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The accurate prediction of electronic and optical properties in chalcopyrite semiconductors has been a
persistent challenge for density-functional-theory (DFT) -based approaches. Addressing this issue, we demon-
strate that very accurate results can be obtained using a nonempirical screened dielectric-dependent hybrid
(DDH) functional. This approach showcases its impressive capability to accurately determine band gaps,
optical bowing parameters, and optical-absorption spectra for chalcopyrite systems. What sets the screened
DDH functional apart is its adeptness in capturing the many-body physics associated with highly localized d
electrons. Notably, the accuracy is comparable to the many-body perturbation-based methods (such as G0W0

or its various approximations for band gaps and the Bethe-Salpeter equation on the top of the G0W0 or its
various approximations for optical spectra) with less computational cost, ensuring a more accessible application
across various research domains. The present results show the predictive power of the screened DDH functional,
pointing toward promising applications where computational efficiency and predictive accuracy are crucial
considerations. Overall, the screened DDH functional offers a compelling balance between cost-effectiveness
and precision, making it a valuable tool for future endeavors in exploring chalcopyrite semiconductors and
beyond.
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I. INTRODUCTION

Over the past two decades, ternary chalcopyrite semicon-
ductors have attracted a great deal of attention due to their
applications in renewable and sustainable technologies [1–6].
In particular, these materials are primarily used as absorbers
in thin film solar cells due to their great off-stoichiometric
steadiness [7], tunable electrical and thermal conductivity [8],
and remarkable optoelectronic characteristics [5]. The pres-
ence of heavy metals (Cu, Ag, Be, etc.), coupled with their
tunable electronic structure, adds an intriguing dimension
from a scientific perspective. The ab initio calculations for
these ternary chalcopyrite semiconductors, characterized by
a complex electronic structure, are essential and have been of
prime importance. However, the ab initio calculations have
long predicted that the band gap will be strongly influenced
by the anion displacement (u) from its primary mean position
[9,10].

Experimentally, acquiring the band gaps and optical spec-
tra of Cu and Ag chalcopyrite systems typically involves
techniques such as photoemission or photoluminescence
spectra [6,11–13]. However, from a theoretical standpoint,
achieving an accurate treatment of excited states in these sys-
tems requires a comprehensive approach. This often involves
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either a fully relativistic treatment of many-body perturbation
theory (MBPT) or a fully self-consistent Green function-
based method (GW ) [14,15] accompanied by the solution of
the Bethe-Salpeter equation (BSE) [16]. While approaches
such as fully self-consistent GW and BSE@GW encompass
crucial many-body effects, such as electron-electron (e-e) and
electron-hole (e-h) interactions [15,17–19], they are known to
be computationally demanding and technically challenging,
posing significant hurdles to their widespread application.

Importantly, there are several limitations when higher-level
methods are applied to study the electronic structure of chal-
copyrite systems. First, the strong p-d hybridization near the
top of the valence band closes the Kohn-Sham (KS) band gap,
causing a divergence in the dipole transition matrix element,
which poses a significant challenge in constructing a reliable
response function in GW or BSE@GW calculations. Conse-
quently, these higher-level methods depend strongly on the
chosen density functional theory (DFT) wave functions and
orbital energies, and an inaccurate estimation of the dielectric
function may lead to wrong exciton effects [20,21]. Secondly,
the band gaps of chalcopyrite systems depend crucially on
the parameters related to the crystal structure, particularly
on anion displacement (u) [9,21]. Thus, an incorrect esti-
mation of the structural parameters can affect the excitonic
wave function. Consequently, due to these factors, unphys-
ical absorption peaks may appear in the ab initio optical
spectrum.
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Nevertheless, there is an emerging alternative method for
tackling inherently complex issues related to excited-state
electronic properties. This novel method is based on the so-
lution to the KS equation or a generalized KS scheme using
the dielectric-dependent hybrid functional (DDH) [22–26]. In
this paper, we employ dielectric-dependent hybrid functionals
to investigate the electronic structure and optical properties
of chalcopyrite semiconductors. The DDH functional scheme
is proposed as a viable alternative to the highly demanding
and complex GW and BSE@GW schemes, offering a more
accessible approach for exploring various systems [23–37].
Notably, to the best of our knowledge, no study has been
reported on the performance of the DDH functional in the case
of ternary chalcopyrite semiconductors.

The findings presented in our work strongly suggest the
efficacy of the DDH functional as a state-of-the-art scheme for
accurately characterizing both ground-state and excited-state
electronic properties in highly localized d electronic sys-
tems, particularly within the chalcopyrite framework where
describing the robust hybridization between p and d or-
bitals is crucial. While modern meta-generalized gradient
approximations outperform generalized gradient approxima-
tions (GGAs) in terms of structural and band-gap properties of
semiconductors [38–44], they are plagued by well-known is-
sues such as many-electron self-interaction and delocalization
errors [45–48], sometimes inadequate in capturing the degree
of electron correlation [49–51].

This paper evaluates the accuracy of the nonempirical
screened DDH functional in predicting band gaps and opti-
cal absorption spectra of chalcopyrite semiconductors. Our
results indicate that screened-DDH, addressing the general-
ized KS scheme, agrees reasonably well with experimental
findings for both band gaps and optical spectra. Notably, the
functional is particularly effective for challenging Cu-based
chalcopyrites. Our calculations demonstrate the applicability
of this method in describing the p-d hybridization where other
high-level methods are either insufficient or computationally
demanding.

II. BACKGROUND OF METHODOLOGIES

The Coulomb attenuated method (CAM) of the two-
electron operator is used to construct the screened range-
separated hybrid (SRSH) as [36]

1

ri j
= α + β erf(μri j )

ri j
+ 1 − [α + β erf(μri j )]

ri j
, (1)

where ri j = |ri − r j | is the relative position of two electrons.
Here, 0 � α � 1 and 0 � β � 1 control the amounts of Fock
(nonlocal) and semilocal (sl) GGA [Perdew-Burke-Ernzerhof
(PBE) in this case] [52] that are mixed to the full exchange-
correlation (XC) functional in its long range (lr) or short range
(sr). μ is the screening parameter determined later in this
paper. Using Eq. (1), the resultant generalized form of the
SRSH XC expression becomes

ESRSH
xc (α, β; μ) = (1 − α)E sr-sl,μ

x + αEFock-sr,μ
x

+ [1 − (α + β )]E sl-lr,μ
x

+ (α + β )EFock-lr,μ
x + E sl

c (2)

and the corresponding potential is

V SRSH
xc (α, β; μ) = [α + β erf(μr)]V Fock

x + βV sl-sr,μ
x

+ [1 − (α + β )]V sl
x + V sl

c . (3)

Here, Ec and Vc are the PBE correction energy and potential
functionals, respectively. Equation (3) can be seen as the
generalized form of the “CAM”-type hybrid used extensively
for finite and extended systems [23–37]. However, the naming
of the functionals becomes different based on how one deter-
mines the parameters. Typically, one can consider α + β = γ ,
where γ is an another parameter. In terms of α and γ , Eq. (3)
becomes

V SRSH
xc (α, γ ; μ) = [α − (α − γ )erf(μr)]V Fock

x

− (α − γ )V sl-sr,μ
x + (1 − γ )V sl

x + V sl
c .

