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Transport measurements are readily used to probe different phases in disordered topological insulators (TIs),
where determining topological invariants explicitly is challenging. On that note, universal conductance fluctu-
ations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard
deviation δG depends solely on the symmetries and dimensions of the system. Using a real-space tight-binding
Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film
and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field
applied out-of-plane breaks the time-reversal symmetry and transforms the system’s Wigner-Dyson class from
symplectic to unitary, increasing δG by

√
2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and

metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance
fluctuations.
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I. INTRODUCTION

Topological insulators (TIs) are characterized by their in-
sulating behavior in the bulk, while maintaining conducting
states on their surfaces or edges [1–3]. The investigation and
characterization of topological states in materials, notably the
TI phase, have garnered considerable attention in the past
few years. This enthusiasm stems from the significant value
of these states concerning fundamental concepts as well as
potential applications [4,5], and has instigated a pertinent
search for novel materials that can host topological phases.
In topological quantum chemistry for example, one can de-
termine the topological properties of nonmagnetic substances
by their symmetries and their orbitals’ positions and types.
Using this method, it was recently found that a significant
proportion of the inorganic crystal structure materials exhibit
unique topological phases [6]. Specifically, the research re-
vealed that over 27% of these materials possess topological
characteristics, while about 12% can be classified as topolog-
ical insulators [6].

To date, Bi2Se3 family of materials are the best-known
three-dimensional TIs. These materials all belong to the sym-
metry group No. 166, which contains the most significant
number of TIs (410) [6,7]. Bi2Se3 has been the subject of
broad theoretical and experimental research, due to its simple
band structure and single Dirac cone at its surfaces. Surface
states in Bi2Se3, Bi2Te3, and Sb2Te3 are protected by time-
reversal symmetry (TRS). These materials also exhibit strong
spin-orbit coupling (SOC) [7,8]. They belong to the sym-
plectic ensemble based on the Wigner-Dyson classification,
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which introduced the Hamiltonian Gaussian distribution and
the categorization of systems based on symmetries [9]. The
Wigner-Dyson classification [10] generally classifies systems
into the three ensembles listed in Table I.

Following the discovery of TIs, most research was fo-
cused on samples with maximal possible purity. That said, the
ever-present disorder in all materials and devices of interest,
resulting from impurities and/or lattice defects, is unavoid-
able [11,12]. Due to strong SOC between multiple orbits,
but also decoherence caused by temperature and disordered
vacancies, it becomes challenging to interpret experimental
data [13,14]. In a transport measurement, the quantum inter-
ference between all possible electron paths between two sites
in a sample makes electrical conduction sensitive to the Fermi
energy, magnetic field, and impurity configuration [15,16].
Hence one looks to conductance and its fluctuations to extract
any additional information that helps monitor the properties of
the TI under investigation. In fact, by analyzing the conduc-
tance and its fluctuations, one may determine more about the
topological properties of the system. For example, introducing
dilute nonmagnetic impurities to a TI cannot affect the topo-
logical phase of the material, as demonstrated by measuring
surface state transport and observing the absence of departure
in conductance from the quantized value. This is, however,
only feasible with parallel advances in theoretical studies of
conductance fluctuations in TIs. On that front, the universal
conductance fluctuations (UCF) theory was developed to cap-
ture mesoscopic quantum interference effects and distinctive
characteristics of quantum transport in TIs [17], as discov-
ered by exploring the magnetoresistance of a small-scale
conductor [18–20].

The resistance of a large-scale conductor is given by R =
ρL/S, where ρ denotes resistivity, and L and S represent the
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TABLE I. Wigner-Dyson classification of materials, into three
ensembles based on time-reversal (TRS) and spin-rotation (SRS)
symmetry.

TRS SRS Ensemble

β = 1 � � orthogonal
β = 2 ✗ ✗ or � unitary
β = 4 � ✗ symplect ic

length and cross-sectional area, respectively. According to the
diffusive transport mechanism, once the size of the system
is reduced down to the coherence length Lφ (also known as
the dephasing length), the above resistance relation breaks
down, and in this regime the ability of a material to conduct
electric current is directly expressed in terms of conductance.
Electrons’ complicated and varied diffusion path through a
conductor is known as the Feynman path. By decreasing the
size of the Feynman path, quantum correction becomes in-
creasingly relevant. Although the conductance G varies from
sample to sample owing to different impurity configurations
that cause different Feynman paths, the root mean-square
conductance δG is the same for all samples. δG is suppressed
if the system is not coherent, that is, if the sample size is larger
than Lφ [21].

