the e.m. radiation. One
then understands why the mixing is crucial for ω of the order
of few THz (1 THz 
 4.1 meV), as indeed discussed within
the context of layered superconductors [33,34,44,45,48–52].
In the next sections the above results will be derived within a
many-body approach to linear-response theory, with the aim
of providing a general structure of the density response in a
layered metal that includes retardation effects when needed,
and can be extended to the case of correlated metals, where
also short-range interactions play a crucial role in determining
the electronic response.
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III. RESPONSE FUNCTIONS FOR THE
ISOTROPIC SYSTEM

A. Path-integral approach to linear-response theory

In order to provide a pedagogical illustration of the for-
malism, we consider the case of an isotropic free-electron
gas, which is widely discussed in textbooks in the context of
many-body Green’s-function formalism [5,58]. For the sake
of simplicity, we put h̄ = kB = 1 in the following. We start
from the imaginary-time action for the noninteracting elec-
trons, which reads as, in real and Fourier space, respectively,

S0[ψ,ψ] =
∑

σ

∫ 1
T

0
dτ

∫
dr ψσ (r, τ )

×
(

∂τ − ∇2

2m
− μ

)
ψσ (r, τ )

= −
∑

k

∑
σ

ψσ (k)G−1
0 (k)ψσ (k), (11)

where σ is the spin index and k is a shortcut for the mo-
mentum k and the fermionic Matsubara frequency ωl = (2l +
1)πT . In the last row of Eq. (11) we introduced the free-
electron Matsubara Green’s function G0(k) = 1/(iωl − ξk ),
where ξk = |k|2/(2m) − μ is the free-electron energy disper-
sion with respect to the chemical potential μ, m being the
effective mass of the electron. Since we are interested in com-
puting the electromagnetic (e.m.) response we introduce the
scalar and vector potentials φ and A associated with the e.m.
fields by means of the usual minimal-coupling substitution on
both time and space derivatives as [58,59]

i∂μ → i∂μ − e

c
Aμ, (12)

where e > 0 is the absolute value of the electron charge,
∂μ = (∂t ,∇) is the 4-gradient operator, and we introduced
Aμ = (cφ, A) and Aμ = (−cφ, A) as the contravariant and
covariant 4-potentials, respectively. Equation (12) ensures that
the total action exhibits an invariance under simultaneous
gauge transformations for the fermionic and the e.m. poten-
tials, i.e.,

ψ (r, t ) → ψ (r, t ) exp

(
− ie

c
λ(r, t )

)
,

Aμ(r, t ) → Aμ(r, t ) + ∂μλ(r, t ), (13)

where λ is an arbitrary function. In the imaginary-time formal-
ism where it → τ one equivalently replaces ∂τ → ∂τ − eφ.
Since the charge density and current are defined, as usual, as
functional derivatives of the action with respect to the e.m.
potentials, one can express the induced 4-current Jμ = (ρ, J)
(ρ and J being, respectively, the induced density and current)
to an external source field in linear-response theory as

Jμ(q) = −e2

c
Kμν (q)Aν (q), (14)

where q = (q, i�n) is a compact shortcut notation for the
momentum q and the bosonic Matsubara frequency i�n =
i2nπT and the response function Kμν can be readily

obtained as

Kμν (q) = −c2

e2

δ2 ln Z[A]

δAμ(q)δAν (−q)
|Aμ,Aν=0, (15)

where the partition function reads as Z[A] = ∫
D

[ψ,ψ]e−S[ψ,ψ,Aμ], S being the imaginary-time action
describing the quantum dynamics of the fermions in the
presence of the e.m. fields. In a charged system the e.m. fields
induce charge and density fluctuations within the medium
that should be included in the density response, that is the
main focus of this work. In the usual perturbative approach
one accounts for this effect by adding an interaction term
in the electronic Hamiltonian accounting for density-density
or current-current interactions. Here we will follow a
different but completely equivalent approach, by making an
explicit distinction between the internal statistical potentials,
which, from now on, will be denoted by Aμ = (−cφ, A),
and the auxiliary external “source” fields, denoted by
Aext

μ = (−cφext, Aext ). In this case one can define the response
to the external perturbation as

Kμν
ext (q) = −c2

e2

δ2 ln Z[Aext]

δAext
μ (q)δAext

ν (−q)
|Aext

μ ,Aext
ν =0, (16)

where Z[Aext] = ∫
D[ψ,ψ, A]e−S[ψ,ψ,A,Aext]. The integration

over the internal e.m. degrees of freedom will account for the
e.m. interaction among the electrons, and the 4-current (14)
will be the response to the external perturbation.

In order to highlight the role of the e.m. interactions and to
make a direct analogy with known results, let us first neglect
the effect of the internal e.m. fields and let us just compute
the response to the external sources. Once introduced Aext by
means of the prescription (12) we get the action

S[ψ,ψ, Aext] = S0[ψ,ψ] + Sel+e.m.[ψ,ψ, Aext], (17)

where the coupling between the electrons and the auxiliary
e.m. fields is encoded into Sel+e.m., which reads as

Sel+e.m.[ψ,ψ, Aext]

= e

c

∑
σ

√
T

V

∑
k,k′

ψσ (k)ψσ (k′)sμ(k, k′)Aext
μ (k − k′)

+ e2

2mc2

∑
σ

T

V

∑
k,k′,q

ψσ (k)ψσ (k′)Aext(k − k′ + q)

· Aext(−q), (18)

where sμ(k, k′) = (1, (k + k′)/(2m)) is the density-current
vertex. Since Eq. (17) is quadratic in the fermionic fields, they
can be integrated out exactly, leading to an effective action
Seff[Aext] which includes all powers of Aext. However, in order
to compute the response function Kμν through Eq. (16) it is
sufficient to retain terms quadratic in the external fields, i.e.,
to define an effective Gaussian action SG, such that

SG[Aext] = e2

2c2

∑
q

Aext
μ (q)Kμν (q)Aext

ν (−q), (19)

so that Z = e−SG and Kμν (q) ≡ c2

e2
δ2SG[Aext]

δAext
μ (q)δAext

ν (−q) , as a direct

consequence of Eq. (16). It is worth noting that the response
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function Kμν cannot be independent on each other. Indeed,
Eq. (19), which depends on Aext

μ only, must be still invariant
with respect to the second transformation of Eq. (13), which
reads as, in Fourier space,

Aext
μ (q) → Aext

μ (q) + iqμλ(q), (20)

where the 4-momentum is defined as qμ = (−i�n, q). The
gauge invariance requires that any additional term introduced
into the action (19) by Eq. (20), i.e., those proportional to
iqμKμνAext

ν , iAext
μ Kμνqν , and qμKμνqν , must vanish. This is

guaranteed only if the linear-response function obey the fol-
lowing gauge-invariance conditions:

qμKμν (q) = 0, Kμν (q)qν = 0. (21)

In the following we will check that both in the isotropic and
anisotropic cases such conditions are satisfied.

Let us then recall briefly the result obtained without the
contribution of the internal e.m. fields, which is equivalent to
the standard “bare” response of the noninteracting electron
gas. It is straightforward to show that in this case the action
(19) has the form

S0
G[Aext] = e2

2c2

∑
q

Aext
μ (q)χμν

0 (q)Aext
ν (−q), (22)

where the bare susceptibilities χ
μν
0 are the standard

imaginary-time linear-response function of the free-electron
gas [5], i.e.,

χ
μν
0 (q) = n

m
δμν (1 − δμ0) + χ̃

μν
0 (q). (23)

They are given by the sum of a diamagnetic-like term, i.e., the
first one, and a paramagnetic-like one χ̃

μν
0 , which is given by

[5]

χ̃
μν
0 (q) = 2T

V

∑
k

γ μ(k, q)γ ν (k, q)G0(k + q)G0(k)

= 2

V

∑
k

γ μ(k, q)γ ν (k, q)
f (ξk ) − f (ξk+q)

i�n − (ξk+q − ξk )
, (24)

where the overall 2 factor accounts for the spin degen-
eracy and f (ξ ) = 1/(exp(ξ/T ) + 1) is the Fermi distri-
bution. In Eq. (23), n = 2(T/V )

∑
iωl ,k G0(iωl , k)e−iωl 0− =

2/V
∑

k f (ξk ) is the density of electrons (with spin degen-
eracy included). Also, in Eq. (24), the density-current vertex
γ μ is now defined as γ μ(k, q) = (1, (k + q/2)/m).

It is easy to prove that the bare response functions indeed
fulfill the gauge-invariance conditions prescribed by Eq. (21).
To this aim, we notice that the isotropic bare density-current
function is always longitudinal, i.e., parallel to q, since [5]

χ0i
0 (q) = i�nqi

|q|2 χ00
0 (q) (25)

and the isotropic current-current function always allows for
the following longitudinal-transverse decomposition [5]:

χ
i j
0 (q) = (i�n)2

|q|2 χ00
0 (q)(P̂L(q))i j + χT

0 (q)(P̂T (q))i j . (26)

In Eq. (26), χT
0 = ( 1

2 )(P̂T )i jχ
ji

0 is the transverse part of χ
i j
0 ,

and P̂L and P̂T are, respectively, the longitudinal and trans-
verse projection operators, defined as

(P̂L(q))i j = qiq j

|q|2 , (P̂T (q))i j = δi j − qiq j

|q|2 . (27)

Given the two identities (25) and (26), it is trivial to prove that
χ

μν
0 indeed satisfies the gauge-invariance conditions given by

Eq. (21), i.e.,

qμχ
μν
0 (q) = 0, χ

μν
0 (q)qν = 0. (28)

For instance, by virtue of Eqs. (25) and (26), we have that
−i�mχ00

0 + χ0i
0 qi = −i�mχ00

0 + i�mχ00
0 qiqi/|q|2 = 0 and

−i�m χ0i
0 + χ

i j
0 q j = −i �m χ0i

0 + (i�m/|q|)2 χ00
0 qi = 0,

which are, respectively, the timelike (ν = 0) and the spacelike
(ν = i) components of Eq. (28).

