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Topological phase transitions captured in the set of reduced density matrices
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Topological phase transitions fall outside of the symmetry-breaking paradigm and therefore elude many tradi-
tional analytical methods. In particular, significant geometric features found in the set of reduced density matrices
(RDMs) disappear in symmetry-preserving topological systems. By returning to the fundamental properties of
phase transitions, such as the divergence of correlation length and energy surface discontinuities, we demonstrate
that the set of RDMs captures the critical behavior of systems with topological order. We find signatures of
the gapless transition in the discontinuous movement of the ground-state RDMs. Additionally, the correlation
length divergence near critical points appears in the off-diagonal character of RDMs, which is quantified through
spectral and linear fitting analyses. This framework generalizes the quantum information approach to RDM
critical theory, allowing for classification and visualization of all of the phases of the system—both topological
and trivial—in the convex set of RDMs.
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I. INTRODUCTION

Topological phase transitions, transitions that do not break
system symmetries, have garnered significant theoretical and
experimental interest due to the robust zero-energy edge states
found in topological phases [1,2]. These resilient states are
used in topological light emitting devices to protect against
fabrication defects [3–8]. Additionally, research into topolog-
ical quantum memory and computing focuses on harnessing
the robustness of these edge states to reduce errors [9–12].
Topological order has also been used to explain exotic ex-
perimental phenomena like the quantum, spin, and fractional
Hall effects [13–18]. However, many of the traditional analyt-
ical methods for studying phase transitions rely on symmetry
breaking and therefore fail to capture the behavior of topolog-
ical transitions.

The study of the relationship between reduced density ma-
trices (RDMs) and quantum phase transitions was initiated by
Erdahl and Jin [19], who noted that RDMs in different phases
lie in significantly different regions of the set of RDMs. Gid-
ofalvi and Mazziotti [20] later studied the movement of the
RDMs between the regions with respect to critical parameters
in the Hamiltonian and found that, in the vicinity of the transi-
tions, the RDM moves very rapidly with one or more critical
parameters and in the thermodynamic limit the speed becomes
discontinuous at the critical point [21,22]. This work was
then followed by Zauner and Verstraete [23] who discovered
that, in systems with symmetry-breaking phase transitions, the
geometry of the set of RDMs has significant features, such as
ruled lines and surfaces that appear on the boundary of the
set, reflecting the degeneracy of the symmetry-broken ground
states. These features convey, without any reference to the
underlying Hamiltonian, where symmetry breaking occurs in
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the system [23]. However, it was soon recognized by Chen
[24] that the set of RDMs for systems with topological phases
does not exhibit some of these geometric features such as the
ruled lines and surfaces because no symmetries are broken
between the trivial and topological regions. To recover the
descriptive power of the RDM approach, aspects of the RDM
set other than the ruled surfaces must be considered.

In this paper, we demonstrate that diverging correlation
length and nonsmooth energy surfaces, signatures of phase
transitions, are captured by an RDM approach to phase tran-
sitions regardless of the presence of symmetry breaking.
Energy-surface discontinuities appear in the discontinuous
movement of the RDM across the set, and the divergence
of correlation length can be detected in the structure of the
individual matrices of the set. We show that a simple visual in-
spection of the change in the RDMs during a transition reveals
the divergence of correlation length, demonstrating an advan-
tage of RDMs over the full N-body wave function, which
can often obfuscate the true behavior of the system [25,26].
Additionally, we show that linear and spectral analysis of the
RDMs can quantify this correlation length divergence and that
analysis of higher-order RDMs reveals the rapid changes in
higher-order correlations near the critical region [27–34].

To demonstrate this approach, we study the Su-Schrieffer-
Heeger [35] and Kitaev chain models [36], two simple and
extensively studied systems that exhibit topological edge
states. The latter model adds the additional novelty of Majo-
rana fermionic edge modes, which have garnered significant
interest for their non-Abelian statistics but have had limited
study in the field of RDM mechanics. These examples show
that significant information about topological phase and mul-
tistate phenomena—e.g., gap closing—is captured entirely
within the ground-state set of RDMs.