According to the UCF theory, given an ensemble of dif-
fusive metals, the conductance G has a Gaussian distribution
with a constant width δG that depends only on the symmetries
and dimension of the system. Conductance fluctuations in TI
at zero temperature can be predicted using the key param-
eters in UCF, which include the Wigner-Dyson parameter
β, Kramer’s degeneracy s, and the number of independent
eigenmodes of the Hamiltonian k [12,21]. The UCF amplitude
is given by:

δG = cd

√
ks2

β
, (1)

where cd is a constant that depends on the dimension (d) of
the system and is related to the ratio of the sizes Lx, Ly, and
Lz of the system. For the three-dimensional system where the
length ratio is considered as Lz/Lx,y = 1, cd = 0.55, and the
value of cd will decrease (increase) slightly as the length ratio
increases (decreases), as shown in Ref. [12]. According to the
Wigner-Dyson classification, the β symmetry parameter takes
the values 1, 2, or 4.

This paper analyzes conductance fluctuations (CFs) in
Bi2Se3 film using a real-space tight-binding Hamiltonian and
considering Anderson disorder, to validate to which extent
their behavior aligns with the expectations posed by UCF
theory. Within the CF analysis, we further provide evidence
that introduction of an out-of-plane magnetic field breaks TRS
and causes a transition of the system from symplectic Wigner-
Dyson class (β = 4) to unitary one (β = 2), accompanied
by an increase in δG by a factor of

√
2. Finally, in contrast

to the inherent strong topological insulator (TI) properties
of Bi2Se3, our study reveals that in presence of strain and
disorder this material can exhibit weak TI and metallic phases,
as evidenced by the corresponding CF signatures.

FIG. 1. (a) Bi2Se3 crystal structure. (b) A quintuple layer (QL)
of Bi2Se3. The atoms are stacked in layers in the z direction in
an ABCABC sequence. (c) Lattice structure of Bi2Se3 in the x-y
plane. Each unit cell has two neighboring unit cells in the z direction
connected by vector n4, and six neighboring unit cells in the x-y plane
connected by vectors n1,2,3.

This paper is organized as follows. Section II contains the
theoretical framework and introduces the structure of Bi2Se3,
the real-space tight-binding Hamiltonian, and inclusion of
Anderson disorder. The Landauer-Büttiker approach used for
transport calculations is also outlined within this section.
Section III is devoted to the investigation of conductance
fluctuations in a three-dimensional (3D) TI. First, 〈G〉 and δG
are calculated for Bi2Se3, showing that the surface states are
robust against disorder. The behavior of CFs with change of
thickness and Fermi energy of the sample is also investigated.
Next the effect of the applied out-of-plane magnetic field is
discussed, and the corresponding change of the class of the
system. In Sec. IV, the effect of strain is investigated using
transport calculations, to reveal transitions between the strong,
weak, and metallic phases in disordered TI film of Bi2Se3. Our
summary and conclusions are given in Sec. V.

II. THEORETICAL FRAMEWORK

A. Material structure and tight-binding Hamiltonian

As said above, Bi2Se3 family of materials are archetypal
three-dimensional TIs, having simple surface band structure
and a single Dirac cone therein. Another advantage of these
TIs is a relative large bulk band gap, roughly 0.3 eV for Bi2Se3

that provides a large window for the topological states. Bi2Se3

has a rhombohedral structure in which five Se-Bi-Se-Bi-Se
atomic layers are periodically stacked (as shown in Fig. 1);
these layers are known as quintuple layers (QLs), and thick-
ness of each QL is about 1 nm [22,23].

Bi2Se3 structure possesses threefold rotational symmetry
around the z axis, twofold rotational symmetry around the
x axis, inversion symmetry, and TRS [22,24]. This material
family belongs to the symmetry group D5

3d (R3m), in which
D3d is the direct multiplication of D3 and the inversion oper-
ator group. To describe the system, we consider an effective
real-space tight-binding Hamiltonian in which each unit cell is
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TABLE II. Hopping parameters for the real-space tight-binding
Hamiltonian for Bi2Se3.

