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Topological and nontopological degeneracies in generalized string-net models
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Generalized string-net models have been proposed recently in order to enlarge the set of possible topological
quantum phases emerging from the original string-net construction. In the present work we do not consider
vertex excitations, and we restrict ourselves to plaquette excitations, or fluxons, that satisfy important identities.
We explain how to compute the energy-level degeneracies of the generalized string-net Hamiltonian associated
with an arbitrary unitary fusion category. In contrast to the degeneracy of the ground state, which is purely
topological, the degeneracy of excited energy levels depends not only on the Drinfeld center of the category, but
also on internal multiplicities obtained from the tube algebra defined from the category. For a noncommutative
category, these internal multiplicities result in extra nontopological degeneracies. Our results are valid for any
trivalent graph and any orientable surface. We illustrate our findings with nontrivial examples.
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I. INTRODUCTION

The idea that two-dimensional quantum systems could
contain quasiparticles with exchange statistics different from
bosons and fermions emerged about 50 years ago [1,2]. These
pointlike particles, called anyons, could, under mutual ex-
change, accumulate “any,” possibly fractional, phase (Abelian
anyons), or even change into a new state orthogonal to the
initial one (non-Abelian anyons). Yet, only recent experi-
ments provided evidence for the presence of Abelian anyons
in the fractional quantum Hall effect [3,4], and investigated
non-Abelian anyons in quantum processors made of super-
conducting qubits [5,6] or trapped ions [7]. Anyons are a
fundamental characteristic of topologically ordered phases:
gapped phases that appear in strongly interacting or frustrated
systems and that cannot be identified by local symmetries.
In particular, anyons are connected to one of the defining
properties of topological order: a ground-state degeneracy,
which depends on the surface topology on which the system
is defined, and which is robust against small local pertur-
bations (a fact that motivated the idea of using topological
order to implement fault-tolerant quantum computation [8,9]).
The excited states of topologically ordered phases also show
nontrivial degeneracies related to the fusion of anyons.

Some of the most studied models for topologically ordered
phases are the string-net models introduced by Levin and Wen
[10], and their generalizations [11–14]. These models, while
not being able to produce all possible topological orders, are
believed to produce exactly those bosonic topological orders
that have gappable edges (and are therefore achiral). The
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string-net models are exactly solvable. While the energy levels
are easy to obtain, the corresponding spectrum degeneracies
are nontrivial and are the main focus of the present paper.

The string-net models are built from planar diagram
algebras—so-called (spherical) unitary fusion categories
(UFCs). A UFC is equipped with a set of quantum num-
bers (“particles” or “simple objects” or “labels” or “strings”)
obeying certain fusion rules. The string-net model is then
built on some trivalent graph [dual to a triangulation of an
orientable two-dimensional (2D) manifold] as shown in Fig. 1.
The full Hilbert space is given by assigning a label (a simple
object) to each directed edge of the graph. Given a UFC C,
the string-net model built from C realizes a topological order
[15] corresponding to the Drinfeld center Z (C) [16], which
is a well-defined (2 + 1)D topological quantum field theory
(TQFT), or, in mathematical terms, a unitary modular tensor
category (UMTC). For example, the vector space dimension
assigned to a 2D compact manifold of genus g by Z (C)
matches the ground-state degeneracy of the string-net model
built from C on the same manifold. However, what is often
not appreciated is that the agreement between the vector space
dimension assigned by Z (C) and the degeneracy of states in
the string-net model may not be perfect when one considers
string-nets on manifolds with boundaries, or the case in which
quasiparticles are present, i.e., excitations above the ground
state. In particular, for cases other than the ground state on a
closed manifold, the string-net model displays both topologi-
cal and nontopological degeneracies.

By “topological degeneracies,” we mean degeneracies that
arise from multiple topological fusion channels in the Z (C)
topological quantum field theory. As we will discuss below in
Sec. IV, the degeneracy of the ground state on a surface of
nonzero genus is such a topological degeneracy. This type of
degeneracy cannot be split by local perturbations as long as
the excitation gap does not close. Here, the notion of locality
is related to operators acting on a typical scale smaller than
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the systole (shortest noncontractible loops). Degeneracies that
arise from multiple fusion channels of quasiparticle excita-
tions, if present, will also be called topological. These can be
split by perturbations only if the perturbing operators connect
the positions of the multiple excitations. So, for example, if
two excitations are very close to each other, a fairly local
perturbation operator could in principle split such degeneracy.
Topological degeneracies, independent of how easy they are
to split, are encoded in the fusion rules of Z (C).

However, in the case of a string-net model built from
a noncommutative UFC, there are additional degeneracies
associated with quasiparticles that are not topological, and
counting them requires knowledge of other quantities that will
be discussed below. Indeed, in a given topological sector, one
may still have some additional degeneracies that can be lifted
by completely local perturbations.

For a string-net model built from a category C, certain
quasiparticle types of the emergent theory Z (C) play a special
role and are denoted as “fluxons” or plaquette excitations.
These elementary excitations are always bosons that can be
excited in the string-net model without violating the fusion
condition of the model at every trivalent vertex (see Sec. III
for more details). In the current paper, we will focus on this
type of excitation, which only exists for smooth boundaries.

Excitations that are not fluxons and boundaries that are not
smooth generally require violations of the fusion condition.
This is more complicated since there may be inequivalent
ways to define the model once the fusion conditions are vi-
olated. Note that in Ref. [17] a particular extension of the
string-net model (known as the “extended string-net model”)
is considered that contains all topological quasiparticle types
but never violates any vertex constraints at the price of some
other complications. We leave for future work analysis of that
extended model.

It is worth noting that being a fluxon for some particular
particle types of a UMTC is dependent on the microscopic
string-net model and is not a property of the TQFT. In partic-
ular, it may happen that the same TQFT may be constructed
either as the Drinfeld center Z (C) of a UFC C or as the Drin-
feld center Z (C ′) of another UFC C ′. When Z (C ′) � Z (C),
we say that C and C ′ are Morita-equivalent [18]. However,
the fluxons of the string-net model built from C are generally
different from the fluxons of the string-net model built from
C ′. This is quite natural since a fluxon is defined as satisfying
the fusion rules of the underlying UFC from which the string-
net model is built.

In the case in which the fusion rules of the category C
are commutative, i.e., when a × b = b × a for all objects a
and b in the category, there is a substantial simplification
since there are no internal multiplicities. One can then find
the topological degeneracy of a 2D orientable manifold with
any number of quasiparticles on it using classic formulas
found by Moore, Seiberg, and Banks [19] and Verlinde [20].
However, in the case in which the fusion rules of the category
C are noncommutative, i.e., a × b �= b × a for some a and b
in the category, the situation is more complicated. Here, for
some of the fluxons, there is an additional internal degeneracy
factor on top of the TQFT/conformal field theory prediction
of Moore, Seiberg, Banks, and Verlinde [19,20]. We will be
particularly interested in this case.

It may seem to be quite an unusual situation to have a
fusion category with noncommutative fusion rules. However,
this is precisely the case for the famous Kitaev quantum
double model [8] for a non-Abelian group, which is the first
(and potentially simplest) anyon model known to be universal
for quantum computation. Here, we are thinking of the Ki-
taev model on the dual lattice compared to Kitaev’s original
construction; see [21,22]. In this model, the category is based
on a group G and the fusion rules simply follow the group
multiplication rules. In cases in which G is a noncommuta-
tive group, we have a string-net model with noncommutative
fusion rules. The Kitaev quantum double model is thus a
string-net model based on the trivial categorification of G,
which is known as the category C = Vec(G). This is an
interesting case because there is a Morita equivalence to the
commutative fusion category based on the representations of
the group C ′ = Rep(G) where the fusion rules follow the
multiplication rules of the group irreducible representations.
Although Vec(G) and Rep(G) have the same Drinfeld center,
and hence string-net models built from the two are described
by the same TQFT, we will see that their nontopological
degeneracies are quite different.

In addition to UFCs based on noncommutative groups,
there are other noncommutative fusion categories, such as the
Haagerup category [23,24], which we will discuss in detail
below. Construction of string-net models from these cate-
gories (and more generally from categories not possessing the
tetrahedral symmetry; see, e.g., [22]) requires some care and
is discussed in detail, for example, in Refs. [11–14]. This is
known as “generalized string-net models” and should not be
confused with the “extended string-net models” of Ref. [17].

Our goal is to compute the spectral degeneracies of the
generalized string-net models, hence extending the recent re-
sults obtained in Ref. [25] to any UFC. Let us stress that the
calculation of degeneracies for some specific UFCs has been
the subject of several works in the past decade [26–30]. Our
analysis will begin by constructing the Drinfeld center Z (C)
for a string-net model built from any input UFC C. Building
the Drinfeld center can in general be quite complicated. Our
approach will rely on the so-called Ocneanu tube algebra
[31,32], which gives us all the objects in Z (C) together with
their internal degeneracies. Then, using the Moore-Seiberg-
Banks formula [19] supplemented by degeneracy factors, we
will calculate the degeneracies of each energy levels. This
final step requires several nontrivial manipulations which we
will emphasize. At the end, we will obtain expressions for
the spectral degeneracies of generalized string-net models (re-
stricted to the fluxon sector). These will be used in an analysis
of the thermal properties of these models in a forthcoming
paper.

Another motivation for the present study is conceptual:
it is to clearly understand how much of the physics of the
string-net model is captured by the Drinfeld center of the input
category and how much is left out. The former may be called
topological and the latter nontopological. Here, we will show
that beyond the Drinfeld center, one needs quantities called
nA,1 (see below), extracted from the tube algebra, in order to
compute the excited-level degeneracies.

As a final motivation, there are now proposals to simu-
late simple string-net models on quantum computers (see, for
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example, [7] and [33], which experimental groups are now
trying to implement). It therefore seems important to consider
such models in detail and to draw out the physical differences
that arise from the different ways the Drinfeld centers may be
realized.

The paper is structured as follows. In Sec. II, we provide
a few basic notions on fusion categories. In Sec. III, we give
a short introduction to generalized string-net models, with a
particular emphasis on the construction and description of the
emergent topological phase. Section IV contains our main re-
sult, namely the formula for the spectrum degeneracies in the
most general case. We make the link with previously obtained
results in some particular cases. Special cases such as modular
or commutative categories are discussed in Sec. V. We further
illustrate our results with examples in Sec. VI. In particular,
we study the case of the Morita-equivalent categories Rep(S3)
and Vec(S3), corresponding to the same Drinfeld center Z (S3)
but having different energy-level degeneracies. We also study
more involved cases such as the Haagerup, the Tambara-
Yamagami, and the Hagge-Hong categories. Eventually, we
conclude and discuss perspectives in Sec. VII. In the Ap-
pendixes, we give details on the tube algebra (see Appendixes
A and B), on fluxon identities (see Appendix C), on a general-
ized Hamiltonian (see Appendix D), and on the Hilbert-space
dimension (see Appendix E).

II. BACKGROUND INFORMATION
ON FUSION CATEGORIES

Before starting our discussion, we will need to introduce a
few concepts from the theory of TQFTs and fusion categories.
Those familiar with the field can skip this section. A UFC C
is essentially defined by a set of simple objects, a set of fusion
rules, and a set of F -matrices. We will now describe each of
these in turn.

The first property of a UFC is the set of simple objects
(also called particles, labels, quantum numbers, strings, super-
selection sectors, etc.). The identity 1 (also called the vacuum
or trivial object) is one of these objects. Below, we label the
(nonidentity) simple objects of the UFC with Roman letters
a ∈ C.

The second property of the UFC is the set of fusion
rules. This defines how objects “multiply” together, such as
a × b = 2c + f + h. These fusion rules are encoded in coef-
ficients Nc

ab. In particular, we write

a × b =
∑

c

Nc
ab c, (1)

where the elements Nc
ab are just the non-negative integer coef-

ficients of the object c on the right-hand side of the equation.
With only these two properties (simple objects and fusion
rules), one has a fusion ring. For a list of small multiplicity-
free fusion rings, see Ref. [34]. If there are NC simple objects
in the category, we can think of Nc

ab as being a set of NC
square matrices Na that are each NC-dimensional, with rows
and columns indexed by b, c. The quantum dimension da is
defined to be the largest eigenvalue of Na, which is guaranteed

FIG. 1. A portion of a trivalent graph with oriented edges.

to be positive. The so-called total quantum dimension is

D =
√∑

a
d2

a . (2)

The fusion rules are always assumed to be associative,

a × (b × c) = (a × b) × c for all (a, b, c) ∈ C. (3)

If a × b = b × a for all (a, b) ∈ C, or equivalently Nc
ab =

Nc
ba, we say that the fusion rules are commutative. Conversely

if there exists (a, b) ∈ C such that a × b �= b × a, then we
say that the fusion rules are noncommutative. Most studies
of string-net models have focused on the simple case of com-
mutative fusion rules with Nc

ab � 1 (no fusion multiplicities),
but we will be more general.