(4)

In particular, the following choices are important for bulk
solids: (i) for α = 0.25, γ = 0, and μ = 0.11 Bohr−1 in
Eq. (4), resulting in the recovery of the HSE06-like function-
als [53–60],

V HSE06
xc (0.25, 0; 0.11) = 0.25[1 − erf(0.11r)]V Fock

x

− 0.25V sl-sr,0.11
x + V sl

x + V sl
c . (5)

(ii) For α = 1 and γ = ε−1
∞ , where ε∞ is the high-frequency

macroscopic static dielectric constant, the ion-clamped static
(optical) dielectric constant, or the electronic dielectric con-
stant, the resultant functional becomes

V DDH
xc

(
1, ε−1

∞ ; μ
) = [

1 − (
1 − ε−1

∞
)
erf(μr)

]
V Fock

x

− (
1 − ε−1

∞
)
V sl-sr,μ

x +(
1 − ε−1

∞
)
V sl

x + V sl
c ,

(6)

which is named the dielectric-dependent range-separated hy-
brid functional based on the CAM (DD-RSH-CAM) [23] or
simply DDH (used throughout this paper).

In particular, the model dielectric function for bulk solid is
defined according to Eq. (4) with γ = ε−1

∞ as

ε−1(|G|) = α − (
α − ε−1

∞
)
e−|G|2/(4μ), (7)

which is the key to the DDH functional (where G is
the reciprocal-lattice vector). The model dielectric function
makes this construction quite similar to that of the self-energy
correction of GW , in particular when GGA approximates∑

COH [Coulomb hole (COH)] and
∑

SEX [screened exchange
(SEX)] by the Fock term [61].

It is readily apparent from Eq. (6) that the macroscopic
static dielectric constant, ε∞, is the key to DDH calculations.
It can be obtained using different procedures discussed in
Sec. III B. Several procedures are also available to determine
the screening parameter μ. In particular, μ can be obtained
(i) depending on the valance electron density that participates
in the screening [22,61,62], (ii) from fitting with the accurate
dielectric function [23], (iii) from empirical fitting [63], or (iv)
from a first-principles method using linear-response TDDFT
(LR-TDDFT) approaches based on local density or local Seitz
radius (rs) [26]. In particular, in this paper we use procedure
(iv) to determine μ, which is named μfit

eff and obtained using
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the compressibility sum rule together with LR-TDDFT [26],
which has the form

μ = μfit
eff = a1

〈rs〉 + a2〈rs〉
1 + a3〈rs〉2

, (8)

with a1 = 1.917 18, a2 = −0.028 17, a3 = 0.149 54, and

〈rs〉 = 1

Vcell

∫
cell

( 3

4π [n↑(r′) + n↓(r′)]

)1/3
d3r′. (9)

The readers are referred to Ref. [26] for the details of this
formula and underlying derivations. It may be noted that
the resultant μfit

eff performs quite similarly to those obtained
from the fitting of the dielectric function [23] as reported
in Ref. [26]. On the other hand, the screening parameters
determined from procedure (i) are not always well-defined in
some materials, especially where electrons of different char-
acters participate in the valence bands [64]. In this respect,
determining screening parameters from method (iv) is quite
reasonable and well justified [26].

In the subsequent discussion, we briefly overview the dif-
ferent levels within the GW , which we have used whenever
applicable. Various approximations exist for GW , including
the single-shot G0W0 calculation, which relies heavily on the
choice of the initial KS wave functions and orbital energies
[65]. On the other hand, GW0 involves a self-consistent up-
date of the orbital energies in the Green’s function G after
the initial G0W0 step [66,67]. One may note the crucial dis-
tinctions between GW and DDH. The GW steps involve the
calculations of the frequency-dependent dielectric function,
including the summations over both occupied and unoccupied
states. This makes the self-consistent update of GW compu-
tationally more expensive. In contrast, the DDH calculations
are performed only within the generalized KS (gKS) scheme.
However, it requires an additional calculation of dielectric
constants (details are provided in Sec. III C). Second, the
outcomes of one-shot G0W0 and partially self-consistent GW0

are highly dependent on the initial choice of the KS functional,
while DDH, being a self-consistent approach within gKS,
yields outcomes independent of the initial state.

III. RESULTS AND DISCUSSIONS

A. Materials and calculation details

1. Materials

We use 42 chalcopyrite semiconductors having ABX 2

structures (with space group I 4̄2d) grouped as I-III-VI2 (18
chalcopyrites) and I-III-VI2 (24 chalcopyrites), which are the
iso-electronic analogs of the II-VI and III-V ideal zinc-blende
structure (distorted), respectively [68]. Here, (A, B) are the
two cations tetrahedrally coordinated by four anions (X ),
where each anion is again coordinated by two cations each
which are A and B types [69]. Three structural parameters,
namely (i) lattice constant a, (ii) tetragonal ratio η = c/2a,
where c is the lattice constant along the z-direction, and (iii)
the anion displacement parameter u are used to describe a
chalcopyrite structure. Note that u is an important structural
parameter used to describe physics related to the interplay
between structure and electronic properties, and it is defined

TABLE I. PBE optimized a (in Å), c, η, rA−X (in Å), rB−X (in Å),
and u of all the chalcopyrite semiconductors used in this work.