B. Linear-response theory in the presence
of electromagnetic interaction: Isotropic systems

Let us now show how the bare electronic response is
dressed by the integration of the internal e.m. fields. To this
aim, we couple the electrons to both internal and external
fields by means of the minimal-coupling substitution (12), and
we add the e.m. action of the internal fields, which reads as,
in real and Fourier space, respectively [58,59],

Se.m.[A] =
∫

dτ dr
[

(∇ × A)2

8π
− ε

8π

(
i∂τ A

c
+ ∇φ

)2]

= ε

8π

∑
q

[
− |q|2|φ(q)|2

+
(

�2
m + c2

ε
|q|2

) |AT (q)|2
c2

+ �2
m|AL(q)|2

+ i�nq ·
(

φ(q)
A(−q)

c
+ φ(−q)

A(q)

c

)]
. (29)

Equation (29) is the transcription in imaginary time of the
usual Lagrangian density (−ε|E|2 + |B|2)/(8π ), where B =
∇ × A is the magnetic field and the electric field E reads
as E = −(i/c)∂τ A − ∇φ, with ε being a background dielec-
tric constant which accounts for ionic screening. It is worth
noting that in order to have a definition of E analogous to
the one valid for real time one should assume that φ is
purely imaginary, i.e., one should replace φ → iφ. In this
case, by defining the imaginary-time electric field as E ≡
− 1

c ∂τ A − ∇φ the action for the free e.m. fields would read

as ε|E|2+|B|2
8π

. Such a rescaling of the scalar potential would
also make the quadratic term in the scalar potential arising
from (∇φ)2 positive defined, as required to perform the Gaus-
sian integration. To make notation more compact we will not
explicitly rescale the potential in what follows, but we will
implicitly assume that a formal definition of the Gaussian
integration in the imaginary-time formalism requires such a
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regularization. Finally, in Eq. (29) we introduced explicitly the
longitudinal-transverse decomposition A = AL + AT for the
vector potential, where AL = q̂(q̂ · A) is the longitudinal part,
such that q × AL = 0, and AT = A − AL = (q̂ × A) × q̂ is
the transverse part obeying q · AT = 0. This allows one to
clearly identify the bare propagators for the internal gauge
fields. Indeed, the coefficient of the quadratic term in φ can
be recast as −e2/[2VC (q)], where

VC (q) = 4πe2

ε|q|2 (30)

is the Coulomb pontential, while −(e/c)2/(2DT ) is the coef-
ficient of the quadratic term in the transverse gauge field AT ,
with

DT (q) = 4πe2/ε

(i�n)2 − c̃2|q|2 , (31)

being the transverse propagator. The poles of Eq. (31) yield,
after analytic continuation i�n → ω + i0+, the light disper-
sion ω = c̃|q|, where c̃ = c/

√
ε is the renormalized light

velocity. Moreover, the last line of Eq. (29) shows that the
scalar potential only couples to the longitudinal component of
A, so that for isotropic systems the Coulomb gauge ∇ · A = 0,
i.e., AL = 0, allows one to completely decouple the scalar and
the vector potentials. Since in this gauge the longitudinal part
of the electric field EL = −∇φ is controlled by the scalar
potential only, one also achieves for the isotropic system a
complete decoupling among transverse and longitudinal de-
grees of freedom. However, as we shall see in the next section,
in the anisotropic case even in the Coulomb gauge such a
decoupling is not allowed. It is then more convenient for what
follows to rewrite in Fourier space the (∇×A)2 term as |q ×
A(q)|2 = |q|2|A(q)|2 − |q · A(q)|2, so that Eq. (29) reads as

Se.m.[A] = e2

2

∑
q

[
−|φ(q)|2

VC (q)
− |A(q)|2/c2

DT (q)
− 1

4πe2
|q · A(q)|2 + ε

4πe2
i�nq ·

(
φ(q)

A(−q)

c
+ φ(−q)

A(q)

c

)]
. (32)

Once introduced the coupling of Aμ with the fermionic fields according to Eq. (12) we obtain the total action S[ψ,ψ, A +
Aext] + Se.m.[A], where S is given by Eq. (17), apart from the fact that it now depends on the total field Aμ(q) + Aext

μ (q). Then,
in full analogy with the free-electron case, we can integrate out the fermionic fields, which still appear at quadratic order. The
result of the integration is twofold: from one side we recover the effect of matter on the bare e.m. response, and from the other
we describe the perturbation due to the external source fields Aext

μ . The Gaussian action for both the internal and the external e.m.
fields is explicitly given by

Siso
G [A, Aext] = e2

2c2

∑
q

(
Aμ(q) + Aext

μ (q)
)
χ

μν
0 (q)

[
Aν (−q) + Aext

ν (−q)
] + Se.m.[A]

= e2

2

∑
q

[
χ00

0 (q)|φext(q)|2 + χ
i j
0 (q)

Aext
i (q)

c

Aext
j (−q)

c
− χ0i

0 (q)φext(q)
Aext

i (−q)

c
+ c.c. (33a)

+χ00
0 (q)φext(q)φ(−q) + χ

i j
0 (q)

Aext
i (q)

c

Aj (−q)

c
− φext(q)χ0i

0 (q)
Ai(−q)

c
− φ(q)χ0i

0 (q)
Aext

i (−q)

c
+ c.c. (33b)

+
(

χ00
0 (q) − 1

VC (q)

)
|φ(q)|2 +

(
χ

i j
0 (q) − 1

DT (q)
δi j

)
Ai(q)

c

Aj (−q)

c
− φ(q)χ0i

0 (q)
Ai(−q)

c
+ c.c. (33c)

+ ε

4πe2
i�nq ·

(
φ(q)

A(−q)

c
+ φ(−q)

A(q)

c

)
− 1

4πe2
[q · A(q)]2

]
. (33d)

As for the free-electron case, the invariance of the ac-
tion (33) under local-gauge transformations of both Aμ and
Aext

μ is ensured by Eq. (28) for the bare response functions
χ

μν
0 . As a last step one integrates out the internal potential

Aμ in Eq. (33), that is equivalent to compute the response
functions at a RPA level in the usual diagrammatic ap-
proach to fermionic models [5]. The inclusion in Eq. (33)
of higher-order terms in Aμ would yield, once integrated
out, beyond-RPA corrections to the linear-response functions:
these will not be addressed in this work. Before solving the
integral, one must fix the gauge for the internal potentials,
in order to get rid of the divergence due to the redundancy
of Aμ: indeed, there are infinitely many potentials Aμ + iqμλ

accounting for the same physical configuration of the e.m.

fields E and B, and such an arbitrariness leads to a divergence
of the functional integral. A proper gauge-fixing procedure
prevents the Gaussian integral from being singular. For the
isotropic case, the Coulomb gauge ∇ · A = 0, i.e., qiAi = 0 in
Fourier space, makes the computations rather straightforward.
Indeed, since the bare isotropic density-current function (25)
is always longitudinal, i.e., χ0i

0 ∝ qi, it follows that all the
terms proportional to χ0i

0 Ai ∝ qiAi vanish in the Coulomb
gauge. It then follows that the last two terms of Eq. (33b),
the last term of Eq. (33c), and the whole Eq. (33d) cancel
out, leading to a complete decoupling among the scalar and
the vector potentials, that can be integrated out separately
to obtain the full response functions χ̃

μν

iso of the isotropic
case. Integrating out φ is then equivalent to the standard RPA

045137-7



F. GABRIELE et al. PHYSICAL REVIEW B 109, 045137 (2024)

dressing of the bare bubbles χ00
0 , χ0i

0 , and χ
i j
0 with respect to

the Coulomb potential:

χ̃00
iso(q) ≡ χ00

RPA(q) = χ00
0 (q)

1 − VC (q)χ00
0 (q)

, (34)

χ̃0i
iso(q) ≡ χ0i

RPA(q) = χ0i
0 (q)

1 − VC (q)χ00
0 (q)

, (35)

χ
i j
RPA(q) = χ

i j
0 (q) + VC (q)

χ i0
0 (q)χ0 j

0 (q)

1 − VC (q)χ00
0 (q)

. (36)

First of all, we notice that, thanks to the structure encoded
into Eqs. (34)–(36), and to the relations (28), also the standard
RPA response functions obey the gauge-invariance conditions
prescribed by Eq. (21), i.e., qμχ

μν

RPA = 0 and χ
μν

RPAqν = 0. This
is a direct consequence of the fact that, in the current-current
function given by Eq. (36), the standard RPA correction has
a purely longitudinal structure, i.e., it only renormalizes the
longitudinal part χL