Fusion with the identity object 1 is trivial, meaning that 1 ×
a = a × 1 = a for all a ∈ C. For each simple object a there is
a unique dual simple object ā such that N1

aā = N1
āa = 1. It is

possible that a = ā. It is always the case that Nc
ab = Nc̄

b̄ā
.

It is also sometimes useful to define

Nabc = Nc̄
ab. (4)

This notation is convenient because Nabc = Nbca = Ncab even
for noncommutative fusion.

The fusion of objects in the category is represented by
diagrams with labeled and directed edges. For example, fusion
of a and b to c is represented by the diagram shown in Fig. 2.
Note that we have adopted the orientation convention given
in Refs. [13,14] (one reads a, b, c counterclockwise for the
diagram of the vertex Nc

ab). Reversing the arrow on a labeled
edge changes the edge label to its dual.

FIG. 2. Oriented fusion vertex corresponding to Eq. (1). A fusion
is “allowed” if Nc

ab > 0, where a, b, and c are in counterclock-
wise order. In this case, the index at the vertex takes values μ =
1, . . . , Nc

ab = Nabc̄. In cases in which Nc
ab = 1, we do not write μ.
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FIG. 3. The space described by the set of diagrams on the left,
spanned by different values of d, μ, ν, is the same as the space
described by the diagrams on the right, spanned by different values
of f , β, α. The F -matrix describes the unitary basis transformation
between the two descriptions.

In a UFC, a fusion vertex, such as the one in Fig. 2,
represents a Hilbert space of dimension Nc

ab with basis vec-
tors labeled with Greek letter μ = 1, . . . , Nc

ab. The diagram
on the left of Fig. 3 describes a Hilbert space of dimension∑

d Ndb̄āNec̄d̄ , and this space is spanned by the possible val-
ues of d, μ, ν. On the other hand, the diagram on the right
describes a Hilbert space of dimension

∑
f Nf c̄b̄Ne f̄ ā, and this

space is spanned by the possible values of f , α, β. Due to the
associativity condition on fusion, the dimensions of the space
in the two descriptions are the same, and the unitary F -matrix
shown in Fig. 3 relates the two bases to each other. There
is a consistency condition on the F -matrices, known as the
pentagon equation [16,22,35,36], that ensures that multiple
changes of basis in complicated diagrams will give a consis-
tent result.

The essence of the UFC is that it gives us a consistent
planar diagram algebra. The values of labeled diagrams can
be related to each other via F -moves, and any “closed” di-
agram (diagrams where all edges end on trivalent vertices
at both of their ends) can be evaluated to be a complex
number [22].

As mentioned above, the fusion rules of a UFC may be
commutative or noncommutative. A simple example of the
noncommutative case is when one considers a UFC built from
noncommutative group elements where fusion rules are sim-
ply given by the multiplication table of the group considered.
A more complicated example of a UFC with noncommutative
fusion rules is the Haagerup category H3 [23,24], which we
will discuss further below. When fusion rules are commu-
tative, several types of UFC can be distinguished further,
as depicted in Fig. 4. First, one may ask whether a com-
mutative UFC is braided or not. A unitary braided fusion
category (UBFC) is a UFC obeying the so-called hexagon
equations [16,22,35,36]. These equations stem from consis-
tency conditions required when extending the planar diagram
rules to diagrams with over- and undercrossings. Thus (2 +
1)-dimensional diagrams, corresponding essentially to space-
time diagrams for world-lines of anyons, can be given values.
The rules for handling over- and undercrossings (known as
R-matrix) are described by these hexagon equations. It may be
the case that for a given UFC, there is no consistent solution to
these equations, and the UFC is not braided. For instance, the
Tambara-Yamagami category TY3 [37], which we will discuss
further below, is commutative but non braided.

For UBFCs, important quantities to consider are the so-
called T -matrix and S-matrix. The T -matrix, Ta,b = δa,bθa, is

FIG. 4. A possible classification of unitary fusion categories.

simply a diagonal matrix of the twist factors θa = e2iπsa , as
shown in Fig. 5, where sa is the topological spin.

The S-matrix is a symmetric matrix of elements Sa,b = Sb,a

that evaluate a loop labeled a linked with a loop labeled b and
then normalized with the total quantum dimension, as shown
in Fig. 6. It gives the exchange statistics of the anyons a and b.
In the particular case in which one of the anyons is the vac-
uum, the S-matrix element takes a simple value in terms of the
quantum dimensions:

(5)

A word of caution is in order. Diagrams in Figs. 5 and 6 as
well as in Eq. (5) are evaluated, meaning that they give com-
plex numbers corresponding to quantum amplitudes. Most
other diagrams that will appear later in this paper, e.g., in
Figs. 8 or 9 and in Appendix E, are used differently and as
a way to compute the dimension of Hilbert spaces, similarly
to what is done in Figs. 2 and 3. The two ways of considering
a diagram, i.e., either as a quantum amplitude or as a way of
counting possible labelings, should be clearly distinguished.
For example, in the second case, loops or bubbles can never
be contracted, whereas in the first case, an isolated loop of a
is evaluated as the quantum dimension da [see Eq. (5)].

If for all a and b there is a single c such that Nc
ab > 0, then

the category is said to be Abelian (in the sense that, for an
Abelian UBFC, the corresponding objects are all Abelian, i.e.,
exchange statistics is just a phase) and non-Abelian otherwise.
Note that for a fusion category, and in contrast to a group, the

FIG. 5. Twist factors θ appearing in the T -matrix.
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FIG. 6. The S-matrix.

notions of commutativity and of Abelianity are distinct. For
instance, the Fibonacci UFC is commutative but non-Abelian.

UBFCs can still be split into two families according to
whether their S-matrix is unitary, in which case we say the
theory is modular, or not. A UBFC is modular if it has no
transparent particles besides the identity—where “transpar-
ent” means that it accumulates no phase when braided all the
way around any other particle. If a UBFC is modular, it is
known as a unitary modular tensor category, or UMTC. A cru-
cial example of a UMTC is the Drinfeld center Z (C), which
is a theory constructed from any UFC C. We will discuss this
example in detail below. Collectively, T and S are then known
as the modular matrices.

The S-matrix of a UMTC has the crucial property that it
simultaneously diagonalizes all of the fusion matrices. The
famed Verlinde formula [20,38] states that

Na = S�aS†, where (�a)bc = δb,c
Sa,b

S1,b
. (6)

In fact, a similar formula holds true for any commutative
UFC (even if nonmodular or nonbraided). One can always
define a matrix s̃, sometimes known as the mock S-matrix,
that simultaneously diagonalizes all of the fusion matrices as
in Eq. (6).

A quantity known as the topological central charge c may
be defined via

e2iπc/8 = 1

D
∑

a

d2
a θa. (7)

We say a theory is achiral if c = 0, even if the theory breaks
time-reversal invariance (we will see an example of this below
in Sec. VI B). Strictly speaking, Eq. (7) only defines the topo-
logical central charge modulo 8, and one should distinguish
it from the chiral central charge (defined without the modulo
8), which determines the thermal Hall conductance [35,39].
However, this distinction will not be important for us.

FIG. 7. A pants diagram. Any two-dimensional orientable man-
ifold with g > 1 can be decomposed into pants diagrams that are
then sewed together. This can be mapped to sewing together trivalent
vertices to build a planar fusion diagram. Creating a sphere or a torus
in a similar way would require the addition of hemispheres. However,
computing the degeneracies is equivalent to assigning the identity or
vacuum to one (torus) or all (sphere) holes of a pant.

FIG. 8. The ground-state degeneracy of a two-handled torus. As-
sociativity allows restructuring of the shape of the diagram. The
restructuring of the diagram is basically an F -move (see Fig. 3)
except that here we are only interested in the total dimension of the
space described by the diagram.

III. GENERALIZED STRING-NET MODELS

Inspired by the original construction proposed by Levin
and Wen [10], but without assuming tetrahedral symmetry, the
generalized string-net models [11–14] allow us to generate all
topological phases described by the Drinfeld center Z (C) of a
UFC C. To compute the spectral degeneracies of generalized
string-net models, we do not have to explain the detailed con-
struction of the model, which can be found in Refs. [13,14].
We will nonetheless give a rough picture of it here.

The generalized string-net model can be defined on any
trivalent graph (see Fig. 1) and its construction only requires

FIG. 9. The fusion diagram for a genus-g surface with m labeled
punctures. Arrows are not drawn on edges for simplicity of presen-
tation. Each vertex in this diagram is a fusion matrix N , and each
edge is a sum over simple objects in U . See the example in Fig. 8.
For brevity, the sums over unlabeled edges are not written explicitly
here. The sum implied by this diagram can be reduced to Eq. (13).
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an (input) UFC C. The Hilbert space H is defined by the set of
all possible allowed edge and vertex labelings. The trivalent
graph is intended to be dual to a triangulation of a genus g
two-dimensional orientable manifold.

A. The Hamiltonian

The Hamiltonian for a string-net model is written in terms
of a set of operators Av , defined at the position of each vertex
v, and operators Bp defined at the position of each plaquette
p. These operators are projectors, meaning that A2

v = Av and
B2

p = Bp or equivalently that their eigenvalues are 0 and 1
only. Further, these operators all commute with each other:
[Av, Av′ ] = [Av, Bp] = [Bp, Bp′ ] = 0 for all v, v′, p, p′.

The exactly solvable string-net Hamiltonian is

H = −Jv

∑
vertices v

Av − Jp

∑
plaquettes p

Bp, (8)

with (Jv, Jp) > 0. The Av operators yield unity if the fusion
rules of the input category C are obeyed at vertex v, and they
yield zero otherwise. In a lattice gauge theory analogy, Av =
1 corresponds to satisfying a Gauss law at vertex v, while
Av = 0 corresponds to having a “charge” at this vertex, i.e.,
a vertex excitation. The Bp operators can be thought of as
assuring that no “flux” penetrates the plaquette p (the notion
of flux being dual to that of charge). The eigenvalue Bp = 1
corresponds to having no flux in the plaquette p, and Bp = 0
corresponds to having a flux, i.e., a plaquette excitation. The
detailed form of the Bp operator is a bit complicated, and it is
given in terms of F -symbols of the input UFC. Since we do
not need these for our purpose, we refer the interested reader
to Refs. [13,14] for more details (see Refs. [10,22] for an
introduction to the simple case with only commutative fusion
rules).

The ground-state space of the model is spanned by all
states |ψ0〉 such that Av|ψ0〉 = Bp|ψ0〉 = |ψ0〉. Excited states
|ψ〉 violate these constraints, i.e., either Av|ψ〉 = 0 and/or
Bp|ψ〉 = 0 for some (v, p).

B. The output category

The excitations of the system correspond to nontrivial ob-
jects of the output category Z (C), known as the Drinfeld
center of C [12]. Here, we will discuss how to infer their
properties from the input category C.

By construction, the Drinfeld center Z (C) of a UFC C is
a UMTC whose objects are built from C. As a UMTC, the
output category Z (C) describes an achiral (c mod 8 = 0)
anyon theory (see, e.g., Refs. [16,22,35,36] for more informa-
tion). As mentioned in Ref. [14], topological orders associated
with Drinfeld centers are believed to be the most general
class of bosonic topological order compatible with gapped
boundaries [11,40,41]. One way to build the Drinfeld center of
a UFC consists in deriving the Ocneanu tube algebra [31,32]
and finding its irreducible representations. The main lines of
this construction are summarized in Appendix A, and some
examples are given in Appendix B. In the following, we will
denote by Roman letters simple objects of C and by capital
Roman letters simple objects of Z (C), except for the vacua,
which are denoted 1 and 1, respectively.

