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The minimally entangled typical thermal states (METTS) are an ensemble of pure states, equivalent to
the Gibbs thermal state, designed with an efficient tensor network representation in mind. In this article,
we use the projected entangled pair states (PEPS) as their representation on a two-dimensional (2D) lattice.
Unlike matrix product states (MPS), which for 2D systems are limited by an exponential computational barrier
in the lattice size, PEPS provides a more tractable approach. To substantiate the prowess of PEPS in modeling
METTS (dubbed PEPS-METTS), we benchmark it against the purification method in the context of the 2D
quantum Ising model at its critical temperature. Our analysis reveals that PEPS-METTS achieves accurate results
with significantly lower bond dimensions. We further corroborate this finding in the 2D Fermi-Hubbard model.
At a technical level, we introduce an efficient zipper method to obtain PEPS boundary MPS needed to compute
expectation values and perform sampling. The imaginary time evolution is done with the neighborhood tensor
update.
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I. INTRODUCTION

Tensor networks have become indispensable tools in the
computational study of condensed matter physics, allowing
for efficient representations of quantum states [1,2]. They
include the one-dimensional (1D) matrix product state (MPS)
[3] and 2D projected entangled pair states (PEPS) [4,5]. MPS
can represent ground states of 1D local Hamiltonians [1,6,7]
and their thermal states [8]. It serves as the variational ansatz
underlying the famous density matrix renormalization group
(DMRG) [9–12]. It is also expected that a 2D PEPS forms
a good variational ansatz for ground and thermal states of
similar 2D Hamiltonians [1,2,13,14], although its ability to
represent 2D states satisfying the area law has its limita-
tions [15,16]. As tensor networks do not suffer from the sign
problem notorious in quantum Monte Carlo, they can treat
fermionic systems [17–21], as demonstrated for both finite
[22] and infinite PEPS (iPEPS) [23,24].

PEPS was initially proposed to represent ground states of
finite systems [4,5,25]. With the advent of efficient algorithms
it was upgraded to an infinite PEPS [26–29], which proved to
be one of the methods of choice for strongly correlated quan-
tum systems in 2D. The method has been pivotal in several
groundbreaking applications. For instance, it unraveled the
enigmatic magnetization plateaus in the complex compound
SrCu2(BO3)2 [30,31]. Additionally, it provided strong evi-
dence of the stripy nature of the ground state in the doped 2D
Hubbard model [32]. Moreover, it sheds light on the existence
of gapless spin liquid phase in the kagome Heisenberg antifer-
romagnet [33]. Subsequent advancements in the field [34–42]
have set the stage for simulating thermal states [43–60],

mixed states in open systems [51,61,62], excited states
[63–65], and even real-time dynamics [51,66–74].

Tensor network alternatives to iPEPS are also under
constant development, e.g., simulating systems on infinite
cylinders or finite lattices using MPS. Thanks to its stability,
this method is now routinely used to investigate 2D ground
states [32,75] and was also applied to thermal states [76–82].
However, this approach is sharply limited by the exponential
growth of the computational complexity with the system size,
given by a requirement on its refinement parameter, bond
dimension. Alternative approaches include direct renormal-
ization of a 3D tensor network representing a 2D thermal
density matrix [83–90], cluster expansion [91], or the recently
developed isometric tensor network states [92].

In a typical approach, a purification of a thermal state
is represented by a tensor network encompassing the whole
thermal ensemble in a compact way. The representation is
efficient at high temperatures, where the purification is weakly
entangled. However, at sufficiently low temperature it be-
comes isomorphic to a tensor square of the ground state. In
other words, the complexity of the network, as measured by its
bond dimension, is squared in comparison to what is needed
for just the ground state when using the same PEPS scheme.
This exemplifies the problem of potentially suboptimal rep-
resentation, given that at zero temperature the entire thermal
ensemble could be described by just the ground state itself.

Prompted by the computational complexities and limita-
tions of existing tensor network methods, we propose an
alternative methodology: the fusion of finite PEPS with mini-
mally entangled typical thermal states (METTS) [76,93]. The
aim is to synergistically combine METTS’s computational
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efficiency with the representational capacity of PEPS. For
sufficiently low temperatures, METTS closely approximates
the ground state. Thereby, it should provide a computationally
tractable means to explore intricate phenomena, such as stripe
formations in the Hubbard model, observed, for instance, in
MPS simulations on narrow cylinders [80,94]. We hope our
approach takes this a step further by incorporating the true
2D ansatz PEPS, effectively broadening the applicability of
METTS to 2D systems. It has the potential to be a method-
ological leap that could bypass the existing challenges tied to
the use of MPS for intrinsically 2D systems.