A‖(eV) Az(eV) E0(eV) B‖(eV)

0.5 0.44 0.29 0.25
Bz(eV) C0(eVÅ) C‖(eVÅ2) Cz(eVÅ2)

0.25 −0.0063 6.65 −1.75

assumed to contain two atoms (Bi, Se) and spin. Taking into
account just the nearest neighbors, each unit cell will have
six x-y in-plane neighbors coupled by vectors ni (i = 1, 2, 3)
and two z out-of-plane neighbors connected by vector n4. The
real-space Hamiltonian is as follows [25,26]:

H = �ic
†
i Eonci + �i,α (c†

i Tαci+α + H.c.), (2)

where α = n1, n2, n3, n4, and the operator c†
i (ci) creates

(annihilates) an electron at site i. Further we have:

Eon = (E0 − 2�αBα )σz ⊗ σ0, (3)

and

Tα = Cασ0 ⊗ σ0 + Bασz ⊗ σ0 − i

(
Aα

2

)
σx ⊗ σ · nα. (4)

The on-site energy (Eon) and the hopping parameters (Tα)
between unit cells are represented by 4 × 4 matrices and
their parameters are listed in Table II. Without losing gen-
erality, we assume particle-hole symmetry and Cα = 0. ni
vectors are defined based on the structure of the system as
n1 = (1/2,

√
3/2, 0), n2 = (−1/2,

√
3/2, 0), n3 = (1, 0, 0),

n4 = (0, 0, 1).

B. Anderson disorder

Disorder in a lattice may take the form of undesirable
dislocations, vacancies, or inclusions, and here we model it as
Anderson disorder. In what follows, Wi indicates the strength
of disorder at each site of the lattice, of randomly distributed
strength in the interval [−W/2,W/2], added to the system
with the following Hamiltonian [12,27]:

HD =
∑
i,α

Wi c†
i,α ci,α. (5)

As previously stated, the disorder in a structure is often
induced by unwanted defects. However, deliberate surface
disorder may also be used for device engineering. In 3D TIs,
surface disorder, for instance, may be utilized to regulate the
transport of surface states. For example, in Ref. [28], a prac-
ticable strategy for systematically controlling transport on the
surface of a three-dimensional TI was realized by introducing
intense disorder (close to the threshold strength to convert TI
to a trivial phase) within a controlled depth from the surface
of the TI. This procedure can then be applied to manufacture
integrated TI circuits.

C. Transport formalism

The standard method for determining the phase transition
in disordered systems is a finite-size scaling analysis of the

localization length. In some cases the localization length di-
verges, so its use to examine the disordered phase diagram
becomes challenging. Instead, alternative approaches, such as
the investigation of conductance, are employed [29].

The Landauer-Büttiker formalism uses the scattering am-
plitude of electrons to obtain the conductivity properties in
a quantum junction and is used for transport calculations
in noninteracting nanostructure systems, in the absence of a
phase-breaking environment in which quantum coherence is
maintained. The conductance at zero temperature was investi-
gated using Landauer’s scattering method, which yielded the
following relationship:

G = e2

h

∑
n

Tn(EF ), (6)

where Tn is the probability of transmission in the nth channel.
Since atomic-scale systems are typically described by discrete
models, transport is calculated via the Green’s function formu-
lation. The effect of electrodes is implemented as self-energy.
Under time symmetry, Green’s function is divided into two
retarded (advanced) portions with propagation into the future
(past) and are defined as follows [30]:

ĜR(E ) = [(E + iη)Î − Ĥ ]−1,

ĜA(E ) = [ĜR(E )]†. (7)

The Hamiltonian of the whole system is as follows:⎡
⎢⎣

HL VLC 0

VCL HC VCR

0 VRC HR

⎤
⎥⎦, (8)

where the sample Hamiltonian is indicated by HC , whereas the
Hamiltonian matrices of the left electrode and right electrode
are denoted by HL and HR, respectively. The nondiagonal
elements represent the sample’s coupling with the electrodes,
and since H must be Hermitian, VCL=V †

