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Since the discovery of superconductivity in cuprate materials, the minimal ingredients for high-Tc supercon-
ductivity have been an outstanding puzzle. Motivated by the recently discovered nickelate bilayer superconductor
La3Ni2O7 under pressure, we study a minimal bilayer model, in which, as in La3Ni2O7, interlayer and intralayer
magnetic interactions but no interlayer hopping are present: A mixed-dimensional (mixD) t-J model. In the
setting of a mixD ladder, we show that the system exhibits a crossover associated with a Feshbach resonance:
From a closed-channel-dominated regime of tightly bound bosonic pairs of holes to an open-channel-dominated
regime of spatially more extended Cooper pairs. The crossover can be tuned by varying doping, or by a
nearest-neighbor Coulomb repulsion V that we include in our model. Using density matrix renormalization group
simulations and analytical descriptions of both regimes, we find that the ground state is a Luther-Emery liquid,
competing with a density wave of tetraparton plaquettes at commensurate filling δ = 0.5 at large repulsion, and
exhibits a pairing dome where binding is facilitated by doping. Our observations can be understood in terms
of pairs of correlated spinon-chargon excitations constituting the open channel, which are subject to attractive
interactions mediated by the closed channel of tightly bound chargon-chargon pairs. When the closed channel
is lowered in energy by doping or tuning V , a Feshbach resonance is realized, associated with a dome in the
binding energy. Our predictions can be directly tested in state-of-the art quantum simulators, and we argue that
the pairing mechanism we describe may be realized in the nickelate bilayer superconductor La3Ni2O7.

DOI: 10.1103/PhysRevB.109.045127

I. INTRODUCTION

Since the discovery of high-Tc superconductors [1–4]
around four decades ago, the search for materials with in-
creasing critical temperatures has led to the discovery of
unconventional superconductivity in a number of compounds,
among them copper- and nickel-based superconductors [5,6].
Very recently, a remarkable critical temperature of Tc = 80 K
was observed in the bilayer nickelate La3Ni2O7 [7] under
pressure, a system with low-energy physics that was argued
by several groups to be modeled by a bilayer t-J model with
weak hopping strength but strong antiferromagnetic Heisen-
berg couplings between the layers [8–11].

Motivated by this minimal working example of unconven-
tional superconductivity, understanding the pairing mecha-
nism of mixed-dimensional (mixD) Fermi-Hubbard or t-J bi-
layers, or ladders, is an important step towards a microscopic
theory of pairing [12–14]. MixD systems, featuring magnetic
superexchange in d dimensions but hopping only in d − 1
dimensions [see Fig. 1(b)] have been shown to host the follow-
ing emergent structures upon doping the ground state at half-
filling, consisting of singlets on each rung of the ladder: (i)
When doped with a single hole, the system can be understood
as a mesonic spinon-chargon (sc) bound state of two partons,
a charge excitation (chargon) and a spin excitation (spinon),

carrying the respective quantum numbers and being con-
nected by a linear, stringlike confinement potential [13–22]
[see Fig. 1(c) (right)]. Hereby, the string has its origin in the
disruption of the ground-state singlet order when the charge
moves through the system (see Appendix, Subsection 1). (ii)
Owing to a similar mechanism, two holes form a tightly bound
state of two chargons in the mixD setting without repulsion
[14,23,24]. Here, strong binding energies emerge due to the
fact that it is favorable for the chargons to move through the
system coherently since a second chargon can restore the dis-
torted spin order by following the first chargon [14] (chargon-
chargon, cc pairs) [see Fig. 1(c) (left) and the Appendix,
Subsection 1]. The formation of the tightly bound chargon-
chargon pairs, with a large binding energy, has allowed
their direct observation in ultracold-atom experiments by
Hirthe et al. [25].

In this paper we show that the mixD setting allows to tune
through a crossover associated with a Feshbach resonance,
which enables strong pairing despite the presence of domi-
nant Coulomb repulsion [26]. On one side of the crossover
we find a BEC-like, i.e. closed-channel-dominated, regime of
chargon-chargon pairs; on the other side, i.e., the BCS side, of
the resonance an open-channel-dominated regime of strongly
correlated and spatially more extended spinon-chargon pairs
(sc)2 is realized (see Fig. 1). This allows us to study binding
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FIG. 1. (a) Sketch of the phase diagram of the mixed-
dimensional ladder with repulsive interactions V shown in (b), with
the character of the dominant excitations indicated by the color
scheme. We predict a crossover associated with a Feshbach reso-
nance tuned by doping or V , which can be understood in terms of the
emergent mesonic charge carriers described in the text and sketched
in (c). For large values of V , the tightly bound chargon-chargon
(cc) pairs, previously reported for mixD ladders without repulsion
[14,25], become spatially more extended and can be understood in
terms of spinon-chargon (sc) pairs that experience an attraction aris-
ing from a Feshbach resonance [26] and leading to the formation of
(sc)2 Cooper pairs. Around a hole doping of δ = 50% and for values
of V where the low-doping side is in the open-channel-dominated
(sc)2 regime, the bond-ordered density wave (BODW, illustrated in
inset) emerges, which is a correlated spinon-chargon phase with spin
and leg index order and a charge gap. Note that all indicated phase
boundaries should be understood as smooth crossovers and we do not
expect any sharp transitions in this quasi-one-dimensional setting.

in the strongly correlated mixD electron systems from the
perspective of a BEC to BCS crossover.

In atomic systems, where the BEC to BCS crossover
has initially been explored using ultracold-atom experiments
[27–32], the transition from the open-channel-dominated
Luther-Emery liquid of paired fermions to the closed-channel-
dominated regime of bosonic molecules [33–35] occurs via
a Feshbach resonance that couples open and closed channels
[36]. Hereby, attractive interactions in the open channel are
mediated by processes that couple to the high-energy closed
channel. We argue that a similar scenario is naturally re-
alized in mixD doped antiferromagnets and, by extension,
in the bilayer nickelate superconductor La3Ni2O7, albeit the
underlying constituents are emergent spin-charge composites
(namely, the sc and cc excitations introduced above) instead of
the underlying microscopic fermions of the model. Thereby an
instance of mesonic Feshbach resonance [26,37] is realized,
related to similar ideas how emergent Feshbach resonances
can induce unconventional pairing interactions in strongly
correlated electron systems [38].

Starting from the closed-channel-dominated side with cc
constituents and at low doping, we increase the Coulomb
repulsion V to tune through the crossover and into the
open-channel-dominated regime of spatially more extended
sc pairs. The latter remain bound into (sc)2 Cooper-type
pairs through the pairing mechanism realized in Feshbach

resonances [39]: Recombinations of two sc pairs into a closed-
channel cc state mediate an attractive interaction among sc’s.
This scenario allows to overcome strongly repulsive Coulomb
interactions, and we find large binding energies on the open-
channel-dominated side of the resonance with a peak at 30%
doping when V is the dominant energy scale [26].

Alternatively, we can tune across the Feshbach reso-
nance at large V by varying doping δ. Beyond δ > 50%
closed-channel cc states proliferate, which boosts the induced
attraction among sc constituents and leads to the formation of
tightly bound (sc)2-type Cooper pairs, with tetraparton char-
acter and residing on plaquettes of the ladder, as illustrated
in Fig. 1(a). Furthermore, right at the commensurate hole
doping δ = 50%, the strongly correlated nature of the Cooper
pairs leads to a competition with a bond-ordered density wave
(BODW) featuring both charge and spin gaps in the one-
dimensional ladder geometry.

The remaining part of the paper is organized as follows:
In the first section, we introduce the mixD t-J ladder model
supplemented by repulsive interactions V [mixD+V , see
Fig. 1(b)]. We explain how it can be realized experimentally
with ultracold atoms, and how it relates to recently discovered
high-Tc superconductivity in bilayer nickelates. Second, we
analyze the cc (closed-channel) and sc (open-channel) limits
analytically and derive the induced s-wave attraction among
the latter. Then, we present numerical results from DMRG
simulations [40,41] on the crossover between the cc and the
sc regimes and find a good agreement with the effective cc
and sc descriptions. Lastly, we show that the system forms
a Luther-Emery liquid everywhere away from δ = 50% and
describe the BODW state found at the commensurate filling
δ = 50% for strong repulsion.