The rest of the paper is organized as follows. In Sec. II,
we outline the METTS stochastic unraveling of the thermal
state [76,80,93–95]. The METTS algorithm iterates imaginary
time evolution followed by a projective measurement. The
evolution step, calculation of expectation values, and the pro-
jective measurements are described in Sec. III. The latter two
require the PEPS’s norm boundary, efficiently calculated with
a zipping procedure in Sec. IV. We benchmark PEPS-METTS
against the standard purification method, outlined in Sec. V.
Benchmark results for the 2D quantum Ising model are pre-
sented in Sec. VI and those for the Hubbard model in Sec. VII.
We conclude in Sec. VIII. Our primary contributions in this
paper include integration of METTS with PEPS, benchmark-
ing the results against the standard purification method for two
pivotal models, and a future outlook that suggests promising
avenues for methodological and computational advances.

II. METTS

The METTS algorithm can be summarized as follows
[76,80,93–95]. With an orthonormal basis, {|φi〉}, the thermal
average of an operator O can be written as

〈O〉 = 1

Z
∑

i

〈φi|e−βH/2Oe−βH/2|φi〉

=
∑

i

pi〈ψi|O|ψi〉. (1)

Here pi = 〈φi|e−βH |φi〉, and |ψi〉 = p−1/2
i e−βH/2|φi〉 are nor-

malized typical thermal states. After normalization, their
weights pi become a probability distribution: Z−1 ∑

i pi = 1,
where Z is the statistical sum. Assuming ergodicity, the ther-
mal average follows from the Monte Carlo sampling over a
Markov chain with a stationary distribution pi. The thermal
average is estimated as an average,

〈O〉 = lim
s→∞

1

s

s∑
j=1

O j . (2)

Here,

O j = 〈ψ j |O|ψ j〉 (3)

is the expectation value of the operator in the jth typical
thermal state. The numerical algorithm repeats a sequence of
the imaginary time evolution, e−βH/2, followed by calculation
of the expectation value O j , and then projection on the or-
thonormal basis {|φi〉}, as summarized in Fig. 1.

A product basis is a convenient choice, not only to
make the projective measurement but also to perform the

FIG. 1. Minimally entangled typical thermal states. The
flowchart depicts the METTS algorithm, detailed in Sec. II. A
product state |φi〉 undergoes imaginary-time evolution for time
β/2, transforming it into METTS states |ψi〉. Its contribution to
the thermal expectation value of interest is given by 〈ψi|O|ψi〉.
Subsequently, the next product state is randomly sampled from
|ψi〉, and the procedure starts anew, resulting in a Markov chain.
Finally, the expectation value of interest is estimated as an average
over the obtained measurement results. In this work, the states are
represented using the PEPS ansatz, with the evolution performed
with the NTU algorithm.

subsequent imaginary time evolution of the state represented
by a tensor network. The initial collapsed state is a product
over the lattice sites and can be represented by a trivial tensor
network with bond dimension 1. The evolution that follows
builds correlations and increases the bond dimension. The
latter can in principle be further minimized by optimizing
the product basis, though the choice of the basis might also
affect the ergodicity. All this makes tensor networks a natural
representation for the minimally entangled states, but until
now only MPS were employed, either in 1D [93,95] or on thin
cylinders [76,80,94]. Thickening the cylinder towards a truly
2D lattice is limited by the exponential growth of the MPS
bond dimension. It motivates our attempt in the 2D setups to
employ PEPS instead, which is a genuine 2D tensor network.

III. PEPS EVOLUTION BY NTU

There are well-established iPEPS techniques for transla-
tionally invariant states on an infinite lattice [26–29]. In the
METTS context, however, projective measurements break lat-
tice symmetries, making it more natural to work with a PEPS
ansatz on a finite lattice. The network is shown in Fig. 2(a).