Any simple object A of the Drinfeld center is given by

A = (⊕
s

nA,s s,
A), (9)

where nA,s is a non-negative integer (internal multiplicity)
counting the number of times the simple object s ∈ C appears
in the simple object A ∈ Z (C), and where the half-braiding
tensor 
A gives all braiding properties of A (see Appendixes
A and B for more details). Practically, one may see A as a rope
made of different types of strands (with a weight nA,s for the
strand s) endowed with braiding properties defined by 
A. If
the input category C is commutative, one has nA,s ∈ {0, 1}. By
contrast, for noncommutative C, nA,s can take integer values
larger than 1. Actually, the 
′

As entirely define Z (C) but
they also contain more information since they keep track of
the original UFC (n′

A,ss can be expressed in terms of these
fundamental quantities). Let us also stress that the internal
multiplicities n′

A,ss have nothing to do with the fusion mul-
tiplicities discussed in Sec. II.

Finally, let us mention that an alternative route to the
description of the excitations consists in finding operators
associated with closed strings that commute with the Hamil-
tonian (10). Such an approach based on string operators is
detailed in Refs. [10,14], and the relation between the two
approaches is discussed in [12].

C. Fluxon model

In this work, we will focus on a somewhat simpler Hamil-
tonian than the full string-net Hamiltonian of Eq. (8), since we
shall strictly enforce the vertex constraint. This is essentially
equivalent to taking Jv → ∞ in Eq. (8) and considering only
low-energy physics. Even more simply, we can think of this
constraint as restricting the Hilbert space to include only the
states that are +1 eigenstates of Av for all vertices. Within this
restricted Hilbert space and setting Jp = 1, the Hamiltonian
takes the simpler form

H = −
∑

plaquettes p

Bp. (10)

The ground-state space is entirely contained in this re-
stricted Hilbert space. All excitations of the model that remain
within this space are plaquette excitations, and known as flux-
ons. These are the excitations we will focus on in this paper.
In Eq. (10), Bp is the projector onto the vacuum of Z (C) in
the plaquette p. Consequently, the ground-state energy of the
system is given by E0 = −Np, where Np is the total number
of plaquettes, and a state with q fluxons has an energy Eq =
−Np + q = E0 + q.

The Hamiltonian (10) assigns a constant energy penalty of
one unit to each plaquette that is not in the vacuum state. It
is easy to generalize Eq. (10) to a form that instead assigns a
different energy to each different type of fluxon excitation.
Similarly, we can also study the case in which the energy
penalties depend on which particular plaquette of the lattice
we are considering. We briefly address these more general
cases in Appendix D.

The Hamiltonian (10) is obviously fine-tuned compared to
more generic cases such as that considered in Appendix D.
Nonetheless, the techniques we introduce here can be used
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more broadly, and our main point is to establish and test our
method.

D. Identifying fluxons

We will need to determine which objects from Z (C) are
actually fluxons. Using the tube algebra construction, it is
straightforward to see that A is a fluxon iff nA,1 �= 0 (see
Appendix A). This definition also includes the trivial fluxon
A = 1 (vacuum), although, strictly speaking, it is not an exci-
tation. Other fluxons will be called nontrivial in the following.
The set of all fluxons in Z (C) will be denoted F , while
that of nontrivial fluxons will be denoted F∗. As shown in
Appendix C, the vector n1, the components of which are nA,1,
obeys

Sn1 = n1, (11)

T n1 = n1, (12)

where S and T are the modular matrices of Z (C). In the
following, we will make extensive use of these important rela-
tions. Similar equations have appeared in other contexts, such
as anyon condensation [42] or gapped boundaries [43,44].
Here they are obtained as properties of fluxons (i.e., plaquette
excitations). In addition, if the input category C is commu-
tative (noncommutative), the number NF of fluxons equals
(is strictly smaller than) the number NC of simple objects in
C. Other simple objects (non fluxons) in Z (C) are associated
with violations of the vertex constraint (see Sec. III A). At
first glance, it may seem strange to worry about these latter
excitations since they do not belong to the Hilbert space H.
However, we will see that they do play a role in the degenera-
cies of the energy spectrum.

Finally, let us comment briefly on Morita-equivalent cate-
gories. As mentioned in the Introduction, two different input
categories may have the same Drinfeld center. Thus, one could
naively think that two string-net models built from these two
categories have the same plaquette excitations, but, in general,
this is not true. Indeed, as discussed above, multiplicities nA,s

do not depend only on Z (C), but also on C. We will illustrate
such a situation in Sec. VI A.

IV. SPECTRAL DEGENERACIES

The goal of the present paper is to explain how to compute
the degeneracy of the q-fluxon energy level in a string-net
model. As can be anticipated, this degeneracy depends on the
surface topology and on the input UFC, which, as discussed
above, determines the nature of the excitations. Before pro-
ceeding further, let us stress that this degeneracy has recently
been computed in Ref. [25] for any modular input UFC. Here,
we aim at giving a general expression valid for any input UFC
(see Fig. 4 for an overview).

A. Moore-Seiberg-Banks formula

We start by considering a TQFT (or UMTC) generically
called U on a 2D orientable manifold of genus g. Here, we
have in mind that U will be a Drinfeld center so that we label
its simple objects by capital Roman letters. We can generically
decompose this manifold into pants diagrams that are sewn

together as in Fig. 7 (assume for now g > 1, although in the
end we do not need this). Each hole of the pants is labeled
with a simple object of U . The ground-state degeneracy of
the resulting manifold is given by all ways consistent with
the fusion rules of U in which these holes can be labeled and
then sewn together. This problem of counting the dimension
of the ground-state subspace is then mapped to a problem of
counting labelings of a planar diagram. For example, a two-
handled torus can be assembled from two pants so that the
ground-state degeneracy is given as in Fig. 8. Note that by
using associativity of fusion, one can restructure the fusion
diagram in multiple equivalent ways, an example of which is
shown in Fig. 8 (see the discussion in Ref. [45]).

A puncture in the manifold surface may be assigned a
simple object type—essentially any excitation (including the
trivial vacuum, which is not really an excitation). This corre-
sponds to leaving an open, labeled, pant hole when we sew
together our sets of pants. The most general case we can
consider is then a genus g surface with m labeled punctures,
and the corresponding fusion diagram is shown in Fig. 9. Thus
the Hilbert-space dimension dimU associated with this labeled
punctured surface just amounts to summing the product of
N-matrices (one for each trivalent vertex) over all possible
internal indices of this diagram.

While it may look like the sum over all of these internal
indices is complicated, using the Verlinde formula and the
S-matrix of U [see Eq. (6)], the sum from Fig. 9 can be
simplified to the form

dimU (g; A1, . . . , Am) =
∑

C

⎡⎣ m∏
j=1

SAj ,C

⎤⎦S2−2g−m
1,C , (13)

where the sum is performed over all C ∈ U . This formula,
although it appeared first in the work of Moore and Seiberg
[19], is credited to Moore, Seiberg, and Banks in a footnote. A
special case of this formula was obtained earlier by Verlinde
[20]: when there are no punctures in the orientable surface
of genus g, the Hilbert-space dimension associated with the
manifold is just

dimU (g) =
∑

C

S2−2g
1,C . (14)

Another special limit of Eq. (13) is the case in which there are
three punctures in a g = 0 spherical surface (see again Fig. 7).
In this case, one recovers precisely the Verlinde formula (6).
Note that Eq. (13) has a useful property, namely that if one of
the punctures j is labeled by the vacuum, i.e., if Aj = 1, it can
simply be dropped from the list. So, for example, one has

dimU (g; A1, . . . , Am−1, 1) = dimU (g; A1, . . . , Am−1). (15)

This makes sense since the vacuum quantum number is equiv-
alent to the absence of an excitation.

B. Application to the string-net fluxon model

We now apply the Moore-Seiberg-Banks formula to the
string-net model, where we only allow fluxon excitations, i.e.,
we assume all vertex conditions are always satisfied. Recall
that the string-net model is built from a category C, and the
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emergent TQFT is the Drinfeld center Z (C). As discussed in
Sec. III C, fluxons are certain simple objects of Z (C).

Let us consider a string-net model on a graph with Np

plaquettes embedded on a surface of genus g and a situation in
which we have excited q plaquettes by setting A1, A2, . . . , Aq

(nontrivial) fluxons labels in these plaquettes. There will still
be a degeneracy, which comes from the different possibilities
for how these fluxons can fuse together.

From the previous Sec. IV A, one might guess that the
corresponding degeneracy is given by dimZ (C)(g; A1, . . . , Aq )
defined in Eq. (13), where the UMTC in question here is Z (C).
In the case in which C has commutative fusion rules, this guess
is in fact correct. However, more generally, the number of
states built from the category C on a surface of genus g with
fluxons Ai through plaquettes i = 1, . . . , q is given by

d̃imC (g; A1, . . . , Aq ) = dimZ (C)(g; A1, . . . , Aq )
q∏

i=1

nAi,1,

(16)

where the first term on the right-hand side is given by Eq. (13)
and where we have used the property of Eq. (15) that plaque-
ttes in the vacuum state do not contribute to the degeneracy.
The second term is made from the nAi,1 degeneracy fac-
tors assigned to fluxons in Sec. III D above. These internal
multiplicities depend on the fluxons, and, as explained in
Sec. III B, they may be larger than 1 for noncommutative C.
Equation (16) is one of the key statements made in this work.

The intuition behind Eq. (16) comes from an understanding
that the string operators for quasiparticles are actually built
from the tube algebra (see Appendix A). For each object type
in Z (C) there are multiple tube types, and this provides the
additional degeneracy factor nA,1. The reason that the second
index is 1 is that the end of the string operator should not
have a vertex violation in our model (we consider plaquette
violations only), which requires the tube end to be labeled
with 1 ∈ C only. An argument for this formula in the language
of the tube algebra is given in Appendix A 8. We have also
extensively tested this formula numerically (by exact diag-
onalization on small systems with different Euler-Poincaré
characteristics) and found it to always be correct (see Sec. VI).
Further, as we show in Appendix E, this formula, when
summed over all possible fluxons on all possible plaquettes,
correctly gives the total Hilbert space dimension of the model.

From Eq. (16), it is then easy to compute the total degener-
acy of the q-fluxon level with energy Eq = −Np + q, since it is
enough to sum over all possibilities for the labels A1, . . . , Aq.
Up to a combinatorial prefactor given by the binomial coeffi-
cient (Np

q ) (which accounts for the number of ways to choose
q excited plaquettes among Np plaquettes), the degeneracy on
a genus g surface with b = 0 holes is then given by

DC (g, 0, q) =
∑

A1,...,Aq∈F∗
d̃imC (g; A1, . . . , Aq ),

=
∑

A∈Z (C)

S2−2g−q
1,A

q∏
j=1

( ∑
Aj∈F∗

SA,Aj nAj ,1

)
,

=
∑

A∈Z (C)

S2−2g−q
1,A (nA,1 − S1,A)q, (17)

where we used Eqs. (16) and (13) to go from the first to the
second line, and Eq. (11) to go from the second to the third.
By adding the proper local operator to the Hamiltonian, it is
possible to identify the fluxon labels present in the different
plaquettes. Therefore, this total degeneracy carries some ad-
ditional nontopological degeneracy with respect to Eq. (16).
Thus in the presence of small amounts of “disorder,” the
degeneracy calculated in Eq. (17) is generically lifted. The
above equation for the degeneracy of a level with q-fluxons
and involving the internal multiplicities nA,1 is the main result
of the present work.

1. Manifold with boundaries

We now extend the previous results to string-net models
on surfaces with boundaries. For a given topological order,
there are several types of possible gapped boundaries [40,44].
Here, we only consider smooth boundaries corresponding to
the condensation of the fluxons. Consider starting with an
orientable manifold without boundary of genus g. Then we
can imagine poking b (potentially large) holes in this man-
ifold to obtain a manifold with boundaries. These holes are
essentially (potentially large) plaquettes themselves—the only
distinction between a boundary hole and a regular plaquette
is that in Eq. (10) we sum over only plaquettes that are not
these boundary holes, i.e., the energy cost of a boundary hole
is zero.