0 of the bare current function, which al-
ready satisfies the condition (21). This is in agreement with
the observation done before that for the isotropic system the
longitudinal degrees of freedom in the Coulomb gauge are
fully described by the scalar potential. The most complete
current-current function χ̃

i j
iso is, in fact, obtained after inte-

gration of A as well, that only dresses the transverse sector
χT

0 of χ
i j
0 with respect to the transverse propagator DT , due

to the absence of coupling term between A and φext. Once
both integrations are carried out, one finds that the full current
function χ̃

i j
iso is given by

χ̃
i j
iso(q) = χ̃L

iso(q)(P̂L(q))i j + χ̃T
iso(q)(P̂T (q))i j, (37)

where χ̃L
iso = χL

RPA = (i�n/|q|)2χ̃00
iso equals the longitudinal

part of Eq. (36), while χ̃T
iso is given by

χ̃T
iso(q) = χT

0 (q)

1 − DT (q)χT
0 (q)

. (38)

Having computed the electronic response in the presence
of internal e.m. fields, we now briefly recall the standard
outcomes for the collective modes of an isotropic system,
in which Eq. (14) reduces to the following two independent
equations for the density ρ and the transverse current JT :

ρ(q) = χ̃00
iso(q)φext(q), JT (q) = −χ̃T

iso(q)Aext
T (q). (39)

We did not mention the equation for the longitudinal current
JL = −χ̃L

isoAext
L since it carries the same information of the

first of Eq. (39), χ̃L
iso being proportional to χ̃00

iso and JL be-
ing related to ρ through the continuity equation. Within this
context, the longitudinal plasmon and the transverse plasma
polariton appear as poles of the density-density response χ̃00

iso
and of the transverse current response χ̃T

iso, respectively. At
long wavelength we can derive an analytical expression for
both modes by using the approximated behavior [5] of the
Lindhard functions in the long-wavelength dynamical limit

vF |q| � ω (vF being the Fermi velocity), such that

χ00
0 (q) 
 n|q|2

mω2

(
1 + 3

5

v2
F |q|2
ω2

)
, (40)

χT
0 (q) 
 n

m
. (41)

As a consequence for the longitudinal mode the pole of
Eq. (34) gives

1 − VC (q)χ00
0 (q) = 0 �⇒ ωL(q) = ωp

√
1 + v2

p|q|2, (42)

with v2
p = 3v2

F /(5ω2
p) setting the scale of the plasmon dis-

persion, where ωp is the 3D isotropic plasma frequency
defined as

ωp ≡
√

4πe2n

εm
. (43)

On the other hand, the plasma polariton is defined by the pole
of Eq. (38), and it is given by

1 − DT (q)χT
0 (q) �⇒ ωT (q) =

√
ω2

p + c̃2|q|2. (44)

Notice that terms of order v2
F |q|2 have been neglected in the

dispersion of the polariton (44) since as usual vF � c̃, being
c̃ ∼ 108 ms−1, far bigger than the typical Fermi velocity vF ∼
106 ms−1 of an isotropic metal.

A better insight onto the role of the plasmon for the density
response is obtained by deriving the general expression for its
spectral function S(q) ≡ −Imχ̃00

iso(q) as

S(q) = − χ00
0

′′(q)(
1 − VC (q)χ00

0
′(q)

)2 + (
VC (q)χ00

0
′′(q)

)2 , (45)

where the single and the double primes denote, respectively,
the real and the imaginary parts of the bare density bubble,
and the overall minus sign is due to the fact that we are
considering retarded response functions [5]. In the simpli-
fied case in which short-range interactions are negligible the
long-wavelength dynamical bare density bubble has a vanish-
ing imaginary part, i.e., χ00

0
′′ → 0−, due to the absence of

particle-hole excitation at vF |q| � ω in a free-electron gas
[5,43], while the real part can be once again expanded as
χ00

0
′ 
 n|q|2/(mω2). One then finds that within such a limit

Eq. (45) displays a delta-like peak centered around ωL, i.e.,

S(q) 
 π IL(q)δ(ω − ωL(q)), (46)

where the overall spectral weight is given by

IL(q) = ωL(q)

2VC (q)
. (47)

One then sees that the peak at the plasmon in the density
response has zero spectral weight as q → 0, as expected by
charge conservation [5].

IV. RESPONSE FUNCTIONS FOR A LAYERED SYSTEM

So far, we considered the case of an isotropic system: in
this sense, we were allowed to consider the effective mass
m a scalar quantity. Here we will be interested instead in
describing layered materials, which are made of 2D weakly
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coupled conducting planes. Such a weak interaction between
the layers strongly suppresses the out-of-plane transport: one
can account for such an anisotropy within an approximate
free-electron continuum model with an effective mass mi

depending on the direction i, with mi = mxy for i = x, y,
and mi = mz for i = z, being mxy < mz. Substituting the
isotropic mass m with the index-dependent one mi yields the
anisotropic bare Lindhard bubbles, which we denote here
by �

μν
0 . Their form can be easily derived from the known

expansion of the isotropic case [5] by mapping the anisotropic
electron gas with effective masses mxy and mz into a fictitious
isotropic one with effective mass m∗ ≡ (m2

xymz )1/3. Such a
procedure, which is shown in detail in Appendix B, leads to
the following identities:

�00
0 (q, ω) = χ00

0∗ (q̃, ω), (48)

�0i
0 (q, ω) =

√
m∗

mi
χ0i

0∗(q̃, ω)

=
√

m∗

mi

i�nq̃i

|q̃|2 χ00
0∗ (q̃, ω), (49)

�
i j
0 (q, ω) =

√
m∗

mi

√
m∗

mj
χ

i j
0∗(q̃, ω). (50)

The momentum q̃ is rescaled such that its components satisfy
q̃i =

√
m∗
mi

qi, and χ
μν
0∗ denotes the generic response function

of the isotropic free-electron gas with effective mass m∗. The
second row of Eq. (49) has been rewritten, for the sake of the
following discussion, by taking advantage of the expression
of the isotropic density-current function provided by Eq. (25).

The rescaling encoded in Eqs. (49) and (50) does not affect
the gauge-invariance condition of the noninteracting electron
system, so that the �

μν
0 function still satisfies Eq. (21):

qμ�
μν
0 (q) = 0, �

μν
0 (q)qν = 0. (51)

On the other hand, from Eq. (49) it follows that, in contrast to
the isotropic case where χ0i

0 ∝ qi and therefore χ
0 j
0 (P̂T ) ji = 0,

the anisotropic density-current function acquires a finite trans-
verse component:

�0i
0 (q) = i�nqi

|q|2 �00
0 (q) + �

0 j
0 (q)(P̂T (q)) ji. (52)

Analogously, the current-current function �
i j
0 does not admit

a longitudinal-transverse decomposition as in Eq. (26), but it
reads as

�
i j
0 (q) = (i�n)2

|q|2 �00
0 (q)(P̂L(q))i j + �T

0 (q)(P̂T (q))i j

+ i�nqi

|q|2 �0k
0 (q)(P̂T (q))k j

+ i�nq j

|q|2 �0k
0 (q)(P̂T (q))ki, (53)

where �T
0 ≡ ( 1

2 )(P̂T )i j�
ji
0 is the purely transverse part. Equa-

tion (52) encodes the physical mechanism highlighted in
Sec. II within the formalism of Maxwell’s equations, i.e.,
the possibility in a layered system to get a density fluctua-
tion in response to a transverse current perturbation and vice

versa. From the point of view of the present derivation, the
crucial consequence of Eq. (52) is that the terms φ�0i

0 Ai,
that now replace the corresponding ones of the isotropic
case in Eqs. (33b) and (33c), are no more zero, even in
the Coulomb gauge, leading to a finite coupling between
internal (or external) scalar and vector potentials. In other
words, the gauge-fixing procedure does not provide a decou-
pling between longitudinal and transverse degrees of freedom,
as represented by the internal scalar and vector potentials,
respectively. If one ignores the latter and retains only the
former, as it is usually done in the context of RIXS and
EELS experiments [12,14,15,21,22,24,25,28], one obtains the
generalization of Eqs. (34)–(36) to the layered metal:

�00
RPA(q) = �00

0 (q)

1 − VC (q)�00
0 (q)

, (54)

�0i
RPA(q) = �0i

0 (q)

1 − VC (q)�00
0 (q)

, (55)

�
i j
RPA(q) = �

i j
0 (q) + VC (q)

�i0
0 (q)�0 j

0 (q)

1 − VC (q)�00
0 (q)

. (56)

The standard RPA anisotropic functions defined above sat-
isfy, as their isotropic counterparts, the gauge-invariance
conditions

qμ�
μν

RPA(q) = 0, �
μν

RPA(q)qν = 0. (57)

Also, Eqs. (55) and (56) can be put in the forms prescribed
by Eqs. (52) and (53) for their bare counterparts, provided
that one defines the transverse part of (56) as �T

RPA ≡
( 1

2 )(P̂T )i j�
ji
RPA. In such a “nonrelativistic” limit the density-

density and density-current response function of a layered
system are fully exhausted by Eqs. (54) and (55), respec-
tively. In particular, following the same reasoning of Eq. (42)
above, the poles of Eq. (54) yield, in the long-wavelength
dynamical limit in which �00