Solids a c η rA−X rB−X u

I-III-VI2

AgAlS2 5.740 5.251 0.915 2.574 2.277 0.294
AgAlSe2 6.029 5.562 0.922 2.677 2.425 0.285
AgAlTe2 6.409 6.122 0.955 2.812 2.661 0.270
AgGaS2 5.773 5.307 0.919 2.563 2.317 0.286
AgGaSe2 6.049 5.632 0.931 2.665 2.463 0.278
AgGaTe2 6.406 6.169 0.963 2.801 2.681 0.266
AgInS2 5.925 5.749 0.970 2.573 2.509 0.259
AgInSe2 6.195 6.039 0.975 2.673 2.647 0.254
AgInTe2 6.567 6.500 0.990 2.812 2.856 0.244
CuAlS2 5.336 5.274 0.988 2.324 2.28 0.257
CuAlSe2 5.651 5.576 0.987 2.443 2.430 0.252
CuAlTe2 6.094 6.055 0.994 2.603 2.664 0.241
CuGaS2 5.372 5.315 0.989 2.314 2.322 0.249
CuGaSe2 5.677 5.631 0.992 2.432 2.471 0.244
CuGaTe2 6.096 5.086 0.834 2.593 2.685 0.237
CuInS2 5.578 5.617 1.007 2.33 2.519 0.220
CuInSe2 5.871 5.908 1.006 2.447 2.657 0.219
CuInTe2 6.294 6.317 1.003 2.608 2.861 0.215

II-IV-V2

BeGeAs2 5.446 5.48 1.006 2.267 2.468 0.218
BeGeP2 5.207 5.229 1.004 2.177 2.347 0.222
BeSiAs2 5.372 5.368 0.999 2.266 2.388 0.230
BeSiP2 5.129 5.117 0.998 2.166 2.266 0.233
BeSnAs2 5.655 5.697 1.007 2.287 2.650 0.194
BeSnP2 5.428 6.675 1.230 2.198 2.538 0.195
CdGeAs2 6.052 5.746 0.949 2.676 2.485 0.277
CdGeP2 5.805 5.484 0.945 2.583 2.363 0.282
CdSiAs2 5.979 5.551 0.928 2.676 2.396 0.289
CdSiP2 5.728 5.289 0.923 2.584 2.271 0.296
CdSnAs2 6.218 6.103 0.981 2.688 2.664 0.253
CdSnP2 5.983 5.862 0.980 2.597 2.550 0.257
MgGeAs2 6.020 5.638 0.936 2.637 2.473 0.273
MgGeP2 5.796 5.365 0.926 2.551 2.355 0.279
MgSiAs2 5.968 5.410 0.906 2.638 2.385 0.286
MgSiP2 5.746 5.125 0.892 2.555 2.265 0.292
MgSnAs2 6.152 6.042 0.982 2.642 2.654 0.248
MgSnP2 5.935 5.799 0.977 2.558 2.543 0.252
ZnGeP2 5.500 5.420 0.985 2.383 2.357 0.254
ZnSiAs2 5.676 5.530 0.974 2.480 2.395 0.263
ZnSiP2 5.420 5.268 0.972 2.383 2.270 0.268
ZnSnAs2 5.944 5.961 1.003 2.498 2.659 0.226
ZnSiP2 5.703 5.718 1.003 2.402 2.545 0.228

as [9]

u = 0.25 + (
r2

A−X − r2
B−X

)
/a2, (10)

where rA−X and rB−X are A − X and B − X bond lengths,
respectively.

DDH, HSE06, and GW0 band-gap calculations are per-
formed using the PBE optimized geometries. The details of
the PBE optimized geometries are given in Table I. In gen-
eral, the computed lattice constants from PBE XC functionals
agree well with the experimental lattice constants.
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TABLE II. High-frequency macroscopic static dielectric constants or ion-clamped static (optical) dielectric constant or electronic dielectric
constant (ε∞), screening parameters (μ in bohr −1), and direct KS band gaps (in eV) using PBE, DDH, and HSE06. Here RPA@DDH is
evaluated using the scheme given in Fig. 1. The PBE, DDH, and HSE06 band gaps are corrected for spin-orbit coupling (SOC). Error statistics
in band gaps with respect to experimental values are also given. The experimental reference values of I-III-VI2 and II-IV-V2 are taken from
Refs. [92] and [68], respectively. Here, the “−” lines indicate that those systems are treated as metals when using PBE. The band-gap values
close to the experiment one are in bold font. Total ME (in eV), MAE (in eV), and MARE are also shown at the end of the table.

Solids ε∞ (RPA@PBE) ε∞ (RPA@DDH) μ = μfit
eff Eg (PBE) Eg (DDH) Eg (HSE06) Eg (GW0) Eg (Expt.) �SOC

a

I-III-VI2

AgAlS2 5.46 4.97 0.78 1.86 3.70 3.05 3.32b 3.60 0.00
AgAlSe2 6.64 5.70 0.78 1.07 2.67 2.18 2.43b 2.55 0.03
AgAlTe2 8.30 7.30 0.73 0.86 1.88 1.98 2.16b 2.30 0.17
AgGaS2 6.65 5.38 0.82 1.11 2.86 2.30 2.16b 2.73 0.01
AgGaSe2 8.85 6.18 0.82 0.51 2.06 1.62 1.29b 1.83 0.03
AgGaTe2 15.39 8.78 0.79 0.13 1.19 1.23 1.17b 1.36 0.17
AgInS2 7.56 5.21 0.74 0.49 2.23 1.57 1.32b 1.87 0.01
AgInSe2 − 6.09 0.74 0.02 1.56 1.06 0.73b 1.24 0.04
AgInTe2 11.8 7.68 0.70 0.18 1.28 1.34 0.81b 1.04 0.19
CuAlS2 6.23 5.20 0.78 1.66 3.87 3.20 2.96b 3.46 0.01
CuAlSe2 7.73 6.05 0.78 0.84 2.76 2.32 2.13b 2.65 0.02
CuAlTe2 9.42 7.85 0.75 0.93 1.96 2.01 1.85b 2.06 0.09
CuGaS2 7.80 5.55 0.70 0.89 3.17 2.22 1.68d, 1.78b, 2.35e 2.50 0.01
CuGaSe2 13.57 6.42 0.70 0.27 2.33 1.55 0.93d, 0.99b, 1.60e 1.67 0.04
CuGaTe2 12.54 8.54 0.66 0.36 1.45 1.65 0.90b 1.25 0.18
CuInS2 − 5.98 0.73 0.03 1.72 1.03 0.77d, 0.69b, 1.41e 1.55 −0.03
CuInSe2 17.41 6.70 0.73 0.01 1.48 0.88 0.46b, 0.93e 1.04 0 .01
CuInTe2 − 9.05 0.71 0.01 1.14 1.17 0.70b 1.00 0.17