Its time evolution is performed by the second-order
Suzuki-Trotter decomposition into small time steps. An ap-
plication of the nearest neighbor (NN) two-site Trotter gate is
outlined in Figs. 2(b) and 2(c). The gate increases the bond
dimension on the NN bond. In order to prevent exponential
growth of the bond dimension during the time evolution, the
increased bond dimension has to be truncated back to a pre-
defined maximal value D. In this work, the truncation is done
as in Fig. 2(b), where a cluster including the NN bond with
a gate and its neighboring sites is approximated by a similar
cluster but with dimension D of the bond. Minimization of the
Frobenius norm of the difference between the two diagrams is
the essence of the neighborhood tensor update (NTU) algo-
rithm [70]. NTU can be regarded as a special case of a cluster
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FIG. 2. Evolution by NTU. In (a), finite PEPS representing a
quantum state on a 6 × 6 open-boundary square lattice is a contrac-
tion of PEPS tensors Ax,y. Each bond index (black lines), connecting
a pair of nearest neighbor (NN) tensors, has the same bond dimension
D. The red lines represent physical indices. In each Suzuki-Trotter
step, a Trotter gate is applied to a NN pair of PEPS tensors. The gate
can be represented by a contraction of two tensors by an index with
dimension r. When the two tensors are absorbed into the original
PEPS tensors, the bond dimension between them increases from D
to r × D. It has to be truncated back to the original D. For instance,
in (b), a horizontal pair of NN PEPS tensors Ax,y and Ax,y+1, with
a Trotter gate applied to it, is approximated by a pair of new (red)
PEPS tensors A′

x,y and A′
x,y+1 connected by an index with the orig-

inal dimension D. The new tensors are optimized to minimize the
Frobenius norm of the difference between the two networks in panel
(b). In (c), the optimized new PEPS tensors replace the original pair
of tensors in the new PEPS, here for (x, y) = (3, 2). Now, the next
Trotter gate can be applied. Instead of the sequential application, NN
gates can also be applied in parallel on nonoverlapping NTU clusters.

update [96], where the cluster size is a refinement parameter
interpolating between a local and an infinite cluster.

In the case of ground-state calculations, an interplay be-
tween the maximal achievable correlation length and the
cluster size was demonstrated [97,98]. However, in the case
of NTU, a small cluster size is chosen such that the Frobenius
norm is calculated numerically exactly. It yields a manifestly
non-negative and Hermitian effective metric tensor used for
truncation of PEPS tensors and enables the algorithm’s stabil-
ity. The usefulness of NTU was already demonstrated in the
Kibble-Zurek quenches in 2D [71,99] or unitary time evolu-
tion of many-body localizing systems after a sudden quench

FIG. 3. Expectation value. Panel (a) shows contraction of the
PEPS |ψ〉 in Fig. 2(a) (top layer) with its conjugate 〈ψ | (bottom
layer) into a squared norm 〈ψ |ψ〉. Each PEPS tensor Ax,y can be
contracted with its conjugate A∗

x,y into a transfer tensor, tx,y, as shown
in (b). With operator O at site (x, y), the tensor becomes tO

x,y, as shown
in (c). In terms of the transfer tensors, the norm in (a) becomes the
planar diagram in (d). In (e), the top rows 1, . . . , x − 1 in the exact
diagram (d) are approximated by a boundary matrix product state
(MPS) with tensors Tx−1,y, here in right-canonical form. Similarly,
the bottom rows x + 1, . . . , L are approximated by a boundary MPS
with tensors Bx+1,y. Both boundary MPSs have bond dimension χ .
In (f), the expectation value of operator O at site (x, 4) is calculated.
For an unnormalized PEPS, it has to be normalized by (e).

[73]. In the context of thermal states, NTU was benchmarked
by the imaginary time evolution of a thermal purification of
the 2D quantum Ising model represented by iPEPS [70]. The
same technique was used to address the fermionic Hubbard
model on an infinite square lattice at medium and high temper-
atures [59]. It seems a reasonable choice for weakly entangled
typical thermal states.
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FIG. 4. Sampling. In panel (a), a transfer tensor at site (x, y)
is inserted with a projector Pix,y on the measurement outcome. The
projector can be split into two vectors to separate the top and bottom
layers of PEPS tensors. A single layer can be used to contract the
upper part of the network in (b) more efficiently. Panel (b) shows
the conditional probability for possible measurement outcomes at
site (x, y) = (3, 4). The first two rows and the first three sites of the
third row were already measured, and the PEPS was updated with
the projectors corresponding to the actual measurement outcomes.
At site (3,4), all orthogonal projectors Pi = |σi〉〈σi| get probed. An
expectation value of each projector, equal to the corresponding out-
come probability, is calculated as in Fig. 3. It allows drawing the
measurement outcome on that site according to obtained probabil-
ities. Repeating this procedure site after site, going row after row,
allows sampling from the PEPS state in the computational product
basis.