0 
 n/ω2(q2
xy/mxy + q2

z /mz )

(qxy ≡
√

q2
x + q2

y being the in-plane momentum), the disper-
sion of the purely longitudinal layered plasmon usually quoted
in the literature [13,18,26,60], i.e.,

ω2
L(q) = ω2

xy

q2
xy

|q|2 + ω2
z

q2
z

|q|2
= ω2

xy sin2 η + ω2
z cos2 η, (58)

where η denotes as before the angle between q and the z axis.
Equation (58) is the equivalent of Eq. (1) in the continuum
limit |q| � 1/d . In full analogy, one could define the disper-
sion of the anisotropic plasma polariton by the generalization
of Eq. (44) to the anisotropic case, i.e., 1 − DT �T

0 = 0. In
this case, by exploiting the long-wavelength dynamical limit
�T

0 
 n(q2
z /mxy + q2

x/mz )/|q|2 of the transverse anisotropic
current response, one gets

ω2
T (q) = ω2

xy

q2
z

|q|2 + ω2
z

q2
xy

|q|2 + c̃2|q|

= ω2
xy cos2 η + ω2

z sin2 η + c̃2|q|. (59)

One can immediately notice that the expressions (58) and (59)
are nonanalytic functions as q → 0. As such, they predict a
continuum of possible values as q → 0, with ωT being even
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smaller than ωL at specific values of the angle η, leading to a
crossing between the two dispersions as q is increased. These
features, in particular the continuum of q = 0 values, are
unphysical, and in direct contrast with Maxwell’s equation ex-
pectation, as we will discuss below. On the other hand, they
provide, as we already discussed in the Introduction, a valid
approximation for the nonrelativistic limits (i.e., when the
coupling is negligible, see below) of the generalized plasma
modes valid in the anisotropic case at generic value of the
wave vector.

In order to account for the finite coupling between the
scalar and vector potentials we must go back to Eq. (33) in
the anisotropic case (i.e., with χ → �) and integrate out the
e.m. potentials Aμ. In the following, instead of choosing a
particular gauge we will employ the so-called Faddeev-Popov
gauge-fixing procedure [58], which consists in spoiling ex-
plicitly the gauge invariance of the model by adding a term

Sgf [Aμ] = 1

2α

∫
dτ dr[ f (Aμ)]2 (60)

that is not gauge invariant. In Eq. (60) α is an arbitrary mul-
tiplicative constant, and f is a generic linear function of the
4-potential. f 2 is thus quadratic in Aμ, and therefore Eq. (60)
is a Gaussian function of the 4-potential centered around the
zeros of f (Aμ) = 0. As a consequence, contributions from Aμ

that do not satisfy such a condition are exponentially sup-
pressed, and one is guaranteed that, while the gauge invariance

of the physical quantities is preserved, the divergence associ-
ated with the infinite gauge orbits is eliminated. A particular
case is the α → 0 one, i.e., when the width of the Gaussian
vanishes and only fields obeying exactly f (Aμ) = 0 survive in
the functional integral. In our case, in order to reproduce the
Coulomb gauge in the α → 0 limit we choose f (Aμ) = ∇ · A.
The advantage of the Faddeev-Popov method lies in the fact
that the potentials remain linearly independent, so that there
is no need to parametrize them according to the chosen gauge
and one can easily integrate out all the four components of
Aμ. If we fix the multiplicative constant as α = 4π , Eq. (60)
becomes, in Fourier space,

Sgf [Aμ] = 1

8π

∑
q

qiq jAi(q)Aj (−q)

= 1

8π

∑
q

|q · A(q)|2, (61)

which, as one immediately sees, cancels out with the
−1/(8π )

∑
q |q · A|2 coming from Eq. (32). The total action

for the layered system will then be given by Eq. (33), without
the last term of Eq. (33d), once the χ ′s are replaced with the
�′s. We then integrate, as a first step, the scalar potential. This
amounts to the standard RPA dressing of the bare response
functions, plus a dressing of the remaining terms proportional
to the vector potential:

S
[
A, Aext

μ

] = e2

2

∑
q

[
�00

RPA|φext(q)|2 + �
i j
RPA(q)

Aext
i (q)

c

Aext
j (−q)

c
+

(
−�0i

RPA(q)φext(q)
Aext

i (−q)

c
− �0i

MIX(q)φext(q)
Ai(−q)

c

+ �
i j
MIX(q)

Aext
i (q)

c

Aj (−q)

c
+ c.c.

)
+ (

�−1(q)
)i j Ai(q)

c

Aj (−q)

c

]
. (62)

The coefficient of AiAj is defined as the inverse of the 3×3 tensor �i j as

(�−1)i j (q) = c2|q|2
4πe2

(P̂L(q))i j +
(

�T
RPA(q) − 1

DT (q)

)
(P̂T (q))i j, (63)

and the coefficients of the mixed terms in φextAi and in Aext
i A j

are given, respectively, by

�0i
MIX(q) = �0i

RPA(q) − i�nqi

|q|2 �00
RPA(q), (64)

�
i j
MIX(q) = �

i j
RPA(q) − i�nq j

|q|2 �0i
RPA(q). (65)

�0i
MIX is purely transverse since �0i

MIXqi = 0, while �
i j
MIX,

which is not symmetric under exchange of the indices, is such
that �

i j
MIXq j = 0 but qi�

i j
MIX is finite. This is even clearer

when one writes

�0i
MIX(q) ≡ �

0 j
RPA(q)(P̂T (q)) ji (66)

and

�
i j
MIX(q) ≡ �T

RPA(q)(P̂T (q))i j

+ i�nqi

|q|2 �0k
RPA(q)(P̂T (q))k j, (67)

which can be straightforwardly obtained by taking advantage
of the fact that �0i

RPA and �
i j
RPA admit two decomposi-

tions similar, respectively, to those of Eqs. (52) and (53).
Equations (66) and (67) clarify two main aspects. First of
all, by direct comparison between Eqs. (64) and (52) one
sees that �0i

MIX is exactly the transverse part of the standard
RPA density-current response function, that is nonzero only
in the layered case. Thus, the coupling between the scalar and
vector potentials in Eq. (62) is a direct consequence of the
system anisotropy. At the same time, since �0i

MIXqi = 0 and
�

i j
MIXq j = 0, the external scalar φext and vector Aext potentials

in Eq. (62) couple only to the transverse part of the internal
vector potential AT . As a consequence, the gauge-dependent
longitudinal component AL, which only appears in the last
term of Eq. (62) via the quadratic contribution (1/�L )|AL|/c2,
with 1/�L = c2|q|2/(4πe2), does not contribute to the dress-
ing of the response functions. Once the integration of A in
Eq. (62) is carried out, we are left with the action for the
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auxiliary fields only:

S
[
Aext

μ

] = e2

2c2

∑
q

Aext
μ (q)�̃μν (q)Aext

ν (−q). (68)

The full response functions �̃μν are given by

�̃μν (q) = �
μν

RPA(q) − �
μi
MIX(q)�T

i j (q)�ν j
MIX(q), (69)

where

�T
i j ≡ (P̂T )i j

/(
�T

RPA − 1/DT
)

(70)

and we used a compact 4-vector notation in which the mixing
coefficients (64) and (65) are defined as

�
μi
MIX(q) = �

μi
RPA(q) − i�nqi

|q|2 �
0μ

RPA(q). (71)

The full response functions (69) are still gauge invariant.
Indeed, thanks to the gauge-invariance conditions (51) and
(57) for the bare and standard RPA response functions, re-
spectively, we also have

qμ�̃μν (q) = 0, �̃μν (q)qν = 0 (72)

for the full response functions. To show that Eq. (72) is indeed
satisfied, we note that each �̃μν is given as the sum of a
standard RPA function �

μν

RPA, which already obeys a gauge-
invariant constraint, i.e., Eq. (57), plus the mixing term (71),
which can be proven to obey a similar condition. Indeed, from
qμ�

μν

RPA = 0 and �
μν

RPAqν = 0, it follows that

qμ�
μi
MIX = qμ�

μi
RPA − i�nqi

|q|2 �0ν
RPAqν = 0, (73)

where the vanishing of the first and the second terms comes
from Eq. (21) for ν = i and μ = 0, respectively.

In the following we will be interested in the density-density
function �̃00, whose expression is given by Eq. (69) for time-
like indices μ = ν = 0 and reads as explicitly

�̃00(q) = �00
RPA(q) − �0i

MIX(q)�T
i j (q)�0 j

MIX(q). (74)

Equation (74) is the first central result of our work. It
provides an analytical expression for the gauge-invariant
density-density response function in a layered metal at arbi-
trary momentum and frequency. It can be readily extended
to the case of interacting electron systems, once the short-
range interactions are included [53,54] by preserving the
gauge-invariant condition (51) for the bare response functions.
Indeed, all effects coming from the coupling to the long-range
part of the interaction are included in an exhaustive way by
Eq. (69). In the next section we will provide additional ana-
lytical insights into the nature of the plasma modes obtained
as poles of the general structure (74) for the noninteracting
case.