II-IV-V2

BeGeAs2 11.30 10.47 0.81 0.55 1.31 1.30 1.07c 1.68 0.07
BeGeP2 9.33 8.81 0.85 0.87 1.61 1.54 1.58c 0.90 −0.01
BeSiAs2 9.76 9.32 0.82 0.97 1.82 1.79 1.33c 1.11 0.09
BeSiP2 8.63 8.37 0.86 1.18 1.95 1.90 1.75c 1.30 0.03
BeSnAs2 11.52 10.79 0.79 0.56 1.32 1.34 1.25c 1.15 0.11
BeSnP2 9.57 9.23 0.82 0.88 1.60 1.57 1.78c 1.98 0.03
CdGeAs2 25.26 12.92 0.74 0.11 0.43 0.17 0.26c 0.57 0.04
CdGeP2 11.45 9.55 0.78 0.63 1.39 1.38 1.61c 1.72 0.00
CdSiAs2 15.30 10.64 0.76 0.33 1.12 1.19 1.29c 1.55 0.04
CdSiP2 9.55 8.94 0.81 1.42 2.09 2.06 1.91c 2.20 0.00
CdSnAs2 13.24 4.03 0.71 0.07 0.18 0.03 0.16c 0.26 0.03
CdSnP2 18.53 9.34 0.74 0.24 0.97 0.98 1.10c 1.17 0.02
MgGeAs2 11.54 9.31 0.72 0.49 1.34 1.26 1.27c 1.60 0.05
MgGeP2 8.48 7.75 0.75 1.52 2.26 2.15 2.28c 2.17 −0.03
MgSiAs2 9.14 8.47 0.74 1.21 2.02 1.91 1.40c 2.00 0.04
MgSiP2 7.79 7.42 0.77 1.37 2.18 2.03 1.83c 2.26 0.00
MgSnAs2 12.13 9.02 0.69 0.31 1.17 1.10 1.07c 1.20 0.07
MgSnP2 8.21 7.52 0.72 1.18 2.02 1.93 2.05c 2.48 0.00
ZnGeAs2 − 11.59 0.77 0.06 0.72 0.65 0.67c 1.15 0.01
ZnGeP2 10.47 9.24 0.81 1.14 1.97 1.91 2.25c 1.80 0.01
ZnSiAs2 11.59 10.16 0.79 0.81 1.76 1.79 1.94c 1.60 0.05
ZnSiP2 9.34 8.68 0.83 1.35 2.09 2.04 1.92c 2.30 0.01
ZnSnAs2 − 11.69 0.74 0.00 0.46 0.44 0.44c 0.75 0.00
ZnSiP2 10.45 8.68 0.83 1.35 2.09 1.48 1.92c 2.30 0.01
TME 0.95 0.02 0.15 0.17
TMAE 0.95 0.24 0.27 0.28
TMARE 0.57 0.17 0.20 0.19

aSpin-orbit coupling is defined as �SOC = EPBE
g − EPBE-SOC

g , which has been added with all SOC uncorrected band gaps obtained from DFT
calculations.
bPresent work calculated with GW0 from VASP. See main text for details.
cGW0 values from Ref. [68]. These calculations are performed using the VASP code.
dG0W0@PBE from Ref. [20].
eG0W0@PBE+U from Ref. [20].
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2. Calculation details

The density functional calculations are performed using
the plane-wave formalism as implemented in the Vienna Ab
initio Simulation Package (VASP) code [70–73]. A kinetic
energy cutoff of 520 eV is used for all DFT calculations.
We use a Monkhorst-Pack (MP) -like 	-centered 11×11×11
k-points mesh to sample the Brillouin zone (BZ) for PBE
calculations, whereas for DDH and HSE06, the k-points are
reduced to 8×8×8. The electronic energies are allowed to
converge at 10−6 eV for all DFT methods to achieve self-
consistency. The relaxation of the structures is performed until
the Hellmann-Feynman forces on atoms are reduced to less
than 0.01 eV/Å−1. The VASP-recommended projector aug-
mented wave (PAW) pseudopotentials are used. Noteworthy,
relatively deep Ga 3d , Ge 3d , and In 4d , states are treated as
valence orbitals.

We also perform partially self-consistent quasiparticle GW0

calculations from the VASP code whenever required for band
gaps. The implementation of this method in VASP is described
in Ref. [67]. For the quasiparticle calculations, the number
of virtual orbitals is increased to 240 (using NBANDS =
240), and four iterations for the self-consistent GW0 steps
are used (using NELMGW = 4) after G0W0 calculation. The
VASP-recommended GW pseudopotentials are used, where
relatively deep Ga 3d , Ge 3d , and In 4d states are treated
as valence orbitals. 8×8×8 	-centered k points are used to
sample the Brillouin zone in GW0 calculations. For all our
cases, the starting point of many-body perturbation theory is
the GGA PBE functional.

The optical absorption spectrum for DDH and HSE06 is
also performed using the VASP code with 16×16×16 MP-
like 	-centered k-points with 72 empty orbitals. We have
performed the DDH and HSE06 calculations in many shifted
4×4×4 k-points and weight over the multiple grids, as a
straightforward calculation of hybrids would be expensive
[74].

B. Self-consistent screened-DDH calculation

The central quantity of the screened DDH is to determine
high-frequency macroscopic static dielectric constants, the
ion-clamped static (optical) dielectric constant, or the elec-
tronic dielectric constant, ε∞, and the screening parameter, μ.
As mentioned before, in our case we use μ = μfit

eff of Eq. (8).
The calculations of μfit

eff are done using the local density ap-
proximation (LDA) densities, and they are also used for all the
chalcopyrite systems. These values are supplied in Table II. As
shown in Table II, μfit

eff’s remain almost constants to a typical
average value 0.72 bohr−1, although for a few systems their
value becomes ∼0.80 Bohr−1. These values are consistent
with the earlier reported values for common semiconductors
and insulators [23,26]. Note that in Ref. [23], μ’s are calcu-
lated from the least-squares fitting to the dielectric function in
the long-wavelength limit obtained from higher-level accurate
calculations, such as random phase approximation (RPA) cal-
culated using PBE orbitals (RPA@PBE) or using nanoquanta
kernel and partially self-consistent GW calculations [67].

Next, we turn to the calculations of the static dielectric con-
stant, which is the central quantity for any DDH. As for our
present case, we already fixed the μ to μfit

eff from the scheme

∈∞
−1

μ = μ

∈∞
−1

∈∞  

∈∞

FIG. 1. Pictorial representation of the self-consistency of the
screened DDH functional used in this paper.

described above. Considering ε∞, it can be calculated using
various schemes: (i) density functional perturbation theory
(DFPT) within the framework of the RPA [82], or (ii) using
the modern theory of polarization [83,84].

The fundamental equation that has been solved to calculate
the dielectric tensor for bulk solid is

εG,G′ (q, ω) = δG,G′ − 4π

|G + q||G′ + q|χG,G′ (q, ω). (11)

Our interest lies in the inverse of the macroscopic dielectric
matrix ε−1

∞ (q, ω), which is obtained from the head of the
inversion of the full microscopic dielectric tensor as

ε−1
∞ (q, ω) = lim

q→0
ε−1

0,0(q, ω). (12)

In Eq. (11), the reducible polarizability χG,G′ (q, ω) is defined
as

χG,G′ = χ0
G,G′ + χ0

G,G′

( 4π

|G + q||G′ + q| + fxc(q, ω)
)
χG,G′ ,

(13)

where χ0
G,G′ (q, ω) is the irreducible polarizability matrix ob-

tained from KS systems [85–87], and fxc(q, ω) is the XC ker-
nel, obtained from the derivative of the exchange-correlation
potential [82]. However, fxc(q, ω) can be neglected, as its
inclusion in the polarizability calculation is observed to be
negligible [88]. Henceforth, in this work the χG,G′ and di-
electric constants are evaluated by neglecting fxc(q, ω), i.e.,
within RPAs. Note that by using Bloch notation, one can
write χ0

G,G′ (q, ω) in terms of the KS orbitals and energies
[85,89,90]. Therefore, the evaluation of ε∞(q, ω) depends
strongly on the choices of the XC functionals. Here, we per-
form RPA calculations of Eq. (11) with PBE orbitals (named
RPA@PBE) and DDH orbitals (named RPA@DDH).