II. THEORY

For any Hamiltonian parameter space, the ground-state
RDMs form a convex set. In the presence of symmetry-
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breaking phase transitions, distinct geometric features like
ruled lines or surfaces begin to appear on the hull, the outer
shell of the set, in the thermodynamic limit [23], reflecting the
degeneracy of the symmetry-broken ground states. The benefit
of this method is the simple visual identification of abstract
concepts like symmetry breaking and the ability to visualize
the entire phase space of the system in a finite convex set.
However, this methodology fails to generate the same stark
geometric features in the presence of topological phase transi-
tions, where no symmetries are broken between the trivial and
topological regions [24]. Other factors in the set of RDMs and
the structure of the individual matrices must be considered to
recover the descriptive power of this methodology.

Initial investigations of the link between critical phenom-
ena and the set of 2-RDMs studied the movement of the
RDMs near critical points. As the parameters of a Hamiltonian
are varied, its ground-state RDMs move along the convex hull,
and the speed or one of the higher derivatives of this para-
metric curve becomes discontinuous near symmetry-breaking
quantum phase transitions [20–22]. This approach was then
incorporated into Verstraete’s geometric interpretation of the
convex hull as a form of parametric curvature [23], expanding
the analytical capability of both approaches. However, this
connection between the two methods does not necessarily
subject the speed or other Hamiltonian-dependent metrics
to the same constraints as the ruled-surfaces approach when
studying topological phases.

The movement of the RDMs arises from the changes in all
one- and two-particle expectation values,

∂nr

∂tn
=

√√√√∑
i

(
∂nOi

∂tn

)2

, (1)

where Oi is the ith observable varied by the parameter(s) t,
and r is a coordinate for the RDMs within the convex set.
As the Hamiltonian is a weighted sum of these observables,
the behavior of the energy is intimately tied to the movement
of the RDM. Near critical points, the system’s energy or its
higher derivatives become discontinuous despite the param-
eters changing continuously. Therefore, the observables are
discontinuous, and thus, the movement of the RDMs must also
become discontinuous.

In the case of topological phase transitions, each transition
is associated with a closing of the band gap. This closing,
along with the spontaneous generation of zero-energy edge
modes, introduces discontinuities into the energy surface near
the critical points. These discontinuities are then also found
in the speed or higher derivatives of the RDMs. The speed,
however, relies on knowledge of the Hamiltonian and its
parameters, which are not needed in the symmetry-broken
geometric analysis of the set of RDMs. A more Hamiltonian-
agnostic approach to analyzing topological phase transitions
with RDMs requires the investigation of other properties of
RDMs in order to abstract the set from the system parameters.

The universality of phase transitions arises due to the diver-
gence of correlation lengths near critical points. In topological
insulating systems the correlation length directly coincides
with the edge-state decay length [37]. This decay length is
how far the edge states penetrate into the bulk of the mate-

rial in the topological phase. If these edge states are Dirac
fermions, they can be described as a linear combination of
creation operators acting on the vacuum state and are, there-
fore, natural orbitals of the 1-particle RDM (1-RDM)

1D
i
j = 〈�| â†

i â j |�〉 , (2)

where â†
i and âi are the ith fermionic creation and annihilation

operators, |�〉 is the N-body fermionic ground-state wave
function, and 1D is the 1-RDM. Therefore near the critical
points, when the edge states are bleeding considerably into
the bulk, more off-diagonal elements of the RDM will have
finite values with the RDM becoming maximally off-diagonal
at the point of the transition as the edge states collapse into
the bulk.

The RDM approach to topological phase transitions can be
generalized to quadratic Hamiltonians, with the study of the
2-RDM

2D
i j
kl = 〈�| â†

i â†
j âl âk |�〉 . (3)

Quadratic Hamiltonians can contain additional non-particle-
conserving terms which do not appear in the 1-RDM, but
result in strong 2-body correlation. While the 2-RDM contains
additional information, it also contains information that is
redundant with the 1-RDM. In order to demonstrate the con-
tribution of these non-particle-conserving terms to the edge
modes, it is possible to subtract the 1-RDM contributions from
the 2-RDM leaving behind the cumulant part of the 2-RDM
[38,39]:

2� = 2D − 1D ∧ 1D, (4)

where ∧ is the Grassmann wedge product [40] and 2� is
the two-particle cumulant. The largest eigenvector and value
of the cumulant has been used extensively to demonstrate
fermion-fermion [31,41–43] and fermion-hole [44] correla-
tion, pairing, and condensation in systems. Therefore, as a
measure of correlation, the eigenvalue should experience sig-
nificant changes as the system approaches a critical point due
to the divergence of correlation length.