To understand this additional degeneracy, we can start by
looking at its contribution in the ground state. The ground-
state degeneracy of the string-net model is given by summing
over all possible fluxons (including the vacuum fluxon) that
can be present in each hole. All other plaquettes are assumed
to be in the ground state, i.e., have the vacuum fluxon quantum
number 1. In other words, the number q of excited fluxons is
0. As mentioned above, if a plaquette is known to be in the
vacuum state, it does not contribute to any degeneracy. The
ground-state degeneracy is

DC (g, b, 0) =
∑

A1,...,Ab∈F
d̃imC (g; A1, . . . , Ab),

=
∑

A∈Z (C)

S2−2g−b
1,A nb

A,1. (18)

Note that, apart from the substitution of b with q, the only
difference between Eq. (18) and Eq. (17) comes from the fact
that we sum either on F or on F∗. Equation (18) should be
considered as a generalization of Eq. (14) to the case with
boundaries and with internal multiplicities in the absence of
boundaries, i.e., for b = 0, one recovers Eq. (14):

DC (g, 0, 0) = dimZ (C)(g) =
∑

A∈Z (C)

S2−2g
1,A , (19)

where, by convention, we set 00 = 1.
We are now ready to compute the degeneracies of the

excited states in the most general situation. This essentially
merges the calculations of the previous two sections. We
choose q plaquettes that can have any nonvacuum fluxon
(punctures labeled from 1 to q), whereas the b boundaries
(punctures labeled from q + 1 to b) can have any fluxon in-
cluding the vacuum.
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Up to the binomial factor (Np
q ) discussed before Eq. (17),

the degeneracy of the excitation level, Eq = −Np + q, is then

DC (g, b, q) =
∑

A1, . . . , Aq ∈ F∗
Aq+1, . . . , Aq+b ∈ F

d̃imC (g; A1, . . . , Aq+b), (20)

=
∑

A∈Z (C)

S2−2g−q−b
1,A (nA,1 − S1,A)q nb

A,1, (21)

which coincides with Eq. (17) in the compact case (b = 0), as
it should.

2. Total Hilbert-space dimension

To end this section, let us calculate the total dimension of
the Hilbert space H of a string-net model built from a category
C on an orientable surface of genus g with Np plaquettes,
b boundaries, and without vertex defects. This is the total
Hilbert-space dimension remaining at finite energy once we
have taken Jv to infinity in the Hamiltonian Eq. (8). One
approach to this is to sum over the degeneracy of the string-net
model for all possible fluxon states (including the vacuum 1)
being present in all (Np + b) “punctures.” Thus, we have

dim H =
∑

A1,...,ANp+b∈Z (C )̃

dimC (g; A1, . . . , ANp+b), (22)

=
∑

A∈Z (C)

S
2−2g−(Np+b)
1,A n

Np+b
A,1 , (23)

= DC (g, Np + b, 0), (24)

where we have used Eq. (16) and the fact that nA,1 is nonzero
only if A is a fluxon (including the identity), i.e., A ∈ F .

For a trivalent graph, one further has Ne = 3
2 Nv, where Ne

and Nv denote the number of edges and the number of vertices,
respectively. The Euler-Poincaré characteristic on a genus-g
surface with b boundaries, is then given by

χ = 2 − 2g − b = Np − Ne + Nv = Np − 1
2 Nv. (25)

Thus, we obtain the delightfully simple result for the Hilbert-
space dimension of any generalized string-net model:

dim H =
∑

A∈Z (C)

S−Nv/2
1,A n

Np+b
A,1 . (26)

One sees straightforwardly that for commutative UFCs
(nA,1 = 0 or 1), this dimension only depends on the number
of vertices, whereas in the noncommutative case for which
nA,1 can be larger than 1, dim H also depends on Np. Hence,
in this latter case, the Hilbert-space dimension is sensitive to
the surface topology. If the input category C is a UMTC, one
recovers the result of [25,46]:

dim H =
∑
j∈C

(DC
d j

)Nv

, (27)

where D = D2
C is the total quantum dimension of Z (C), and

DC is that of C. Replacing Np + b by 2 − 2g + Nv/2 and
keeping in mind that S1,A = dA/D and nA,1 � dA, one gets,
in the thermodynamic limit,

dim H � DNv/2
∑

pure A

n2−2g
A,1 , (28)

where “pure” fluxons are fluxons for which nA,1 = dA.
Another way of obtaining this result is to return to the

original string-net graph (as shown in Fig. 1) and label all
possible edges with simple objects of C in all possible ways
such that all the vertex conditions are satisfied (and counting
fusion multiplicities Nabc at each satisfied vertex). The general
proof that this counting gives the same result as Eq. (26) is
given in Appendix E for the case b = 0.

V. SPECIAL CASES

In the previous sections, all results were given in terms of
data from the Drinfeld center and the tube algebra. Yet for
some special cases, we can also write Eq. (21) completely
or partially in terms of data from the input category. We will
discuss these cases here, namely when the input category is a
UMTC and when the input category is commutative.

A. Modular categories

When the input category of the string-net model is mod-
ular, it is possible to compute the degeneracies of the excited
levels by using only the fusion properties of the input category.
The derivation of this equation is presented in Ref. [25], where
the partition function is computed from a microscopic point
of view for string-net models built from an input category C
which is a UMTC. We aim here at making the link between
the results of the previous sections and the ones of Ref. [25].
In the case in which the input category C is a UMTC, the
Drinfeld center is the product of two copies of C of opposite
chiralities [47]:

Z (C) = C × C̄. (29)

In this case, any object A of the center can be represented by
a couple (i, j) of objects i ∈ C and j ∈ C̄. The S-matrix of the
Drinfeld center Z (C) has a simple expression in terms of the
S-matrix of the input category C (for clarity, we will denote
them as, respectively, S and s):

SA,B = S(i, j),(p,q) = si,ps∗
j,q. (30)

A particle A = (i, j) of Z (C) is a fluxon iff i = j and nA,1 =
1, so that S1,A = s2

1,i. In all other cases, nA,1 = 0. Thus, when
b = 0, we can rewrite (20) as

DC (g, 0, q) =
∑
i, j∈C

(s1,is1, j )
χ

(
δi, j

s1,is1 j
− 1

)q

,

= (−1)q

{∑
i∈C

s2χ

1,i

[(
1 − s−2

1,i

)q − 1
] + DC (g, 0, 0)

}
,

(31)
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where DC (g, 0, 0) = (
∑

i∈C sχ

1,i )
2 is the ground-state degen-

eracy. Up to the usual binomial factor, Eq. (31) is exactly
Eq. (10) in Ref. [25].

B. Commutative categories

The previous equations do not hold in the case in which
the input category is commutative but not modular, since we
cannot define a modular S-matrix. However, for any commu-
tative input category, we can always find a unitary matrix s̃,
called the mock S-matrix, that simultaneously diagonalizes its
fusion matrices Ni. A Verlinde-like formula (6) holds between
the Ni and s̃; see Eq. (C4). The columns of the matrix s̃ can
be indexed by the fluxons A in Z (C) (for details on the mock
S-matrix and the “mixed” notation for the matrix elements s̃i,A

with i ∈ C and A ∈ F , see Appendix C 1 a). In particular, if A
is a fluxon, S1,A = dA/D = s̃2

1,A. Also, for any commutative
UFC, the multiplicities nA,1 only take values 0 or 1, and the
number of fluxons is equal to the number of simple objects in
the input category. With these insights at hand, we can rewrite
Eq. (21) as

DC (g, 0, q) = (−1)q

{∑
A∈F

s̃2χ

1,A

[(
1 − s̃−2

1,A

)q − 1
] + DC (g, 0, 0)

}
,

(32)

which is very similar to Eq. (31) with s1,i replaced by s̃1,A

and fluxons labeled by A ∈ F instead of i ∈ C. However, in
the present case, there is no general formula for the ground-
state degeneracy DC (g, 0, 0) in terms of s̃. One could think of
using Eq. (19) to compute the ground-state degeneracy with
S1,A = s̃2

1,A, but this relation only holds for fluxons and not for
all A ∈ Z (C).

Generally speaking, it is not possible to compute the
ground-state degeneracy DC (g, 0, 0) simply from the knowl-
edge of the fusion rules of the input category. In fact, two
input categories that have the same fusion rules but different
F -symbols generally lead to two different Drinfeld centers. In
particular, the number of simple objects of the Drinfeld cen-
ters need not be the same [48]. And even if the numbers match,
the corresponding quantum dimensions dA need not be equal,
and therefore the level degeneracies can differ. However, there
is still a way to write DC (g, 0, 0) only in terms of the input
data. This way, which is a bit cumbersome, requires the use of
the F -symbols of the category (see Ref. [29]).

VI. EXAMPLES

This section is devoted to non-trivial examples that illus-
trate the formulas obtained in the previous sections. Before
discussing some specific examples, let us give some general
results that are valid for any input category C. In Table I, we
give the degeneracies DC (g, b, q) [see Eq. (21)] of the first
three energy levels for various simple surface topologies.

To obtain these results, we used Eq. (11), which leads to∑
A∈Z (C)

S1,AnA,1 = n1,1 = 1, (33)

TABLE I. Degeneracies DC (g, b, q) of the qth excited level (row
index: q = 0, 1, 2) for various surface topologies characterized by
their genus g and their b boundaries [column index (g, b)]. The
number of simple objects in the input category C and in its Drinfeld
center Z (C) are denoted by NC and NZ , respectively. Empty entries
depend on the input category details.

DC (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 NC NZ
1 0 NC − 1
2 NC − 1

and the following identity:

∑
A

n2
A,1 = NC, (34)

which is shown in Appendix A.
Whenever possible, i.e., if the Hilbert space is not too

large, we checked these degeneracies by exact diagonaliza-
tions of the Hamiltonian (10) on trivalent graphs with the
corresponding topology. For instance, starting from a cube
(g = b = 0, and Nv = 8), we can build a “disk” (g = 0, b = 1)
by removing one plaquette operator in the Hamiltonian or a
“cylinder” (g = 0, b = 2) by removing two opposite plaquette
operators.

A. Rep(S3) and Vec(S3) categories

We present here two string-net models built from two
Morita-equivalent categories: Rep(S3) and Vec(S3), where
S3 is the symmetric group on a set of three elements
(symmetry group of the oriented equilateral triangle). They
correspond, respectively, to the category of irreducible rep-
resentations of S3 and the category of the elements of the
group S3.

The category C = Rep(S3) contains NC = 3 simple objects
{1, 2, 3} with quantum dimensions {1, 1, 2}, which correspond
to the irreducible representations of S3. Fusion rules and F -
symbols can be found, e.g., in Ref. [10]. The fusion rules are
commutative, but the category is non-Abelian, braided, and
nonmodular.

The category C = Vec(S3) contains NC = 6 simple objects
{e, ζ , ζ 2, τ, τζ , τζ 2}, which are the elements of the group S3

(e is the identity element, ζ is a 2π/3 rotation, and τ is a
mirror). The fusion rules are simply the multiplication rules
of the group. All elements have quantum dimension ds = 1.
The fusion rules are noncommutative, but the category is
Abelian.

The two categories are Morita-equivalent and lead to the
same Drinfeld center Z (S3). The latter contains NZ = 8
simple objects, denoted by {A, B,C, D, E , F, G, H}; see
Ref. [49]. The quantum dimensions are {1, 1, 2, 3, 3, 2, 2, 2},
and the total quantum dimension is D = 6.

While the two categories share the same center Z (S3), the
tube algebras are different (see Appendix B). In particular,
the internal multiplicities of the quasiparticles, nJ,s, differ. We
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TABLE II. Degeneracies of the qth excited state of a string net
built from Rep(S3) for various surface topologies up to q = 4. Here
g is the genus and b is the number of boundaries.

DRep(S3 ) (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 3 8
1 0 2 8 3
2 2 6 30 35
3 4 24 134 129
4 20 110 642 647

give them as rectangular matrices nC with NC columns and NZ
rows:

nRep(S3 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 1
0 1 1
1 1 0
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (35)

nVec(S3 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (36)

Quantum dimensions of the quasiparticles in the center and
the multiplicities are the only quantities we need to compute
the degeneracies of any energy level with Eq. (21). In both
cases, there are three types of fluxons (quasiparticles J with
nJ,1 > 0) but they correspond to two different subsets of the
simple objects of Z (S3): A, D, F for Rep(S3), and A, B,C for
Vec(S3) (note that nC,1 = 2). As a consequence, the spectral
degeneracies of the two models are different (see Tables II
and III).

The dimension of the Hilbert space [see Eq. (26)] is

dim H = (1 + 3−Nv/2 + 2−Nv/2)
√

6
Nv

(37)

TABLE III. Degeneracies of the qth excited state of a string net
built from Vec(S3) for various surface topologies up to q = 4. Here g
is the genus and b is the number of boundaries.