V. COLLECTIVE MODES OF A LAYERED SYSTEM
AND THEIR SPECTRAL FEATURES

A. Generalized plasma modes dispersion

To analyze the spectral function of the density response
(74) we set the momentum q for the sake of simplicity within

the xz plane. With such choice the longitudinal-transverse
basis is spanned by the following orthogonal vectors:

v̂L = q̂, v̂
y
T = ŷ, v̂xz

T = q̂ × ŷ. (75)

v̂L is the longitudinal versor parallel to q, v̂
y
T and v̂xz

T are
the transverse ones along the y direction and in the xz plane,
respectively. To make a bridge between the longitudinal and
transverse projectors defined in Eq. (27) and the basis versors
(75), we notice that the former can be expressed in terms
of outer products of the latter as P̂L = v̂L ⊗ v̂L and P̂T =
v̂

y
T ⊗ v̂

y
T + v̂xz

T ⊗ v̂xz
T .

Let us now write the relevant layered response functions
within the new basis (75). First of all, we note that the mixing
terms (64) and (65) couple longitudinal excitations to trans-
verse ones polarized along the xz plane but not with those
polarized along y. Indeed, since in our frame of reference
qy = 0, we have that �

0y
0 = 0 [which follows trivially from

Eq. (49)] and, as a consequence, �
0y
MIX = 0. Therefore(

v̂
y
T

)
i�

0i
MIX(q) = 0. (76)

Similarly Eq. (50), for i = y or j = y, has only a diamagnetic
contribution proportional to a delta δy j or δiy, so that(

v̂
y
T

)
i
(v̂L ) j�

i j
MIX(q) = 0,

(
v̂

y
T

)
i
(v̂xz

T ) j�
i j
MIX(q) = 0 (77)

which implies that current fluctuations along y never get cou-
pled with those along the longitudinal and the transverse xz
directions. As a consequence, the current-current response
function, as given by Eq. (69) for spacelike indices μ = i and
ν = j, reads as, for i = j = y,

�̃yy(q) = �
yy
0 (q)

1 − DT (q)�yy
0 (q)

. (78)

Equation (78) identifies a transverse mode with electric field
polarized along y and whose long-wavelength propagation is
given (being �

yy
0 
 n/mxy in the dynamical long-wavelength

limit) by ω2 = ω2
xy + c̃2|q|2, which coincides with the stan-

dard polariton dispersion (44).
Conversely, Eqs. (66) and (67) account for a finite coupling

between longitudinal modes and transverse ones polarized
along xz. To investigate this effect it is convenient to express
Eq. (74) as

�̃00(q) = �00
ret(q)

1 − VC (q)�00
ret(q)

, (79)

where

�00
ret(q) = �00

0 (q) +
[
�0J

T (q)
]2

D−1
T (q) − �JJ

T (q)
(80)

and we introduced the projections of the bare density-current
and current-current functions along the transverse xz direc-
tion:

�0J
T (q) ≡ (

v̂xz
T

)
i
�0i

0 (q),

�JJ
T (q) ≡ (

v̂xz
T

)
i

(
v̂xz

T

)
j�

i j
0 (q). (81)
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Equation (79), whose derivation is detailed in Appendix C,
is the second central result of this work, as it provides an
expression for the full density-density response of the layered
metal in terms of the bare anisotropic response functions,
with the inclusion of the retardation effects. It is important
to stress that both Eqs. (69) and (79) emphasize two main
aspects: the former underlines that the anisotropy mixes the
standard RPA result, given by the integration of φ, with the
propagating transverse modes encoded into A; the latter sug-
gests that this is equivalent to resumming first the retarded
interaction mediated by the transverse modes and then the
Coulomb interaction. Indeed, according to Eqs. (79) and (80),
the full density response contains an RPA resummation both
in the current and density sector: the former accounts for the
replacement of the bare bubble �00

0 with the correction due to
the transverse gauge field, whose propagator is proportional
to 1/(D−1

T − �JJ
T ), with a strength controlled by the nonzero

value of �0J
T for a layered system; the latter is the usual RPA

dressing with the Coulomb interaction VC (q).
We now focus, in full analogy with Sec. III, on the simpli-

fied long-wavelength dynamical case in which the anisotropic
Lindhard bubbles (48)–(50) can be expanded, at leading order
in the momentum, as

�00
0 (q) 
 n

ω2

(
q2

x

mxy
+ q2

z

mz

)
, (82)

�0J
T (q) 
 −qxqz

|q|
n

ω

(
1

mxy
− 1

mz

)
, (83)

�JJ
T (q) 
 n

|q|2
(

q2
x

mz
+ q2

z

mxy

)
. (84)

The derivation of these limits is discussed in Appendix B. By
using Eqs. (82)–(84) we can immediately find an estimate of
the retardation corrections to the density response encoded in
Eq. (80), in the same spirit of the discussion in Sec. II. Indeed,
we see that the relative correction to the density bubble �00

0
encoded into Eq. (80) can be expressed, by means of the

expansions (82)–(84), as[
�0J

T (q)
]2

�00
0 (q)

[
D−1

T (q) − �JJ
T (q)

] 

(
ω2

xy − ω2
z

)2

ω2
L

[
ω2 − ω2

T (q)
]

× q2
x q2

z

|q|4 ≡ c̃4q4
c

ω2
L(q)

[
ω2 − ω2

T (q)
] sin2(2η)

4
, (85)

where

qc ≡
√

ω2
xy − ω2

z

c̃
(86)

as already defined (for ε = 1) in Eq. (10) above, and with
the definitions (58) and (59) of ωL and ωT . Outside the light
cone, as it is the case for EELS and RIXS, momenta are
such that |q| � ω/c. In this regime the term c̃2|q|2 in ωT (q)
dominates in the denominator of Eq. (85), while c̃qc 
 ωxy is
comparable to ωL. One then recovers the same scaling condi-
tion ∼q2

c/q2 � 1 of Eq. (10) for the quantitative irrelevance
of retardation effects. Conversely, for experiments with THz
light where ω 
 ωz and q = ωz/c̃, which is far smaller than
the crossover value qc ∼ ωxy/c̃, one sees that the denominator
of Eq. (85) scales at leading order with ω2

z (c̃qc)2:

ω2
L

(
ω2

T − ω2
z

) = [
ω2

z + (c̃qc)2 cos2 η
]

× [
ω2

z + (c̃qc)2 sin2 η
] 
 ω2

z (c̃qc)2. (87)

When replaced into Eq. (85) one finds again an overall factor
scaling as (cqc/ωz )2 = (qc/q)2 � 1, and one recovers that
relativistic corrections become crucial. In the following we
will see how the above estimate reflects in the crossover from
the relativistic to the standard RPA regime for the response
function.

Let us first determine the general dispersion of the plasma
modes from the zeros of Eq. (79). With lengthy but straight-
forward calculations one obtains the expressions equivalent to
those derived recently in Ref. [46] for an anisotropic super-
conductor in the case of zero screening length, i.e.,

ω2
±(q) = 1

2

(
ω2

xy + ω2
z + c̃2|q|2 ±

√(
ω2

xy − ω2
z

)2 + c̃4|q|4 − 2c̃2
(
q2

x − q2
z

)(
ω2

xy − ω2
z

))
. (88)

As already discussed in Ref. [46], in contrast to the RPA
solution ωL/T (q) of Eqs. (58) and (59), the two solutions ω±
are analytic functions as q → 0, with

lim
q→0

ω±(q) = ωxy/z, (89)

which is consistent with the expectation that as q → 0 the
only solution of the Ampere-Maxwell law 4πJ − (iω/c)E =
0 requires J being parallel to E, that is only possible in a lay-
ered system for electric fields polarized along z and ω = ωz, or
polarized in the xy plane with ω = ωxy. Since at small but fi-
nite q the two e.m. modes (88) preserve the same polarization,

for a generic direction of q one has a mixture of longitudinal
and transverse components. This can be explicitly seen by
computing the polarization of the electric fields E− and E+
corresponding to the two solutions ω∓. Their expressions
have been derived previously in the superconducting case
[46], and they can be obtained again within the framework
of Maxwell’s equations (see Appendix A). By denoting with
EL/T the longitudinal/transverse component of the ω− solution
one finds

E−(q) = EL(q)v̂L + ET (q)v̂xz
T ,

E+(q) = EL(q)v̂xz
T − ET (q)v̂L, (90)
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FIG. 2. Momentum dependence of the mixed longitudinal-transverse modes and their polarizations. Momentum dependence of the mixed
longitudinal-transverse modes ω− and ω+ [(a) and (c)], as given by Eq. (88), and of the longitudinal and transverse components EL and ET of
the ω− mode, as given by Eqs. (91) and (92) [(b) and (d)]. In (a) and (b) the quantities are shown as functions of |q| at three selected values
of the angle η, while in (c) and (d) they are shown as functions of qx at three selected values of the out-of-plane momentum qz. Here red/blue
solid lines are associated with ω−/ω+ and EL/ET , respectively, with same shades of red or blue associated with the same value of η or qz. In
(a) and (c) we also show, for comparison, the standard RPA modes ωL (red dotted-dashed line) and ωT (blue dotted-dashed line) at η = π/3
in (a) and qz = 1 µm−1 in (c), respectively. We set the values of the plasma frequencies as ωxy = 1 eV and ωz = 0.05 eV and for simplicity we
assumed ε = 1.

where

EL(q) =
qxqz

|q|2
(
ω2

xy − ω2
z

)
√

q2
x q2

z

|q|4
(
ω2

xy − ω2
z

)2 + [
ω2+(q) − ω2

T (q)
]2

, (91)