II. MIXED-DIMENSIONAL SYSTEM
WITH COULOMB REPULSION

A. Effective nickelate bilayer model

The mixD+V model that we investigate is shown schemat-
ically in Fig. 1(b). It consists of nearest-neighbor hopping
along the legs of the ladder with amplitude t‖, superexchange
interactions J⊥, and repulsive Coulomb interactions V for
neighbors on rungs, i.e.,

Ĥ = −t‖P̂
∑

j

∑
μ,σ

(ĉ†
j+1μσ ĉ jμσ + H.c.)P̂

+ J⊥
∑

j

(
Ŝ j0 · Ŝ j1 − 1

4
n̂ j0n̂ j1

)
+ V

∑
j

n̂h
j0n̂h

j1 , (1)

where P̂ is the Gutzwiller projector that projects onto the
subspace with maximum single occupancy per site. Spin and
(hole) density operators at site i in layer μ = 0, 1 are denoted
by Ŝiμ and n̂iμ = n̂iμ↑ + n̂iμ↓ (n̂h

iμ = 1 − n̂iμ).
The ground state of the model without hole doping, δ = 0,

consists of one singlet on each rung of the ladder, with en-
ergy E δ=0

0 = −LxJ⊥. Upon doping, the physics of this model
is determined by a competition between kinetic, magnetic,
and Coulomb contributions. The emergent constituents can
be most easily understood in the tight-binding regime 0 ≈
t‖ � J⊥ without Coulomb repulsion, V = 0: In this limit, it
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is favorable for two holes in opposite legs to sit on neigh-
boring sites to reduce the number of rungs with distorted
rung-singlet spin configuration [14,23,24,42]. For t‖ � J⊥, the
chargon-chargon pairs develop a spatial structure. However,
it is still advantageous for holes to move through the system
coherently since the second hole can retrace the distorted spin
background of the first hole (see Appendix, Subsection 1),
yielding tightly bound pairs of holes that are close to each
other in real space [14,25].

When the repulsive interaction V reaches a critical value
Vc > 0, it is energetically favorable to place at maximum
one spin and one hole per rung, i.e., to form spinon-chargon
pairs. The respective regimes are dominated by (i) bosonic
chargon-chargon (cc) pairs and (ii) fermionic spinon-chargon
(sc) pairs, which themselves pair up to form (sc)2-type Cooper
pairs [see Fig. 1(a)]. We will refer to the two regimes as
closed- and open-channel dominated, respectively. Note that
each of the emergent mesonic charge carriers, cc’s and sc’s,
can be assumed pointlike for t‖ � J⊥, i.e., with constituents
on the same rung, but develop an internal spatial structure
for t‖ � J⊥ [14].

The mixD+V model is closely related to the re-
cently discovered, pressure-induced nickelate superconductor
La3Ni2O7 [7–11,43–45]. Density functional theory calcula-
tions for this material have shown that the low-energy physics
is determined by the dx2−y2 and dz2 orbitals [7,46–48]. The
dx2−y2 orbitals form an effective intralayer t-J model, whereas
the dz2 orbitals are localized with interlayer antiferromagnetic
(AFM) superexchange through the apical p orbital of the in-
termediate oxygen layer. This interlayer coupling is enhanced
under pressure, when the angles between Ni in opposite layers
and O changes. Both orbitals interact with each other via
ferromagnetic Hund’s couplings. In the limit of large Hund’s
coupling, the spins of dx2−y2 and dz2 align, giving rise to an
effective AFM interaction J⊥ between the layers [8–10].

In contrast to AFM interactions that originate only from
superexchange, the interaction mediated via Hund’s coupling
corresponds to a vanishingly small interlayer hopping t⊥. We
further argue that at low doping, when Coulomb interactions
are not yet fully screened, the nearest-neighbor repulsion V
between the layers can potentially play an important role.

The mixD+V model in Eq. (1) provides a minimal model
that can potentially capture some of the essential physics
realized in the bilayer nickelates. The model itself can
straightforwardly be extended from the numerically easily
accessible two-leg ladders to a two-dimensional mixD bilayer
setup, as discussed originally in the context of ultracold-atom
experiments but without the V term in [13]. The nature of
some phases we discuss below is expected to change when
going from two-leg ladders to a full-blown bilayer geometry;
however, the emergent sc and cc constituents as well as the
Feshbach resonance endowing them with attractive interac-
tions, even when the tightly bound cc state is not the ground
state, are robust features that we expect to underlie the rich
physics of mixD bilayer settings involving extended two-
dimensional layers, and potentially high-Tc superconductivity
observed in bilayer nickelates.

B. Experimental realization in ultracold atoms

The mixD + V model (1) is particularly intriguing be-
cause it can be realized in ultracold-atom experiments by a

FIG. 2. Realizing the mixD+V model with ultracold atoms. We
predict rung nearest-neighbor repulsion (red) that can be experimen-
tally realized by doping the energetically higher (lower) leg of a tilted
Heisenberg ladder with holes (doublons) (see inset). In the opposite
case, realized for � < 0, the energetically higher (lower) leg is
doped with doublons (holes) and nearest-neighbor attraction (blue)
is realized [see Eq. (2)]. We plot only regimes where perturbative
treatments of t̃⊥ are reasonable.

modification of the mixD setup by Hirthe et al. [25]. In this
cold-atom experiment, a potential offset � between the upper
and lower legs of a Fermi-Hubbard ladder was applied, with
large onsite repulsion U � t̃‖, t̃⊥ and U > � � t̃⊥, where
t̃‖, t̃⊥ denote the hopping amplitudes and U the onsite repul-
sion in the Fermi-Hubbard setup. This yields a suppressed
tunneling between the chains to effectively t⊥ = 0, while re-
alizing superexchange of strength J⊥ = 4t̃2

⊥U/(U 2 − �2).
In the Appendix, Subsection 2, we show that by replacing

doped holes by doublons in the lower leg of the ladder, we
can effectively supplement the mixD model with repulsive
interactions (see inset of Fig. 2). This gives rise to virtual
hopping processes of doublons from the lower leg onto holes

in the upper leg, contributing an energy shift 2 t̃2
⊥

U−�
, and of

doublons in the lower leg onto spins in the upper leg (or of
a hole in the upper leg onto a spin in the lower leg) with

− t̃2
⊥
�

. In total, we obtain nearest-neighbor interactions between
dopants on the rung with strength V given by

V − J⊥
4

= t̃2
⊥

(
2

�
+ U + 2�

U 2 − �2

)
. (2)

This interaction is positive, i.e., repulsive, for doublon dop-
ing in the lower leg and hole doping in the upper leg; vice
versa, for doublon doping in the upper leg and hole doping in
the lower leg, the resulting interaction obtained by replacing
� with −� in Eq. (2) is attractive when U > |�|. As we show
in Fig. 2, the achievable repulsion and attraction strengths V
can reach sizable values in units of J⊥, for feasible parameters
t̃⊥, U , and � in regimes where perturbation theory in t̃⊥ is
reasonable. Notably, we do not require V/t⊥ to be large, which
could only be realized in a regime where perturbation theory
breaks down.

C. Effective sc and cc descriptions

In order to gain a qualitative understanding of the physics
in the mixD+V model in both weak and strong repul-
sion limits, we derive effective low-energy Hamiltonians in
terms of cc’s b̂†

i in the low-V regime and sc’s f̂ (†)
i in the

large-V limit. This is done by performing Schrieffer-Wolff
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transformations of Eq. (1) in the respective low-energy
subspaces and restricting to configurations that only in-
volve pointlike cc’s and sc’s that sit on the same rung i ∈
{0, . . . , Lx}. By doing so, we obtain explicit expressions for
the effective repulsion between cc’s in the low-V regime and
the attractive interaction between sc’s in the strong-V regime.

1. Closed-channel chargon-chargon regime

In the chargon-chargon (weak-V ) regime, the low-energy
subspace is given by holes on the same rung, whereas
the high-energy subspace contains spinon-chargon configura-
tions. The effective Hamiltonian we obtain in this regime,

Ĥcc
eff = −2

t2
‖

J⊥ − V

∑
j

P̂b(b̂†
j+1b̂ j + H.c.)P̂b

+ 4
t2
‖

J⊥ − V

∑
j

b̂†
j+1b̂ j+1b̂†

j b̂ j − εcc
0

∑
j

b̂†
j b̂ j , (3)

describes hard-core, bosonic cc’s with a chemical potential

εcc
0 = z2

t2
‖

J⊥−V + J⊥ − V ; z denotes the coordination number
of the lattice, i.e., z = 2 for the ladder and z = 4 in the two-
dimensional bilayer geometry. The second term corresponds
to a nearest-neighbor repulsion along the legs in plane. A de-
tailed derivation can be found in the Appendix, Subsection 4.