Finally, the self-consistent cycle to calculate the static
ε∞(q → 0, ω → 0) using screened-DDH is described in
Fig. 1. We conform to the following steps: (i) First, we calcu-
late μfit

eff using Eq. (8) with LDA orbitals; (ii) second, we start
with ε∞(q → 0, ω → 0) as obtained from PBE functional
(RPA@PBE), and we plug it in our DDH expression Eq. (6)
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FIG. 2. Convergence of ε∞ as obtained using RPA@DDH using
the self-consistent cycle of Fig. 1. See Fig. 3 for the experimental
values.

along with previously calculated μfit
eff; and (iii) third, we per-

form the DDH calculation and update ε∞(q → 0, ω → 0) as
obtained from RPA@DDH as long as the self-consistency
in ε∞(q → 0, ω → 0) is reached. In Fig. 2 we illustrate the
self-consistency of ε∞(q → 0, ω → 0) using RPA@DDH us-
ing the scheme of Fig. 1. The self-consistency of ε∞(q →
0, ω → 0) is achieved mostly within four cycles. It is worth
mentioning that for certain chalcopyrites, the PBE predicts
a metallic nature with zero band gaps, leading to ε∞(q →
0, ω → 0) → ∞ at RPA@PBE. In such cases, one needs to
initiate the self-consistency process illustrated in Fig. 1 from
a finite value of ε∞(q → 0, ω → 0). Note that the potential is
solved in all materials using the gKS scheme [91].

C. High-frequency dielectric constants

In Table II, we first calculate the orientationally aver-
aged ε∞ (i.e., ε∞ = εxx

∞+ε
yy
∞+εzz

∞
3 ) with RPA using PBE and

DDH XC approximations with μ using Eq. (8). The anal-
ysis from Table II reveals that, for I-III-VI2, RPA@PBE
tends to overestimate ε∞ compared to RPA@DDH. No-
tably, for several cases such as AgGaTe2, AgInTe2, CuGaSe2,
CuInS2, CuGaTe2, and CuInTe2, RPA@PBE predicts signif-
icantly large ε∞, particularly when PBE incorrectly predicts
a metallic structure. The dielectric constants calculated with
RPA@PBE show inaccuracies for such materials. A similar
trend is observed for II-IV-V2 chalcopyrite semiconductors.
However, in cases such as ZnGeAs2 and ZnSnAs2, PBE cal-
culations lead to a metallic outcome. Across all instances,
there is a noticeable magnitude difference of approximately
∼2 when comparing RPA@DDH and RPA@PBE. Examining
the ε∞ values from RPA@DDH, we observe that all values
are finite and fall within the range expected for an ideal
chalcopyrite semiconductor. This performance highlights the
inadequacy of RPA@PBE in accurately calculating ε∞ for
these systems.

Next, Fig. 3 provides a comparison of ε∞ for 11 Cu-
and Ag-based chalcopyrites obtained from RPA@DDH and

FIG. 3. The orientationally averaged static dielectric constants
(optical), ε∞, from experimental and RPA@DDH for nine Cu- and
Ag-based chalcopyrites. The self-consistent cycle of Fig. 1 is used
for RPA@DDH. The experimental values are used 7.77 for CuInSe2

[75], 9.30 for CuInTe2 [76], 6.15 for CuGaS2 [77], 4.95 for CuAlS2

[78], 7.18 for AgInSe2 [79], 6.43 for AgInTe2 [79], 6.87 for AgGaSe2

[80], 5.70 for AgGaS2 [81], and 11.43 for AgGaTe2 [80].

experimental data derived from optical reflectivity experi-
ments (refer to the references in the caption of Fig. 3).
We observe a remarkable agreement between the calculated
εRPA@DDH
∞ and the experimental results. Conversely, for most

of these systems, PBE-predicted ε∞ values are quite large,
with most systems exhibiting metallic behavior (as shown in
Table II).

Finally, in Fig. 4 we compare the model dielectric function
described by Eq. (7) (with α = 1, μ = μfit

eff, and self-
consistent ε−1

∞ evaluated at RPA@DDH, as per Table II) with
the dielectric function obtained through G0W0 or RPA calcu-
lations for various chalcopyrite semiconductors. The details
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FIG. 4. Comparison of model dielectric function as a function
of G (in Bohr−1) for four chalcopyrite semiconductors. The black
circle line indicates the model function with parameters evaluated at
RPA@DDH (see Table II), whereas the red line corresponds to the
G0W0 or RPA calculations.
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FIG. 5. The calculated vs experimental band gaps of 42 chalcopyrite semiconductor using DDH, HSE06, and GW0. The linear regressions
formula is defined as Ecalc

g = κEexpt
g + γ , where κ is the slope, γ is the intercept (in eV), and r2 is the correlation coefficient. The dashed lines

in every panel give Ecalc
g = Eexpt

g . For GW0, use the best value from Table II.

of the calculation procedure can be found in Ref. [74]. This
comparison illustrates that the model dielectric function given
by Eq. (7) aligns well with dielectric functions calculated
through ab initio methods.

D. Analysis of band structures

1. Band gaps and band structures

Now, let us delve into the performance of DDH in
estimating the band gaps. Table II provides a comprehen-
sive comparison by presenting (g)KS band gaps obtained
from PBE, HSE06, and GW0. The band gap is defined
as Eg = εLUMO − εHOMO, where εLUMO and εHOMO repre-
sent the corresponding lowest unoccupied molecular orbital
(LUMO) and highest occupied molecular orbital (HOMO)
eigenvalues.