The imaginary time evolution is followed by calculation of
expectation values O j in Eq. (3). Figure 3 depicts calculation
of an expectation value for a one-site operator O. Towards
this end, the PEPS norm in Fig. 3(a) is replaced by a planar
network in (d). The top rows above the site are approximated
by a top boundary MPS and the bottom rows by a bottom
boundary MPS. As a result, one obtains quasi-1D diagrams
in panels (e) and (f), which can be contracted numerically
exactly. There are many techniques to obtain the boundary
MPSs (see, e.g., [100]), but in this work we introduce an
efficient zipper method described in the next section and
illustrated by diagrams in Figs. 5 and 6. One of the alterna-
tives is to apply the corner transfer matrix renormalization
group [29].

Once all expectation values of interest are calculated, we
can proceed to projective measurement in the product basis
{|φi〉} = {|σi1,1σi1,2σi1,3 . . .〉}. It is convenient to perform the
measurement sequentially site by site, similar to sampling
from a classical PEPS representing thermal state [101–103].
Figure 4 shows how to calculate outcome probabilities when
the sites are measured row by row from left to right. The first
measurement is done at site (1,1). Outcome probabilities are
given by the expectation values of all orthogonal projectors
at this site, Pi1,1 , calculated as in Fig. 3. The measurement
outcome is selected randomly according to the obtained prob-
abilities, and the PEPS state gets updated with the projector
Pi1,1 corresponding to the actual measurement outcome.

FIG. 5. Zipping PEPS boundary. This figure shows step by step
how to approximate the diagram in (a)—the (x − 1)th PEPS bound-
ary MPS made of tensors Tx,y multiplied by the xth row transfer
matrix made of tensors tx,y—with the xth boundary MPS with bond
dimension χ in (g). The transfer matrix is not applied at once.
Instead, we sweep through the MPS applying one tensor tx,y at a time
accompanied by SVD truncation of the bond dimension; see panels
(b)–(e). This way, the (x − 1)th MPS is zipped with the row transfer
matrix into the left-canonical MPS in (f), which can be brought back
to the right-canonical form in (g).

Figure 4(b) shows the probability distribution for differ-
ent measurement outcomes at site (3,4), conditioned on the
measurement outcomes in the first two rows and the first
three sites in the third row. As compared to the norm before
these measurements [see Fig. 3(d)], the transfer tensors on
the measured sites were replaced by new transfer tensors
inserted with the measurement projectors [see Fig. 4(a)], and
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FIG. 6. Mixed PEPS boundary. Two approximately equal repre-
sentations of the mixed PEPS boundary arise midway through the
zipping. The mixed boundary connects a segment of the next xth
boundary with a segment of the previous (x − 1)th boundary. It has
an extra horizontal “physical” bond of dimension D2 that disappears
after the zipper is swept all the way to the right edge.

the transfer tensors at site (3,4) with projectors corresponding
to all possible measurement outcomes at this site. Expectation
values of the latter projectors, calculated in the same way as
the expectation value in Figs. 3(d)–3(f), give the conditional
outcome probabilities at site (3,4). Note that projectors in the
top PEPS transfer matrices in Fig. 4(b) make the top and
bottom PEPS tensors in Fig. 4(a) disjoined. As such, for those
rows, it is sufficient to work with a single layer of PEPS
tensors approximating its boundary MPS.

Finally, after all the sites have been measured, a new
PEPS with bond dimension 1 is initialized in a product state
|σi1,1σi1,2σi1,3 . . .〉 corresponding to the drawn measurement
outcome, and the imaginary time evolution starts again. In this
sense, every measurement resets the bond dimension back to
1, keeping the states minimally entangled.

IV. ZIPPING PEPS BOUNDARY

Figure 5 outlines the main steps to obtain the top PEPS
boundary that we need in Figs. 3(e) and 3(f). The bottom
boundary is obtained similarly. The top tensors are right-
canonical isometries; see Fig. 5(h). Here, the overall task is
to approximate the diagram in Fig. 5(a)—where the xth row

FIG. 7. Purification. A finite PEPS representing a purification of
a thermal state on a 6 × 6 open-boundary square lattice. Each bond
index (black line) connecting a pair of NN tensors has the same bond
dimension D. The red(blue) lines represent physical (ancilla) indices.

of transfer tensors is applied to the (x − 1)th boundary—with
the xth boundary in Fig. 5(f).