2. Open-channel spinon-chargon regime

In the spinon-chargon regime (strong V and doping δ �
50%) all configurations involving two holes on the same rung
can be integrated out. The effective Hamiltonian becomes [26]

Ĥsc
eff = t‖

2

∑
j

∑
σ,μ

P̂ f ( f̂ †
j+1μσ f̂ jμσ + H.c.)P̂ f

+ εsc
0

∑
jμ

n̂ f
iμ + t2

‖
J⊥

3

2

∑
j

∑
μμ′

n̂ f
j+1μn̂ f

jμ′

− 4t2
‖

∑
j

(
−Ĵ j+1 · Ĵ j + 1

4

)[
P̂S

j

V − J⊥
+ P̂T

j

V

]
(4)

with εsc
0 = J⊥ − t2

‖
J⊥

3
2 as well as the singlet and triplet pro-

jectors P̂S = −Ŝi · Ŝ j + 1
4 n̂ f

i n̂ f
j and P̂T = Ŝi · Ŝ j + 3

4 n̂ f
i n̂ f

j ,
where we have defined the spinon-chargon density operators
n̂ f

i = f̂ †
iμσ f̂iμσ , the spin operators

Ŝi = 1

2

∑
μ

∑
σσ ′

f̂ †
iμσσσσ ′ f̂iμσ ′ , (5)

and rung isospin operators

Ĵi = 1

2

∑
σ

∑
μμ′

f̂ †
iμσσμμ′ f̂iμ′σ . (6)

Equation (4) describes hard-core, fermionic sc’s with a

chemical potential εsc
0 , experiencing competing repulsion ∝ t2

‖
J⊥

and attraction ∝− t2
‖

V −J⊥
and ∝− t2

‖
V , for singlet-triplet recom-

bination processes to the chargon-chargon channel and back,
respectively. We would like to emphasize that the attractive

FIG. 3. (a) Ground-state energies of the mixD+V ladder (light
lines) and the effective cc (3) (top) and sc (4) (bottom) model in
the tight-binding regime t‖/J⊥ = 0.1 � 1 (data points connected
with dashed lines). The derivation of the respective effective models
assumes pointlike charge carriers, with densities ncc and nsc shown
in (b), calculated by DMRG of the mixD+V model (data points con-
nected with light lines). In (a) we find good agreement of the DMRG
in the respective regimes: V/J⊥ < 1 closed-channel (cc) dominated,
V/J⊥ > 1 open-channel (sc) dominated.

terms arise from second-order recombination processes of
sc’s to a spin singlet and a cc and back to the sc channel,
i.e., the attraction is mediated by virtual coupling processes to
the tightly bound, high-energy chargon-chargon channel [26].
This phenomenology is in analogy to Feshbach resonances,
where attraction in the open channel is induced by the prox-
imity of the closed channel in parameter space. As will be
discussed later in Sec. III B, the sc model predicts dominant
attraction under certain conditions, yielding effective finite
binding energies between the constituents. In the perturbative
regime assumed in Eq. (4), the resonance itself occurs at
V → J⊥, where the attractive interaction diverges and cc’s
proliferate.

Moreover, we point out that Eq. (4) is SU(2) symmetric in
the spin and isospin sectors. While the SU(2) spin symmetry
is already present in the original model (1), the isospin SU(2)
is an artifact of the perturbation theory and breaks down if
higher orders in t‖/(V − J⊥) are considered. We will show
in Sec. III E that the isospin SU(2) symmetry is nonetheless
approximately present in the numerical results for large V , and
exhibits a strong doping dependence.

Figure 3(a) shows the ground-state DMRG energies E0

of the effective low-energy descriptions (4) and (3) (dashed
lines) for small t‖/J⊥ = 0.1 � 1, compared to the results
for the full mixD + V model (1) (light, solid lines). The
ground-state energies are in very good agreement with
the full mixD + V model in the respective regimes of V .
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The different regimes can be distinguished by analyzing the
densities of pointlike cc’s and sc’s, ncc and nsc (calculated
from the full mixD+V model). Which one dominates in
the weak- and strong-V regimes [see Fig. 3(b)] is in agree-
ment with the respective low-energy subspaces. Here, n̂cc =
2
Lx

∑Lx
i n̂h

i,μ=0n̂h
i,μ=1 and n̂sc = 1

Lx

∑Lx
i

∑
μ n̂h

i,μ(1 − n̂h
i,μ̄).

For V = 0, the number of cc’s grows linearly with the
hole density δ, and nsc is suppressed to very small values. In
contrast, for larger repulsion strengths the formation of cc’s
is suppressed in the intermediate doping regime, with ncc ≈ 0
below δ � 0.5 for V � 2J⊥. In this strongly repulsive regime,
we find that the number of sc’s increases linearly to a value of
nsc = 1 at δ = 0.5, i.e., holes will avoid to sit on the same rung
if they can. Above δ = 0.5, there are more holes than particles
in the system and hence ncc increases to unity (nsc decreases
to zero).

Note that we calculate the density of pointlike sc (cc) pairs
here, as assumed in the derivations. In principle, in particu-
lar for larger t‖, the distance between spinons and chargons
(chargons and chargons) can be larger and spatially overlap-
ping mesons are possible as well (see Fig. 14 in Appendix,
Subsection 3 d).

3. A regime of correlated spinon-chargon pairs: The
bond-ordered density wave (BODW) at δ = 0.5

For doping δ = 0.5, Eq. (4) takes the form

Ĥsc
eff (δ = 0.5) = −4

t2
‖

V

∑
〈i j〉

(
−Ĵi · Ĵ j + 1

4

)(
1 + J⊥

V
P̂S

)
,

(7)

which we derive in the Appendix, Subsection 6. Individually,
the two factors under the sum would favor a Heisenberg AFM
order of isospins Ĵ and spins Ŝ, respectively. However, as
we have shown in [26], the product of both terms leads to
a ground state which is a correlated valence-bond crystal of
spins Ŝ and isospins Ĵ, with an alternating pattern of singlets
(no singlets) on bonds 〈2 j, 2 j + 1〉 (〈2 j + 1, 2 j + 2〉) for Ŝ
and Ĵ sectors. In the Appendix, Subsection 6, we present a
variational argument how the valence bond solid (VBS) phase
emerges.

Below, we will show that indications for this bond-ordered
density wave (BODW), illustrated in the inset of Fig. 1, can
be observed in the numerics, robust to finite-size scaling. We
will further show that away from the commensurate filling
δ = 50%, the numerical results can be understood in terms
of domain wall excitations on top of the BODW.

III. FESHBACH RESONANCE AND CROSSOVER

In the remaining part of the paper we will present our nu-
merical analysis of the Feshbach resonance and the associated
crossover between the open- and closed-channel-dominated
regimes. Thereby we reveal the underlying pairing mechanism
between doped holes, and how it changes with increasing
Coulomb repulsion V and doping. All our numerical results
have been obtained using the DMRG package SYTEN [49,50].

The key finding is that the binding energy is positive in
the entire doping regime even if strong repulsive interactions
dominate. Moreover, the value c = 1 of the central charge

FIG. 4. Hole density correlation function 〈n̂h
i n̂h

j 〉 for a system of
length Lx = 200 and hole doping δ = 0.9, site i located in the middle
of the system (xi = 100) and t‖/J⊥ = 1.0. The lower panel shows the
results for V/J⊥ = 0, with increasing values of V for the middle and
top panels.

and the Fermi momentum kF = πδ/2 we find in the gapless
regimes, i.e., away from the commensurate filling δ = 50%,
indicates that the system realizes a Luther-Emery liquid con-
stituted by the emergent (sc)2 or cc’s. Therefore, we argue
that by tuning the repulsion V and doping, the character of
the ground state changes from open-channel dominated (BCS
side of the Feshbach resonance) to closed-channel dominated
(BEC side of the Feshbach resonance) (see Fig. 1).

A. Hole density correlation function

In order to further investigate the emergent excitations in
the low and high Coulomb repulsion regimes, we calculate
the hole density correlation function 〈n̂h

i n̂h
j 〉 with i = Lx/2, as

exemplary shown for a hole doping δ = 0.9 in Fig. 4.
For low repulsion strengths V � 2J⊥, one can observe a

density wave pattern of chargon-chargon pairs with a wave-
length λ ≈ 10, with alternating enhanced (red) and suppressed
(blue) hole density simultaneously on both chains of the
ladder, in agreement with the high density of cc’s found
in Fig. 3.

In contrast, the upper panel of Fig. 4 shows that for large
repulsion, the probability of finding a hole in the upper chain
at distance | j − i| is suppressed if there is a hole in the lower
chain, and vice versa, since holes on the same rung get an
energy penalty on the order of V , resulting in a density wave of
spinon-chargon pairs with finite-range correlations if δ �= 0.5
(see Fig. 4, top).