An additional metric that can be used to study both the
1- and 2-RDMs is the Pearson correlation coefficient (PCC),
which can quantify the degree to which a matrix is diagonal.
The PCC has also been used to study the time correlation
between blocks of the RDMs and their cumulants [45]. In
general, the PCC determines the degree of linear or antilinear
correlation between two sets of data, with a value between 1
(if the data lie along a line with a positive slope) or −1 (if the
data lie along a line with a negative slope) and a value of 0
signifying no linear correlation between the two data sets.

This metric can also be used to determine the diagonal
character of a matrix by measuring the correlation between
the rows and columns. The elements of the RDM, being a
density matrix, give a measure of the probability of two events
(the column and row operators) occurring in the system. This
suggests the following form of the PCC:

n〈i j〉 − 〈i〉 〈 j〉√
n〈i2〉 − 〈i〉2

√
n〈 j2〉 − 〈 j〉2

, (5)
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where for the 1-RDM

n =
N∑
i, j

|〈â†
i â j〉|, 〈i〉 =

N∑
i, j

i|〈â†
i â j〉|,

〈i j〉 =
N∑
i, j

i j|〈â†
i â j〉|.

Due to the Hermitian nature of RDMs, this can be simplified
to

n〈i j〉 − 〈i〉2

n〈i2〉 − 〈i〉2 , (6)

where it can easily be seen that a diagonal matrix in which
〈i j〉 = 〈i2〉 will have a PCC value of 1. Conceptually, the
1-RDM element â†

i â j gives a measure of how often the system
transitions from a state where there is a particle at site j and
no particle at site i to a state with the opposite particle filling
at sites j and i. Thus, the absolute values of the elements can
be thought of as the unnormalized frequency of these events.
The PCC can then be used to measure the linear correlation
between this series of pairs of events. Taking the case of a
pure insulator, e.g., a chain of very distantly separated hydro-
gen atoms, the expected structure of the 1-RDM is entirely
diagonal; thus, the PCC should be equal to 1. However, if a
system contains a topological phase transition, the coupling
between the edges and the bulk should result in a drastic drop
in the PCC value when the band gap closes.

III. RESULTS

This section analyzes the Su-Schrieffer-Heeger (SSH) and
the Kitaev chain topological systems. First, the structure of
the 1-RDMs is investigated, revealing the visual signature of
topological edge states. Then the speed and off-diagonal char-
acter of the RDMs are analyzed as the system travels through
a topological phase transition. Finally, in the Kitaev chain
model, due to its non-number-conserving terms, the cumulant
of the system can be analyzed, revealing the significance of
2-particle correlation in the topological transition.

A. SSH model

One of the simplest systems with topological order is the
Su-Schrieffer-Heeger model [35], which has garnered atten-
tion due to its experimental application in topological lasers
[3,7]:

Ĥ = v

N∑
i=1

â†
2i−1â2i + w

N−1∑
i=1

â†
2iâ2i+1 + H.c., (7)

where N is the number of particles in a half-filled chain, v and
w are real parameters, H.c. denotes Hermitian conjugate, and
the finite 2N-site chain is treated without periodic boundary
conditions. The first term in the Hamiltonian is block diagonal
with blocks of σx = (0 1

1 0). Therefore, 1-particle solutions,
when |v| � |w| (far into the trivial region), are of the form

|�i〉 = 1√
2

(â†
2i−1 ± â†

2i ) |∅〉 , (8)

FIG. 1. RDM acceleration through a topological phase transition
in the SSH model. The acceleration is calculated using Eq. (1),
and is divided by the system size for normalization. The results
are for the ground-state RDM for a system that is tuned from
[v, w]: [−2,−1] → [2, −1] [see Eq. (7)] passing through 2 phase
transitions at v = ±1.

in which |∅〉 is the vacuum state. The second term in the
Hamiltonian is identical in the bulk of the material (aside from
a shift up by 1 in the indices), but possesses two additional
diagonal elements at the edges with eigenvalues of 0. These
zero-energy edge states,

|�0〉 = 1√
2

(â†
1 ± â†

2N ) |∅〉 , (9)

appear in the topological region (|w| > |v|).
The ground-state RDM’s movement can be tracked as

the system is taken through a topological phase transition.
Figure 1 displays the normalized acceleration of the ground-
state RDM for various system sizes. This is calculated using
Eq. (1), which for this system can be explicitly expressed as