Breaking away from the usual approach, we abstain from
applying the whole row of t’s in Fig. 5(a) at once. Instead,
we attach them one by one starting from the leftmost tx,1;
see Fig. 5(b). In each step of the sweep, the tensors �x,y−1,
Zx,y−1, Tx−1,y, and tx,y are contracted and reshaped into matrix
Mx,y of dimensions χD2; see panels (b) and (d) for y = 1
and 2, respectively (�x,0, Zx,0 are initialized as unit tensors of
dimension 1). In panels (c) and (e), matrix Mx,y is replaced by
its singular value decomposition, Mx,y = Ux,y�x,yZx,y, where,
by construction, U is a left-canonical isometry [see panel
(j)], Z is a right-canonical one [see panel (i)], and � is a
diagonal matrix of singular values. At this point, we make an
approximation by truncating the total of χD2 singular values
down to the χ leading ones. The complete sweep results in
the left-canonical MPS with bond dimension χ in panel (f),
which approximates the MPO-MPS product in panel (a). Note
that, during each SVD truncation, all MPS tensors to the
left(right) of Mx,y are in left(right)-canonical form, making the
truncation locally optimal.

The final cosmetic move brings the final MPS back to the
right-canonical form in panel (g). This completes the appli-
cation of the transfer matrix made of the xth row of transfer
tensors. Now the next (x + 1)th row can be applied to obtain
the (x + 1)th top boundary in the same way [alternatively, one
can start in the left-canonical form in panel (f) and zip in the
opposite direction]. As a brief summary, Fig. 6 shows two
approximately equivalent forms of a mixed boundary midway
through the zipping.

The numerical cost of the procedure is dominated by per-
forming SVD, with D6χ3 complexity (this can be reduced
by employing truncated SVD, but typically at a cost of a
significant loss of precision). For comparison, the numerical
cost of SVD truncation of the entire MPS in panel (a) would
scale as D8χ3.

The accuracy of the xth boundary in Fig. 5(f) [or 5(g)]
can be further improved, treating it as an initial guess for the
standard variational scheme [1] that maximizes the overlap of
truncated MPS in panel (g) with the untruncated MPO-MPS
product in panel (a). In the present work, however, it was not
necessary to resort to that.

V. PURIFICATION

In this work, we benchmark METTS against the more
standard purification approach, where each physical spin is
accompanied by an ancilla partner [43]. An initial purification
at β = 0 is a product state over lattice sites:

|ψ (0)〉 =
∏

k

⎛
⎝ d∑

ik=1

|σik , σik 〉
⎞
⎠. (4)

Here d is the dimension of the local physical Hilbert space, the
product is over all lattice sites, and the state |σsk , σak 〉 denotes
the product of the sk physical basis state and ak ancilla basis
state at site k.

The initial state evolves into

|ψ (β )〉 = e−βH/2|ψ (0)〉, (5)
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FIG. 8. Correlations from purification (top) and METTS (bottom) in the 2D quantum Ising model. The ferromagnetic correlation function
is CR = 〈σ z

c σ z
c+R〉 between the central site on a 17 × 17 open-boundary square lattice and a site at a distance R along a row. Here, the transverse

field g = 2.9 and the critical temperature corresponding to this field is Tc = 0.6085. From left to right, the temperatures are T/Tc = 1.5, 1, 0.75.
In case of purification, panels (a), (b), and (c), for all three temperatures, the bond dimensions D = 3, 4 are too small for convergence that is
reached for D � 5. In panels (d), (e), and (f), for METTS, the error bars represent 95% confidence intervals. For all three temperatures, bond
dimensions D = 3, 4 are enough to converge to the benchmark provided by the purification. The number of samples required for the error bars
is s � 3000.

where the Hamiltonian is acting on the physical spins only.
The thermal density matrix is obtained by tracing out the
ancillas,

ρ(β ) ∝ Tra|ψ (β )〉〈ψ (β )|. (6)

The purification can be represented by a PEPS in Fig. 7. Just
as for METTS, in order to put the two methods on equal
footing, the evolution is performed with the NTU. The results
serve as a benchmark for METTS.

The purification is isomorphic to e−βH/2 and, in a gapped
system at low temperature, it becomes isomorphic to a square
of its ground state: |ψ0〉|ψ0〉. When the ground state has bond
dimension D, the purification has D2, while a low-temperature
METTS is just the ground state with bond dimension D.