B. Binding energies

In Fig. 5 we analyze the binding energies

EB(Nh) = 2(ENh−1 − ENh−2) − (ENh − ENh−2), (8)

with Nh the number of holes doped into the system. We as-
sume that holes are added to the two chains in an alternating
fashion, i.e., the state at Nh + 2 is obtained by adding one
hole in each chain. Per definition, positive binding energies
indicate that the system tends to form pairs, with stronger
binding for larger values of EB.

In agreement with the chargon-chargon picture of tightly
bound hole pairs [14,25], we find that EB for holes in opposite
legs (blue lines) is large for V � J⊥, and decreases with the
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FIG. 5. (a) Binding energies EB in units of J⊥ for equal hole
doping in each chain and with one extra hole added to each chain
(blue). Starting from the same state with equal numbers of holes
in each chain but adding two extra holes in the same chain, we
obtain zero binding energy (orange line). We used a system of length
Lx = 100 (light colors, dashed lines) and Lx = 200 (solid lines),
assumed t‖/J⊥ = 1.0 and increasing repulsion V for brighter colors.
The maximum of the doping dome is found at δopt ≈ 0.3 for large
V/J⊥ = 5. In (b) we show the location of maxima of the doping dome
δopt for V/J⊥ = 5 but different hopping strengths t‖/J⊥.

hole density of the system δ. In the high doping limit, EB is
small since there is no magnetic background that stabilizes
binding.

For V � 2J⊥, the binding energies show an almost
monotonous behavior with doping. For larger repulsion
strengths, however, this changes to a nonmonotonous, dome-
like dependence of EB on doping, with suppressed EB in the
low and high doping regimes, but enhanced binding for the
intermediate doping regime around δopt ≈ 0.3 for t‖/J⊥ = 1.

A comparison with the density correlations and sc densities
from the previous sections shows that the resulting dome of
EB arises in the regime of V where the system forms sc-like
pairs rather than cc’s. Furthermore, the effective attraction
in the finite doping regime and at large V is in agreement
with the phenomenology of the Feshbach-mediated pairing
mechanism that is expected from the effective sc model
(4), describing pointlike sc’s that experience an effective
nearest-neighbor attraction mediated by virtual recombination
processes into the cc channel: Near the Feshbach resonance,
the effective sc model (4) suggests dominant attractive in-
teractions with a maximum of the binding energies in the
intermediate doping regime δopt ≈ 0.5, where the number
of neighboring sc’s [and hence also the contribution by the
nearest-neighbor attraction in Eq. (4)] is maximal, in agree-
ment with numerical simulations of the effective sc model (4)
(see Fig. 15 in the Appendix).

For larger hopping strengths t‖/J⊥, binding is stabilized
and the resonance shifts to larger Vc > J⊥, yielding effective
attraction in the finite doping regime even at V > J⊥ (see
Fig. 15 in the Appendix). Furthermore, spinon-chargon pairs
develop an internal spatial structure (see Fig. 14), shifting
the maximum to smaller hole dopings, as confirmed by the
numerics of the full mixD model (1) shown in Fig. 5(b),
e.g., to δopt ≈ 0.3 in Fig. 5(a) for t‖/J⊥ = 1.0. In this case,
hybridization of the spatially extended sc pairs with cc pairs
can lead to an earlier proliferation of cc states, helping mediate
strong attractive interactions.

We would like to point out that strong binding in the limit
of large doping is consistent with experiments on bilayer

FIG. 6. Pair-pair correlation 〈(�rung
i )†�

rung
i+d 〉 (top) and

〈(�diag
i )†�

diag
i+d 〉 (bottom) with �

rung(diag)
i defined in Eq. (9) for

t‖/J⊥ = 1 and δ = 0.25. The finite doping leads to oscillations of
the pair-pair correlations with period 4. To guide the eye, we show
the correlations for every fourth neighbor as dashed lines.

nickelates, where superconductivity has been observed at
quarter filling, δ = 0.5 [7]. We find from our analysis that
although the binding energies become smaller for larger repul-
sion strength, binding between holes on opposite legs of the
ladder is surprisingly robust; e.g., EB ≈ 10%J⊥ for a repulsion
that is five times larger than all energy scales of the system. In
contrast, the binding energy for holes added in the same chain
of the ladder [see Fig. 5(a), orange lines] is extremely close to
(numerically consistent with) zero for all values of V and δ.

C. Pair correlations

Alternatively, one can study the pair-pair correlations
〈�†

i �i+d〉 with the pair annihilation operator

�
rung
i = 1√

2
(ĉi,1,↑ĉi,0,↓ − ĉi,1,↓ĉi,0,↑) (9)

for pairs with constituents on the same rung, or for pairs
extending over neighboring rungs,

�
diag
i = 1√

2
(ĉi,1,↑ĉi+1,0,↓ − ĉi,1,↓ĉi+1,0,↑). (10)

Both pair-pair correlations are shown in Fig. 6 for t‖/J⊥ = 1
and δ = 0.25. In this finite doping regime, the pair-pair cor-
relations exhibit oscillations with doping-dependent period.
When increasing the repulsion V , the density of cc states de-
creases [see Fig. 4(b)] and hence also 〈(�rung

i )†�
rung
i+1 〉. This is

not the case for pairs extending over neighboring rungs, where
the magnitude of 〈(�diag

i )†�
diag
i+1 〉 increases slightly for large V .

For larger distances d > 1 the magnitude of 〈(�rung
i )†�

rung
i+d 〉

decreases. The long-range nature of both pair-pair correlation,
however, remains, with clearly algebraic decay, up to large
V � 10. This indicates that in both cc and sc regimes two
holes form coherent pairs.

D. Central charge, spin, and charge gaps

In the large-V limit, two holes on the same rung are
strongly penalized and hence no more than one sc can occupy
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FIG. 7. (a) Central charge extracted from the bipartite entan-
glement entropy (shown exemplary for δ = 0.4, 0.5 in the inset
figures) by fitting the CFT prediction (15) for t‖/J⊥ = 1.0 and Lx =
100 (light colors) and Lx = 200. (b) Left: μNh→Nh+2 = E (Nh + 2) −
E (Nh ). At δ = 0.5 a charge gap opens for large V . Right: Spin gap
�s = E (Stot

z = 1) − E (Stot
z = 0). Both calculations were performed

for a system of LxLy = 200 sites and t‖/J⊥ = 1.0.

each rung. At commensurate filling δ = 50%, this leads to a
charge gap, corresponding to the energy required to create a
cc, which is visible by a jump in

μNh→Nh+2 = E (Nh + 2) − E (Nh) (11)

for the respective repulsion strengths at δ = 0.5 and V � 5J⊥
[see Fig. 7(b)]. Away from δ = 0.5, the charge gap vanishes
and the system forms a Luther-Emery liquid without charge
gap, but with a spin gap

�s = E
(
Stot

z = 1
) − E

(
Stot

z = 0
)

(12)

(E : ground-state energy) that remains from the singlet oc-
cupation of rungs at V = 0 [14,42] and decreases with
increasing V .

The Luther-Emery state away from commensurate filling
δ �= 0.5 and the opening of the charge gap at δ = 0.5 are also
reflected in the central charge that can be calculated from the
bipartite entanglement entropy S(x), indicating the number
of gapless excitations in the system. Numerically, S can be
obtained from matrix product states by cutting the system into
two parts at bond x since, for an appropriate choice of the
MPS chain, the bipartite entanglement entropy between the
two parts of the system is entirely carried by a single MPS
bond. As can be seen in Fig. 9 and will be discussed later, the
density shows significant oscillations, for which we account
for by normalizing S(x) by [51]

S̃(x) = 2S(x)

n
(
x − 1

2

) + n
(
x + 1

2

) n̄ (13)

with

n(x) = 1

Ly

Ly∑
μ=1

〈n̂x,μ〉 and n̄ = 1

Lx

Lx∑
x=1

n(x) . (14)

Exemplary results are shown in Fig. 7(a) in the insets for δ =
0.4 and 0.5.

In order to determine the central charge c, we fit the bipar-
tite entanglement entropy to the conformal field theory (CFT)
prediction [51,52]

SCFT(x) = c

6
log

[
2Lx

π
sin

(
πx

Lx

)]
+ g , (15)

where c and g are determined by fitting S to the numerical
results. As can be seen in the inset figures of Fig. 7(a), the
entanglement entropy flattens for the whole system except for
the boundaries when increasing V to a critical value larger
than 2J⊥ for δ = 0.5. In contrast, at δ �= 0.5 the change is not
clearly visible from bare eye.