∂2r

∂t2
=

√(
∂2rw

∂w2

)2

+
(

∂2rv

∂v2

)2

, (10)

where

rw = 〈�(w, v)|
N∑

i=1

(â†
2i−1â2i + H.c.) |�(w, v)〉 (11)

and

rv = 〈�(w, v)|
N−1∑
i=1

(â†
2iâ2i+1 + H.c.) |�(w, v)〉 . (12)

The acceleration was chosen, as it is the lowest derivative of
the movement that becomes discontinuous near the critical
point, likely due to the curvature of the energy diverging
near the gap closing. Even at small system sizes, significant
changes in the acceleration of the RDM can be seen with
the curves converging on a similar structure as the number of
sites grows. Near |v| = 1, the acceleration begins to change
rapidly with larger systems exhibiting a larger normalized
change, indicating that a phase transition would occur at this
point in the thermodynamic limit. Therefore, the movement
of the RDMs along the convex set continues to function as a
useful parameter for finding both topological and symmetry-
breaking phase transitions.

The transition between the topological and trivial regions
can also be observed in the structure of the 1-RDMs as seen
in Figs. 2(a), 2(b), and 2(c). In the trivial region, presented in

045134-3



WARREN, SAGER-SMITH, AND MAZZIOTTI PHYSICAL REVIEW B 109, 045134 (2024)

(a) (b) (c)

FIG. 2. Structural changes in the 1-RDM near topological phase transition in the SSH Hamiltonian. Panels (a)–(c) show the matrix elements
of the 1-RDMs for a 10-site system in the trivial (100v = w), gapless (v = w), and topological (v = 100w) phases, respectively, where each
matrix element is given by 〈â†

i â j〉.

Fig. 2(a), the block-diagonal structure of the 1-RDM shows
that it is energetically favorable for pairs of neighboring sites
to bind tightly together, and demonstrates the extremely lo-
cal nature of the correlation in the system. At the transition
point between the two phases, the gap closes, the material
becomes conductive, and the correlation or, equivalently, the
edge state decay length reaches its maximum. This is re-
flected in Fig. 2(b) where connections form between all of
the neighbors dissolving the block-diagonal structure. Finally,
in the topological region, presented in Fig. 2(c), there is the
same insulating behavior in the bulk of the material that is
observed in the trivial region, but now there exist distinct and
highly visible connections between the edges of the chain,
demonstrating how edge states are easily visualized in an
RDM-based framework.

This off-diagonal character can be measured through the
use of the PCC. Figure 3 shows the value of the PCC as the
system is taken from the trivial region into the topological
and back out again for varying particle number. As the par-
ticle number increases, a discontinuity appears to form in the
PCC value at the exact point of the phase transition, v = 1.
This discontinuity reflects the sudden increase in correlation
length that occurs near a critical point. Interestingly, even
in the low-particle limit (10 particles), taking the derivative

FIG. 3. Change in the Pearson correlation coefficient near topo-
logical phase transitions in the SSH Hamiltonian. The Hamiltonian
is tuned from [v,w]: [−2, −1] → [2, −1] [see Eq. (7)] passing
through two phase transitions at v = ±1.

of the PCC with respect to v reveals that the PCC changes
most rapidly exactly at v = 1, indicating that this metric is
incredibly sensitive to the gap closing even before the system
approaches the thermodynamic limit. This plot also shows a
discontinuity in the derivative of the PCC at v = 0, which
disappears with increasing system size. By using a nonsmooth
function like the absolute value of the RDM elements in the
calculation of the PCC, when the sign of the elements flip, like
at v = 0, a discontinuity occurs in the PCC.

This “single particle” system generates ground states that
are completely captured in the 1-RDM making the higher-
order RDMs trivial and redundant. The next system, however,
introduces two-particle correlations that complicate a purely
1-RDM based analysis.

B. Kitaev chain

The Kitaev chain was developed as a simple system that
can not only demonstrate topological order, but also produce
Majorana edge modes (MEMs) [36]. The non-Abelian statis-
tics of these MEMs make them very appealing for quantum
computing applications where they may protect against the
intrusion of noise. Pairs of MEMs are defined as

m̂2i = âi + â†
i , (13)

m̂2i+1 = −i(âi − â†
i ), (14)

which obey the anticommutation relationship {m̂i, m̂ j} = 2δi j

[46]. In order to obtain these states, Kitaev generated a Hamil-
tonian similar to the SSH chain, except that MEMs instead of
Dirac fermions form on the edge.