VI. 2D QUANTUM ISING MODEL

We test METTS by PEPS in the transverse field quantum
Ising model on a square lattice with open boundary condi-
tions,

H = −
∑
〈i, j〉

σ z
i σ z

j − g
∑

j

σ x
j . (7)

At zero temperature, the model has a ferromagnetic phase
with nonzero spontaneous magnetization 〈σ z〉 for the magni-
tude of the transverse field, |g|, below the quantum critical
point at gc = 3.04438(2) [104]. At g = 0, the model becomes
the 2D classical Ising model with a phase transition at Tc =
2/ ln(1 + √

2) ≈ 2.27. In the following, we assume g = 2.9
corresponding to a critical temperature Tc = 0.6085(8) [104].
When compared to g = 0, this critical temperature is reduced
almost four times by strong quantum fluctuations introduced
by g close to the quantum critical point.

We test METTS by studying ferromagnetic correlation be-
tween the central site, c, of a L × L lattice and another site,
c + R, at distance R along its row or column. The correlator

CR = 〈σ z
c σ z

c+R〉 is an average over typical thermal states |ψ j〉.
The expectation value 〈ψ j |σ z

aσ z
b |ψ j〉 is obtained along the

lines of Fig. 3.
In order to have a benchmark, first, in Figs. 8(a)–8(c),

we obtain the correlator with the purification method for
three values of temperature close to or at Tc. In all three
cases, this approach requires D � 5 for convergence. Next, in
Figs. 8(d)–8(f), we obtain the same correlators with METTS.
The projective measurements are done in the σ z basis. For
METTS, a mere D � 3 is enough to converge the correlator
in the bond dimension.

This reduction of the bond dimension comes at the price of
performing sampling over typical thermal states. In Fig. 9, we
show estimates of the correlators in the function of the number
of sampled typical thermal states, s:

CR = 1

s

s∑
j=1

〈ψ j |σ z
c σ z

c+R|ψ j〉. (8)

Here, for j = 1, METTS is initialized in a state with all
σ z = +1. Somewhat counterintuitively, at 1.5Tc the estima-
tors converge with s more slowly than at Tc, but this is just
a manifestation of worse ergodicity at higher temperatures
where the evolution operator, e−βH/2, is slower to reshuffle
consecutive measurement outcomes.

The running averages in Fig. 9 may appear to have long
autocorrelation tails in time, as expected even when an aver-
aged random variable is not correlated in time at all. Indeed,
we show the autocorrelators of C1 and C5 in Fig. 10, and
their autocorrelation times are around 5–7 iterations. They are
short, demonstrating good ergodicity.

Although short, the finite autocorrelation times mean that
the consecutive measurement outcomes are not statistically
independent, and the textbook estimator of their variance
would underestimate the error bars. In order to estimate sta-
tistical errors, we first bunch the data to reduce the effects of
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FIG. 9. Running average correlations. The ferromagnetic correlation function is CR = 〈σ z
c σ z

c+R〉 between the central site on a 17 × 17
open-boundary square lattice and a site at a distance R along a row. Here, we show 〈CR〉 in function of the length of the Markov chain, s.
From top to bottom, R = 1, 2, . . . , 8. The horizontal dashed lines are benchmark values from the purification. The transverse field g = 2.9
and the critical temperature corresponding to this field is Tc = 0.6085. From left to right, the temperatures are T/Tc = 1.5, 1, 0.75. The bond
dimension is D = 3 for METTS and D = 5 for purification.

autocorrelation and then compute a running standard devia-
tion over the running average of the bunched data.

Finally, in Fig. 11, we focus on the C1 and C5 correlators at
the critical temperature T = Tc and show how they depend
on the bond dimension D for lattice sizes L = 17, 33, 49.
The NN correlator C1 is well converged in D, for both the
purification at D = 5 and METTS at D = 3, and the two meth-
ods are mutually consistent within METTS’s error bars. In
contrast, with lattice size increasing to L = 33, 49, the longer-
range correlator C5 estimated by METTS becomes noticeably
stronger than its purification counterpart, and both are not
quite converged in D. This suggests that although long-range
critical correlations at finite temperature should be classical,
they still require increased D in METTS simulations; compare
Fig. 12.