The central charge c obtained from the fits is shown in
Fig. 7(a) for t‖/J⊥ = 1 and two system sizes Lx = 100, 200. In
a wide range of hole dopings δ, c = 1, which is in agreement
with the fact that there is a finite spin gap. Right at δ = 0.5,
where the BODW forms for large repulsion strength, the cen-
tral charge drops to a value close to zero for large enough
V/J⊥ � 5 and both considered system sizes, coinciding with
the emergence of the charge gap. Both observations indi-
cate the lack of long-range single-spin or single-charge order
of the emergent phase. We will show later on in Secs. III F
and III E that the BODW instead exhibits a plaquette order
with plaquettes consisting of two correlated sc’s, i.e., two spin
and two charge excitations, that form singlets in the spin and
charge sectors.

Around δ = 0.5, the extracted central charge increases.
This is a finite-size effect, as can be seen from the drastic
change when comparing the results for 200 and 400 sites. The
strong impact of the size on c can be understood by the fact
that the BODW emerges at δ = 0.5 and, as shown in Sec. III F,
doping away from δ = 0.5 yields domain wall excitations
from the bond order. However, the number of excitations Ndw

is very small compared to the system size, e.g., for a system
with 200 sites and δ = 0.45 the number of domain walls is
only Ndw = 20. Consequently, extremely large system sizes
are needed to decrease this finite-size effect.

Our observations on the central charge as well as the charge
and spin gaps show that the system forms a Luther-Emery
liquid for δ �= 0.5. As discussed in previous works on atomic
BEC to BCS crossovers (e.g. [33,34,36]), a Luther-Emery
to BEC crossover is continuous and hence difficult to ob-
serve, and is further complicated by the quasi-1D setting that
we investigate, making it challenging to directly observe the
crossover. Nevertheless, we find that the open- and closed-
channel-dominated regimes, with cc and (sc)2 constituents,
respectively, have distinctly different characteristics.

E. Isospin and spin oscillations

The special singlet–no-singlet order of the BODW is re-
flected in oscillations of 〈Ĵi · Ĵi+1〉 as well as 〈Ŝi · Ŝi+1〉 [26]
that are shown in the inset of Fig. 8(a), with minima and
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FIG. 8. (a) Minimal value of 〈Ĵi · Ĵi+1〉 (top left) and 〈Ŝi · Ŝi+1〉
(bottom left) for t‖/J⊥ = 1.0. The oscillations of the respective quan-
tities for the first 20 sites are shown exemplary for 〈Ĵi · Ĵi+1〉 at
δ = 0.5 in the inset. The right panel shows �rel

SU(2),Ĵ/Ŝ
as defined

in Eq. (16), that is used as a measure for the singlet character
of the plaquettes. (b) Minimal value of 〈Ĵi · Ĵi+1〉 (left) com-
pared to the probability of finding two holes on neighboring rungs
p(dx = 1, dy = 1) (right), for Nh = 2 and different values of t‖. All
calculations are performed for a system of 400 sites.

maxima arising from the singlet–no-singlet alternation, re-
spectively. The left panels of Fig. 8(a) show that the absolute
value of the minima is the largest for large V and δ = 0.5,
exactly where the BODW is expected. However, it can be seen
that the correlated sc state survives also away from δ = 0.5.

Furthermore, we consider the difference between the x, y,
and z components of the isospin Ĵi · Ĵi+1,

�rel
SU(2),Ĵ =

max
∣∣〈Ĵ z

i Ĵ z
i+1

〉∣∣ − max
∣∣∣ 〈Ĵ+

i Ĵ−
i+1+Ĵ−

i Ĵ+
i+1〉

4

∣∣∣
max|〈Ĵi · Ĵi+1〉|

, (16)

as a measure for the SU(2) symmetry of the Ĵ isospin sector.
The results are presented in Fig. 8(a), top panel, and for the
spin sector in the bottom panel, with �rel

SU(2),Ŝ
defined analo-

gously. Since the mixD+V model (1) is SU(2) symmetric we
find �rel

SU(2),Ŝ
= 0 for all values of δ. This is not the case for the

isospin and consequently �rel
SU(2),Ĵ

�= 0. However, we see that

for large repulsion strengths �rel
SU(2),Ĵ

is strongly suppressed at
δ = 0.5 where sc’s form isospin singlets on every second site,
corresponding to the maxima of |〈Ĵi · Ĵi+1〉|.

For low doping and small repulsion, 〈Ĵi · Ĵi+1〉 and 〈Ŝi ·
Ŝi+1〉 are both found to be nonzero as well, but with a smaller
value than in the BODW. This, however, is an effect of the
small size of the hole pairs in this repulsion regime. If two
holes sit on the same rung, there is a finite probability to tunnel
to the next site, resulting in a configuration that resembles the

FIG. 9. (a) Friedel oscillations of the density n(x) (left) and its
Fourier transforms (right) for a system of length Lx = 200, δ = 0.45
(Nh = 180), and t‖/J⊥ = 1.0, revealing two peaks at k̃1

x = 2πδ and
k̃2

x = k̃2
x (δ) for large V/J⊥. (b) The location of the peaks with doping

δ, for Lx = 100 (squares) and Lx = 200 (circles). The black line is
the Friedel peak location of domain walls of the BODW, given by
k̃x = 2πndw with the domain wall density ndw from Eq. (17).

BODW. The probability p(d = 1) to find pairs of this type on
neighboring sites depends on the hopping strength t‖ and is
shown in Fig. 8(b) on the right for the very low doping case
of two holes. It can be seen that for small V the probability
to find these configurations is indeed higher than for large V .
The same tendency is reflected in 〈Ĵi · Ĵi+1〉 and 〈Ŝi · Ŝi+1〉
[see Fig. 8(b) left], i.e., the oscillations of 〈Ĵi · Ĵi+1〉 and 〈Ŝi ·
Ŝi+1〉 can be attributed to the relatively large hopping strengths
t‖ ≈ J⊥ used in the DMRG simulations, in contrast to t‖ � J⊥
assumed in the derivation of Eq. (4). For large values of V the
holes become largely separated and hence p(d = 1) as well
as 〈Ĵi · Ĵi+1〉 and 〈Ŝi · Ŝi+1〉 are vanishingly small in the low
doping limit.

F. Friedel oscillations

The BODW of correlated sc’s allows to understand further
observations in the finite doping regime. Here, we focus on
the wave vectors kFriedel

x of Friedel oscillations, extracted from
the Fourier-transformed density for Lx = 200 and t‖/J⊥ = 1.
Figure 9(a) shows the Friedel oscillations of the density (left)
and its Fourier transforms (right) for two exemplary values
of V and δ = 0.45. For small repulsion strength, the Friedel
spectrum is dominated by a single peak at k̃1

x = 2πδ = 2kF ,
where kF is the Fermi momentum. In view of the finite
binding energies, the k̃1

x peak can be understood as arising
from a liquid composed of either individual cc’s or pairs of
sc’s [(sc)2], both corresponding to a density ncc = 1

2 Nh/L =
δ or nsc2 = Nh/(2L) = δ. The doping dependence of k̃1

x is
shown in Fig. 9(b), where it can be seen that this peak,
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independent of doping, survives up to the resolution limit
from the finite lattice spacing of the system denoted by the
gray area. Furthermore, Fig. 9(b) shows that there is a higher
harmonic of k̃1

x , possibly arising due to residual short-range
repulsion.

In addition, a second, smaller peak arises only for large
V with kx = 0.44πδ for the considered system with hole
doping δ = 0.45. As shown in Fig. 9(b), this second peak
has a markedly different doping dependence than k̃1

x , with
decreasing k̃2

x up to δ = 0.5 and increasing k̃2
x for δ > 0.5.

We argue that this peak is associated with excitations of the
BODW found at δ = 0.5. The latter correspond to domain
walls of the plaquette order, with rung-singlet (δ < 0.5) or cc
(δ > 0.5) character, whose density is

ndw = |1 − 2δ|. (17)

Respective peaks arise at k̃x = 2πndw (black line), which is in
excellent agreement with the location of the peak in the whole
density regime that was calculated numerically for Lx = 100
and 200 [see Fig. 9(b)]. This supports our observations from
before that in the intermediate doping regime, the system can
be understood in terms of correlated spinon-chargon pairs,
forming a BODW state of Cooper pairs with (sc)2 character
and domain walls between them.