ET (q) = ω2
+(q) − ω2

T (q)√
q2

x q2
z

|q|4
(
ω2

xy − ω2
z

)2 + [
ω2+(q) − ω2

T (q)
]2

. (92)

As expected, for E+ the role of EL/T is exchanged. The po-
larization vectors are shown along with the eigenmodes in
Figs. 2(a) and 2(b) as functions of |q| at fixed propagation
angle η, and in Figs. 2(c) and 2(d) as functions of qx at fixed
value of qz. In both cases, one sees that as soon as |q| � qc

the generalized modes tend to their RPA counterparts:

|q| � qc �⇒ ω−(q) 
 ωL(q), ω+(q) 
 ωT (q). (93)

This can be easily understood from Eq. (88), where at large
|q| the square-root term can be recast and expanded in powers
of the small variable qc/|q|, and one easily recovers the two
analytical expressions of the standard RPA purely longitu-
dinal and transverse modes (58) and (59). In full agreement
with this result, one sees that in such a nonrelativistic regime
EL 
 1 and ET 
 0, so that E− describes a purely longitudinal
mode while E+ reduces to the purely transverse mode along
v̂xz

T , associated with the standard RPA mode ωT . In Figs. 2(a)

and 2(c) we also show for comparison the standard RPA re-
sults, for angle η = π/3 in Fig. 2(a) and for qz = 1.5 µm−1 in
Fig. 2(c). As one can see, at small momenta the RPA solutions
lead to several unphysical behaviors, like the divergence of the
slope of the acoustic-like branch as qz → 0, and the unphys-
ical crossing of the transverse and longitudinal solutions, the
former being even smaller in energy than the latter. Such a
pathological behavior, that can be understood by the strong
mixing of L/T character in the same regime of momenta [see
Figs. 2(b) and 2(d)], is completely solved by considering the
generalized solutions.

B. Density response

Once clarified the behavior of the generalized plasma
modes let us study their contribution to the density response
function S̃(q) ≡ −Im�̃00(q), whose general expression in
terms of the retarded density function (80) is given by

S̃(q) = −�00
ret

′′(q)(
1 − VC (q)�00

ret
′(q)

)2 + (
VC (q)�00

ret
′′(q)

)2 . (94)

The zeros of 1 − VC�00
ret

′ identify the dispersions of the modes
as given by Eq. (88). The imaginary part �00

ret
′′ sets the widths

associated with their peaks, and it vanishes, as in the isotropic
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FIG. 3. Spectral features of the mixed longitudinal-transverse modes. (a), (b) Momentum dependence of the spectral weights I− and I+,
as given by Eq. (96), both normalized with respect to the IL (q) defined in Eq. (98). In (a) the quantities are shown as functions of |q| at three
selected values of the angle η, while in (b) they are shown as functions of qx at three selected values of the out-of-plane momentum qz. Here
solid and dotted lines are associated with I− and I+, respectively, with same color associated with the same value of η or qz. (c)–(f) Frequency
dependence of the density response S̃(q), as given by Eq. (95), at selected values of the momenta. In (c) and (d) we show the results at various
angles η for the two values |q| = q1 and q2 marked in (a) and (b) by a vertical dashed line, with the same color convention used in (a). In
(e) and (f) we show the results at different qz for the two values qx = qx,1 and qx = qx,2 marked in in (b) by a vertical dashed line, with the
same color convention used in (b). In analogy with Fig. 2 we set ωxy = 1 eV, ωz = 0.05 eV, and ε = 1. In order to better visualize the peaks
associated with ω− and ω+, we broadened the delta distributions with a finite width δ = 0.01 eV.

case, in the long-wavelength dynamical limit: in particular, it
is �00

ret
′′ → 0− for |q| < qc and ω such that ω = ω±(q) (as we

discuss at the end of Appendix C). In such a momentum range
ω− and ω+ are therefore well-defined modes and they both
appear, in the density spectrum identified by S̃, as two sharp
delta-like peaks centered around their respective frequencies,
i.e.,

S̃(q) 
 π I−(q)δ(ω − ω−(q)) + π I+(q)δ(ω − ω+(q)), (95)

where the overall peak intensities are given by

I±(q) = ± ω±(q)

2VC (q)

ω2
±(q) − ω2

T (q)

ω2+(q) − ω2−(q)
. (96)

As a first observation, we notice that Eq. (95) satisfies the
f -sum rule, as one can prove by computing the integral
−(1/π )

∫
dω Im�̃00(ω, q) = (1/π )

∫
dω S̃(ω, q) over all the

positive frequencies. Taking advantage of the identity ω2
− +

ω2
+ = ω2

xy + ω2
z + c̃2|q|2, it yields∫ +∞

0

dω

π
ωS̃(ω, q) = ω+(q)I+(q) + ω−(q)I−(q)

= n

2

(
q2

x

mxy
+ q2

z

mz

)
, (97)

i.e., the expected result for the f -sum rule of an anisotropic
electron gas [43].

The momentum dependence of the spectral weights is
shown in Figs. 3(a) and 3(b) as a function of |q| at fixed angle

and as a function of qx at fixed qz, respectively. As one can
see, as q → 0 in general the spectral function displays a two-
peak structure, also shown explicitly in Figs. 3(c)–3(f). This
is a direct consequence of the fact, highlighted above, that
at generic wave vector both modes have a finite longitudinal
component in the relativistic regime. As a consequence, since
the density response projects out the longitudinal fluctuations,
it carries out a finite spectral weight at both modes. This is the
third relevant result of this work, that shows the emergence
of a double-peak structure in the density spectral function in
the relativistic regime. On the other hand, as the momentum
increases and overcomes qc one sees from Eq. (96) that

I+(q) 
 0, I−(q) 
 IL(q) ≡ ωL(q)

2VC (q)
, |q| � qc (98)

i.e., I+ vanishes and I− approaches the spectral weight ex-
pected for a standard RPA longitudinal mode, i.e., the one
given by Eq. (47) [see Figs. 3(a) and 3(c)] with ωL being now
the standard RPA plasmon defined in Eq. (58). Therefore, pro-
vided that q does not exceed the value above which plasmons
are damped by the particle-hole continuum (see Appendix C),
one finds that

S̃(q) 
 π IL(q)δ(ω − ωL(q)), |q| � qc (99)

which is exactly the anisotropic counterpart of Eq. (46). These
effects are shown in Figs. 3(c)–3(f), where we plot the spectral
function S̃ as given by Eq. (95) and normalized with respect to
IL, in order to get rid of the overall ∝|q|2 factor due to charge
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conservation. S̃/IL is shown at the two values of the momen-
tum q1 = 3.0 µm−1 (below the crossover) and q2 = 7.0 µm−1

(above the crossover) in Figs. 3(c), 3(e) and 3(d), 3(f), re-
spectively: in the first case ω+ carries on a larger spectral
weight than ω−, in agreement with the previous discussion
on the behavior of I± below qc; in the second case ω− has
the largest spectral weight, as its spectral profile tends to the
one of the standard RPA plasmon, while ω+ has an overall
vanishing peak intensity, as expected for a pure polariton. We
additionally notice that the results of Fig. 3 are performed for
realistic values of the in-plane and out-of-plane plasma ener-
gies in cuprates. As a consequence, the double-peak structure
is observed in a region outside the range of the elastic peak,
which typically extends from 0 to 0.1 eV [8,23,24,29,30]. In
addition, the distance between the peaks is also larger than the
plasmon-peak broadening that has been observed experimen-
tally outside the crossover region. Even though the theoretical
evaluation of the plasmon broadening requires the inclusion
of short-range correlation effects not discussed in this paper,
the comparison with experimental data in the nonrelativistic
region suggests that the double-peak structure should not be
blurred by the interaction-driven broadening. Finally, we ob-
serve that the density response could be additionally coupled
to phonon modes that occur in the same energy range, as
sometimes observed by RIXS [23]. This possibility, as well
as the mixing with phonon polaritons arising from infrared-
active phonons, is strongly material dependent, and will be
eventually analyzed in future works.

VI. CONCLUSIONS

In this paper we provided a general derivation of the elec-
tromagnetic response functions of a layered electron gas in
the long-wavelength limit that accounts for both instantaneous
and retarded electromagnetic interactions. The starting point
is the observation that the anisotropy of the electric current
induced as response to a local electric field implies, already
at the level of classical Maxwell’s equations, a mixing be-
tween the longitudinal and the transverse components of the
internal e.m. fields. The physical effect is the emergence of a
transverse current in response to a longitudinal electric field,
that in turns acts as a source for the magnetic field. The final
outcome is a mixing between the so-called polaritonlike and
plasmonlike hybrid light-matter modes, which appear instead
in the isotropic metal as purely transverse and longitudinal
modes, respectively.