VII. HUBBARD MODEL

The Fermi-Hubbard model (FHM) is one of the simplest
models of interacting fermions on a lattice, involving on-site
repulsion between electrons with opposite spins. The model

FIG. 10. Autocorrelations. We define fluctuation of the fer-
romagnetic correlation function as δCR( j) = CR( j) − 〈CR〉, where
CR( j) is the correlator in the jth typical thermal state. The plots show
autocorrelators of the fluctuations with the error bars representing
95% confidence intervals. The autocorrelation times at T = Tc are
estimated [80] as 5.5 and 7.1 for R = 1 and R = 5, respectively. Here,
the bond dimension D = 4.

can be expressed as follows:

H = −
∑
〈i, j〉σ

t (c†
iσ c jσ + c†

jσ ciσ )

+
∑

i

U

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (9)

where ciσ annihilates an electron with spin σ =↑,↓ at site i,
niσ = c†

iσ ciσ is the number operator, ni = ni↑ + ni↓, and repul-
sion strength U > 0. Here, 〈i, j〉 denotes summation over NN
sites on a square lattice with hopping energy t > 0. Despite
its apparent simplicity, FHM reveals a rich array of physical
phenomena, such as stripe phases and Mott insulators, due
to the competition between the parameters t and U . In one
dimension, this model has exact solutions for certain limits

FIG. 11. Convergence with bond dimension. The top panel
shows the NN ferromagnetic correlator C1, and the bottom panel the
C5 correlator, as a function of the PEPS bond dimension for lattice
sizes L = 17, 33, 49. Here, T = Tc and the error bars represent 95%
confidence intervals.
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FIG. 12. Correlations for L = 33. The ferromagnetic correlation
function is CR = 〈σ z

c σ z
c+R〉 between the central site on a 33 × 33

open-boundary square lattice and a site at a distance R along the row.
Here, T = Tc and the error bars represent 95% confidence intervals.
Here D = 3, 4 is enough to converge to the purification benchmark
(D = 6) only for short enough R, with the range increasing with D.

[105,106]. However, obtaining thermodynamic results for a
2D system presents significant challenges, even with the most
advanced numerical techniques, as discussed in the recent
review by Qin et al. [107].

In recent years, the study of 2D FHM at finite temperatures
has seen a surge of interest. Recently, a notable body of
work included pioneering cold atom experiments [108–117]
where quantum gas microscopy [118] allowed high-resolution
studies of many-body fermionic physics. Various finite size
MPS techniques, such as exponential tensor renormalization
group [81] or tangent space tensor renormalization group
[82], have been employed to probe the rich finite temperature
physics of FHM. In this context, METTS based on the MPS
ansatz in reduced geometries, such as thin cylinders [80,94],
have been particularly successful in going down to very low
temperatures. Here, we present the proof-of-principle results
employing a genuinely 2D PEPS ansatz, focusing on a lattice
at half filling.

To expedite convergence, we employ a parallel nature of
the METTS algorithm. We initialize parallel simulations start-
ing with random product states in the occupation basis at
the desired half filling. We serialize the Markov chains data
from those independent runs (four parallel runs were used in
Fig. 13, where maximal s corresponds to total number of steps
in all runs). Subsequently, we calculate the running average.
To estimate statistical errors, we first bunch the data to reduce
the effects of autocorrelation, and then compute a running
standard deviation over the running average of the bunched
data.

Figure 13 contains the running averages of the total energy
per site E and the expectation value of double-occupancy
n↑n↓ for a 6 × 6 square lattice Hubbard model at half fill-
ing, hopping rate t = 1, Coulomb interaction potential U = 8,
and inverse temperature β = 6. METTS simulations with a
modest bond dimension of D = 6 closely approach converged
purification results at D = 20, showing much better conver-
gence than the purification at D = 6. Simulations of FHM
using iPEPS purification can be converged only for high and
intermediate temperatures, limited by feasible iPEPS bond
dimensions [59]. Our proof-of-principle results show that

FIG. 13. Running average expectation values in the 2D Fermi-
Hubbard model. We show the running averages of energy E in the
top panel and double occupancy 〈n↑n↓〉 in the bottom panel for a
6 × 6 square lattice at inverse temperatures β = 6, hopping t = 1,
Coulomb interaction potential U = 8, and PEPS bond dimension
D = 6. The plots are functions of the Markov chain’s length s.
Error bars illustrate the 99.7% confidence interval. As a reference,
blue lines show well-converged results from purification simulations
with D = 20, and green dashed lines represent purification outcomes
for D = 6, the same bond dimension as the one used in METTS
simulations. The data reveal that METTS can approximate accurate
results with significantly reduced PEPS bond dimension.