IV. SUMMARY AND OUTLOOK

To conclude, we have presented the mixD+V model with
repulsive Coulomb interactions V , closely connected to the
newly discovered bilayer nickelate superconductor La3Ni2O7

[7,10], as a setting to investigate binding in strongly corre-
lated quantum systems from the perspective of BEC to BCS
crossovers and Feshbach-mediated pairing. Our numerical
and analytical results show that binding in open-channel-
dominated state, on the BCS side of the Feshbach resonance,
is mediated by coupling to the the closed chargon-chargon
channel familiar from Feshbach resonances. This scenario
gives rise to strong binding energies near the resonance, as
suggested by the effective theory derived in this paper, and can
hence potentially lead to pairing up to high temperatures. In
such a scenario, the critical temperatures for superconductiv-
ity can become very high [53]. This opens the way for a more
detailed analysis of Feshbach-mediated pairing, in the context
of mixD ladders, bilayers, nickelates, and beyond [38].

The mixD setup allows a controlled crossover from a
clearly BEC-like pairing mechanism with tightly bound holes
for V = 0 to a state of correlated spinon-chargon pairs at
strong repulsion V resembling closer a BCS state of fermions.
We see very clear signals for a drastic change of the na-
ture of the charge carriers in the numerical results of the
low- and high-repulsion limits, e.g., in correlation functions
and binding energies. In contrast, the central charge and
Friedel oscillations remain unchanged, as expected from a
Luther-Emery liquid. Moreover, our comparison to effec-
tive descriptions in terms of tightly bound chargon-chargon
pairs for low-repulsion and spatially extended bound states of
spinon-chargon pairs for high V indicate that the system can
indeed be described by very different types of charge carriers
in the respective regimes. In order to investigate this change
further, spectroscopic probes could be used to distinguish the

excitations in both regimes by their dispersion. Lastly, the
mixD+V ladder can also be investigated using ultracold-atom
experiments, where the nearest-neighbor repulsion can be
realized by doping the setup of Ref. [25] with holes and dou-
blons on opposite legs of the ladder. Alternatively, our model
can be probed in tweezer arrays of Rydberg atoms or ultracold
polar molecules realizing a tunable t-J-V Hamiltonian with
hard-core bosonic holes [54] since the physics remains unaf-
fected by the particle statistics in the mixD+V ladder geome-
try. Altogether, this may contribute to the search for materials
with high superconducting transition temperatures [55,56].

Note added. Recently, we became aware of a closely related
work by Yang, Oh, and Zhang [57], in which they use the
DMRG method to study a similar bilayer repulsive t-J model
on a two-leg ladder. In their work, they also find the emer-
gence of Feshbach resonance and propose a doping-induced
BEC-to-BCS crossover scenario for the bilayer nickelates.
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APPENDIX

1. Brief review: Binding in the mixD model without repulsion

As shown in Refs. [14,25] the strong binding energies
observed in the mixD model result from two peculiarities of
the model:

(1) The ladder: Compared to a single hole that distorts
the background singlet order when moving through the ladder
[see Fig. 10(a)], a second hole can retrace the first one and re-
store the background order, making it favorable for the system
to pair holes. This is schematically shown in Fig. 10(b).

(2) The mixed dimension: Suppressing the hopping term
between the chains enhances the probability for two holes
to sit on the same rung since the effect of Pauli blocking is
suppressed. This is further discussed in Ref. [25].

2. Experimental realization of the mixD ladder
with repulsive interactions

The mixD Hamiltonian (1) without repulsive interactions
V has already been realized by Hirthe et al. [25], by applying
potential offset � between the upper and lower legs of a
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FIG. 10. Schematic illustration of the binding mechanism in the mixD ladder: (a) single, unbound hole moves through the ladder and
distorts the spin background; (b) retracing mechanism of two holes, yielding a restored singlet background when the holes move through the
system together.

Fermi-Hubbard ladder with large U � t̃‖, t̃⊥. For U > �� t̃⊥
tunneling between the chains is suppressed to an effective
t⊥ = 0 and gives rise to a spin exchange

J⊥ = 2t̃2
⊥

U + �
+ 2t̃2

⊥
U − �

= 4t̃2
⊥

U

U 2 − �2
� 0 . (A1)

If the chains are occupied only by single spins and holes (no
doublons), the virtual tunneling between site i in the upper

layer and j in the lower layer is given by − t̃2
⊥
�

(1 − n̂i )n̂ j (for a
hole at site i in the upper layer and spin at site j in the lower

layer) or + t̃2
⊥
�

n̂i(1 − n̂ j ) (for a hole at site i and spin at site j),
respectively. In total, this leads to

Ĥh
eff =

∑
i

J⊥Ŝi,1 · Ŝi,0 − J⊥
4

n̂i,1n̂i,0 − t̃2
⊥
�

(n̂i − n̂ j ). (A2)

Similarly, if we have doublons in both layers one gets con-
tributions by virtual tunnelings between two doublons or a
doublon and a single spin at sites i and j in opposite layers

(no holes in the system). In this case, we find + t̃2
⊥
�

(1 − ˆ̃ni ) ˆ̃n j

(for a doublon at site i in the upper layer and spin at site j in

the lower layer) or − t̃2
⊥
�

ˆ̃ni(1 − ˆ̃n j ) (for a spin at site i in the
upper layer and doublon at site j in the lower layer) and hence

Ĥ2d
eff =

∑
i

J⊥Ŝi,1 · Ŝi,0 − J⊥
4

n̂i,1n̂i,0 + t̃2
⊥
�

( ˆ̃ni − ˆ̃n j ) (A3)

if we introduce the number operator ˆ̃n with

ñi =
{

0 if ni = 2 (doublons) or ni = 0 (holes),

1 if ni = 1 (single particle).
(A4)

Both cases correspond to a constant shift and do not change
the physics of the mixD ladder.

In contrast, if we add doublons in only one of the chains,
i.e. the lower chain, we get the following:

(i) a contribution − t̃2
⊥
�

(1 − ˆ̃ni )n̂ j (for a doublon at site i in
the lower leg and spin at site j in the upper leg);

(ii) a contribution − t̃2
⊥
�

ˆ̃ni(1 − n̂ j ) (for a single spin at site i
in the lower leg and a hole at site j in the upper leg);

(iii) or −2 t̃2
⊥

�−U (1 − ˆ̃ni )(1 − n̂ j ) (for a doublon at site i in
the lower leg and a hole at site j in the upper leg).

In total, we have a contribution

Ĥ1d
eff ( j) = J⊥

(
Ŝ jμ · Ŝ jμ̄ − 1

4
n̂ j,μn̂ j,μ

)

+
(

2
t̃2

�
− 2

t̃2

� − U

)
ˆ̃n jμ ˆ̃n jμ

+
(

− t̃2

�
+ 2

t̃2

� − U

)∑
μ

ˆ̃niμ − 2
t̃2

� − U
(A5)

and hence

Ĥ1d
eff = J⊥

∑
j

(
Ŝ jμ · Ŝ jμ̄ − 1

4
n̂ j,μn̂ j,μ

)

+ V
∑

i

ˆ̃niμ ˆ̃niμ + ε0

∑
iμ

ˆ̃niμ + const, (A6)

where we can define

V − J⊥
4

:= −J⊥
4

+ 2
t̃2
⊥
�

+ 2
t̃2
⊥

U − �
= t̃2

⊥

(
2

�
+ U + 2�

U 2 − �2

)
(A7)

and

ε0 := − t̃2

�
+ 2

t̃2

� − U
. (A8)

V is repulsive for doublon dopants in the lower chain and hole
dopants in the upper chain (� � 0 and V � 0) and attractive
for doublons in the upper chain and holes in the lower chain
(� � 0 and V � 0). Note that we have the restrictions 1 <
|�|
t̃⊥

, 1 <
|U |
t̃⊥

, |�|
t̃⊥

<
|U |
t̃⊥

, and 1 <
|U±�|

t̃⊥
denoted by the black

lines in Fig. 2 in the main text.