LC and VCR=V †
RC. The

effect of leads is described by the self-energy �:

GR
C (E ) = [E − HC − �R]−1, (9)

and the transmission function is expressed as follows:

T (E ) = Tr[
L(E )GR(E )
R(E )GA(E )], (10)

where 
 = i(�R − �A).
Considering that we are dealing with a multicomponent

system (including the electrodes), the recursive Green’s func-
tion method is applied, since the Green’s functions of isolated
subsystems (with Hamiltonians HC , HL, HR) and the coupling
matrices between subsystems (VCL, VLC, VCR, VRC) are known.
It is an advantageous method to calculate the relevant Green’s
function components for large complex systems, which can be
divided into many connected parts. Starting at one end of the
system, the subsystems are added one by one, finally the full
Green’s function of the whole system can be found. Taking
into account the Green’s function for each subsystem (G0)
and the coupling matrix between them (V ), the full Green’s
function (G) can be expressed as G = G0 + G0V G through
the Dyson equation. From a computational perspective, the
use of recursive methods may provide much quicker results
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FIG. 2. (a) The mean conductance 〈G〉 and (b) the standard
deviation of conductance δG of disordered Bi2Se3 as a function
of disorder strength W , with NQL = 4 and the number of in-plane
sites Lx = Ly = 10. EF = 0.05 eV is related to surface states (any
EF < 0.15 eV is), and as shown in (b), conductance fluctuations are
negligible for weak disorder, indicating surface states’ robustness to
disorder.

compared to directly solving equations, particularly for large-
scale systems [31].

III. FUNDAMENTALS OF CONDUCTANCE
FLUCTUATIONS IN Bi2Se3 FILM

In this section we will examine numerically the fluctuations
of conductance in disordered Bi2Se3, to compare their behav-
ior to the UCF theory. UCF asserts that for an ensemble of
diffusive metals, the conductance has a Gaussian distribution
with a constant standard deviation δG, which depends on
the symmetries and dimensions of the system, as discussed
regarding Eq. (1). The conductance fluctuation δG = 〈(G −
〈G〉)2〉1/2 is defined as the standard deviation of conductance
for a disordered ensemble and is averaged over all ensembles.

Figure 2 illustrates the average conductance 〈G〉 and
conductance fluctuation δG for various disorder values and
EF = 0.05 and 0.2 eV for a sample with a thickness of four
quintuple layers (QL), and in-plane lattice site Lx = Ly = 10.
Three-dimensional TI consists of bulk insulating states and
conducting spin-momentum-locked dissipationless surface
states. ARPES experimentally validated these surface states’
features, including a Dirac cone protected by TRS. In Fig. 2,
the Fermi energy of 0.05 eV is related to surface states, and
for a weak disorder, conductance fluctuations are negligible,
illustrating the robustness of surface states against disorder.
The conductance fluctuations approach the value δG ≈ 0.28
as the disorder in the system increases, which agrees with
UCF theory, given that the system belongs to the symplectic
class [cd ≈ 0.55, β = 4, s = k = 1 in Eq. (1)]. Increasing the
disorder beyond sufficient magnitude (W > 7 eV) causes δG

to decrease toward zero, illustrating that the system enters the
metallic phase as shown in Fig. 2(b).

The spatial dimension of the sample is one of the deter-
ministic factors of the conductance fluctuation amplitude. As
mentioned previously, the coefficient cd in Eq. (1) actually
depends on NQL/Lx and NQL/Ly length ratios, as calculated
in Ref. [12], and verified here [as shown in Fig. 3(b)]. For
three-dimensional sample the length ratios are considered as
NQL/Lx,y = 1, in which case cd = 0.55, and change in length

FIG. 3. (a) Conductance fluctuation versus the thickness of the
sample NQL. δG depends on NQL/Lx and NQL/Ly ratio, and the
conductance fluctuations are almost constant, for fixed Lx and Ly

of the thin film. (b) cd values calculated here, compared to those
extracted from Ref. [12], as a function of thickness. (c) Conductance
fluctuation versus Fermi energy. Considering the symplectic class
where SR symmetry does not exist, increasing the Fermi energy does
not change the Wigner-Dyson class of the sample. (d) Conductance
versus Fermi energy for 200 samples for each EF .

ratios will cause a some deviation in cd . Figure 3(a) shows
our data, plotting the dependence of δG on NQL for W = 3,
4 eV while Lx and Ly are fixed. Since NQL < Lx, Ly in the thin
film, δG is nearly constant in this regime, but its decrease as
a function of NQL does follow the expected decrease in cd due
to the increasing NQL/Lx,y ratio.