DVec(S3 ) (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 6 8
1 0 5 30 10
2 5 25 150 80
3 20 125 750 370
4 105 625 3750 1880

TABLE IV. Hilbert-space dimension dim H for some simple
compact surfaces (b = 0) and for some input categories. Each row
corresponds to a given category, and each column is indexed by
(g, Nv), with g the genus and Nv the number of vertices.

dim H (g, Nv) = (0, 2) (1,2) (0,4) (1,4) (0,6) (1,6)

Rep(S3) 11 11 49 49 251 251
Vec(S3) 36 18 216 108 1296 648
TY3 18 18 90 90 486 486
H3 63 45 1431 1323 46494 45846

for Rep(S3) and

dim H = (1 + 1 + 22−2g)
√

6
Nv

(38)

for Vec(S3). We provide a few values of dim H in Table IV for
some simple trivalent graphs.

The fusion matrices of the commutative category Rep(S3)
are simultaneously diagonalized by the following mock
S-matrix:

s̃ = 1√
6

⎛⎜⎜⎝
1

√
3

√
2

1 −√
3

√
2

2 0 −√
2

⎞⎟⎟⎠. (39)

This matrix contains the transformation s̃i,J between the sim-
ple objects i ∈ {1, 2, 3} = C of the input category and the
fluxons J ∈ {A, D, F } = F of the output category Z (C). Here,
it was chosen such that the first row only contains strictly
positive elements, in which case one has s̃1,J = √

dJ/D and
s̃i,1 = di/

√
D (see Appendix C 1 a).

In conclusion, Rep(S3) and Vec(S3) are two Morita-
equivalent UFCs that correspond to the same Drinfeld center
but give different Hilbert spaces and spectral degeneracies
(and hence have different partition functions).

Note that, in contrast to the case presented here, there also
exist UFCs corresponding to different Drinfeld centers that
can give rise to the same energy spectrum and level degenera-
cies. This is the case, e.g., for Vec(Z2) and the semion theory
Vecω(Z2) (nontrivial cocycle of Z2).

B. Tambara-Yamagami category TY3

The Tambara-Yamagami category for Z3 (notated TY3)
is interesting as it breaks the tetrahedral symmetry and
therefore can only be realized by the generalized string-
net model (see, for example, [14]) and not by the original
Levin-Wen model [10]. It is commutative (but non-Abelian
and nonbraided), so that nA,1 = 1 for all fluxons. It has
NC = 4 simple objects {1, 2, 3, σ }, with quantum dimen-
sions {1, 1, 1,

√
3}. There are two different solutions to

the pentagonal equations indexed by p = ±1 (see [14]
for more details on the F -symbols). The Drinfeld center
Z (TY3) contains NZ = 15 elements {1, . . . , 15} with dimen-
sions {1, 1, 1, 1, 1, 1, 2, 2, 2,

√
3,

√
3,

√
3,

√
3,

√
3,

√
3} and

the total quantum dimension is D = 6. For the p = 1 model,
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TABLE V. Degeneracies of the qth excited state of a string net
built from TY3 for various surface topologies up to q = 4. Here g is
the genus and b is the number of boundaries.

DTY3 (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 4 15
1 0 3 14 3
2 3 11 58 69
3 8 47 266 255
4 39 219 1282 1293

the internal multiplicities are

nTY3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

The fluxons are therefore 1, 2, 7, and 8, and, using Eq. (21),
we can easily compute the degeneracies. Some examples are
given in Table V.

The Hilbert-space dimension [see Eq. (26)] is

dim H = 2(1 + 2−Nv/2)
√

6
Nv

, (41)

and a few examples are given in Table IV. Interestingly, this
topological order breaks time-reversal symmetry [14] but still
has a vanishing topological central charge (c mod 8 = 0).

The fusion matrices of TY3 are simultaneously diagonal-
ized by the following mock S-matrix:

s̃ = 1√
6

⎛⎜⎜⎜⎜⎝
1 1

√
2

√
2

1 1
√

2ei2π/3
√

2e−i2π/3

1 1
√

2e−i2π/3
√

2ei2π/3

√
3 −√

3 0 0

⎞⎟⎟⎟⎟⎠. (42)

It contains the transformation s̃i,A between the simple objects
i ∈ {1, 2, 3, σ } = C of the input category and the fluxons A ∈
{1, 2, 7, 8} = F of the output category Z (C).

C. Haagerup category H3

The Haagerup category H3 is a good example of the univer-
sality of our formula: it is neither commutative, nor braided,
nor Abelian, nor does it respect tetrahedral symmetry; see,
e.g., [24]. It has NC = 6 simple objects {1, α, α∗, ρ, αρ, α∗ρ}
with quantum dimensions {1, 1, 1, dρ, dρ, dρ}, where dρ =
3+√

13
2 . The Drinfeld center H3 contains NZ = 12 simple

objects {1, μ1, μ2, μ3, μ4, μ5, μ6, π1, π2, σ
1, σ 2, σ 3} with

TABLE VI. Degeneracies of the qth excited state of a string net
built from H3 for various surface topologies up to q = 4. Here g is
the genus and b is the number of boundaries.

DH3 (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 6 12
1 0 5 57 33
2 5 52 1311 1245
3 47 1259 42384 42000
4 1212 41125 1456539 1454673

quantum dimensions {1, 3dρ, 3dρ, 3dρ, 3dρ, 3dρ, 3dρ, 3dρ +
1, 3dρ + 2, 3dρ + 2, 3dρ + 2, 3dρ + 2} so that the total quan-
tum dimension is D = 3(1 + d2

ρ ) [24]. The internal multiplic-
ities are given by [50]

nH3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 0 0 1 1 1
2 0 0 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

so that the three fluxons are 1, π1, and π2. Some degeneracies
computed from Eq. (21) are given in Table VI.

The Hilbert-space dimension [see Eq. (26)] is given by

dim H =
[

1 + 1

(3dρ + 1)
Nv
2

+ 22−2g+ Nv
2

(3dρ + 2)
Nv
2

]
D Nv

2 (44)

(see also Table IV).

D. Hagge-Hong category E
This is a simple example of an input category C =

E with fusion multiplicities [24]. It is commutative, not
braided, and it breaks the tetrahedral symmetry. It contains
NC = 3 simple objets {1, x, y} with quantum dimensions
{1, dx, 1}, where dx = √

3 + 1 (see Ref. [24] for more details).
The Drinfeld center Z (E ) contains NZ = 10 simple objects
{1,Y, X1, X2, X3, X4, X5,U,V,W } with quantum dimensions
{1, 1, dx, dx, dx, dx, dx, dx + 1, dx + 1, dx + 2} so that D =
2dx + 4. Internal multiplicities are given by [24]

nE =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
1 1 0
0 1 1
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)
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TABLE VII. Degeneracies of the qth excited state of a string net
built from E for various surface topologies up to q = 4. Here g is the
genus and b is the number of boundaries.

DE (g, b) = (0, 0) (0,1) (0,2) (1,0)

q = 0 1 1 3 10
1 0 2 11 4
2 2 9 75 82
3 7 66 611 604
4 59 545 5139 5146

so that the three fluxons are 1, U , and W . This allows us to
compute the degeneracies for a few systems (see Table VII).
The Hilbert-space dimension [see Eq. (26)] is therefore

dim H = [
1 + (

√
3 + 2)

−Nv
2 + (

√
3 + 3)

−Nv
2

]
D Nv

2 (46)

(see Table IV).
The mock S-matrix is

s̃ = 1√
2dx + 4

⎛⎜⎝ 1
√

dx + 1
√

dx + 2

dx −√
2 0

1
√

dx + 1 −√
dx + 2

⎞⎟⎠, (47)

where s̃i,A with i ∈ {1, x, y} and A ∈ {1,U,W } = F .

VII. CONCLUSION AND PERSPECTIVES

In this work, we have studied the generalized string-net
model with arbitrary input category and restricted to the
charge-free sector (all vertex constraints are satisfied) so that
only fluxons (plaquette excitations) are present as real exci-
tations at the single plaquette level. This does not exclude
the presence of other excitations resulting from the fusion
of several fluxons. The main results are analytical expres-
sions for the level degeneracies. In particular, in the case of
a noncommutative input category, we show that part of the
degeneracy is contained in nontrivial factors nA,1 obtained
from the tube algebra and not only from the output category
(Drinfeld center). An important result is the generalization
of the Moore-Seiberg-Banks formula, Eq. (16), that includes
this nontopological degeneracy. For example, two Morita-
equivalent categories such as Rep(S3) and Vec(S3) have the
same Drinfeld center Z (S3), but the corresponding string-net
models have different fluxons and different Hilbert spaces. In
a forthcoming publication [51], we will use these degeneracies
to compute the partition function of the generalized string-net
model and to study its finite temperature properties.

Finally, we wish to use a similar approach to extend the
computation of level degeneracies to models (such as Kitaev
quantum double [8] or extended string-nets [17]) that have
all elementary excitations of the Drinfeld center and not only
fluxons.
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APPENDIX A: SUMMARY OF THE TUBE ALGEBRA

This Appendix contains an introduction to the tube algebra
T A of a given UFC C and to its decomposition, as a way of
finding the topological quasiparticles, i.e., the simple objects
of the Drinfeld center Z (C). The tube algebra was introduced
by Ocneanu [31,32]. A detailed account is given by Lan and
Wen [12], who call it the Q-algebra, which we mainly follow.
For a pedagogical introduction, see Ref. [22]. Objects in T A
are called tubes and denoted Q, following Ref. [12]. The
composition rules of these objects constitute the essence of
the tube algebra. From these composition rules, one builds a
canonical representation of T A. This representation can be
block-diagonalized and the irreducible blocks correspond to
the topological sectors. Decomposing the tube algebra means
finding its center Z (T A), containing objects in T A that com-
mute with every tube. In other words, it means obtaining the
projectors PA onto the topological quasiparticles A ∈ Z (C)
as linear combinations of the tubes Q. Almost equivalently,
it means obtaining the half-braidings 
A that appear in the
standard definition of the Drinfeld center Z (C).

From the half-braidings, it is easy to obtain all of the
properties of the Drinfeld center, e.g., the S and T matrices,
and therefore the fusion matrices, the quantum dimensions of
the simple objects [10,12], and more information such as the
internal multiplicities. The multiplicities nA,1 and the quantum
dimensions dA of the quasiparticles A ∈ Z (C) are all that is
needed to compute the degeneracies of the energy levels of a
string-net model [see Eq. (17) and Fig. 10].

In the following, we first define the tubes and obtain their
algebra. Then, we explain how to decompose the tube algebra
in order to find the topological quasiparticles and their internal
multiplicities.
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FIG. 11. (a) Graphical representation of a tube Qi
rs j . The vertical

dashed lines indicate periodic boundary conditions so that the rect-
angle is topologically equivalent to a tube or cylinder. The crosses
indicate the open ends of the vertical strings. (b) Vertical stacking of
two tubes Qi

rs jQ
k
s′t l . The horizontal dashed line indicates the stacking.

1. Tubes Q and their algebra T A
The main objects of T A are the tubes Qi

rs j ≡ irs j [see
Fig. 11(a)], where i, r, s, j are simple objects of C. A tube
has two open string ends, labeled by r and s, and two strings
without open ends called i and j. Here the vertex indices are
dropped.

The only allowed tubes are those that respect the fusion
rules of C, i.e., i × j = ∑

k Nk
i j k at their two inner vertices.

Therefore, the number of tubes NT , i.e., the dimension of the
tube algebra, is given by a product of two fusion matrices
(applying to the two vertices):

NT =
∑
i, j,r,s

N j
siN

i
jr̄ . (A1)

The tubes can be composed (or multiplied): Qi
rs jQ

k
s′t l means

that Qk
s′t l is stacked on top of Qi

rs j [see Fig. 11(b)]. The T A
has the following structure [12]:

Qi
rs jQ

k
s′t l =

∑
m,n

δss′

√
didk

dm
F i js

kln
F ri j

knm
Ftkl

inm Qm
rtn, (A2)

FIG. 12. Two particular sets of tubes: (a) horizontal closed string
Qi

11i; (b) vertical open string Q1
rrr .

and it is noncommutative in general. The coefficients in front
of Qm

rtn in the sum on the right-hand side are the structure con-
stants of the tube algebra. One can observe that the stacking is
determined by the labels r and s of the open strings. Therefore,
the tube algebra splits in different sectors labeled by rs. This
will play a role later in the decomposition of the tube algebra.