3. Details of our numerical DMRG simulations

We use the single-site density matrix renormalization
group (DMRG) algorithm implemented in the package SYTEN

[49,50]. The implementation of the mixD model is based on
essentially the same as in Schlömer et al. [58]: We explic-
itly employ U(1)Nμ=1 ⊗ U(1)Nμ=2 ⊗ U(1)Stot

z
associated with

charge conservation in each individual leg (since t⊥ = 0) and
total magnetization conservation, in the DMRG ground-state
calculations (Nμ=i: number of particles in chain i). As shown
in the Appendix of Ref. [58] this makes the ground-state
search much more efficient compared to calculations with
only global charge conservation U(1)N ⊗ U(1)Stot

z
.
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FIG. 11. We show exemplary convergence tests for a system with 400 sites and t‖/J⊥ = 1, as typically applied for the results presented
in the main text. Here, we compare ground-state energies E0(χ ) (top and middle) and local densities nx (χ ) (V/J⊥ = 5, bottom) for χ =
100, . . . , 1100. Convergence is typically achieved for χ > 500.

a. Exemplary convergence tests

Convergence is ensured by comparing energies, their
variance, and other expectation values like the density for
different bond dimensions χ up to χmax = 1100, as exemplary
shown for a system of length Lx = 200 with t‖/J⊥ = 1 and
different repulsion strengths V in Fig. 11. Typical bond di-
mensions we use for the results presented in the main text are
χ ≈ 1000. In most cases, the considered expectation values
indicate convergence already for χ > 500 (see Fig. 11). The
convergence is slightly slower for higher hole doping and

commensurate filling δ = 50%. We use a tolerance of 10−12.
Furthermore, show the finite-size scaling of the binding ener-
gies in Fig. 12. All our numerical results have been obtained
using the DMRG package SYTEN[49,50], with separate charge
conservation in each leg and total magnetization conservation.

b. Binding energies for different hopping strengths

The maximum of the binding energies presented in
Fig. 1(b) shifts with the hopping strength. In Fig. 13 on the

FIG. 12. Finite-size scaling for systems with Lx = 10, . . . , 200 and t‖/J⊥ = 1, as typically applied for the results presented in the main text.
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FIG. 13. Left: We show hole dopings δopt for which the maximum of the binding energies arises. Different t‖/J⊥ and a system of Lx = 100
and V/J⊥ = 5 are considered. Right: Amplitude of the VBS-like oscillations of 〈Ĵi · Ĵi+1〉 for the mixD ladder with t‖/J⊥ = 1, V/J⊥ = 5 and

length Lx = 100 and Lx = 200 (top). We compare the results to a 1D Heisenberg (HB) model of the same form as Ĥ J⊥=0
eff (A22) with 4

t2
‖
V = 1

(bottom).

left, we show the maximum of binding energies δopt for differ-
ent hopping strengths, revealing a strong dependence of δopt

on t‖/J⊥. The origin of this shift can be understood by consid-
ering the effective sc Hamiltonian (4) that describes pointlike,
hard-core sc’s that interact attractively if they sit on neigh-
boring rungs in the limit of t‖ � J⊥, J⊥ − V . Consequently,
we expect a maximal binding energy at δopt = 0.5 in this
regime, as confirmed numerically in Fig. 13. For larger hop-
ping strengths sc’s develop a spatial structure and extend over
several sites as can be seen in Fig. 14. Hence, they interact
strongly already for δ < 0.5 and δopt shifts to smaller values.

c. 〈Ĵi · Ĵi+1〉 and 〈Ŝi · Ŝi+1〉 at δ = 0.5

In the main text we discuss the expectation values 〈Ĵi · Ĵi+1〉
and 〈Ŝi · Ŝi+1〉, showing strong oscillations indicating
the BODW with alternating singlet–no-singlet order at
δ = 0.5. Here, we provide a more detailed comparison of
the amplitudes of 〈Ĵi · Ĵi+1〉 shown in Fig. 5(b) (see Fig. 13
on the right). For the mixD model, 〈Ĵi · Ĵi+1〉 and 〈Ŝi · Ŝi+1〉
show VBS-like oscillations of significant amplitude. This is
in agreement with our BODW interpretation, where minima
of 〈Ĵi · Ĵi+1〉 correspond to singlet bonds of the plaquettes,
and maxima to no singlets between the plaquettes. To show
the robustness of these oscillations we present the results
for two different system sizes Lx = 100, 200. Note that the
same quantity evaluated for the pure Heisenberg model with
Ĵ spins and open boundaries shows oscillations of a smaller

FIG. 14. We show the hole distance calculated by DMRG in the
limit of low doping for t‖/J⊥ = 3, different repulsion strengths V ,
and Lx = 80.

amplitude than for the mixD case as well. However, these
oscillations show a strong dependence on the system size (see
Ref. [26] and Fig. 13).

d. Hole distance in the limit of low doping

Furthermore, we mention the average distance of holes in
the main text. The average hole distance is calculated using
DMRG by evaluating the probability to find the holes and
particles at a certain distance d , given by [21]

p(d ) =
∑

i, j s.t. |i− j|=d

〈n̂i,μn̂ j,μ̄〉. (A9)

An example is shown in Fig. 14 for t‖/J⊥ = 3. One can see
that the distribution broadens with increasing V . The average
hole distance is given by dh = ∑

d p(d ).

4. Derivation of the effective chargon-chargon model

In order to derive the effective chargon-chargon Hamilto-
nian, we introduce the notation

(A10)

and

(A11)

where singlets are denoted by and chargon-chargon

pairs by .
First of all, we notice that we can rewrite ĤJ in terms of

the chargon-chargon operators b̂(†)
i , i.e.,

ĤJ = J⊥
∑

j

(ĉ†
j,1,↓ĉ j,1,↓ĉ†

j,2,↑ĉ j,2,↑ + ĉ†
j,1,↑ĉ j,1,↑ĉ†

j,2,↓ĉ j,2,↓

− ĉ†
j,1,↑ĉ j,1,↓ĉ†

j,2,↓ĉ j,2,↑ − ĉ†
j,1,↓ĉ j,1,↑ĉ†

j,2,↑ĉ j,2,↓)

= J⊥
∑

j

b̂ j b̂
†
j = J⊥

∑
j

(1 + b̂†
j b̂ j ).

The hopping term can be considered by performing a
Schrieffer-Wolff transformation and restricting to the energy
subspace related to energy scales V − J⊥ of chargon-chargon
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excitations. We assume that V � J⊥, i.e., the chargon-
chargon states are the low-energy states of the system and
their energy subspace is well separated from the energy sub-
space of spinon-chargon pairs. The transformed Hamiltonian
includes the correction �Ĥt given by second-order processes
via the higher-energy spinon-chargon channel, i.e.,

Ĥcc
eff = −2

t2
‖

J⊥ − V

∑
〈i j〉

P̂b(b̂†
i b̂ j + H.c.)P̂b

+ 4
t2
‖

J⊥ − V

∑
〈i j〉

b̂†
i b̂ib̂

†
j b̂ j

− 2
t2
‖

J⊥ − V

∑
〈i j〉

b̂†
j b̂ j + (V − J⊥)

∑
j

b̂†
j b̂ j

= − 2
t2
‖

J⊥ − V︸ ︷︷ ︸
=:t cc

eff

∑
〈i j〉

P̂b(b̂†
i b̂ j + H.c.)P̂b

+ 4
t2
‖

J⊥ − V︸ ︷︷ ︸
=:V cc

e f f

∑
〈i j〉

b̂†
i b̂ib̂

†
j b̂ j

−
(

z2
t2
‖

J⊥ − V︸ ︷︷ ︸
=:μcc

e f f

+J⊥ − V

) ∑
j

b̂†
j b̂ j . (A12)

Here, P̂b is the Gutzwiller projector on states with maximally
one boson per site. Note that the second term results from the
fact that the energy reduction by the kinetic contribution is
smaller (i.e., the energy is higher) if there are two chargon-
chargon pairs next to each other.

If we neglect the last term which gives a constant
contribution when assuming a fixed chargon-chargon number

we can rewrite Ĥcc
eff in terms of spin operators by mapping

Zi = b̂†
i b̂i − 1

2 and b̂(†)
i to the respective spin-raising and

-lowering operators and obtain [13]

Ĥcc
eff = − 4

t2
‖

J⊥ − V︸ ︷︷ ︸
=:Jcc

eff

∑
〈i j〉

(XjXi + YjYi − ZjZi ). (A13)

This is an XXZ model with Jcc,XY
eff = −Jcc,Z

eff < 0 (for
V < J⊥).