Bi2Se3 belongs to the symplectic class (β = 4) in the
Wigner-Dyson classification, where TRS is preserved, but SR
symmetry is not. So long as disorder is weak or the local-
ization length is much larger than the spin relaxation length,
the SOC is considerable, and the system lacks SR symmetry.
In systems where the localization length is less than the spin
relaxation length and the kinetic energy is larger than the SOC
term, SOC may be ignored. In these systems SR symmetry
is established such that the system belongs to the orthogonal
class (β = 1). Figure 3(c) shows the conductance fluctuation
as a function of Fermi energy for W = 1 eV and 3 eV. For
weak disorder (such as W = 1 eV) and small Fermi energies
(inside the bulk gap) that include only the surface states bands,
δG = 0 indicates the robustness of surface states in 3D TI
against disorder. Since the surface states in a strong TI are
robust to impurities that preserve TRS, there will not be any
deviation in conductance for weak disorder and the conduc-
tance will remain quantized. Consequently, the conductance
of surface states (G) does not deviate from the quantized value
for weak disorders in different ensembles, yielding δG = 0.
Since Bi2Se3 is in the symplectic class, in which SR symme-
try does not exist, the system’s Wigner-Dyson class remains
unchanged. Figure 3(d) also depicts the variations in conduc-
tance versus Fermi energy for 200 samples for each EF .

To further validate UCF numerically, we examine the effect
of magnetic field B on 3D disordered TI, leading to TRS
breakdown and changing the class of the system. The external
magnetic field B is composed of two parts, and the first is the
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FIG. 4. Magnetization of the system leads to TRS collapse, a
change from symplectic (β=4) to unitary (β = 2) class, and a√

2-fold rise in δG in the absence of TRS.

Zeeman term, represented by:

HZeeman = Mzσzτ0 + Mxσxτx + Myσyτx, (11)

where Mi(i = x, y, z) is the strength of magnetization in i
direction. Modifying the hopping phase by changing the hop-
ping integrals is the second part. For the external magnetic
field along the z axis, Tx → Tx exp(−i2π
), where 
 = ∫

A ·
dl/
0 and 
0 = h/e represent the magnetic quantum flux,
while A = (−Bzx̂, 0, 0) represents the vector potential. Here,
we consider only the Zeeman term and magnetization in z
direction, which breaks the TRS and changes the system class
from symplectic to unitary. Figure 4 displays conductance
fluctuations (δG) for two situations with and without magneti-
zation. Magnetization causes TRS to collapse, and the system
enters the unitary class, where δG changes by a factor of

√
2

when compared to the case when TRS is present, because the
conductance standard deviation is proportional to 1

√
β [based

on Eq. (1), where β changes from 4 to 2]. By applying mag-
netization to TIs, the surface states of TI are gapped, instead
of having the form of a Dirac cone without a gap when TRS is
preserved. Depending on the size and direction of the applied
magnetization, it can lead to the appearance of topological
phases such as quantum anomalous Hall, axion insulator, or
high-Chern number quantum anomalous Hall phase [32].

IV. TUNING THE TOPOLOGICAL PHASES: STRONG,
WEAK, AND METALLIC PHASES
IN TOPOLOGICAL INSULATOR

Topology is the study of characteristics of materials, which
do not change continuously, and the invariant that fits this
description is referred to as a topological invariant. In three di-
mensions, TIs are characterized by four indices (ν0; νx, νy, νz)
that may take zero or one and is an ordinary insulator if (0;
000) [33]. The number of Dirac cones on the surface could
be viewed as a metric of the bulk topology, so classifying 3D
TIs into two categories: strong TI (STI) and weak TI (WTI).
If the number of Dirac cones is odd, we will have an STI with
ν0 = 1; if the number of Dirac cones is even, we have a WTI
with ν0 = 0; ν0 is referred to as a strong index. νx, νy, νz are

weak indices, and in the WTI phase, surface states are not
formed on the surfaces perpendicular to (νx, νy, νz) [1,29].