Two important sets of tubes deserve particular attention:
(i) The NC tubes Qi

11i, which have no open ends and are
formed by “horizontal” closed strings [see Fig. 12(a)]. Each
such tube corresponds to a simple object i of C. The 11 sector
consists only of these tubes, and the tube algebra restricted to
the 11 sector reflects directly the algebra of the input category:

Qi
11iQ

j
11 j =

∑
k

Nk
i jQ

k
11k . (A3)

(ii) The NC tubes Q1
rrr formed by a “vertical” open string

[see Fig. 12(b)], which correspond to the identity operator 1rr

in the rr sector of T A:

Q1
rrrQk

rrl = Qk
rrl Q

1
rrr = Qk

rrl . (A4)

Graphically, it is easy to see that stacking Q1
rrr on top of or

below any tube of the same sector returns that second tube.
The identity over T A is the sum over all of the 1rr :

1 =
∑

r

1rr =
∑

r

Q1
rrr . (A5)

2. Decomposition of the tube algebra

The Wedderburn-Artin theorem states that a semisimple
algebra (such as T A) is isomorphic to a direct sum of simple
matrix algebras (see, e.g., Ref. [52]). It means that the tube
algebra splits into NZ matrix algebras Mn of dimension n:

T A � ⊕nAMnA , (A6)
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with A = 1, . . . , NZ . Each block corresponds to an irreducible
representation (or simple module) of the algebra and therefore
to a simple object (a topological quasiparticle) A in the Drin-
feld center Z (C).

In the following, we represent the tube algebra in a vector
space and search for its block structure in order to identify the
irreducible representations A and their dimensions nA.

3. Simple idempotents and nilpotents p

A first step is to construct a vector space of dimension
V = ∑

A nA in which to represent the tube algebra by finding
an orthonormal basis of vectors {|α〉}. When decomposing the
tube algebra, one does not know a priori the dimension V
of the vector space, the labels A of the irreducible representa-
tions, their dimensions nA, or their total number NZ . These are
the output of the decomposition. Therefore, for the moment,
we do not give the final labels of these states and just use
Greek letters such as α as a generic label (later, we will see
that α can actually correspond to several labels).

The basis is found by building V simple orthogonal idem-
potents (or projectors) p as linear combinations of the tubes
Q. Simple means that they cannot be further decomposed or,
in other words, that they are projectors onto one-dimensional
subspaces. We denote simple idempotents by pαα = |α〉〈α|
(known as “diagonal elements,” as later we will also introduce
“off-diagonal elements” like pαβ with β �= α) and they satisfy
the orthogonality relation

pαα pββ = δα,β pαα, (A7)

and Tr pαα = 1, meaning that the projected subspace is one-
dimensional. The identity in the vector space is given by the
sum over all these simple idempotents:

1 =
∑

α

pαα. (A8)

The next step is to find which simple idempotents belong
to the same irreducible block, or, in other words, which simple
idempotents correspond to the same topological quasiparticle
A. To do so, we need to find (NT − V ) nilpotents pαβ with α �=
β, which are also linear combinations of the tubes that satisfy
(pαβ )2 = 0. They are traceless and connect one-dimensional
subspaces that belong to the same block. For example, if

pαβ pβα = pαα and pβα pαβ = pββ, (A9)

it means that |α〉 and |β〉 belong to the same irreducible
block (say A) and that pαβ = |α〉〈β| = (pβα )† (“off-diagonal
elements”). Therefore, we denote as pαα

A , pββ
A , pαβ

A , and pβα
A

the simple idempotents and nilpotents that belong to the same
irreducible block.

More generally, simple idempotents and nilpotents satisfy
the following key equation:

pαβ
A pγ δ

B = δA,Bδβ,γ pαδ
A . (A10)

In total, there are as many simple idempotents and nilpotents
as tubes. When we want to refer to them collectively, we will
call them “idemnils” and use a small p.

4. Minimal central idempotents PA

Once we have found the NT idemnils and we have iden-
tified the ones that belong to the same irreducible block,
we construct the minimal (or simple) central idempotents
PA. Similarly to the simple idempotents, they are orthogonal
idempotents

PAPB = δA,BPA, (A11)

but they also commute with any object of T A, i.e., they
belong to the center Z (T A) of the tube algebra. In addition,
they are minimal, i.e., they cannot be decomposed further
into a sum of other central idempotents. By summing over all
simple idempotents that belong to the same irreducible block,
we get

PA =
∑

α

pαα
A , (A12)

which is the projector onto a topological quasiparticle A. The
dimension of the irreducible representation A (or the multi-
plicity of A) is

nA = Tr PA. (A13)

We can also define partial multiplicities such as

nA,α = Tr pαα
A = 0 or 1 (A14)

for the topological quasiparticle A in the α sector. Here it is
important to realize that α may denote either a single label
(this will be the case for a commutative input category) or a
pair of labels (this will be the case for a noncommutative input
category).

The number of minimal central idempotents (topological
sectors), NZ , is such that

NZ =
∑

A

1 � V =
∑

A

nA � NT =
∑

A

n2
A. (A15)

5. Tube algebra sectors

When decomposing the tube algebra, a substantial sim-
plification comes from the fact that, as we have seen, the
tube algebra separates into independent sectors labeled by
the open ends r and s of a tube Qi

rs j . Therefore, the search
for idemnils can be done sector by sector (indexed by rs). A
simple idempotent necessarily belongs to a diagonal sector rr,
whereas a nilpotent belongs to an off-diagonal sector rs with
s �= r.

If the input category C is commutative, the tube algebra
in a given sector rs is commutative so that the corresponding
vector space has a dimension V rs equal to the number of tubes,

Nrs
T =

∑
i, j

N j
siN

i
jr̄ . (A16)

By summing over all sectors rs, one recovers Eq. (A1).
A simple idempotent is labeled as prr

A and a nilpotent as prs
A

with s �= r (meaning that α is actually r ∈ C here). Also, one
has that

nA,r = Tr prr
A = 0 or 1. (A17)

If the input category C is noncommutative, the tube alge-
bra in a given rs sector need not be commutative. If it is
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noncommutative, it means that the corresponding vector
space’s dimension V rs < Nrs

T and that one needs to introduce
an extra index a to label orthonormal basis vectors. More gen-
erally, a simple idempotent is labeled as prr,aa

A and a nilpotent
as prs,ab

A with s �= r or b �= a (meaning that α is actually r, a
with r ∈ C and a = 1, . . . , nA,r here). We call Prr

A = ∑
a prr,aa

A
the projector onto the quasiparticle A in sector rr. (Our con-
vention is that an idempotent denoted by a small p is a simple
idempotent that has a trace of 1, whereas a capital P is a
projector with a trace that can be larger than 1. Also note that
Prr

A , in contrast to PA, generally does not belong to the center
of the tube algebra.) It projects onto a subspace of dimension

nA,r = Tr Prr
A , (A18)

which can also be interpreted as a multiplicity for the topo-
logical quasiparticle A in a given sector. An important fact is
that, for a noncommutative input category, nA,r is no longer
restricted to 0 or 1 but can be larger. Examples are given in
Secs. VI A and VI C.

The eigenvectors {|A, r, a〉} (of eigenvalue 1) of the simple
idempotents form an orthonormal basis of the total vector
space. The idemnils can be written as

prs,ab
A = |A, r, a〉〈A, s, b|, (A19)

and Eq. (A10) becomes

prs,aa′
A ps′t,b′b

B = δA,Bδs,s′δb′,a′ prt,ab
A . (A20)

Equation (A14) becomes nA,r,a = Tr prr,aa
A = 0 or 1 even if

nA,r can be strictly greater than 1.
Next, each PA is constructed as a sum of the corresponding

simple idempotents pA, so that Eq. (A12) becomes

PA =
∑
r∈C

Prr
A =

∑
r∈C

nA,r∑
a=1

prr,aa
A . (A21)

The multiplicity of A (or the dimension of the irreducible
representation A) is given by

nA =
∑

r

nA,r . (A22)

6. The 11 sector and fluxons

When considering generalized string-net models in the
charge-free sector, one particular type of tubes plays a major
role: the tubes in the 11 sector. These NC tubes are formed
by closed horizontal strings [see Fig. 12(a)] and have no open
ends. Because of this latter characteristic, they correspond to
pure plaquette excitations, i.e., fluxons. Among the objects of
Z (C), fluxons are identified through the fact that the corre-
sponding PA has nonzero weight on the 11 sector, i.e.,

nA,1 � 1. (A23)

In the 11 sector, the number of tubes N11
T = NC is larger than

or equal to the vector space dimension V 11, which is larger

than or equal to the number of fluxons NF :

NC =
∑

A

n2
A,1 � V11 =

∑
A

nA,1 � NF =
∑

A

sgn nA,1.

(A24)
In the above equation, the equalities occur when C is commu-
tative, i.e., when nA,1 is either 0 or 1. Moreover, the projector
on the vacuum particle A = 1 of Z (C) is a weighted sum of
all tubes in the 11 sector:

P1 = p11
1 =

∑
i

di

DQi
11i. (A25)

This projector is equal to the “Kirby strand” [22]. When the
contour over which it acts is a single plaquette, P1 is the same
as Bp defined in Sec. III A.

7. From tubes to idemnils: MA

Finally, we express the tubes as linear combinations of the
idemnils (this corresponds to writing the irreducible repre-
sentations of the tubes in the basis spanned by the vectors
|A, r, a〉),

Qi
rs j =

∑
A,a,b

(
Mi

A,rs j

)
a,b prs,ab

A , (A26)

where (
Mi

A,rs j

)
a,b = 〈A, r, a|Qi

rs j |A, s, b〉. (A27)

The coefficients MA in this decomposition are sometimes
called modules (see Ref. [12]).

The quantity Mi
A,rs j is often written as an NZ × NT ma-

trix with row index A and column index irs j. Each element
(Mi

A,rs j )a,b is itself a small matrix with row index a =
1, . . . , nA,r and column index b = 1, . . . , nA,s.

The internal multiplicities (and in particular the important
nA,1) are given by

nA,s = Tr M1
A,sss. (A28)

From Eq. (A28) and the knowledge of ds, one also obtains the
quantum dimensions of the simple objects in Z (C) as

dA =
∑

s

nA,sds � nA � nA,1, (A29)

where, for the inequalities, we used that ds � 1 and nA,s �
0. The multiplicity nA,1 and the quantum dimensions dA are
all that is needed to compute the spectrum degeneracies [see
Eq. (20)]. As a consequence of the above inequality and the
fact that d1 = 1, when A = 1, one has n1 = n1,1 = 1.

8. Fluxon degeneracies in the Levin-Wen model

The generalized Levin-Wen model has the property that
the degeneracy of states is invariant under restructuring of the
underlying graph by local (so-called “F”) moves that preserve
the numbers of vertices, edges, and plaquettes. In particular
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this means that to determine the number of states available by
a plaquette, we can use the simplest plaquette possible, which
is a single loop, connected to the rest of the graph by a single
stem. The space of states available is then just the tube basis
states Qi

r1i which has i going around the loop and the stem
labeled with r. We then decompose these basis states into
idemnils via Eqs. (A26) and (A27). Since we are excluding
any vertex violations, we consider values of A which are
fluxons only. For a particular value of A, the basis then consists
of the orthonormal idemnils pr1,ab

A with a = 1, . . . , nA,r and
b = 1, . . . , nA,1. We can think of the factor nA,1 as coming
from the degeneracy associated with the “loop” end of the
tube.

9. Half-braidings �A

Levin and Wen [10] have developed an alternative way of
finding the topological quasiparticles from the input category.
Instead of the projectors PA on the topological quasiparticles,
they find the (closed) string operators WA that also belong to
the tube algebra center but obey the fusion algebra of Z (C):

WAWB =
∑

C

NC
A,BWC . (A30)

It is a simple matter to go from the projectors P′
As to the string

operators W ′
As or vice versa. For example,

PA = S1,A

∑
B

S∗
A,BWB. (A31)

The output of their approach is not MA but is called 
A,
which is a half-braiding in the standard construction of the
Drinfeld center (see, e.g., Refs. [16,24]). Actually the two
quantities MA and 
A are closely related [see Eq. (62) in

Ref. [12]]:

Mi
A,rs j = 
i

A,rs jdi

√
ds

dr
. (A32)

Eventually, from 
A (or MA), all properties of the Drin-
feld center Z (C), such as the S, T , and fusion matrices,
can also be easily obtained [see Eqs. (64), (65), and (60) in
Ref. [12]].