METTS with PEPS might allow overcoming those limitations,
motivating further effort in this direction.

We provide further benchmarks in Fig. 14, all for the
same 6 × 6 lattice and set of parameters. In panels (a)–(d),
we plot relative errors for energy εE and double occupancy
ε〈n↑n↓〉, where εO = |(〈O〉 − 〈O〉ref )/〈O〉ref | with the refer-
ence 〈O〉ref coming from the purification simulation at D =
20. Notably, METTS matches the accuracy of purification,
but with significantly lower bond dimensions. In Fig. 14(e),
we compare a single core simulation wall time for a sin-
gle β/2 imaginary-time NTU evolution. For the same D,
purification is taking longer here than METTS due to the
presence of auxiliary degrees of freedom in PEPS tensors.
METTS, however, requires multiple such iterations to achieve
convergence.

Finally, Fig. 14(f) sheds light on complementary computa-
tional requirements, highlighting the rapidly increasing sizes
of tensors generated during the calculation of expectation val-
ues. In particular, we show the size of the largest intermediate
tensor appearing in the corner transfer matrix renormalization,
zipper, or variational boundary MPS optimization algorithms.
The factor of 4 in memory usage between purification and
METTS again is related to the presence of auxlliary degrees of
freedom in the former. Extrapolating the memory peak, using
the expected D6 scaling (red dashed line), shows that purifica-
tion at D = 30 would require memory of the order of 100 GB,
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FIG. 14. Accuracy and numerical cost of purification and
METTS. The parameters of the FHM are the same as in Fig. 13.
The relative errors in the first two rows are calculated with respect to
well-converged purification results at bond dimension D = 20. For
purification, in panels (a) and (c), the errors are shown as a function
of the PEPS bond dimension. In (b) and (d), we plot METTS error
as a function of Markov chain sample size s. We plot mean errors
here, where the average is calculated over the initial sample si, i.e.,
using Eq. (2), we take here the sum over j = si + 1, . . . , si + s. In
(e), we show the wall time for the imaginary time evolution of pu-
rification and a single METTS iteration. The memory bottlenecks for
calculations of the expectation values are in panel (f). Extrapolating
the expected D6 scaling (red dashed line), employing U (1) × U (1)
symmetry, it can reach about 100 GB for purification at D = 30.

putting hard limits on feasible bond dimensions. The val-
ues above are for tensors with enforced global U (1) × U (1)
symmetry.

The FHM simulations have been performed using
the YASTN open-source package [119]. We note that, to
simulate fermions, we supplement the diagrams in Figs. 2(b),
3(b), and 4(a) with suitable swap gates, while enforcing at
least the fermionic parity symmetry; see the Appendix of
Ref. [59] for details. We also utilize a one-step version

of environment-assisted truncation [59] to enhance the
initialization of the NTU optimization.

VIII. CONCLUSION

Simulations of thermal states by the imaginary time evo-
lution of their purification were directly compared with a
stochastic sampling and imaginary time evolution of the min-
imally entangled typical thermal states for systems on a finite
2D square lattice. Both the purification and METTS were
represented by the same PEPS tensor network ansatz, whose
imaginary-time evolution was performed with the same NTU
algorithm. The divergences in implementation can solely
be attributed to the essential differences between the two
methods.

The comparisons were made above, at, and below the crit-
ical value of the transverse magnetic field of the 2D quantum
Ising model. In all three cases, the purification method system-
atically required a higher PEPS bond dimension than METTS
in order to reach convergence. Although METTS’s lower bond
dimension accelerated the imaginary time evolution simula-
tions, this merit was overshadowed by the need for thousands
of stochastic realizations. Hence, PEPS-METTS emerges as
the preferable method in 2D when the bond dimension, de-
manded by purification, escalates to unmanageable levels,
making the additional cost of sampling a justifiable trade-
off. Furthermore, the sampling can be naturally parallelized,
significantly expanding the range of feasible simulations.
We also conducted proof-of-principle calculations for the 2D
Fermi Hubbard model at half filling, demonstrating the versa-
tility of PEPS-METTS.

At the technical level, we introduced a zipper method to
apply a row transfer matrix to the PEPS norm boundary. By
deforming the boundary applying one transfer matrix tensor
at a time—rather than the whole transfer matrix at once—the
boundary is gradually zipped with the row matrix at a lower
numerical cost.
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