Identifying WTI states in three dimensions is challenging
since topological surface states exist on only some surfaces.
Bi2Se3, Bi2Te3, and Sb2Te3 are STI, whereas Sb2Te3 is re-
ferred to as WTI [7]. In contrast to STI, surface states in
WTI are not protected against localization. Applying disorder
to WTI may result in losing Dirac state properties and some
topological features [34].

In this section, we study the topological phase transition
from the strong phase to the weak phase for Bi2Se3 driven by
strain-induced band engineering. Strain is defined as a change
in the displacement vector 	U relative to its initial position
and in the linear regime may be represented by the following
tensor [35]:

εi j = 1

2

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (12)

The electrical properties of the system and topological nature
are affected by a slight strain since the gap of the Bi2Se3

family are in the range of 220–300 meV. The strain alters
the bond length and angle, hence changing the Hamiltonian
parameters; the values for these parameters are taken from
Ref. [36].

The effect of the out-of-plane uniaxial strain is addressed
by extending or compressing the z-direction lattice parameter
(c) as ε⊥ = c−c0

c0
, where c0 is the z-direction lattice param-

eter in the strain-free structure. The in-plane biaxial strain
is defined as ε‖ = a−a0

a0
, by stretching or squeezing the lat-

tice parameter in the x-y plane, where a0 is the unstrained
lattice parameter in the x-y plane. The biaxial strain has an
indirect influence on the band gap (�
), with the parameter
c tending to rise for ε‖ < 0 and decrease for ε‖ > 0 [35,37].
In our model, we considered the Poisson ratio ν = 0.27 for
Bi2Se3 that describes direct dependency of uniaxial out-of-
plane strain on the biaxial in-plane strain [38], and has been
included in all our calculations with strain. The variation of
the band gap at the 
 point as a function of out-of-plane and
in-plane strain is shown in Fig. 5(a).

Bloch wave functions define topological invariants such
as the Chern number and Z2 in the bulk of materials under
translational symmetry. When the translational symmetry is
broken, the band structure cannot be used to determine the
topological character of the system. The index theorem [39],
scattering matrix [40], or transport calculations are often em-
ployed in disordered systems to determine the topological
phase.

Robustness to disorder is a defining characteristic of TIs,
and based on this property, it is possible to distinguish be-
tween strong and weak phases in 3D TIs. The absence of
backscattering prevents the localization of electrons in sur-
face states, which contributes to the disorder resistance of
Dirac electrons. In the weak TI phase, valleys induced by
an even number of Dirac cones localize Dirac electrons by
intervalley scattering. Translational invariance is lost when
disorder is introduced into a system, and standard approaches
cannot be used to determine topological invariants. Instead,
topological phase transitions may be identified using transport
calculations.
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FIG. 5. (a) Bi2Se3 bulk gap (�
) as a function of out-of-plane
(ε⊥) and in-plane strain (ε‖). (b) The behavior of conductance in
terms of out-of-plane strain for W = 1, 3, 5, and 7 eV. In each case,
the considered Fermi energy is located on the first conduction band.
Transport calculations may be used to identify the topological phase
transition in nontranslationally symmetric systems. When the system
is in a strong phase, changes of 〈G〉 are minimal and, fluctuations in
conductance may be noticed during the weak phase.

Figure 5(b) depicts the behavior of conductance under out-
of-plane strain for W = 1, 3, 5, and 7 eV. In each case, we
considered Fermi energy crossing the first conduction band.
Disorder does not leads to significant conductance fluctua-
tions while the TI is in a strong phase. Still, given significant
out-of-plane tensile strain, the system enters the weak phase,
where Dirac electrons are localized, and conductance fluctua-
tions are significant.