To obtain the S- and T -matrices of the Drinfeld center as
well as the internal multiplicities nA,1, it is enough to know
the coefficients of the decomposition of the minimal central
idempotents PA on the tubes Qi

rs j . Note that the half-braidings

A contain a little more information as they give the full
decomposition of the idemnils prs

A on the tubes. This extra
information is needed for certain observables such as Wegner-
Wilson loops (see Ref. [51]).

In practice, finding the block structure of the tube algebra
is not always an easy task. Lan and Wen give a procedure that
works well in simple cases and which they call idempotent
decomposition [12]. Another, more systematic/algorithmic
approach to obtain the minimal central idempotents from the
tube algebra is described in Appendix C of Ref. [53].

In the following Appendix, we give the result of the de-
composition of the tube algebra for two Morita-equivalent
categories.

APPENDIX B: HALF-BRAIDINGS
FOR REP(S3) AND VEC(S3)

The Drinfeld center for Rep(S3) is given, e.g., in Ref. [49].
Some details about its tube algebra can be found in an Ap-
pendix in Ref. [53], and the half-braidings are derived in
Ref. [54]. Since all 
i

J,rs j are one-dimensional, we write them
under the form of a matrix 
 with 8 rows indexed by parti-
cles J = {A, B,C, D, E , F, G, H} and 17 columns indexed by
tubes,

irs j = {1111, 2112, 3113, 1222, 2221, 3223, 1333, 2333, 3331, 3313, 3133, 3213, 3123, 3233, 3323, 3332, 3333}:


 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 1

2 − 1
2

1√
2

0 0 0 0 0 0

1 −1 0 0 0 0 1 1 1
2

1
2 0 2

1
4

1

2
3
4

0 0 0 0

0 0 0 1 −1 0 1 1 − 1
2 − 1

2 0 0 0 0 0 − i

2
3
4

−i2
1
4

1 1 − 1
2 1 1 1

2 0 0 0 0 0 0 0
√

3
2

√
3

2 0 0

0 0 0 0 0 0 1 −1 − 1+i
√

3
4

1+i
√

3
4 − 1−i

√
3

23/2 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 − 1−i
√

3
4

1−i
√

3
4 − 1+i

√
3

23/2 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B1)

For Vec(S3), we have decomposed the tube algebra, and we give here the resulting half-braidings 
i
J,rs j as a matrix with eight

rows indexed by J as before and 36 columns indexed by the tubes,

irs j = {1111, 2112, 3113, 4114, 5115, 6116, 1222, 2223, 3221, 1333, 2331, 3332, 1444, 4441, 1555, 5551, 1666, 6661,

4235, 5236, 6234, 4326, 5324, 6325, 2456, 6452, 3546, 6543, 3465, 5463, 2645, 5642, 2564, 4562, 3654, 4653},
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where s = {1, 2, 3, 4, 5, 6} = {e, ζ , ζ 2, τ, τζ , τζ 2}. Defining ω = e2iπ/3 and ω∗ = e−2iπ/3, the half-braiding matrix reads


 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 0 0 0 0
0 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 ω∗ ω 1 ω ω∗ 0 0 0 0 0 0 1 ω∗ ω 1
ω ω∗ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 ω ω∗ 1 ω∗ ω 0 0 0 0 0 0 1 ω ω∗ 1
ω∗ ω 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B2)

As nC,1 = 2 [see Eq. (36)], be aware that 
i
C,11 j is actually a 2 × 2 matrix of which Eq. (B2) only gives the trace.

APPENDIX C: FLUXON IDENTITIES

In Appendix A, on the decomposition of the tube algebra,
fluxons are identified as topological quasiparticles A that have
nA,1 > 0. One can define a vector n1 with components nA,1

with A = 1, . . . , NZ such that it has nonzero entries only
when A is a fluxon. Equations (11) and (12) are extra relations
satisfied by the vector n1 that we call fluxon identities. Similar
equations first appeared in the context of anyon condensation
[42] and gapped boundaries [43,44]. Equation (12) involv-
ing the T -matrix means that fluxons are necessarily bosons,
i.e., they have a trivial twist θA = 1. When Z (C) is Abelian,
Eq. (11) involving the S-matrix means that fluxons also have
trivial mutual statistics [43]. When Z (C) is non-Abelian, the
interpretation is less obvious. In the following, we provide a
proof of the fluxon identities from the tube algebra, and we
comment on the relation with anyon condensation.

1. Proof from the tube algebra

The tubes in the 11 sector are the horizontal closed (input)
strings Qi

11i. Therefore, the tube algebra restricted to the 11
sector is just the fusion algebra of the input category and it
decouples from the rest of the tube algebra [see Eq. (A3)]. In
particular,

Q1
111Q1

111 =
∑

k

Nk
11Qk

11k = Q1
111 (C1)

is the projector onto the 11 sector (it is the empty tube). The
vertical tubes Q1

rrr are the projectors onto the rr sectors [see
Eq. (A4)].

a. Commutative input category

In the commutative case, we can use the mock S-matrix s̃
to diagonalize simultaneously all the fusion matrices Ni. It is a
unitary matrix, but, unlike the S-matrix, it is not symmetric in
general (a special case is when the input category is modular,
in which case s̃ is a genuine S-matrix). Naturally, one would

label the matrix elements as s̃i, j with i and j ∈ C. However,
s̃ is also a unitary transformation between input strings and
fluxons [see Eqs. (C2) and (C3) below]. As such, physically it
makes more sense to write a matrix element of s̃ as s̃i,A with
rows indexed by input labels i = 1, . . . , NC and columns by
fluxons A ∈ F with NF = NC . The matrix s̃ can be chosen
such that its first row only contains strictly positive elements,
in which case s̃1,A = √

dA/D = √
S1,A. The mock S-matrix is

not yet unique as its columns can always be permuted. By
convention, we choose that the first column corresponds to the
vacuum A = 1 of the output category so that s̃i,1 = di/

√
D.

Examples of mock S-matrix are given in Secs. VI A, VI B,
and VI D.

In all of Appendix C 1, A is taken to be a fluxon. The simple
idempotents p11

A are easily found as linear combination [55] of
the horizontal tubes Qi

11i,

p11
A = s̃1,A

∑
i

s̃∗
i,AQi

11i, (C2)

and vice versa:

Qi
11i =

∑
A

s̃i,A

s̃1,A
p11

A . (C3)

Using the Verlinde-like equation

Nk
i j =

∑
A

s̃i,As̃ j,As̃∗
k,A

s̃1,A
(C4)

and the unitarity of the mock S-matrix, one can check that
indeed

p11
A p11

B = p11
A δA,B. (C5)

We now introduce the projector Q1 onto the fluxons in the
11 sector of the tube algebra. By definition,

Q1 =
∑

A

p11
A , (C6)
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where p11
A only exists if A is a fluxon, i.e., if nA,1 = 1. The

above sum puts a weight 1 on fluxons and 0 on nonfluxons, so
that

Tr Q1 =
∑

A

Tr p11
A =

∑
A

nA,1 = NC, (C7)

which shows that Q1 is closely related to the vector n1.
From (C3) with i = 1, one gets∑

A

p11
A = Q1

111, (C8)

which is simply the empty tube. Therefore, the projector Q1

onto the fluxons in the 11 sector is also the projector Q1
111 onto

the 11 sector.
The action of the modular matrices S and T on the tubes is

well known: they act trivially on the empty tube (see Sec. 28.3
in [22]) so that

SQ1 = Q1 and T Q1 = Q1, (C9)

which are the fluxon identities, Eqs. (11) and (12).

b. Noncommutative input category

In the noncommutative case, we also have that the tube
algebra restricted to the 11 sector is the fusion algebra of
the input category and that it decouples from the rest of the
tube algebra. However, it is noncommutative and there is no
mock-S matrix. A consequence is that the number of tubes NC
is strictly larger than the vector space dimension V11, which is
strictly larger than the number of fluxons NF .

From the NC tubes Qi
11i, we build NC idemnils p11,ab

A ,
corresponding to only NF (nonsimple) idempotents P11

A =∑nA,1

a=1 p11,aa
A in the 11 sector (the central idempotents are PA =∑

s Pss
A ). Now Tr P11

A = nA,1 can be larger than 1. We can again
define the projector Q1 onto the fluxons in the 11 sector by

Q1 =
∑

A

P11
A =

∑
A,a

p11,aa
A . (C10)

From the transformation (A26) between tubes and idem-
nils, one has

Q1
111 =

∑
A,a,b

(
M1

A,111

)
a,b p11,ab

A =
∑
A,a

p11,aa
A , (C11)

as (M1
A,111)a,b = (
1

A,111)a,b = δa,b [see above Eq. (40) in
Ref. [14] or below Eqs. (52) and (53) in Ref. [12]]. Therefore,
Q1 is also the projector onto the 11 sector, i.e., the empty tube
Q1

111, from which the fluxon identities (C9) follow as in the
previous subsection.

2. Stability inequality

To prove an important stability inequality that n1 needs to
satisfy, we make a detour into anyon condensation. Anyon
condensation is a general mechanism that allows one to de-
scribe a phase transition from a topological order described
by a UMTC A to another described by a UMTC U [56].
We therefore reverse the perspective and imagine that, instead
of building the Drinfeld center from an input category, we
condense some bosons of the Drinfeld center to recover the
input category. We will use the general formalism of anyon

condensation [42,56] and apply it to the particular case in
which we start from the Drinfeld center Z (C) and condense it
towards a trivial order. This is known as anyon condensation
to the vacuum, which is intimately related to finding how
many types of gapped boundaries are possible for a given
topological order [40,44,57].

Condensation to the vacuum relates the UMTC A = Z (C)
to the trivial UMTC U (total quantum dimension DU = 1) via
a UFC T = C, where U is included in T . Generally speaking,
anyon condensation

A → T → U (C12)

is described by a rectangular matrix nA,s, called a restriction
or lifting matrix, with A ∈ Z (C) and s ∈ U (in our case, s = 1
only). Here, this matrix is the vector n1, and the condensing
bosons are the fluxons. The condensation equations [see, e.g.,
Eqs. 20(a) and 20(b) in Ref. [42]] relate the S- and T -matrices
of the two UMTCs A and U as

TAn1 = n1TU and SAn1 = n1SU . (C13)

As TU = 1 and SU = 1 are trivial 1 × 1 matrices, and TA = T
and SA = S are the T - and S-matrices of Z (C), we find
Eqs. (11) and (12). Anyon condensation should also hold in
the case in which the UFC T has noncommutative fusion
rules, as briefly discussed by Bais and Slingerland [56].

In the context of anyon condensation, one requires the
commutation of fusion and restriction [42,56], i.e.,∑

C

NC
ABnC,t =

∑
r,s

nA,rnB,sÑ
t
rs. (C14)

In this Appendix (and in the following), in order to avoid
confusion, Ñ denotes the fusion matrices for C, whereas N
denotes the fusion matrices for Z (C). The stability inequality
follows by taking t = 1 so that∑

C

NC
ABnC,1 = nA,1nB,1 +

∑
r �=1

nA,rnB,r̄ � nA,1nB,1. (C15)

An advantage of this inequality is that it can serve as a test
of the coefficients nA,1 without the knowledge of the complete
lifting/restriction matrix nA,s and the fusion matrix Ñ .

An interesting question to ask is, given an achiral topo-
logical order characterized by a Drinfeld center Z (C) with
modular matrices S and T , what are the possible gapped
boundaries or condensations to the vacuum [42,44,57]?

A partial answer to that question is known (see, e.g.,
Refs. [44,57,58]): a necessary (but not sufficient) condition
for a gapped boundary is to have a vector n1 that satisfies the
fluxon identities Eqs. (11) and (12) and the stability condition
(C15), i.e., to have a stable fluxon set. This is equivalent to
the notion of Lagrangian algebras in Z (C) [59]. For each such
stable n1, there is a corresponding boundary theory described
by a UFC Cb. Obviously, C is one of the possible boundary the-
ories Cb. Also, all the boundary theories are Morita-equivalent,
i.e., Z (Cb) � Z (C). This is the bulk-boundary correspondence
for achiral topologically ordered phases.

For example, given Z (S3) (see Sec. VI A for the nota-
tions), one finds five possible n′

1s satisfying (11) and (12),
one of which [n1 = {1, 1, 1, 0, 0, 1, 0, 0}T , which for short
we denote as n1 = (A, B,C, F ) according to its nonzero el-
ements] does not satisfy the stability condition (C15) [57].
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Among the four stable solutions, two are related by symmetry
and correspond to Vec(S3) [i.e., n1 = (A, B, 2 × C) and n1 =
(A, B, 2 × F )], and two are related by symmetry and corre-
spond to Rep(S3) [i.e., n1 = (A, D, F ) and n1 = (A,C, D)],
accounting for the symmetry between the C and F quasiparti-
cles [49].