Inspecting the band gaps of I-II-VI2, one can readily ob-
serve that, as usual, PBE underestimates the band gaps for all
systems and becomes zero for AgGaTe2, AgInTe2, CuGaSe2,
CuGaTe2, and CuInS2. Although HSE06 offers an improve-
ment over PBE, an important improvement is observed in
DDH calculations. Using DDH, the band gap increases to
∼ 0.8 eV for Ag-based chalcopyrites compared to HSE06,
making DDH band gaps close to the experimental values.
Similarly, for Cu-based chalcopyrites, the gaps obtained using
DDH are also in good agreement. We observe good per-
formance for CuAlSe2, CuGaTe2, and CuInTe2 using DDH,
which brings it closer to experimental values. One may note
that for Cu-based chalcopyrites, the interplay between Cu
d and anions p is identified as a crucial factor [9,20,21].
Interestingly, for CuGaS2, CuGaSe2, CuInS2, and CuInSe2,
the underestimation in the band gap from G0W0 and GW0 is
noticeable. As mentioned in Ref. [68], the screening is not
treated correctly by G0W0, and the PBE+U method may be
the better starting point for quasiparticle GW calculations
[9,20,21]. For example, using the PBE+U as a starting point

for G0W0, the band gaps of CuInS2 improve to 1.41 eV, where
the G0W0@PBE value was 0.77 eV (in our present calcula-
tion, it is 0.69 for GW0, which is close to the G0W0@PBE
value of Ref. [20]). A similar improvement in results is also
noticed when employing PBE+U as a starting point for Cu-
based chalcopyrite semiconductors. In accordance with the
insights from Ref. [9], these systems call for careful treatment
of GW , requiring fully self-consistent (sc)COHSEX or GW
for precise band-gap predictions. Nevertheless, the remark-
able performance of DDH in these semiconductor materials
hints at its potential to be the preferred method, offering
a commendable balance between accuracy and relatively
lower computational cost compared to the self-consistent GW .
Similarly, DDH also delivers accurate results for II-IV-V2

semiconductors and is closely aligned with the experimental
values.

Figure 5 shows the experimental versus theoretical band
gaps obtained using DDH, HSE06, and GW0. We use linear
regression analysis to understand better the errors coming
from different methods. We calculate slope (κ), interception
(γ ), and correlation coefficient (r2) for comparison. For DDH,
the κ , γ , and correlation coefficient r2 are found to be about
0.98, 0.08, and 0.81 which are slightly better than HSE06.
Considering the GW0, its error statistics are similar to HSE06.
The most relevant parameter here is r2, which is marginally
better for DDH functional than HSE06 and GW0. Also, as
shown in Table II, in terms of total mean absolute error (MAE)
and mean absolute relative error (MARE), DDH performs
marginally better than HSE06 as well as GW0.

In Fig. 6, we plot the band structures from PBE, HSE06,
and DDH for CuGaS2, a direct band gap (located at the
	-point) semiconductor. We observe an identical band struc-
ture and curvature apart from the shift in the conduction band
for different methods. Specifically, DDH shows a noticeable
∼0.97 eV shift in the conduction band at the 	-point com-
pared to HSE06.
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FIG. 6. Band structure of CuGaS2 calculated using PBE, HSE06,
and DDH. The dashed line indicates the Fermi energy.

2. Variation of band gaps with u

To understand the variation of the band gaps with the
distortion parameter “u” [defined in Eq. (10)], we show the
band-gap variation of CuInS2, one of the prototype chalcopy-
rite semiconductors, using various methods in Fig. 7. This
is important because, experimentally, one can observe the
stability of chalcopyrite with the variation of u. Typically,
PBE predicts the system to be metallic for 0.20 � u � 0.215.
HSE06 improved over PBE but underestimated the band gap
by ∼0.2 eV. A very similar performance is also observed
from various sc-COHSEX+G0W0, while fully self-consistent
sc-COHSEX improves over single-shot sc-COHSEX, i.e., sc-
COHSEX+G0W0 [9]. In contrast, the improvements in the
band gaps for DDH are quite noticeable over the ranges of u.
Although DDH overestimates the band gaps only by ∼0.2 eV

FIG. 7. Band gap vs the anion displacement u for CuInS2 as
obtained using different methods. The PBE, HSE06, sc-COHSEX,
and sc-COHSEX+G0W0 values are taken from Ref. [9].

FIG. 8. Density of states (DOS) for CuInS2 calculated using
DDH and HSE06.

compared to the experimental values, it is well within the
shaded part of Fig. 7. For each u, the DDH uses different Fock
mixing by ε−1

∞ . The seemingly different band-gap values from
different methods occur because of the different screening of
these systems with various u, which is expected due to the
interplay between u and the hybridization of the p-d orbitals
[9].

3. Analysis of DOS and charge density

More analysis can also be drawn from the density of
states (DOS) for CuInS2 in Fig. 8. Typically, the main con-
tribution comes from metal Cu 3d , anion S 3p, and their
(nonbonding/antibonding) hybridization. For DDH, there is
a downward shift of nonbonding 3d states because of the
stronger hybridization, which reduces the p-d repulsion,
hence the enlargement of bandwidth.

The differences in the performances of DDH and HSE06
can also be drawn from the charge density contour plot of
CuInS2 as shown in Fig. 9. As known, the In − S bond is ionic,
whereas the Cu − S bond is covalent. The nature of covalency
changes due to the repulsive p-d nonbonding nature, which
is depicted through the change density isosurface plot. The
reduction in the isosurface value between Cu − S indicates a
decrease of p-d repulsion in DDH; hence, the atomic distance
becomes slightly lower than HSE06.

4. Positions of valance d-bands

Finally, in Table III, we show the mean positions of the
occupied d band (in eV) (relative to the VBM) for several
chalcopyrite semiconductors. As the PBE functional suffers
from the known delocalization, its occupied d band is quite
underestimated. Although HSE06 improves over PBE, DDH
generally recovers the mean positions of the occupied d
band quite remarkably compared to both HSE06 [26]. How-
ever, our results suggest nonempirical DDH obtains a bit of
deep occupied d-band positions compared with GW0. This is
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FIG. 9. Electronic charge-density distribution contours of
CuInS2 as obtained from DDH and HSE06. The positions of Cu, In,
and S atoms are shown. The logarithmic scale is used for the better
visualization of the isosurfaces.

because, for these systems, the band gaps are overestimated
from DDH. Unfortunately, no experimental results are avail-
able with which to compare.

The analysis of band gaps, distortion parameter versus
band-gap variations, the density of states, and the charge den-
sity indicate the screening effect as determined using DDH,
which is important for determining accurate properties from
hybrid functionals. Importantly, a judicious choice of the per-
centage of the Fock screening is required for a more accurate
prediction of the properties. In that case, the functional be-
comes empirical or tuned DDH [33]. However, looking at the
nonempirical settings and the superiority of the obtained prop-
erties, the present DDH can be considered as one of the useful
methods, especially when higher-level accurate methods like
GW are necessary but computationally unaffordable.