The Hamiltonian can be written in terms of Dirac fermionic
operators,

Ĥ =
∑

i

μâ†
i âi + ω(â†

i âi+1 + H.c.) + β(âiâi+1 + H.c.),

(15)
where the first term is a chemical potential, the second term is
a nearest-neighbor hopping interaction, and the final term rep-
resents the superconducting gap. We will use μ̂, ω̂, and β̂ to
denote the operators found in the first, second, and third terms
of the Hamiltonian. The cumulant eigenvectors for systems
up to 18 sites are calculated through the exact diagonalization
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(a) (b)

(c) (d)

FIG. 4. Signatures of topological phase transitions in the structure of the 1-RDM and the 2-particle cumulant in the Kitaev chain model.
Panel (a) shows the change in the structure of the 1-RDM as it is taken through a topological phase transition at μ = 2 (to emphasize the shift of
population to the edges, the color scale of the RDM element is logarithmic in base 10), and panel (b) shows how this change is reflected in the
PCC. Panel (c) shows the changes in the structure of the eigenvector of the largest eigenvalue of the 2-particle cumulant (LCE) [see Eq. (17)],
and panel (d) shows the PCC of the LCE as the system is taken through the same phase transitions. All of the plots have [ω, β] = [−1,−1]
[see Eq. (15)].

of the Hamiltonian, while through the use of the Bogoliubov
transform it is possible to obtain the 1-RDM’s for systems on
the order of 1000 particles. We can also use the Bogoliubov
transform to obtain the spectra:

e(k) = ±
√

(2ω cos k + μ)2 + 4β2 sin2 k − π � k � π,

(16)
where k is a wave vector. This equation shows that there are
two gapped regions separated by the gapless line μ = −2ω.
The first and second regions occur (a) when |μ| > 2|ω| and
(b) when 2|ω| > |μ| with β �= 0, respectively. Additionally,
another gapless line can be found when β = 0 in (b). This bulk
analysis does not reveal which region contains the MEMs,
but these can be found by analyzing the RDMs in the various
regions.

The 1-RDMs shown in Fig. 4(a) are from the path μ: 0 →
4, β/ω = 1 for a system with 14 sites. In the regime of large
(absolute value) μ all the way to slightly above (μ = 2.5)
there are no apparent edge states. The tridiagonal nature of
the 1-RDMs also shows the relatively short correlation length

scale of the system. However, immediately after the tran-
sition at μ = 2, the edge states begin to appear, and more
off-diagonal elements become populated indicating the diver-
gence of length scales near the critical point. Finally, deep in
the topological region when μ = 0, the edge states peak with
an apex at |.25| and the local tridiagonal nature of the bulk
returns.

Figure 4(b) shows the sharpening of the transition through
the PCC value for the 1-RDM as the particle number in-
creases. The PCC value for the different system sizes changes
rapidly, with larger systems converging to a structure that
diverges at μ = 2, serving as a signature of a topological tran-
sition. Additionally, the discontinuity due to the measurement
of absolute values of the 1-RDM elements is seen at μ = 0.
Like the SSH model, the derivative of the PCC with respect
to μ shows a peak at the μ = 2 even at 10 particles, but
unlike the SSH model a significant asymmetry with respect
to μ has appeared. This is likely caused by the rapid drop
in particle number in regions with positive chemical potential
values. Therefore, the edge modes contribute more to the
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FIG. 5. Changes in the largest cumulant eigenvalue near topolog-
ical phase transitions in the Kitaev chain. The legend depicts the size
of the system for 8–18 site systems as the Hamiltonian is tuned from
[μ, ω, β]: [−4, −1, −1] → [4, −1, −1] [see Eq. (15)].

overall behavior of the 1-RDM, being a larger percentage of
the population of the system than in the particle-rich region.

This 1-RDM analysis, however, ignores the newly added
2-body correlation, which can be found in the 2-particle cu-
mulant. The eigenvector associated with the largest eigenvalue
of the cumulant (LCE) gives a picture of the most dominant
2-body effects in the system [42]. We define this eigenvector,
g, as

λ� = g†
i j

2�
i j
kl gkl , (17)

where λ� is the largest eigenvalue of the 2-particle cumulant.
Then by plotting gi j , we recover a plot similar to the plot of
the 1-RDM, but this plot contains spatial information about
2-body correlations in the system. Looking at Fig. 4(c) in the
region with μ > 2, the large number of off-diagonal terms
indicates that the LCE contains information about long-range
order in the system arising from the superconducting gap term
in the Hamiltonian. Interestingly, the cumulant displays an
identical transformation to the 1-RDM with the formation
of edge states at μ < 2. However unlike the 1-RDM, in the
exact MEM limit, μ = 0, the edge state is not completely
isolated with some contributions coming from elements near
the edges (i.e., 〈â†