Another example is that of Z (H3) (see Sec. VI C
for the notations). In this case, we find three stable so-
lutions. Two solutions related by symmetry [i.e., n1 =
{1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0}T = (1, π1, 2 × π2) and n1 =
(1, π1, 2 × σ1)], due to the symmetry between the π2 and
σ1 quasiparticles, point to the fusion ring H6, and one [i.e.,
n1 = (1, π1, π2, σ1)] points to the fusion ring H4 [60]. The
fusion ring H6 corresponds to the UFCs H3 and H2, whereas
H4 refers to the UFC H1. The two categories H3 and H2 have
the same fusion rules but different F symbols.

APPENDIX D: GENERALIZED HAMILTONIAN

The Hamiltonian that we consider in the main text,
Eq. (10), assigns the same energy penalty +1 to each fluxon
that is not the vacuum. However, we can assign different
energy penalties to each fluxon type. Further, we can also
assign plaquette-dependent energy penalties. More generally,
let us define a projector

BA
p =

{
1 if plaquette p has fluxon excitation A,

0 otherwise.

We can then write a more general Hamiltonian

Hgen =
∑

plaquettes p

∑
A∈F

EA
p BA

p, (D1)

where EA
p is the energy cost of having fluxon A on plaquette

p, and F is the set of fluxons. As long as E1
p < EA

p for all
A �= 1 and all p, then the ground state is still the state where
all plaquettes are in the vacuum state. The Hamiltonian we
consider in the main text corresponds to EA

p = 0 for all A �= 1
and E1

p = −1 for all plaquettes p.
It is not hard to construct the projectors BA

p from the struc-
ture of the tube algebra by inserting a projector P11

A inside the
plaquette p and then fusing it into the edges of the plaquette.
For the case in which nA,1 > 1, in fact there is freedom to
generalize Hamiltonian Eq. (D1) further. Since the space of
states where a plaquette p has fluxon A is nA,1-dimensional,
one can add terms to split this added degeneracy. Thus we can
even more generally write

Hgen2 =
∑

plaquettes p

∑
A∈F

nA,1∑
a=1

EA,a
p BA,a

p , (D2)

where EA,a
p are a set of coefficients, and the operators BA,a

p

are obtained by inserting the simple idempotent p11,aa
A inside

plaquette p and fusing it into the edges. Again we assure the
reader that the vacuum is the ground state when E1

p is smaller
than any EA,a

p for all A �= 1 and a = 1, . . . , nA,1.
Calculation of spectral degeneracy can in principle be done

analytically for any of these Hamiltonians. One always starts
with the Moore-Seiberg-Banks formula, and sums over all
possible fluxon labelings of each plaquette.

Let us take an example of the category Vec(S3) as discussed
in Sec. VI A. There are three fluxon types labeled A, B,C.
Here A is the vacuum, which we give energy EA = 0. Then for
B we give energy EB = x. Finally C is two-dimensional, i.e.,
nC,1 = 2, and we call EC,1 = y and EC,2 = z the two values
of EC,a with a = 1, 2. For simplicity here we assume that
all plaquettes are identical to each other, although this is not
necessary.

Assume that x, y, z are incommensurate, i.e., all ratios of
these values are irrational. If we consider a total energy

E = nxx + nyy + nzz (D3)

with integers nx, ny, nz, then the number of eigenstates of the
system having exactly this energy is given by the number of
ways we can have nx plaquettes having B fluxons, and ny + nz

plaquettes having C fluxons with ny of these in the y eigenstate
and nz of these in the z eigenstate, and all remaining plaquettes
in the vacuum eigenstate. This number is given by

Np!

nx!ny!nz!(Np − nx − ny − nz )!

× dimZ (S3 )(g, nx fluxons B, (ny + nz ) fluxons C). (D4)

APPENDIX E: HILBERT-SPACE DIMENSION

In this Appendix, we use two different methods to count the
total Hilbert-space dimension of string-net model having no
vertex defects, but having any possible fluxon excitations. In
other words, we are restricting the Hilbert space as discussed
in Sec. III C and counting the size of this restricted Hilbert
space, i.e., all possible excitations of the Hamiltonian Eq. (10).

The first method we use consists in counting all possi-
ble edge and vertex labelings that do not violate the vertex
constraints (see Appendix E 1). The second method, in Ap-
pendix E 2, is to count all possible labelings of the fluxon
states of the plaquettes.

Both calculations are actually sums over fusion networks.
In Appendix E 1 we are summing over fusion trees of C,
whereas in Appendix E 2 we are summing over fusion trees
of Z (C) (see the discussion on the derivation of the Moore-
Seiberg-Banks formula in Sec. IV A). In both cases, the
fusion trees are sums over fusion multiplicity matrices. In
Appendix E 1 we are summing fusion matrices of C, whereas
in Appendix E 2 we are summing fusion matrices of Z (C).
These two different fusion multiplicity matrices are related
to each other via the commutativity of fusion and restriction
[42,56]. In particular, we have Eq. (C14), where r, s, t ∈ C
and A, B,C ∈ Z (C) and nA,r are lifting coefficients. To clearly
distinguish the two sets of fusion matrices, we use Ñ for the
input category C and N for the output category Z (C).

For simplicity, we consider an (orientable) surface of genus
g without boundaries (b = 0) for which the Euler-Poincaré
characteristic tells us that

2 − 2g = Np − Ne + Nv. (E1)

For a trivalent graph, we also have Ne = 3Nv/2, so that

Np = 2 − 2g + Nv/2. (E2)
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FIG. 13. Finding the total string-net model Hilbert-space dimen-
sion (with no vertex defects) by summing Ñ ′s at the vertices over all
edge labelings.

1. Counting edge labelings

Here we want to count up all allowed labelings of the
trivalent-graph edges. Each oriented edge is labeled with a
simple object in C, and a vertex with incoming arrows a and b
and c reading counterclockwise around the vertex (a, b, c ∈ C)
gets a value Ñabc = Ñ c̄

ab (see Fig. 2). We then sum over all
edge labels (summing over Ñ ′s is equivalent to counting all
vertex labels μ ∈ 1, . . . , Ñabc). An example of summing over
a simple graph is shown in Fig. 13.

For more complex graphs, one may use restructuring
moves (or “F -moves,” which here are just the associativity
of fusion) to change the connectivity of the graph without
altering the Hilbert-space dimension, as shown in Fig. 14.

As discussed in Ref. [45], if the category has commutative
fusion rules, or if the graph is on a surface of genus g = 0 (a
sphere), then by using these restructuring moves, any graph
can be reduced to a chain of bubbles

(E3)

Thus, for commutative fusion rules, the Hilbert-space dimen-
sion is independent of the genus of the surface and only
depends on the number of vertices of the graph.

However, in the case in which fusion rules are noncommu-
tative, the situation is different, and on a surface of nonzero
genus, one cannot reduce the fusion diagram to a chain of
bubbles of the form L. To understand this, let us first con-
sider the case g = 1 (torus). We draw the torus as a rectangle
with opposite edges identified. Using the above restructuring
moves (Fig. 14), we can reduce any trivalent graph to the
following (where the graph edges are black, and we do not

FIG. 14. The associativity constraint allows restructuring the
graph without changing the Hilbert-space dimension.

draw arrows or labels on these edges for simplicity):

(E4)

If there are multiple lines running around the handles,
Eq. (E4) can be reduced to single lines running around the
handle by using restructuring moves (Fig. 14). However, if
there is a single line going around a handle (as shown in the
above diagram), it cannot be removed by restructuring moves.

Relaxing the restriction that we need to draw all of our
diagrams in the plane, the diagram (E4) can also be expressed
equivalently as

(E5)

where the overcrossing could be drawn equally well as an
undercrossing, since it is only the connectivity that matters.
But note that due to noncommutativity of the fusion rules,
it is not possible to remove the undercrossing and flatten the
diagram.

We thus define a twisted bubble

(E6)

where again it does not matter if we drew an over- or under-
crossing. It is also worth noting that L̃1 j = L1 j since fusion
with 1 is commutative.

In this notation, the Hilbert-space dimension on a g = 1-
surface (torus) is given by

dim H = Tr[L̃ LNv/2−1], (E7)

since two vertices occur within the twisted bubble, and the
remaining vertices are within the planar graph, which can
be reduced to a bubble chain of L′s. Note that for the case
of commutative fusion, we have L̃ = L and we recover the
previous result (E3).

To extend this to a genus-g surface, we start with the pla-
nar representation of this surface as a 4g-sided polygon with
certain edges identified as in the following picture:

(E8)
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As with the simple torus, a trivalent graph within this
polygon can always be reduced, but a single line around a
handle cannot be removed. We can thus reduce any graph to
the following:

(E9)
Again, analogous to what we did with the torus, we can re-

move the periodic boundary conditions and achieve the same
connectivity if we allow over- or undercrossings of the graph.
In particular, this is entirely equivalent to

(E10)
So we have g copies of what we called L̃, each accounting

for two vertices, and all the remaining vertices are in some
trivalent planar graph.

Unfortunately, this structure is still somewhat inconve-
nient, so we use restructuring moves to connect the legs of
each twisted bubble, getting

(E11)
We then define

(E12)

Note that K commutes with L (by associativity of fusion).
The total Hilbert-space dimension is then

dim H = Tr[KgLNv/2−2g],

i.e., there are g twisted loops, each factor of K includes four
vertices, and the remaining vertices are in the trivalent planar
graph.

The diagram that gives the twisted bubble L̃ [see Eq. (E6)]
is identical to the diagram we used to define a tube Q in
Fig. 11, the difference between the two being only that we
have written the tube algebra on a rectangle with sides identi-
fied. L̃i j is thus equal to the number of all the tube diagrams
Qb

i ja summed over a and b. In other words, it is the number

of tubes Ni j
T in a given i j sector of the tube algebra [see

Eq. (A16)]. Since the tube algebra is also spanned by the
idemnils, we can also calculate the L̃i j by counting idemnils
pi j,xy

A for all x, y and then summing over all simple objects
A ∈ Z (C). Since here x ∈ 1, . . . , nA,x and y ∈ 1, . . . , nA,y, we
have

L̃i j =
∑

A

nA,inA, j . (E13)

2. Counting fluxon fusion channels

We now calculate the same Hilbert-space dimension of a
string-net model by summing up all possible fluxon fusion
channels assigning all possible fluxons to all plaquettes.

We are going to use a graphical notation that a quantum
number in Z (C) is a black edge, but a quantum number in C
is red. A lifting coefficient is a green dot. In particular, this
means that Eq. (C14) can be expressed graphically as∑

C

NC
ABnC,t =

∑
r,s

nA,rnB,sÑ
t
rs, (E14)

(E15)

For simplicity of notation, we do not draw arrows on edges.
To determine the full Hilbert-space dimension, we start

with the Moore-Seiberg-Banks formula, which graphically
looks like this [see Eq. (9)]:
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Now we want to sum the value of this diagram over the prod-
uct of nA,1 which selects fluxons. This is graphically depicted
as

Now using the graphical identity Eq. (E15) with t = 1, we
can push all the green dots through the vertices to obtain the
following:

Here the double green dot is meant to be connected by a small
black line (which is not drawn). Given our graphical notation,
the double green dot has the following value:

∑
A

nA,inA, j = L̃i j, (E16)

where the equivalence to L̃, the twisted bubble, is from
Eq. (E13) above. Note that as mentioned just below Eq. (E6),
we have L̃1 j = L1 j so that the double green dots at the top
of the diagram can be replaced by L rather than L̃. Thus the
Hilbert-space dimension is given by the diagram

This is now a trivalent diagram with edges living in C, of the
form of Eq. (E10). That is, g twisted bubbles connected to a
trivalent planar diagram.

The final step is to check that the number of vertices in this
diagram is the same as the number of vertices in the original
graph for the string net. We started with Np labeled punctures
(at the top of the diagram) and g loops. The final diagram has
2(Np−1)−1 vertices in the top half of the diagram and 4g−1
vertices in the bottom half of the diagram, giving a total of
2Np + 4g − 4 vertices. Using Eq. (E2), this is precisely the
number of vertices in the original string-net model.
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