5. Derivation of the effective spinon-chargon model

In order to derive the effective spinon-chargon Hamilto-
nian (4) from the mixD Hamiltonian (1) for strong repulsive
interactions V,V − J⊥ � t‖ we perform a Schrieffer-Wolff
transformation [59], as schematically depicted in Fig. 2(c).
Here, we adapt the notation introduced in Fig. 2(a) with the
spinon-chargon creation (annihilation) operators f̂ (†)

iμσ , i.e.,

(A14)

and

(A15)

In this notation, singlets are denoted by , spinon-chargon

pairs by or , and chargon-chargon pairs by . Hence, the
sc vacuum, consisting of singlets on each rung of the ladder

[13], is denoted by | . . . . . .〉.
For the low-energy (Gutzwiller projected) sc hopping pro-

cesses of sc’s without neighbors we get

(A16)

Furthermore, second-order processes without recombination
to the chargon-chargon channel for isolated spinon-chargons

without nearest neighbors have amplitude −2
t2
‖

J⊥
3
4 , where the

factor 2 arises from the two directions in which the holes
and particles can hop and the factor 3

4 comes from the matrix
element of this process. In addition, HJ gives a contribution
+J⊥ for every rung with a broken singlet with respect to
the spinon-chargon vacuum (the ground state at half-filling).
Putting it all together, we arrive at the free spinon-chargon
Hamiltonian

Ĥsc,free
eff = t‖

2

∑
〈i j〉

∑
σ,μ

P̂ f ( f̂ †
jμσ f̂i,μσ + H.c.)P̂ f

+
(

J⊥ + 3

2

t2
‖

(−J⊥)

)
︸ ︷︷ ︸

=:ε0

∑
jμ

n̂ f
iμ . (A17)

As soon as two sc’s occupy neighboring rungs, there is no
contribution by second-order processes without recombina-
tion to the chargon-chargon channel in the direction of the
neighboring sc; since those terms are already included in the
free Hamiltonian term (A17) a term

−3

2

t2
‖

(−J⊥)

∑
〈i j〉

∑
μμ′

n̂ f
iμn̂ f

jμ′ (A18)

has to be added. Lastly, there are second-order hopping terms
via the high-energy subspace V (for recombination to the
the triplet channel) and V -J⊥ (singlet channel), schematically
depicted in Fig. 2(c). These processes can be written in terms
of chargon-chargon and spinon-chargon interactions, where
chargon-chargon operators b̂(†)

i are defined by

(A19)
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and

(A20)

For the singlet channel we need to consider second-order
hopping processes from the sc to the cc channel and back,
where the former is given by

− t‖√
2

∑
〈i j〉

∑
μσ

(−1)σ f̂ †
iσμ f̂ †

jσ̄ μ̄b̂ j

and the latter analogously. The factor (−1)σ takes the sign
structure of the singlets into account. The perturbative correc-
tion due to these processes is given by

�Ĥ f f = − 2t2
‖

V − J⊥

1

2

∑
〈i j〉

∑
μμ′

×
∑
σσ ′

(−1)σ (−1)σ
′
f̂ †
iσ̄ μ̄ f̂ †

jσμ f̂ jσ ′μ′ f̂iσ̄ ′μ̄′ ,

which includes μ = μ′ and μ = μ̄′ processes. Here μ = μ̄

denotes the opposite leg of μ, i.e., 0̄ = 1 and 1̄ = 0. The

amplitude of the interaction − t2
‖

V −J⊥
is attractive in the regime

under consideration and diverges for V → J⊥. Ĥ f f can be
represented using the operators Ĵ defined in Eq. (6) and shown
in Fig. 2(a), where μ = μ′ processes correspond to 2Ĵ z

i Ĵ z
j − 1

2

and μ �= μ′ to (Ĵ+
i Ĵ−

j + Ĵ−
i Ĵ+

j ). By projecting onto the singlet

channel using P̂S := −Ŝi · Ŝ j + 1
4 n̂ f

i n̂ f
j , we arrive at

�Ĥ f f = −2
t2
‖

V − J⊥

∑
〈i j〉

(
Ĵ+

i Ĵ−
j + Ĵ−

i Ĵ+
j − 2Ĵ z

i Ĵ z
j + 1

2

)

×
(

−Ŝi · Ŝ j + 1

4
n̂ f

i n̂ f
j

)

= −4
t2
‖

V − J⊥

∑
〈i j〉

(
−Ĵi · Ĵ j + 1

4

)

×
(

−Ŝi · Ŝ j + 1

4
n̂ f

i n̂ f
j

)
.

For the triplet channel we get

�Ĥ f f = −2
t2
‖

V

1

2

∑
〈i j〉

∑
μμ′

∑
σσ ′

f̂ †
iσ̄ μ̄ f̂ †

jσμ f̂ jσ ′μ′ f̂iσ̄ ′μ̄′

= −2
t2
‖

V

∑
〈i j〉

(
J+

i J−
j + J−

i J+
j − 2Jz

i Jz
j + 1

2

)

×
(

Ŝi · Ŝ j + 3

4
n̂ f

i n̂ f
j

)

= −4
t2
‖

V

∑
〈i j〉

(
−Ĵi · Ĵ j + 1

4

)(
Ŝi · Ŝ j + 3

4
n̂ f

i n̂ f
j

)
,

where P̂T := (Ŝi · Ŝ j + 3
4 n̂ f

i n̂ f
j ) projects onto the triplet

channel.
The resulting effective Hamiltonian (4) features both re-

pulsive and attractive interactions. Since the attraction is
mediated by recombinations into the cc channel, its amplitude

is proportional to − t2
‖

V −J⊥
, yielding dominant attraction and

finite binding energies of the effective model if V ≈ Vc = J⊥
for small t‖/J⊥ (see Fig. 15, left). For larger t‖/J⊥, binding is
stabilized and hence the resonance shifts to higher Vc > J⊥.
This is also observed in numerical simulations of the effective
model (4), where a doping regime with finite positive bind-
ing energies emerges for V = 5J⊥ and t‖/J⊥ = 1.0, 3.0 (see
Fig. 15, right). Note that the sc description can only be applied
up to δ = 50%, corresponding to full sc filling.

6. The bond-ordered density wave at δ = 0.5

For δ = 0.5 and V, J⊥ � t‖ the effective sc Hamiltonian
(4) becomes

Ĥeff = −4
t2
‖

V − J⊥

∑
j

(
−Ĵ j+1 · Ĵ j + 1

4

)

×
(

−S j+1 · S j + 1

4
n̂ j+1n̂ f

j

)

− 4
t2
‖

V

∑
j

(
−Ĵ j+1 · Ĵ j+1

4

)(
S j+1 · S j + 3

4
n̂ f

j+1n̂ f
j

)
,

(A21)

since in the case of half-filling (i.e., maximal sc filling) the
first term of Eq. (4) vanishes due to the Gutzwiller projection
P̂ f . Furthermore, the second and third terms as well as the − 1

4
and + 3

4 terms in the singlet and triplet projectors give constant
contributions in this case.

Note that for J⊥ = 0 singlets and triplets are degenerate:

ĤJ⊥=0
eff = −4

t2
‖

V

∑
j

(
−Ĵ j+1 · Ĵ j + 1

4

)
. (A22)

For small J⊥ we can Taylor expand

t2
‖

V − J⊥
= t2

‖
V

(
1

1 − J⊥
V

)
≈ t2

‖
V

(
1 + J⊥

V

)
+ . . . . (A23)

In this case Eq. (A21) becomes

Ĥeff = ĤJ⊥=0
eff − 4

t2
‖ J⊥
V 2

∑
j

(
−J j+1 · J j + 1

4

)

×
(

−S j+1 · S j + 1

4

)

= ĤJ⊥=0
eff − 4

t2
‖ J⊥
V 2

∑
j

(J j+1 · J j )(S j+1 · S j )

+ t2
‖ J⊥
V 2

∑
j

J j+1 · J j + t2
‖ J⊥
V 2

∑
j

S j+1 · S j + const.

(A24)

This Hamiltonian includes competing terms that favor ei-
ther Heisenberg (HB) order (first, third, and fourth terms) or
alternating singlet and triplet order (second term). The sec-
ond term can have lower energies for a valence-bond crystal
(VBS) state of spin and isospins, i.e., an alternating pattern of
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FIG. 15. Binding energies from DMRG simulations of the effective sc model (4) for t‖/J⊥ = 0.1, 1.0, 3.0 (left to right).

singlets (no singlets) on bonds 〈2 j, 2 j + 1〉 (〈2 j + 1, 2 j + 2〉)
as illustrated in Fig. 5(a). This can be seen from comparing
variational energies:

(i) The energy per bond of a Heisenberg AFM is [ 1
4 −

ln(2)]. Consequently, the energy per bond from Eq. (A24) for
HB order in both spin and isospin is

(
EHB

0

)2 = −(
1
4 − ln(2)

)2 ≈ −(0.443)2 = −0.196

(squared because for spins and legs each).

(ii) The VBS state consists of leg and spin singlets on
bonds 〈2 j, 2 j + 1〉, i.e., on 50% of the bonds. Since each leg
and spin singlet contribute energy 3

4 per bond, we have

E0 = − 1
2

(
3
4

)2 ≈ −0.28.

This comparison shows that the second term in Eq. (A24)
favors a VBS state. Implications on expectation values like
〈Ĵi · Ĵi+1〉 and 〈Ŝi · Ŝi+1〉 and the additional Friedel oscillation
peaks, associated with excitations from the BODW order, are
discussed in the main text and following.
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