0â†
N−1〉, ...). Looking at Fig. 4(d), which

is plotting the value of PCC for the LCE, aside from the
6-particle case, the values seem to follow a similar pattern
to the RDM PCC curves. The peaks of the plots are lower
due to the superconducting term generating nearly diagonal
connections between the sites, but the linear correlation still
experiences a significant drop near the phase transition. These
rapid changes in correlation captured by this linear fitting
can also be seen in a spectral analysis of the cumulant. The
change in the eigenvalue of the LCE can be seen in Fig. 5.
As a reflection of the divergence of correlation lengths when
approaching the critical point, the eigenvalue changes very
rapidly indicating that the two-particle correlation is under-
going a dramatic change.

Analysis of a slice of the convex set of RDMs provides a
map of the phases of the system. Figure 6 displays a portion of
the set for the 1000-site system mirrored around the horizontal
dotted line, where above the line a binary color scale depicts
the trivial region as gray and the topological as black, while

FIG. 6. Slice of the convex set of the ground-state RDMs of the
Kitaev chain model. For this 1000-site system, the coloring of this
figure is split around the gray dashed line, where the upper half is
a binary coloring with gray or black indicating that a point lies in
the trivial or topological regimes, respectively. In the lower half, the
coloring corresponds to the color bar to the right and depicts the
value of the PCC [see Eq. (5)] at any point. 〈ω̂〉 and 〈μ̂〉 refer to
the expectation value of Hamiltonian terms found in Eq. (15).

below the line the color scale for the PCC can be seen in the
color bar. The set was collected via sampling a grid in the
Hamiltonian parameter space, which results in sparse regions
that would likely be filled if the plot had been drawn with
random sampling. This sparsity, however, is the result of the
RDM moving rapidly near the phase transition, thus showing
the divergence of the speed. This illustrates how speed infor-
mation can be incorporated in the set picture. Finally, the value
of the PCC also appears to fall at the site of the topological
transition and near the bottom of the figure, reflecting the
closing of the band gap that occurs at the transition and when
β = 0. While it is not visible in this 2-D projection, there
is also a significant gap in the RDMs between the yellow
and green regions. This, of course, is not a topological phase
transition, indicating that the PCC and speed might serve as
a general indicator of when the gap is closing rather than a
definitive sign of topological order.

IV. DISCUSSION AND CONCLUSIONS

Characterization of topological phases is a vitally im-
portant step in the development of novel technologies like
topological transistors, lasers, and quantum computers. In this
article, we introduce the RDM approach to topological phase
transitions and analyze two simple systems exhibiting topo-
logical order. The first system, the SSH model, demonstrates
that fermionic edge modes appear as easily recognizable fea-
tures in the structure of the 1-RDM. Additionally, we see
that the 1-RDM passes through a region with considerable
off-diagonal character as the gap closes, reflecting the diver-
gence of correlation length near critical points. The Pearson
correlation coefficient (PCC), which spikes at the point of the
gap closing, quantifies this off-diagonal quality by providing
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a simple metric, untethered from the Hamiltonian parameters,
for identifying phase transitions.

The next system, the Kitaev chain, presents a novel chal-
lenge for RDM theory in the form of Majorana fermions. We
show, however, that these fermions appear in the 1-RDM and
that the transition exhibits the same off-diagonal spiking, seen
in the PCC, as the SSH transition. Using this behavior, we
reconstruct a picture of the full set of RDMs, which easily
distinguishes between the phases without any reference to the
underlying Hamiltonian, a useful trait for experimental set-
tings. The Kitaev chain also contains non-number-conserving
particle terms, which introduce higher-order correlations to
the system. This two-particle correlation is seen in the spec-
trum of the cumulant, and near the critical regions, the largest
eigenvalue undergoes considerable shifts reflecting the diver-
gence of correlation length scale.

These results demonstrate the power of the RDM approach
to topological phase transitions, presenting a method that is
able to resolve multistate phenomena like gap closing with
ground-state information in an easily interpreted framework.
This has many advantages not only for finite-sized theoretical
modeling, but also for experiments or quantum comput-
ing simulations where calculation of the 1- and 2-RDMs
requires considerably fewer measurements than complete
determination of the wave function.
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