E. Optical bowing parameters

The band gap of ternary chalcopyrites varies from CuBX 2

to AgBX 2 due to the different sizes of Cu and Ag atoms.
This variation is evident in Table II for all XC approxi-
mations. The band gap varies as the Cu/Ag ratio changes
[93]. These size-dependent variations are further intensified

TABLE III. Mean positions of the occupied d band (in eV) rela-
tive to the VBM for selective semiconductors. The theoretical values
are calculated by averaging the d-state energies at the 	 point.

Solids PBE DDH HSE06 GW0

AgGaS2 −14.8 −19.8 −17.1 −17.3
AgInS2 −14.4 −17.3 −15.9 −16.6
AgInTe2 −14.8 −17.8 −16.4 −16.9
AgGaTe2 −15.3 −20.4 −17.9 −16.7
AgGaSe2 −14.9 −20.0 −17.3 −16.5
CuGaS2 −15.4 −20.8 −17.6 −18.1
CuInS2 −15.0 −17.7 −16.5 −17.0
CuGaTe2 −15.4 −21.1 −17.9 −18.5

FIG. 10. The band-gap values for CuxAg1−xGaSe2 alloy are cal-
culated at compositions x = 0.0, 0.25, 0.50, 0.75, and 1.0, with
DDH and HSE06. The curves are fitted using Eq. (14).

by band bowing, known as optical bowing [94]. This effect
arises from atomic-level fluctuations in the lattice structure of
(Cu,Ag)BX 2 compounds [95]. Due to level repulsion between
chalcopyrite energy levels in the alloy, the band gap of the
alloy experiences a downward shift from the linear average,
as described by the following equation:

Eg(AxB1−x ) = xEg(A) + (1 − x)Eg(B) − bx(1 − x), (14)

where Eg(A) and Eg(B) are the band gaps of A and B for the
compound AxB1−x. Considering the quaternary chalcopyrite
semiconductor alloy CuxAg1−xGaSe2, the common Ga − X
bond length remains almost unchanged with concentration
x, while the Ag − Se and Cu − Se bond lengths associated
with Ag and Cu increase with x [96]. This is consistent
with the nearly identical Ga-Se bond lengths in CuGaSe2

and AgGaSe2 because the local environment of Ga does not
change with the alloy concentration x. In the case of DDH, the
band gap varies from 2.33 to 2.06 eV as we go from CuGaSe2

to AgGaSe2, and in the case of HSE06, it varies from 2.55
to 2.62, as shown in Table II. The optical bowing parameter
“b” can be obtained using the band-gap difference. The band
gaps for CuxAg1−xGaSe2 with concentrations of (x = 0.0,
0.25, 0.50, 0.75, 1.0) are calculated using PBE, DDH, and
HSE06 XC approximations. The band-gap value using PBE
for x = 0.0 and 0.25 is 0 eV, so PBE band-gap errors are
largely canceled in the calculation. The optical bowing pa-
rameter “b” can be calculated at different x along with pure
AgGaSe2 and CuGaSe2 according to Eq. (14).

Figure 10 is plotted by curve-fitting the calculated band
gap using HSE06 and DDH using Eq. (14). The experimental
value of “b” for CuxAg1−xGaSe2 is 0.280 eV [97]. The value
of “b” using HSE06 is 0.251 eV, whereas for DDH it is
0.286 eV. Our study shows that the value of “b” using DDH is
in very good agreement with the experimental optical bowing
parameter compared to HSE06.

F. Description of absorption spectra

Optical-absorption properties of solids in DFT are mostly
calculated using the linear-response TDDFT (LR-TDDFT) by
solving the Casida equation using KS or gKS orbitals [100].
However, to get an accurate optical spectrum for a solid, it is
necessary to get the correct band gap and accurate treatment
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of the electrons and holes. State-of-the art BSE@GW includes
the physics correctly but comes with huge computational ex-
penses. Typically, in VASP, the excitation spectra for both the
TDDFT and BSE@GW methods are calculated by solving the
Casida/Bethe-Salpeter equation [19,100–103].

Within the Tamm-Dancoff approximation, the TDDFT
spectrum is calculated by solving the matrix element of di-
rect transition from occupied to unoccupied states and the
electron-hole (e-h) interaction as [100–103]

Ai j;ab = ωiaδi j;ab + 〈ib|KHxc|a j〉, (15)

where ωia = εi − εa. The occupied states are denoted as i,
j, unoccupied states are denoted as a, b, and correspond-
ing KS or gKS eigenvalues are denoted by ε. The matrix
element 〈ib|KHxc|a j〉 is evaluated using the Hartree plus XC
kernel, KHxc, which includes the e-h interaction. Because the
semilocal functionals typically underestimate the band gaps,
the first term on the right-hand side of Eq. (15), depending on
the KS eigenvalues, is not well treated. The e-h interaction
term is further simplified using the framework of the gKS
and screened-DDH as Hartree and screened exchange, and the
term involves the XC kernel as [103]

〈ib|KHxc|a j〉 = 2〈ib|V (|q + G|)|a j〉
− 〈ib| f nonlocal

xc | ja〉 + 〈ib| f local
xc |a j〉. (16)

The first term on the right side of the above matrix element
involves the Hartree term that is common for both TDDFT
and BSE@GW . The term involving 〈ib| f nonlocal

xc | ja〉 =
〈ib|ε−1

∞ (|q + G|)V (|q + G|)| ja〉 does not appear when con-
sidering only the semilocal XC functional. The local XC
kernel, f local

xc , is the functional derivative of semilocal XC
approximations with respect to the density and does not in-
clude any excitonic effect. However, some specially designed
low-cost XC kernels are also developed and include necessary
features [104–111]. Importantly, for a short-range screened
hybrid like HSE06, ε−1

∞ (|q + G|) = β(1 − e−|G|2/(4μ) ) and the
resultant screened exchange varies as ∼β, a constant with β =
0.25 at q → 0. However, for bulk systems, the correct behav-

ior of screened exchange must be ∼ ε−1
∞ (|G|)

q2 at q → 0, which
is the key to improving the optical absorption spectra from
DDH [34,88,112–119], where the high-frequency dielectric
constant of the material replaces the dielectric function [103].

On the other hand, in BSE, the same set of equa-
tions are solved [19,103]. However, the orbitals are related
to the previous GW calculations [19,103], typically obtained
from different levels of approximations, where the screened
exchange is frequency-dependent (through the dielectric func-
tion) [103] and the inclusion of the “nanoquanta” vertex
correction may also be required for accurate calculations
[67]. For the corresponding VASP implementation of the BSE
equation and differences in the details of BSE and TDDFT
using DDH, the readers are referred to Ref. [103]. While BSE
calculations neglect dynamical effects, it is worth noting that
determining the screened exchange in prior GW steps adds
complexity to the overall problem [103].