To implement this effect within a general many-body for-
malism we used a path-integral approach where the electronic
degrees of freedom are explicitly coupled not only to the
external (source) fields, but also to the e.m. fields mediating
the interactions among them. This approach highlights how
the different role of the electric and magnetic fields within
the context of the Maxwell equation manifests in the usual
language of the RPA resummation of the bare electronic
response functions, that represent the standard paradigm to
study plasma modes. The results can be summarized in the
case, e.g., of the density response, that is the one probed by
RIXS and EELS spectroscopy. In the isotropic system density
fluctuations only couple to the scalar potential, and as a con-
sequence at RPA level the density response is only dressed

by Coulomb-type interactions. However, in the anisotropic
system a transverse current is induced by a density fluctuation,
leading to an additional RPA dressing of the density response
via the transverse e.m. propagator. This is shown in Eq. (79)
that we report here for convenience:

�̃00(q) = �00
ret(q)

1 − VC (q)�00
ret(q)

. (100)

In Eq. (100) the standard RPA resummation with the Coulomb
potential is carried out using as starting point a density re-
sponse function �00

ret(q) that includes retardation effects, i.e.,

�00
ret(q) = �00

0 (q) +
[
�0J

T (q)
]2

D−1
T (q) − �JJ

T (q)
. (101)

Retardation effects appear as a “relativistic” contribution since
one can show that they are negligible above the momentum
threshold qc ∼ ωxy/c ∼ 5 µm−1 vanishing for infinite light
velocity. Indeed, at q � qc the second term of Eq. (101)
vanishes, and one recovers the textbook result (100) with
the standard bare density response �00

0 , leading to a layered
version of the longitudinal plasma mode. In contrast, in the
low-momentum regime q < qc Eq. (100) admits two poles,
that coincide formally with the generalized plasma waves
derived previously in Ref. [46], in the superconducting state.
The mixed longitudinal-transverse character of these modes
manifests indeed as a finite projection of both modes in the
density sector, leading to a double-peak structure of the den-
sity response. Such a prediction could be confirmed once that
EELS and RIXS experiments will be able to push their reso-
lution down to the crossover scale. Indeed, despite the rather
low state-of-the-art momentum resolution of these protocols,
with the lowest accessible momentum of about ∼0.01 Å−1 =
100 µm−1, electron-energy-loss spectroscopy incorporated in
a scanning transmission electron microscope (STEM-EELS)
and equipped with a monochromator and aberration correctors
has a high potential to combine high momentum and en-
ergy resolution [9,61], and thus to explore plasma excitations
around the crossover scale, where the standard RPA breaks
down and both generalized plasma modes give a comparable
contribution to the density response.

The main advantage of the derivation presented in this pa-
per, encoded in a very compact and elegant way into Eq. (101),
is the possibility to provide a general framework to study
charged plasmon in a layered system by making explicit the
effect of all long-range e.m. interactions, and leaving as a sep-
arate problem the inclusion of short-range interactions in the
response functions �μν that appear as a building block of the
final observable. The latter has been instead the focus of recent
experiments of reflection EELS [8,29–31] in cuprates. In these
materials an anomalous damping of plasmons occurs already
at low momenta where particle-hole excitations are not opera-
tive, according to the standard Fermi-liquid description. Such
a result has been attributed to a strange-metal physics [32],
that is not captured by our approach, but can be in principle
incorporated into the general expression (101) by means of a
proper gauge-invariant renormalization of the bare response
functions due to short-range interactions. An additional
interesting open question is the possibility that short-range
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interactions affect also the crossover scale, making relativistic
effects operative below the momenta estimated on the basis
of a Fermi-liquid picture. Such a mechanism could help the
spectroscopic detection of the predicted generalized plasma
modes, adding an additional knob to the investigation of elec-
tronic excitations in correlated metals.

ACKNOWLEDGMENTS

We acknowledge financial support by EU under project
MORE-TEM ERC-SYN (Grant Agreement No. 951215)
and by Sapienza University under the program Ateneo
(Grants No. 2021 RM12117A4A7FD11B and No. 2022
RP1221816662A977).

APPENDIX A: CLASSICAL ELECTRODYNAMICS
OF A LAYERED METAL

In this Appendix we rephrase the existence of mixed
longitudinal-transverse e.m. modes in a layered metal within
the classical framework of Maxwell’s equations. A similar ap-
proach has been previously discussed for layered SC systems
by three of us in Ref. [46].

For the sake of simplicity, we consider a metal in the
absence of external sources, i.e., ρext = 0 and Jext = 0. The
electron transport can be described, in the simplified case of
long-wavelength propagation of the e.m. modes at very low
scattering rate, by means of the undamped Drude equation for
the internal current and electric field J and E:

∂J
∂t

= e2nm̂−1E. (A1)

m̂ is the effective-mass tensor, that in isotropic systems triv-
ially reduces to the scalar mass m along an arbitrary direction;
on the other hand, in layered anisotropic systems it reads as

m̂ =
⎛
⎝mxy 0 0

0 mxy 0
0 0 mz

⎞
⎠, (A2)

where mxy and mz are the in-plane and the out-of-plane ef-
fective masses, respectively. As it is usually done to derive
the wave equation from the Maxwell’s ones, one can take the

curl of Faraday’s law and then replace B from the Ampere-
Maxwell equation. This yields the following equation for the
electric field [55]:

∇(∇ · E) − ∇2E = 4π

c2

∂J
∂t

− ε

c2

∂2E
∂t2

. (A3)

By exploiting Eq. (A1), we get rid of J and obtain an equa-
tion for the electric field only. Let us introduce, as in the main
text, the longitudinal EL = (q̂ · E)q̂ and the transverse ET =
E − EL = (q̂ × E) × q̂ components of the electric field. In
the isotropic case the longitudinal-transverse decomposition
E = EL + ET of the total electric field leads to two decoupled
equations, i.e.,

∂2EL

∂t2
+ ω2

pEL = 0, (A4)

1

c̃2

∂2ET

∂t2
− ∇2ET + ω2

p

c̃2
ET = 0, (A5)

where the renormalized light velocity is defined as c̃ = c/
√

ε

as in the main text. They describe a longitudinal mode os-
cillating at ω = ωp and two degenerate transverse modes
propagating at ω2 = ω2

p + c̃2|q|2, ωp being the isotropic
plasma frequency defined in Eq. (43).

In the anisotropic case such a decomposition for the elec-
tric field does not decouple the two equations. The main
physical reason is that, due to the tensorial nature of the
effective mass, the induced current J in Eq. (A1) is no more
parallel to the electric field. Let x̂ be, as in the main text, the
versor parallel to the direction of the in-plane component of
the momentum q. For an anisotropic system Eq. (A3) splits
into three equations. One of them describes the in-plane pure
transverse component Ey

T = Ey
T ŷ through(

ω2 − ω2
xy − c̃2|q|2)Ey

T = 0. (A6)

Such transverse mode, which is polarized along the xy plane,
is not affected by the anisotropy along the out-of-plane direc-
tion, so it propagates at ω2 = ω2

xy + c̃2|q|2 without coupling
with the longitudinal degrees of freedom. This is the result
we found above with Eq. (78). On the other hand, the two
equations describing the longitudinal mode EL = ELq̂ and the
transverse component Exz

T = Exz
T (q̂ × ŷ) polarized along the

xz plane are coupled. Such equations read as, in Fourier space,

(
ω2 − ω2

xy

q2
x

|q|2 − ω2
z

q2
z

|q|2
)

EL + qxqz

|q|2
(
ω2

xy − ω2
z

)
Exz

T = 0,

(
ω2 − ω2

z

q2
x

|q|2 − ω2
xy

q2
z

|q|2 − c̃2|q|2
)

Exz
T + qxqz

|q|2
(
ω2

xy − ω2
z

)
EL = 0. (A7)

The nontrivial propagating solutions of the previous equa-
tions are found by solving the characteristic polynomial

(
ω2 − ω2

xy

)(
ω2 − ω2

z

) − c̃2q2
x

(
ω2 − ω2

xy

)− c̃2q2
z

(
ω2 − ω2

z

) = 0

(A8)

that leads to the frequencies ω± introduced in Eq. (88). The
electric fields E± associated with such modes can be then
computed: they are given by Eq. (90). Notice that if the
coupling term qxqz

|q|2 (ω2
xy − ω2

z )Exz
T is neglected in the first equa-

tion in Eq. (A7), the pure longitudinal standard RPA mode
ωL =

√
(ω2

xyq2
xy + ω2

z q2
z )/|q|2 is recovered. This is valid when
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the transverse component Exz
T is negligible with respect to the

longitudinal one EL, as expected when |q| � qc. Indeed, from
the second of Eq. (A7) one can estimate their ratio, at generic
frequency and momentum, as

Exz
T

EL
= − ω2

xy − ω2
z

ω2 − ω2
T (q)

qxqz

|q|2 = − c̃2q2
c

ω2 − ω2
T

sin (2η)

2
, (A9)

where ωT =
√

(ω2
xyq2

z + ω2
z q2

xy)/|q|2 + c̃2|q|2 is the standard
RPA pure transverse mode. Equation (A9) is a more refined
version of Eq. (9), where the displacement current was ne-
glected, and is very similar to the one derived within the
many-body formalism, i.e., Eq. (85). As for the latter, when
the momentum lies outside the light cone, i.e., |q| � ω/c̃,
Exz

T /EL 
 0, while the ratio stays finite for THz light prop-
agating with a wave vector q = ωz/c that lies far below the
crossover value qc ∼ ωxy/c̃.