As shown in Fig. 6, STI and WTI are maintained in the
absence of disorder or for disorder values below ∼7 eV. How-
ever, the system transits into the metallic phase for sufficiently
large disorder values. When the system is in a strong phase,
changes of 〈G〉 are minimal and, deviations in conductance
may be noticed in the weak phase. In the strong disorder
region, the bulk band gap is filled by impurity states that
overlap to develop extended states, giving rise to the metal
phase. This phase diagram is derived from calculations of 〈G〉
as a function of W and ε⊥ (as shown in Fig. 5, for different

FIG. 6. Phase diagram for strong, weak, and metallic states in
3D TI in terms of out-of-plane strain and strength of disorder. Both
strong and weak phases exist for weak disorders, and the metallic
phase is detectable after sufficiently strong disorder is present.

applied strain and disorder). Specifically, we calculated 〈G〉
for magnitude of the disorder (W ) varied with step size 0.1 eV,
the applied strain (ε⊥) changed with step size 0.5%, and for
different Fermi energies for surface states and bulk regime to
create this phase diagram. The drastic change in 〈G〉, high-
lighted in Fig. 5(b), marks the transition of the TI from strong
to weak phase, and 〈G〉 = 0 marks the transition to metallic
phase.

Although Bi2Se3 is an STI, it has been shown that all
three phases, strong, weak, and metallic, may be obtained
by altering the system’s properties via strain and disorder.
The occurrence of strong, weak, and metallic states in a TI
is directly related to the characteristics of the band structure
of the material, namely the bulk gap and hopping parameters.
The application of strain thus provides an effective method for
manipulating the band structure and thereby the fundamental
phases of the system. In other words, in a disordered TI,
the critical threshold for the phase transition between strong,
weak, and metallic states is controllable via band engineer-
ing, accomplished by applying appropriate strain. Applying
significant compressive strain in the out-of-plane direction
directly affects the overlap between bulk and extended states.
This overlap is determined by the size of the bulk gap and
the in-plane on-site energy hopping B [in Eq. (3)] in the
Hamiltonian. Hence, the threshold value for disorder required
to transition from a strong phase to a metallic phase increases
once disordered TI is subjected to considerable compressive
out-of-plane strain.

V. SUMMARY AND CONCLUSIONS

In systems wherein translational symmetry is violated, for
instance as a result of disorder, it is challenging to identify the
phases of matter by directly calculating topological invariants
such as Z2. In these cases, transport measurements are a con-
venient practical tool to examine the system’s characteristics
and determine its (topological) phases. The universal conduc-
tance fluctuation (UCF) theory, according to which the con-
ductance G for an ensemble has a Gaussian distribution and
the standard deviation δG depends only on the symmetries and
dimensions of the system, is one of the most interesting quan-
tum transport theories for topological insulators. Symmetries
in the system are one of the crucial factors for estimating δG
using UCF; based on the symmetries, the systems are divided
into three ensembles: orthogonal, unitary, and symplectic.
This classification is known as the Wigner-Dyson classifi-
cation, and the sample class is determined by time-reversal
symmetry and spin rotation (SR) symmetry. In this paper, con-
sidering a real-space tight-binding Hamiltonian for Bi2Se3,
we have explored the conductance fluctuations in disordered
Bi2Se3, by performing Landauer-Büttiker transport calcula-
tions with random Anderson disorder. The calculated standard
deviation of conductance (δG) proved that surface states are
robust against disorder. With increasing the strength of dis-
order, δG approaches 0.28, which is consistent with UCF.
By evaluating δG for different Fermi energies, we showed
that because Bi2Se3 belongs to the symplectic class and lacks
SR symmetry, raising the Fermi energy does not change the
system’s class. On the other hand, with the collapse of TRS
by applying an out-of-plane magnetic field, the system does
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change the class, from symplectic to unitary, as validated by
the observed increase in δG with a

√
2 factor. Due to the loss

of translational symmetry in the presence of disorder, we fur-
ther explored the system’s topological phases in the presence
of strain. We demonstrated that it is indeed feasible for Bi2Se3

to exhibit strong TI, weak TI, and metallic phases, as applying
strain in the presence of disorder tunes the band structure of
the material. In addition to verifying the control of different
topological phases by applying strain, the method outlined
in this paper provides a direct way to detect these phases in

various materials using transport measurements, rather than
having to rely on the theoretically calculated topological in-
variant that is challenging to determine in disordered TIs.
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