Finally, in TDDFT, the frequency-dependent and small
wave-vector limit of the imaginary [ε2(ω)] part of the macro-

FIG. 11. Imaginary part of absorption spectra [ε2(ω)] of CuInSe2

(upper panel) for light polarized along the c axis (upper panel) and
for light polarized perpendicular to the c axis (lower panel) calcu-
lated with DDH (nonempirical) and DDHfit (with empirical tuning of
parameter γ ) and HSE06. The experimental and BSE@GW results
are taken from Alonso et al. [6] and Korbel et al. [98], respectively.

scopic dielectric function (optical), εM , is calculated via

ε2(ω) = Im{lim
q→0

εM (q, ω)}, (17)

where limq→0 εM (q, ω) is given by Eq. (48) of Ref. [102],
which is also related to the calculated matrix elements of
Eq. (15) and how the kernels are evaluated. It is quite apparent
that the results obtained from TDDFT using the semilocal
only and hybrid DFT functionals give drastically different
results.

In the following, we choose CuInSe2 and CuGaS2 to cal-
culate the TDDFT spectrum, for which high-level calculations
and experimental values are available. For CuInSe2, we con-
sider a = 5.780 Å, c = 11.618 Å, and u = 0.230 according
to the experimental values in Table I of Ref. [120]. Simi-
larly, for CuGaS2 we choose a = 5.351 Å, c = 10.478 Å, and
u = 0.259 according to the experimental values as supplied in
Table II of Ref. [121]. To make a meaningful comparison, we
compare the results from the KS (as obtained using DDH and
HSE06) applying TDDFT, BSE solving the GW (BSE@GW ),
and the experimental dielectric functions. Figure 11 presents
the absorption spectra for CuInSe2 and Fig. 12 for CuGaS2.
In both cases, we show the spectra for the light-polarized
perpendicularly to the c axis ([εxx

2 (ω) + ε
yy
2 (ω)]/2) or along

the c axis [εzz
2 (ω)].

Figure 11 compares the absorption onset of TDDDH,
TDHSE06, BSE@GW , and experiment in the case of
CuInSe2. As is evident from the figure, a fairly good agree-
ment of TDDDH with BSE@GW (BSE@GW spectrum is
taken from Ref. [98]) and the experimental spectrum from
Alonso et al. [6] is observed. Notably, excitonic peak posi-
tions obtained from TDDDH are at slightly higher energies
or right-shifted when compared with the experimental and
BSE@GW spectra. This is because of the overestimations
in the orbital energies and hence the band-gap values from
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FIG. 12. Same as Fig. 11 but calculated for CuGaS2. The exper-
imental values are taken from Alonso et al. [6] and Levcenko et al.
[99]. The BSE@GW results are taken from Aguilera et al. [21].

DDH [connected to the Casida Eq. (15)]. On the other hand,
in the case of TDHSE06, we also observe good agreement
with TDDDH. Note that the HSE06 absorption spectrum for
these semiconductors is also reasonably good compared to the
experimental spectrum. On the other hand, the advantage of
TDDDH is that very accurate spectra can be obtained for both
the semiconductor and insulators [26].

Very similar tendencies are obtained from TDDDH when
compared for CuGaS2. As shown in Ref. [21], for CuGaS2

two absorption spectra are available from Alonso et al. [6] and
Levcenko et al. [99]. We consider the experimental spectra
of Alonso et al. [6], shown in Fig. 12, and those have bet-
ter agreement with BSE spectra [21]. Considering TDDDH
spectra, the first peak is higher energy than the experimental
and BSE@GW spectra, as shown in Fig. 12. Regarding the
TDHSE06, the excitonic peaks also agree with the experimen-
tal one, similar to the previous studies.

One can obtain a good absorption spectrum from TDDDH
by empirically tuning the parameter γ of Eq. (4). Several other
works have adopted this strategy [33,34,37,65]. The following
strategies can be adopted to obtain a reasonable spectrum from
TDDDH: (i) Tune parameter γ of Eq. (4) to match with the
band gaps of G0W0 or GW0 when no experimental band gap
is available, or (ii) if experimental band gaps are available,
then the tuning of the γ of Eq. (4) can be done to match with
the experimental band gap of the system, keeping screening
parameter μ fixed. Here, we consider the second strategy.
After tuning γ from experimental band gaps, we compare
the excitation spectrum with the BSE@GW or experimental
spectrum. We obtain γ = 0.08 for CuGaS2 and γ = 0.06 for

CuInSe2 to match the experimental band gaps. Consistent
agreement is noted in absorption onsets, excitonic peak posi-
tions, and the higher-energy spectrum when compared to the
spectrum for light polarized in both directions. Notably, the
tuning procedure is usually not needed for systems in which
DDH adequately describes band gaps.

IV. CONCLUSIONS

The comparative assessment of the screened-range-
separated hybrids (such as HSE06), screened DDH, and
methods based on the many-body perturbation theory are as-
sessed for various properties of chalcopyrite semiconductors,
such as band gaps, optical bowing parameters, and optical
absorption spectrum. It is demonstrated that the screened
DDH approach is not only promising as a cheaper alternative
to many-body perturbation-theory-based approaches (such as
G0W0 or GW and BSE@GW ), but it is more flexible and
physically sound than HSE06. The important fact is that in
the screened DDH, the amount of screening correlation is
determined from the static dielectric constant instead of a
fixed screening used in HSE06. This makes the screened DDH
more flexible, especially for the band gaps of chalcopyrites,
where the amount of p-d hybridization is determined from
screening correlation. Though the overall mean absolute error
suggests that the band-gap performances of HSE06, screened
DDH, and GW0 (or G0W0) are quite similar, the screened DDH
has a better overall slope, intercept, and correlation coefficient
when compared with the experimental band gaps. We also ob-
serve that in Cu-based chalcopyrites, the accuracy of screened
DDH for band gaps is slightly better than G0W0@PBE, which
depends strongly on the initial starting point.

Also, a notable success of the TDDDH in the case of calcu-
lating the optical-absorption spectrum is demonstrated that is
both cost-efficient and free from empiricism when compared
with the BSE@GW . We hope that screened DDH can be
the method of choice for evaluating the optical properties of
chalcopyrite systems and different heterostructures where the
BSE calculations are not feasible.

Finally, the overall quality performances of screened-DDH
are encouraging as they are quite close to many-body per-
turbation calculations in providing the estimates of various
properties. Importantly, the screened DDH is free of ad-
justable parameters (as opposed to HSE06). All the results are
obtained by solving the generalized Kohn-Sham equation, and
unlike the GW method, it involves no virtual orbitals. This
makes the functional easy to use with minimum computa-
tional cost. The present study shows that this can be a method
of choice for other chalcopyrite semiconductors, especially
for Cu-based multinary semiconductors.
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