APPENDIX B: RELATION BETWEEN ISOTROPIC
AND ANISOTROPIC BARE RESPONSE FUNCTIONS

In this Appendix we discuss the mapping of an anisotropic
free-electron gas model into an isotropic one, i.e., strictly
speaking, how to obtain the layered bare Lindhard functions
�

μν
0 from the knowledge of the isotropic ones χ

μν
0 . The

former ones are given by an anisotropic generalization of
Eqs. (23) and (24) of the main text, i.e., after analytical con-
tinuation i�m → ω + i0+,

�
μν
0 (q, ω) = n

mi
δμiδμν (1 − δμ0)

+ 2
∫

d3k

(2π )3
γ̃ μ(k, q)γ̃ ν (k, q)

× f (ξ̃k ) − f (ξ̃k+q)

ω − ξ̃k+q + ξ̃k + i0+ , (B1)

where we took the limit of infinite volume V → ∞.
In Eq. (B1), ξ̃k ≡ k2

xy/(2mxy) + k2
z /(2mz ) − μ, with

kxy ≡
√

k2
x + k2

y , is the anisotropic free-electron energy
dispersion and γ̃ μ is the anisotropic density-current vertex,
with γ̃ 0 = 1 for μ = 0 and γ̃ i = (ki + qi/2)/mi for μ = i. As
a first step, we perform a rescaling of the momentum, in order
to link, e.g., the anisotropic energy dispersion to an isotropic
one. In order to do so, we introduce the effective mass m∗,
defined as

m∗ ≡ (
m2

xymz
) 1

3 (B2)

and we perform the following rescaling of the momenta k
and q:

k∗
i =

√
m∗

mi
ki, q∗

i =
√

m∗

mi
qi. (B3)

Equation (B3) leaves the momentum integration measure in-
variant, i.e., d3k∗ = d3k. It is straightforward to prove that the
anisotropic energy dispersion and the current vertex can be

rewritten, in terms of m∗, as

ξ̃k = |k∗|2
2m∗ − μ ≡ ξ ∗

k∗ (B4)

and

γ̃ i(k, q) =
√

m∗

mi

k∗
i + q∗

i /2

m∗ ≡
√

m∗

mi
γ i

∗(k∗, q∗), (B5)

where ξ ∗ and γ ∗ are the energy dispersion and current vertex,
as functions of the rescaled momenta (B3), of a fictitious
isotropic free-electron gas with effective electron mass m∗.

Let us consider, as an example, the anisotropic density-
density response function as given by Eq. (B1) for timelike
indices μ = ν = 0. Taking advantage of Eq. (B4) and of the
invariance of the integration measure under the rescaling (B3)
we have that

�00
0 (q, ω) = 2

∫
d3k

(2π )3

f (ξ̃k ) − f (ξ̃k+q)

ω − ξ̃k+q + ξ̃k + i0+

= 2
∫

d3k∗

(2π )3

f (ξ ∗
k∗ ) − f (ξ ∗

k∗+q∗ )

ω − ξ ∗
k∗+q∗ + ξ ∗

k∗ + i0+

≡ χ00
0∗ (q∗, ω). (B6)

By means of similar calculations, one can show that the
anisotropic density-current and current-current functions can
be computed as

�0i
0 (q, ω) =

√
m∗

mi
χ0i

0∗(q∗, ω)

=
√

m∗

mi

ωq∗
i

|q∗|2 χ00
0∗ (q∗, ω) (B7)

and

�
i j
0 (q, ω) =

√
m∗

mi

√
m∗

mj
χ

i j
0∗(q∗, ω)

=
√

m∗

mi

√
m∗

mj

ω2

|q∗|2 χ00
0∗ (q∗, ω)

q∗
i q∗

j

|q∗|2

+
√

m∗

mi

√
m∗

mj
χT

0∗(q∗, ω)

(
δi j − q∗

i q∗
j

|q∗|2
)

. (B8)

The last three equations are the same quoted in the main
text [see, e.g., Eqs. (48), (49), and (50)]. χ00

0∗ , χ0i
0∗, and χ

i j
0∗

are, respectively, the bare density-density, density-current,
and current-current response functions of the isotropic free-
electron gas with mass m∗, as functions of the rescaled
momentum q∗ and of the frequency. Moreover, in the sec-
ond row of Eqs. (B7) and (B8) we took advantage of the
longitudinal-transverse decomposition, with respect to the
momentum q∗, of χ0i

0∗ and χ
i j
0∗, as prescribed for an isotropic

metal by Eqs. (25) and (26) of the main text.
From Eqs. (B6)–(B8) one easily derives the long-

wavelength expansions (82)–(84) of the main text. Indeed,
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at leading order in v∗
F |q∗|/ω (v∗

F ≡ √
2εF /m∗) it is χ00

0∗ 

n|q∗|2/(m∗ω2) and χT

0∗ 
 n/m∗, in analogy with Eqs. (40) and
(41) of the main text. Once substituted the definitions of m∗
and q∗ one finds that

�00
0 (q, ω) 
 n

ω2

(
q2

xy

mxy
+ q2

z

mz

)
, (B9)

�0i
0 (q, ω) 
 n

ω

qi

mi
, (B10)

�
i j
0 (q, ω) 
 n

mi
δi j . (B11)

The first expansion is exactly Eq. (82) of the main text. If we
substitute the last two into the definitions of �0J

T and �JJ
T [i.e.,

Eq. (81)] we get exactly Eqs. (83) and (84).

APPENDIX C: DERIVATION OF EQ. (79)

Let us consider once again the full density-density response function, i.e., Eq. (74), for timelike indices μ = ν = 0, that reads
as

�̃00(q) = �00
RPA(q) − �0i

MIX(q)�T
i j (q)�0 j

MIX(q). (C1)

The nonzero projection of �0i
MIX along the direction set by v̂xz

T , i.e.,

(
v̂xz

T

)
i�

0i
MIX(q) = (

v̂xz
T

)
i�

0i
RPA(q) = �0J

T (q)

1 − VC (q)�00
0 (q)

(C2)

has the crucial consequence that the mixing contribution �0i
MIX�T

i j�
0 j
MIX in Eq. (C1) is in general nonzero. Indeed,

�0i
MIX(q)�T

i j (q)�0 j
MIX(q) = ((

v̂xz
T

)
i�

0i
MIX(q)

)2
�T

xz(q)

= 1

1 − VC (q)�00
0 (q)

(
�0J

T (q)
)2[

1 − VC (q)�00
0 (q)

](
�JJ

T (q) − D−1
T (q)

) + VC (q)
[
�0J

T (q)
]2 , (C3)

where we took into account the fact that the projections of �0i
MIX along the longitudinal and the transverse y directions are

zero, as follows from (v̂L )i�
0i
MIX = (v̂y

T )i�
0i
MIX = 0, while the one along the transverse xz direction is finite. In Eq. (C3), �T

xz ≡
(v̂xz

T )i(v̂
xz
T ) j�

i j = 1/(�T,xz
RPA − D−1

T ) is the transverse xz component of �, with �T,xz
RPA ≡ (v̂xy

T )i(v̂
xy
T ) j�

i j
RPA = �JJ

T + (�0J
T )2/(1 −

VC�00
0 ). �0J

0 and �JJ
0 are the bare functions defined in Eq. (81) of the main text, which, along with the bare density function

�00
0 , allow for the following expression of the full density-density function:

�̃00(q) = 1

VC (q)

[
D−1

T (q) − �JJ
T (q)[

1 − VC (q)�00
0 (q)

](
D−1

T (q) − �JJ
T (q)

) − VC (q)
[
�0J

T (q)
]2 − 1

]
. (C4)

Equation (C4), that is valid at arbitrary momentum, is expressed in terms of the bare electronic susceptibilities �00
0 , �0J

0 , and
�JJ

0 and can be easily recast in terms of the retarded density function �00
ret defined in Eq. (80) [see Eq. (79) of the main text].

A last comment is in order about the undamped nature of the two modes ω− and ω+ at |q| ∼ qc. To discuss it we plot the
region identified by the values of q and ω for which �00

ret
′′ �= 0, where particle-hole (p-h) damping is operative, at three fixed

FIG. 4. Generalized plasma dispersions vs p-h continuum. Momentum dependence of the mixed longitudinal-transverse modes ω− and ω+
(red and blue solid lines, respectively), as given by Eq. (88) of the main text, and momentum and frequency dependence of the particle-hole
(p-h) continuum (green-shaded area), as identified by the values of q and ω for which �00

ret
′′ �= 0. In all panels the quantities are shown as

functions of |q| at three selected values of the angle η. In analogy with the figures of the main text we set ωxy = 1 eV, ωz = 0.05 eV for the
plasma frequencies and ε = 1 for the background dielectric constant. Here we also fixed, in order to plot the p-h continuum, the value of the
Fermi energy as εF = 1.0 eV, that yields v

xy
F 
 0.047 eV µm and vz

F 
 0.0024 eV µm for the Fermi velocities.
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values of the angle η in Fig. 4; we also show, in each panel, the corresponding frequency dispersions ω−(|q|, η) and ω+(|q|, η)
as functions of |q|. Clearly, both modes do not enter the continuum at |q| � qc 
 5 µm−1, i.e., they propagate with zero damping
within the momentum range where mixing effects are relevant. Above the crossover value ω+ 
 ωT ∼ c̃|q| disperses as a pure
transverse mode and never undergoes dissipation; on the other hand ω−(|q|, η) first saturates to its RPA value ωL(|q|, η) and
then falls into the continuum.
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